Une aide personnalisée et adaptative pour la recherche d information sur le Web

Dimension: px
Commencer à balayer dès la page:

Download "Une aide personnalisée et adaptative pour la recherche d information sur le Web"

Transcription

1 Une aide personnalisée et adaptative pour la recherche d information sur le Web J.C. Bottraud *, ** G. Bisson ** M.F. Bruandet * * Laboratoire Leibniz-IMAG, équipe Apprentissage Machine 46 Avenue Félix Viallet F Grenoble Cedex ** Laboratoire CLIPS-IMAG, équipe MRIM Université Joseph Fourier F St Martin d Hères {jean-christophe.bottraud, gilles.bisson, RÉSUMÉ. Les outils disponibles pour rechercher de l information sur le World Wide Web ont une approche généraliste, ne prenant pas en compte les caractéristiques de l utilisateur, ce qui limite la qualité des résultats qu ils sont susceptibles de fournir. L agent présenté ici utilise les références documentaires rassemblées par l utilisateur pour construire un profil le représentant, puis interprète les requêtes et filtre les résultats proposés par les moteurs de recherche du Web. Il utilise également des informations obtenues en observant les activités en cours de l utilisateur pour restreindre l utilisation du profil aux parties les plus pertinentes. ABSTRACT. Available tools to retrieve information from the World Wide Web have a generalist approach that does not account for the characteristics of the user, which limits the quality of the results that they can give. The agent presented here uses document references gathered by a user to build a profile representing her/him, then uses it to interpret the queries and to filter the results returned by the search engines. It also uses information gathered while observing the on-going activities of the user to restrict use of the profile to its most relevant parts. MOTS-CLÉS : Recherche d information, Agent Intelligent, Classification de documents, World Wide Web, Adaptation, Contexte KEYWORDS : Information Retrieval, Intelligent Agent, Document clustering, World Wide Web, Adaptation, Context.

2 1. Introduction Les moteurs de recherche actuels travaillent à partir de bases d index de grande taille, généralement construites à l aide de robots accédant aux documents publiés sur le Web. En dépit d une amélioration constante des processus d indexation et de recherche, les résultats fournis restent parfois difficiles à utiliser, pour plusieurs raisons (Lynch C., 1997 ; Members of the Clever Project, 1999) : - Les utilisateurs n emploient habituellement que quelques mots (moins de 5) pour décrire le document recherché ce qui peut donner lieu à des ambiguïtés. Par exemple, un moteur de recherche ramène pour la requête «thread pattern» comme documents les plus pertinents 2 documents sur le développement de logiciels, 3 sur les textiles et 3 sur l industrie de l acier ou du plastique. - La pertinence d un document par rapport à une requête est évaluée par ces services pour un utilisateur «moyen», sans que soient pris en compte les besoins de l utilisateur effectif, ni son niveau d expertise réel. - Les objectifs du propriétaire du portail et ceux de l utilisateur peuvent diverger, le premier pouvant avoir intérêt à promouvoir certains sites (suivant des objectifs commerciaux ou politiques, Barghava et al ; Olsen S ; Sullivan D. 2002) aux dépens d autres qui seraient plus pertinents pour l utilisateur. Pour surmonter ces problèmes, différents auteurs (voir la partie 2) proposent de mettre en place un «assistant» s exécutant sur la machine de l utilisateur et qui joue le rôle de médiateur entre celui-ci et le moteur de recherche. Cependant, l acceptation d un tel système dépend autant de son efficacité intrinsèque que de sa faculté à ne pas augmenter la charge de travail de l utilisateur. Aussi, l assistant doit être apte à «comprendre» automatiquement les objectifs d une requête au travers des quelques mots qui la compose. Pour cela, il doit pouvoir lever l ambiguïté des termes utilisés et filtrer les documents retournés à la fois sur la base de critères spécifiques à son utilisateur et par la détection du contexte de travail courant. Nous proposons ici un système doté des caractéristiques suivantes : - Il construit un modèle (ou «profil») de l utilisateur en analysant et classifiant une collection de documents ou de références gérées par celui-ci. - Il suit en permanence les activités de l utilisateur et en collecte les sous-produits (documents édités ou consultés, segments de texte copiés dans le «presse-papier», etc.) de manière à identifier le thème général du travail en cours. - Lors des recherches d information, il identifie un contexte à partir de ses observations et du profil utilisateur. Il utilise ce contexte pour aider l utilisateur dans sa recherche en reclassant les documents retrouvés. La première partie de cet article présente un ensemble de travaux en rapport avec le système et les objectifs proposés, puis nous faisons une description générale du système. Nous détaillons ensuite les méthodes et le processus de création du profil de l'utilisateur, ainsi que la prise en compte du contexte de la requête. Enfin, la dernière partie présente l évaluation du système et la démarche utilisée.

3 2. Revue des travaux existants Un grand nombre de publications décrivent des systèmes cherchant à résoudre les problèmes que nous analysons ici, avec des approches comparables. Il s agit essentiellement de systèmes correspondant à des assistants pour la recherche d information, mettant en jeu des mécanismes de filtrage, d apprentissage et de bouclage de pertinence («relevance feedback»). La plupart de ces systèmes utilisent un modèle pour représenter les documents et en abstraire l information contenue. Bien que plusieurs représentations aient été proposées, la plus populaire reste le modèle vectoriel initialement défini par (Salton G. 1971). Notre approche étant fondée sur ce modèle, seuls les travaux correspondant sont présentés ici. Dans les approches initialement proposées (par exemple, dans LIRA (Balabanovic et al., 1995) ou Syskill & Webert (Pazzani et al., 1996)), l utilisateur est modélisé avec un vecteur de termes unique adapté en fonction du «feedback» fourni par l utilisateur sur les documents sélectionnés par le système. Bien que raisonnablement efficaces lorsque dédiés à un seul objectif de recherche d information (une veille sur un sujet précis), ces systèmes ont du mal à gérer un changement de l intérêt de l utilisateur. C est pourquoi certains systèmes (tel WebMate Chen et al.,1998) combinent plusieurs vecteurs de façon à pouvoir s adapter dans une certaine mesure à un changement de sujet. Ils continuent cependant à avoir des problèmes à s adapter aux évolutions des besoins en information de leurs utilisateurs. Ces besoins évoluent avec le temps et cette évolution interfère avec les changements de sujets. C est ce type de problème que les systèmes plus récents (par exemple, News Dude (Billsus et al., 1999) ou Alipes (Widyantoro D. H, 1999 et 2000)) essaient de traiter, en prenant explicitement en compte une dimension temporelle, représentée par l utilisation de deux ensembles de vecteurs, le premier évoluant rapidement en fonction du feedback de l utilisateur, le second évoluant plus lentement, sur des règles différentes. La pertinence d un document est évaluée en combinant l évaluation obtenue par la comparaison avec chacun de ces deux ensembles. Tous ces systèmes font évoluer leur représentation des objectifs de l utilisateur à l aide de mécanismes de feedback. Certains (par exemple LASER (Boyan et al., 1996) ou Letizia (Lieberman 1995)) gèrent un système de poids associés à des termes pour évaluer une similarité entre documents dans un espace métrique (documents et profils sont représentés par des vecteurs dans le même espace). Ces systèmes utilisent souvent des variantes de la méthode «Rocchio Relevance Feedback» (Rocchio J. J., 1971), en observant les réactions de l utilisateur aux documents proposés. Les documents jugés pertinents sont utilisés pour adapter les poids associés aux termes du profil et faire évoluer ce dernier pour mieux l adapter à l utilisateur. Plus récemment on voit apparaître des techniques d apprentissage automatique, comme des réseaux de neurones (Shavlik et al, 1999 et Goecks et al., 2000), des probabilités Bayésiennes (Pohl et al., 1999), des algorithmes à base de règles (Bloedorn E. et al, 1996 ou Krulwich et al., 1997) ou des algorithmes

4 génétiques (Moukas et al., 1997, Menczer F., 1997, Nick et al., 2001). Plusieurs approches peuvent d ailleurs être combinées (Billsus et al., 1999 ou Mladenic D.), et une comparaison de différentes approches a été faite dans (Pazzani et al., 1996), avec la conclusion que les méthodes fondées sur Rocchio, les réseaux neuronaux ou les classificateurs Bayésiens donnent les meilleurs résultats. Cependant peu de systèmes utilisent des informations contextuelles non directement liées à la recherche en cours (autrement dit, des informations autres qu un feedback direct ou indirect sur les documents obtenus par une requête) pour faciliter la recherche. Seul Remembrance Agent (Bradley et al., 1996) utilise une analyse d un courrier en cours de création pour proposer des courriers similaires, parmi ceux référencés par son utilisateur. D un autre côté, les systèmes de recherche d information utilisant un mécanisme d expansion des requêtes sont également intéressants dans le contexte de la recherche présentée ici. Ces systèmes peuvent s appuyer sur le «relevance feedback» (SMART et ses variantes) ou sur un mécanisme de classification locale, ces deux approches supposant que la première requête fournit un ensemble de documents que l utilisateur évalue. De nouvelles requêtes sont ensuite générées à partir de ces évaluations en ajoutant aux termes de la requête initiale des termes extraits de documents sélectionnés (cf. Baeza-Yates et al., 1999). Un autre type de système analyse des collections de documents et construit automatiquement des thésaurus, ensuite utilisés pour étendre ou interpréter des requêtes (cf. Baeza-Yates et al., 1999). Bien que cette approche soit généralement appliquée dans le contexte de recherche sur des collections connues et finies, elle pourrait être adaptée au Web si une sélection de documents est disponible pour construire le thésaurus. Les «assistants personnels» décrits ci-dessus présentent certains inconvénients concernant l initialisation, la représentation et l évolution du profil de l utilisateur : - Lorsque la construction du modèle de l utilisateur est guidée par le contrôle de pertinence, l assistant n est opérationnel que lorsque l utilisateur l a «entraîné» durant un certain temps avec un risque de démotivation de ce dernier. - Les caractéristiques retenues pour représenter les centres d'intérêt de l'utilisateur sont souvent peu nombreuses (cent termes environ) et organisées de manière non hiérarchique (partitionnement) ce qui ne facilite pas leur interprétation ni la prise en compte des différents niveaux de généralités présents dans les connaissances de l utilisateur. - Le contexte dans lequel une recherche est effectuée (c est à dire la tâche en cours, comme l écriture d un rapport, par exemple) est rarement utilisé pour comprendre la requête et la situer par rapport au profil de l utilisateur. Ainsi, l approche préconisée par WordSieve (Bauer et al., 2001) nous semble intéressante. - Enfin, dans l évolution du profil, les différentes causes du changement d intérêt, et les échelles temporelles associées, sont peu ou pas prises en compte : ainsi, une tâche peut typiquement durer de quelques minutes à plusieurs jours, alors que l évolution des centres d intérêt peut prendre des semaines voire des mois.

5 3. Présentation générale du système AIRA Le fonctionnement du système AIRA (Adaptive Information Research Assistant) repose sur l hypothèse que l utilisateur dispose et maintient à jour un ensemble de documents ou de références, correspondant à une «bibliothèque personnelle», qui est représentative de ses centres d intérêts. C est à partir de cet ensemble qu AIRA extrait et structure les connaissances représentatives de l utilisateur. 3.1 Architecture La Figure 1 présente les trois composants du système, à savoir : le profil de l utilisateur, les observateurs, et les composants intervenant lors d une recherche. Figure 1. Principaux composants du système AIRA Le profil d utilisateur peut être vu comme une mémoire «à long terme» associée à l utilisateur. Il est construit à partir de sa bibliothèque (documents, références, ) et organisé grâce aux composants suivants : - L observateur de la bibliothèque est chargé d en fournir une représentation manipulable par le système, et d en surveiller les évolutions. - Le profil conceptuel organise les documents de la bibliothèque en une hiérarchie stricte de classes. Il peut être donné «a priori» ou construit automatiquement par un mécanisme de classification incrémentale. - Le profil opérationnel est dérivé du profil conceptuel. Pour chaque classe, il construit une description intentionnelle sous forme de liste de termes, directement exploitable lors de la recherche. Les observateurs sont chargés de collecter de façon autonome les sous-produits textuels des activités de l utilisateur, par interaction avec les composants logiciels qu il utilise (contenu du presse-papier, pages WWW visualisées, documents en cours d édition, ). Ces éléments textuels sont enregistrés dans un journal des actions chronologiques qui correspond à la mémoire «à court terme» du système.

6 Enfin, les composants 1 utilisés pour la recherche correspondent d une part au gestionnaire de contexte, chargé d exploiter le journal des actions et le profil opérationnel pour identifier le contexte de travail (représenté sous la forme d un vecteur de poids associés à des termes), et d autre part au gestionnaire de requête, qui exploite ce contexte pour interpréter la requête et filtrer les résultats. 3.2 Analyse du fonctionnement Le fonctionnement du système met en jeu plusieurs phases. La première phase est une phase d initialisation, durant laquelle les différents composants du profil utilisateur sont engendrés à partir du contenu de la bibliothèque personnelle. Les phases suivantes correspondent à l utilisation «courante» du système, avec trois types de tâches : l observation continue de l activité de l observateur afin de garder «à jour» le journal des actions; la gestion de l évolution du profil, déclenchée par une modification de la base de références ; la gestion de la recherche d information, proprement dite. Dans le système actuel, la recherche d information est déclenchée à l initiative de l utilisateur et se traduit par la détermination du contexte de travail, suivi par l envoi de requêtes aux moteurs de recherche sélectionnés et la présentation des résultats collectés, après qu ils aient été analysés et reclassés. L approche utilisée ici est originale à plusieurs niveaux : - Nous proposons d utiliser un profil hiérarchisé, plutôt que des combinaisons de vecteurs comme le font la plupart des systèmes, afin de pouvoir jouer sur le niveau de généralité et sur le nombre de termes utilisés dans la requête. - Notre profil est fondé sur des choix de l utilisateur indépendants et antérieurs à toutes requêtes, ce qui nous permet d éviter la phase d entraînement du système. Il n y a pas d évolution directe du profil lors d une requête, l adaptation à un éventuel «feedback» se faisant de manière autonome via les observateurs. - Le découplage profil conceptuel/opérationnel permet de séparer le problème de l interprétation des informations disponibles de celui de l exploitation de ces informations dans la recherche, ce qui clarifie les rôles et accroît notablement les possibilités d extension du système (chaque composant est autonome). - La mise en œuvre d un mécanisme «contextuel» général, permet d exploiter les réactions de l utilisateur aux résultats de recherche, comme le font les systèmes utilisant le bouclage de pertinence, mais il permet aussi d intégrer d autres sources aptes à fournir une description «a priori» du contexte de travail. - Lors d une requête, on n utilise que l extrait du profil pertinent dans le contexte courant, focalisant ainsi la recherche sur un nombre restreint de termes. 1 Le système contient un composant supplémentaire, non décrit ici, qui est chargée de faire de «l expansion de requête». Il repose sur un algorithme d apprentissage itératif qui soumet une série de requêtes et utilise les réponses du (ou des) moteur de recherche pour guider la généralisation ou la spécialisation de la requête initiale.

7 4. Profil utilisateur 4.1. Représentation des documents La modélisation des documents s effectue sous forme de vecteurs de termes, suivant en cela le modèle vectoriel initiée par (Salton 1971), également utilisé par la plupart des systèmes mentionnés à la section 2 (cf. revue des travaux existants). L espace des termes est obtenu classiquement en analysant l ensemble des documents pour en extraire les mots utilisés. Ces mots sont ensuite lemmatisés pour les ramener à une forme invariante, indépendante du genre, du nombre, de la conjugaison, puis filtrés à l aide de «stop list» pour éliminer ceux qui sont sans intérêt. Dans la suite de l'article, nous appellerons «terme» cette forme lemmatisée. Un document est représenté dans cet espace par un vecteur dans lequel chaque coordonnée correspond à un terme de l espace et prend la valeur d une variable réelle, qui est fonction de la fréquence d apparition du terme dans le document, avec différentes approches possibles (cf. par exemple (Salton, Buckley 1988)). La coordonnée la plus utilisée, tf.idf (ou «terme fréquence * inverse document fréquence»), fait intervenir la notion de fréquence de documents contenant le terme, et n a de sens que dans le contexte de requêtes portant sur un corpus donné et fini de documents. Comme pour notre système le corpus ciblé correspond au Web, et que le référentiel documentaire dont nous disposons n en représente qu un infime fragment, fortement biaisé, il ne semble pas souhaitable de se baser sur la bibliothèque personnelle pour calculer la fréquence de documents et en déduire les valeurs associées aux termes. Par exemple, si l on considère le cas particulier d un profil ne contenant qu une classe de documents particulièrement homogène, dans laquelle tous les termes importants sont présents dans tous les documents, le tf.idf de ces termes serait nul, ce qui est exactement le contraire de l effet recherché. La valeur retenue pour le système est donc la fréquence du terme, normalisée de façon à ce que le terme le plus fréquent ait 1 pour valeur associée et que ces valeurs soient indépendantes de la taille du corpus Profil conceptuel - Classification des documents : Cobweb Il existe de nombreuses façons de classer (au sens de «construire des catégories» et non simplement d affecter un document à une classe prédéterminée) les documents (cf. Sebastiani F., 2002), mais il en existe peu qui soient incrémentales et permettent de faire évoluer progressivement une classification au fur et à mesure de l ajout de documents. Or il est indispensable que l évolution du profil utilisateur soit progressive pour au moins deux raisons : - Il existe une composante aléatoire dans la plupart des algorithmes de classification qui peut avoir pour conséquence une restructuration importante de

8 l organisation en classes lors d un re-calcul de profil après modification de la bibliothèque. Cette restructuration importante risque d altérer de façon majeure le fonctionnement de l assistant, même si les évolutions de la bibliothèque sont relativement mineures, ce qui risque de dérouter l utilisateur. - Dans un contexte où le nombre d attributs (de termes) et de documents se compte en milliers, la construction d un arbre de classification peut demander un temps assez long et dégrader notablement les performances du système. L algorithme choisi pour construire automatiquement la classification des documents (et gérer son évolution) est Cobweb, un algorithme de classification hiérarchique incrémental défini par (Fischer, 1987/1995) et qui repose sur une méthode de recherche par gradient ayant comme critère de décision l'utilité d'une partition de catégories («Category Utility») (Gluck et al., 1985). Ce critère permet de sélectionner les transformations de la hiérarchie à effectuer lors de la prise en compte d'un nouveau document et de gérer le problème de «dérive de concepts». Transposée dans le contexte de la classification de documents à partir de leur représentation dans un espace vectoriel de termes, l idée de base en est la suivante : si une partition en classes d un ensemble de documents est utile, la connaissance du fait qu un document appartient à une classe de la partition doit permettre de prévoir avec davantage de confiance qu un terme donné appartient ou non à ce document (et inversement si un document contient ou non un terme). L utilité d une partition peut alors être mesurée à partir de l écart entre la probabilité conditionnelle de trouver un terme dans une classe et la probabilité de trouver un terme dans la collection. Dans le cadre général, le CU peut s exprimer de la façon suivante (d après Witten et al., 2000) pour les attributs nominaux (ou booléens) : CU(C 1,C 2,...,C k ) =  l [ ] Pr a i = v ij C l Pr C l  i  j ( [ ] 2 - Pr[ a i = v ij ] 2 ) où CU(C 1, C 2,, C k ) est l utilité de la partition en k classes C i, Pr[C i ] est la probabilité de la classe C i, Pr[a i = v ij ] est la probabilité que l attribut a i est la valeur v ij si on considère la collection dans son ensemble, et Pr[a i = v i C l ] est la probabilité que l attribut a i est la valeur v ij si on considère uniquement la classe C l. Dans le cas de variables numériques, en supposant que l attribut a i suivent une loi normale d écart type s, cette formule devient : i CU(C 1,C 2,...,C k ) = 1 k  l Pr C l Dans le contexte de la recherche d information, un attribut correspond à un terme et sa valeur à la fréquence définie précédemment, c est à dire à la fréquence (normalisée) d apparition d un terme dans un document. L écart type correspond à celui de cette fréquence, observée dans les documents de la partition dans son ensemble, ou dans une classe de la partition. [ ] k 1 2 p  i Ê 1-1 ˆ Á Ë s il s i

9 L algorithme de COBWEB définit quatre d opérateurs applicables à l arbre lors de l addition d un nouvel exemple c est-à-dire d un document. doc {0,0.5,0,0, } 1. Évaluer CU de C 1après application de chaque opérateur : Ajout à une classe (Incorporate) Merge Split Create 2. Choisir la meilleure solution (par ex. ajouter à C 1, 2) C, C 1 C 1,1 C 1,2 C 1,2, 1 C 1, 2, 2 C 2 C 2, 3 C 1, 2, 3 C 2,4 3. Recommencer au niveau suivant Figure 2. Intégration d'un nouveau document dans la hiérarchie La prise en compte d un nouveau document dans COBWEB s effectue en explorant la hiérarchie de manière descendante selon cet algorithme (cf. Figure 2): 1 L algorithme démarre de la classe racine (initialement vide). 2 Il évalue, pour chacun des 4 opérateurs qui sont applicables sur la classe courante, le CU de la partition correspondant à l application de l opérateur : - Incorporate : ajouter le document à une classe existante. - Merge : fusion de deux classes existantes. - Split : suppression d une classe existante en intégrant son contenu directement dans la classe où elle figurait - Create : créer une nouvelle classe pour le document. L opération correspondante au meilleur CU est effectuée. 3 On recommence à l étape 2 en choisissant comme nouvelle classe courante soit la classe cible de l incorporation, soit la même classe en fonction de l opérateur retenu, jusqu à ce qu on arrive à une feuille de l arbre. La Figure 3 présente un extrait de la classification correspondant à la construction par COBWEB d un profil conceptuel Profil opérationnel - Description des classes Le profil conceptuel n est cependant pas directement utilisable. D une part, le nombre d attributs est trop important (6992 termes dans l exemple de la Figure 3), et d autre part la pertinence des termes est définie en fonction de leur utilité pour la classification (leur pouvoir discriminant pour la collection considérée). Or ce critère n est pas nécessairement le plus efficace pour évaluer la pertinence d un terme lors de la recherche d information. Nous définissons donc un profil «opérationnel», dans lequel les classes sont représentées à l aide des caractéristiques descriptives,

10 avec héritage des descriptions (une classe hérite des descriptions de ses ascendants). Ce profil est construit récursivement, selon l algorithme suivant : Soit L k l ensemble des termes pertinents. Soit C une liste contenant la racine du profil conceptuel. Construire_Profil_Op (C, L k ) Pour chaque classe c k de C Si ce nœud est une feuille ne rien faire. Sinon Soit L k Pour chaque terme t i de L k, Evaluer la variance inter-classes MS Effet (t i, c k ) et la variance intra-classe MS Erreur (t i, c k ) de l utilisation de t i dans les sous-classes de c k, et les comparer avec un test de Fisher. Lorsque le test ne permet pas de rejeter l hypothèse d homogénéité des répartitions, faire L k L k» t i Trier les termes t i de la liste L k en fonction de leur fréquence dans la classe c k (ce qui revient à estimer les probabilités conditionnelles P(t i /c k )). Description_op (c k ) les 20 meilleurs termes de L k. Construire_Profil_Op (Fils_de(c k ), (L k - Description_op(c k ))) La Figure 3 montre un extrait de profil opérationnel en relation avec le profil conceptuel dont il est issu. On notera que, contrairement au profil conceptuel, où les références aux documents exemples sont conservées dans les nœuds, le profil opérationnel n associe à ces nœuds que des listes de termes et les poids associés. Figure 3. Comparaison des profils conceptuel et opérationnels. Chaque nœud correspont à une même classe, vue de deux façons différentes : en «extension» pour le conceptuel (droite) et en «intension» pour l opérationnel (gauche).

11 4.4. Evolution du profil L évolution du profil dépend de l évolution de la base documentaire qui lui sert de support : lorsque l utilisateur ajoute ou retire des documents ou des références, ces modifications sont répercutées dans le profil conceptuel en s appuyant sur les capacités incrémentales de Cobweb, et le profil opérationnel est recalculé. 5. Détermination du contexte de recherche et soumission de requête L'identification et la description du contexte de travail dans lequel l'utilisateur se trouve lorsqu'il soumet une requête revient à déterminer la ou les parties du profil opérationnel qui sont concernées. Cette étape s appuie sur l observation des activités en cours, de la façon illustrée dans la figure 4. Figure 4. Sélection du contexte actif (et des termes) en fonction de l activité Au cours de son «activité» sur une tâche donnée (qui peut durer de quelques minutes à quelques heures), l utilisateur enchaîne un certain nombre d'actions élémentaires susceptibles de produire du texte. Par exemple, la copie d un fragment de document dans le presse-papier ou encore la sélection d un lien dans un document hypertexte (c est le paragraphe entourant le lien qui est alors sélectionné). Détectées par les observateurs (cf. 3.1) du système AIRA, ces actions sont alors enregistrées dans le journal des actions. Si l on admet qu elles sont liées aux centres d intérêt représentés dans la «bibliothèque personnelle», certains des termes liés aux actions courante (par exemple «agent, information») apparaîtront également dans le profil. Ils peuvent donc être utilisés comme des indices pour identifier dans ce profil les classes (c est à dire les «nœuds actifs» - dans l exemple le nœud «Agent, intelligent, information») correspondant à l activité en cours.

12 Ainsi, un changement d activité se traduit (éventuellement) par l apparition de nouveaux termes (par exemple, «xml, taxonomy»), ce qui conduit à la sélection de nœuds différents dans l arborescence (le nœud «Format, information, xml taxonomy»), et donc à une adaptation du contexte de tâche. La construction du contexte de recherche est effectuée à chaque nouvelle requête. La première étape de la construction du contexte produit un ensemble de termes à partir d une sélection des actions dans le journal 2 et de la requête, puis les utilisent pour sélectionner les nœuds considérés comme pertinents dans le profil. A l issue de cette sélection, le contexte de recherche contient les termes de la requête, les termes provenant du journal des actions et qui n existent pas dans les nœuds sélectionnés, et les termes du profil considérés comme utiles pour la recherche. Tous ces termes sont combinés pour former un vecteur pondéré, pouvant être utilisé dans la recherche. Le déroulement d une recherche d information est alors le suivant : l utilisateur formule sa requête, et l assistant identifie le contexte de cette requête, puis en construit une description. L assistant soumet alors la requête à un moteur de recherche du Web et récupère les résultats correspondants. Pour chaque document ainsi obtenu, l assistant évalue une nouvelle estimation de pertinence de ce document en comparant, à l aide d une mesure de cosinus, son contenu avec les descriptions (contexte et profil actif) calculées précédemment. Les documents sont réordonnés par pertinence décroissante (cf. Figure 5). 6. Evaluation des performances du système AIRA est aujourd'hui un système opérationnel, notre travail actuel consiste à évaluer et quantifier la plus-value apportée par rapport à l'utilisation directe d'un moteur de recherche ou plus généralement des autres assistants. Cette évaluation correspond à plusieurs tâches successives : 1 - Vérifier que l'utilisation du profil dans son intégralité permet de filtrer les résultats en remontant en «tête de liste» les documents jugés les plus pertinents, compte tenu des spécificités de l'utilisateur ; 2 - Vérifier que la prise en compte du contexte (c'est à dire de la partie du profil caractéristique du travail en cours) permet une amélioration supplémentaire du filtrage en le focalisant davantage ; 3 - Vérifier enfin qu'une expansion de requêtes effectuée à l'aide d'un sousensemble des termes du contexte, et couplée au filtrage, permet de ramener d'avantage de documents pertinents pour l'utilisateur. L'évaluation est rendue difficile par l'aspect dynamique de l'environnement du système et le caractère fortement adaptatif de ce dernier. En effet, la comparaison 2 Actuellement, la stratégies de sélection des actions consiste à garder les dernières actions du journal en leur appliquant une pondération décroissant exponentiellement avec le temps.

13 entre systèmes différents est complexe parce qu'il est difficile de les mettre dans des conditions identiques. Actuellement pour effectuer cette comparaison, plusieurs agents, représentant les différentes configurations à évaluer (profil/gestionnaire de contexte/gestionnaire de requêtes), sont utilisés simultanément par l assistant pour traiter les requêtes de l utilisateur. Chaque agent dispose de toutes les informations disponibles et les combine comme il le souhaite. Un agent «par défaut» n en utilise aucune et se contente de transférer la requête à un moteur, sans modification. Cet agent sert de référence en permettant d évaluer l intérêt du système par rapport au mode de fonctionnement actuel. Figure 5. Présentation des résultats afin d évaluer le système AIRA. Les résultats fournis par les différents agents sont fusionnés par l assistant et présentés de manière «anonyme» (les agents qui ont retrouvés le document ne sont pas indiqués) à l utilisateur afin que celui-ci puisse donner son estimation sur l intérêt de chaque document vis à vis de la requête initiale (Figure 5). L utilisateur note les documents sur une échelle de cinq valeurs allant de A=1.0 (excellent) à E=0 (mauvais). On enregistre pour chaque requête, la liste des documents obtenus, et pour chaque document l estimation de pertinence établie par chaque agent et celle fournie par l utilisateur. La comparaison des notes fournies par les agents avec les évaluations de l utilisateur permet de classer les différentes configurations en fonction de leur capacité à prévoir la pertinence d un document pour l utilisateur. Une première expérimentation du système a été effectuée avec deux agents : un agent «par défaut» qui est le résultat brut ramené par Google et un agent de «filtrage» qui utilise le profil dans son entier pour reclasser les réponses. Les résultats obtenus à partir de l évaluation de 427 documents retrouvés à partir d un ensemble de 10 requêtes montre que l agent de «filtrage» améliore sensiblement l ordre de présentation des documents. Le profil utilisateur initial a été élaboré à partir de 442 références contenues dans le «bookmark» de l un des auteurs, portant

14 sur le domaine de l informatique, des langages de programmation et du génie logiciel. Il est important de noter que l intersection entre les documents qui ont servis à construire le profil et ceux retrouvés par le moteur est inférieure à 5 %. 7. Conclusion Le système présenté ici suggère plusieurs approches nouvelles pour concevoir un assistant personnel de recherche d information. Ainsi, nous proposons d une part, d utiliser la masse d information contenue sur la station de travail d un utilisateur (sa bibliothèque personnelle) pour initialiser un profil utilisateur, et d autre part, de s appuyer sur les «sous-produits» de l activité de l utilisateur pour spécifier le contexte d une requête. Cette approche repose sur l utilisation d un profil hiérarchisé, construit à l aide d un algorithme de classification incrémentale, et sur la séparation entre une composante conceptuelle et une composante opérationnelle qui définissent un profil de l utilisateur. Les quelques tests effectués jusqu ici (soumission de requêtes et analyse manuelle des résultats) ont permis de démontrer la faisabilité technique de l approche proposée et de définir les conditions pratiques de sa mise en oeuvre. Il reste à effectuer des tests plus systématiques pour optimiser les différents paramètres du système, puis obtenir des résultats quantitatifs avant de pouvoir conclure sur l intérêt effectif des différentes composantes de notre approche. Les travaux en cours portent donc essentiellement sur l obtention de ces résultats. Parallèlement, l addition de mécanisme de génération de requêtes (extension/modification de la requête initiale, intégration d un mécanisme lié à un bouclage de pertinence) a également été développée et intégrée à ce système. L évaluation de l amélioration supplémentaire éventuelle que ce mécanisme pourrait apporter reste également à faire. A plus long terme, les perspectives de développement portent sur le partage de profils entre les utilisateurs dans le cadre d un travail collaboratif et sur l utilisation de la plateforme pour une évaluation comparative avec les assistants de recherche proposés par d autres auteurs. 8. Bibliographie Baeza-Yates R., Ribeiro-Neto B., Modern Information Retrieval, Addison Wesley, ACM Press New-York, 1999 Balabanovic M., Shoham Y., Yeorgil Yun, An Adaptive Agent for Automated Web Browsing, Stanford University Digital Library Project Working Paper SIDL-WP , 1995 Bauer T., Leake D. B., Real Time User Context Modeling for Information Retrieval Agents, CIKM '01, Atlanta, Georgia USA, November 5-10, pp , 2001

15 Bhargava H. K., Feng J., Paid placement strategies for internet search engines, Proceedings of the eleventh international conference on World Wide Web Conference, ACM Press New York, NY, USA, pp 177,123, May 7-11, 2002, Billsus, D. and Pazzani, M. (1999). A Hybrid User Model for News Story Classification, Proceedings of the Seventh International Conference on User Modeling (UM '99), Banff, Canada, June 20-24, Bloedorn, E., Mani, I. and MacMillan, T.R., Machine Learning of User Profiles: Representational Issues, Proceedings of the Thirteenth National Conference on Artificial Intelligence (AAAI-96), Portland, OR, AAAI/MIT Press, pp , August, 1996 Boyan J., Freitag D., Joachims T., A Machine Learning Architecture for Optimizing Web Search Engines, Proceedings of the AAAI workshop on Internet-Based Information Systems, AAAI Technical Report WS-96-06, 1996 Bradley J. R., Starner T., Remembrance Agent A continuously running automated information retrieval system, Proceedings of the 1 st International Conference on The Practical Application Of Intelligent Agents ad Multi Agent Technology (PAAM 96), pp , 1996 Chen L., Sycara K., WebMate: A Personal Agent for Browsing and Searching, In Proceedings of the 2nd International Conference on Autonomous Agents and Multi Agent Systems, Minneapolis, MN, May 10-13, 1998 Fisher D., Iterative Optimization and Simplification of Hierarchical Clusterings, Journal of Artificial Intelligence Research, 1995 Gluck M., Corter J., Information, uncertainty and the utility of categories. Proceedings of the 7th Annual Conference of the Cognitive Science Society , 1985 Goecks J., Shavlik J., Learning User s Interests by Unobtrusively Observing their Normal Behavior, Proceedings of the 2000 International Conference on Intelligent User Interfaces, New-Orleans, USA, Jan 9-12, 2000, ACM, pp , 2000 Krulwich B., Burkey C., The InfoFinder Agent: Learning User Interests through Heuristic Phrase Extraction, IEEE Expert, pp 22-27, September/October 1997 Lieberman H., Letizia : An Agent That Assists Web browsing, Proceedings of the 1995 International Joint Conference on Artificial Intelligence, Montreal Canada, August 1995 Lynch C., Searching the Internet, Scientific American, March 1997 Members of the Clever Project, Hypersearching the Web, Scientific American, p44-52, June 1999 Menczer F., ARACHNID: Adaptive Retrieval Agents Choosing Heuristic Neighborhoods for Information Discovery, Machine Learning: Proceedings of the Fourteenth International Conference, 1997 Mladenic D., Stefan J., Text-Learning and related Intelligent Agents: A survey, IEEE Intelligent Systems, pp.44-54, July-August 1999

16 Moukas A., User Modeling in a MultiAgent Evolving System, Proceedings, workshop on Machine Learning for User Modeling, 6 th International Conference on User Modeling, Chia Laguna, Sardinia, 1997 Nick Z. Z., Themis P., Web Search Using a Genetic Algorithm, IEEE Internet Computing, vol. 5, n 2, pp , March-April 2001 Olsen S., Paid search stretches boundaries, ZDNet News, February 13, 2003 (http://zdnet.com.com/ html) Pohl W., Nick A., Machine Learning and Knowledge-Based User Modeling in the LaboUr approach, User Modeling: Proceedings of the Seventh International Conference, UM99, Edited by Judy Kay, Springer Wien New York, pp , 1999 Pazzani M., Billsus D., Leraning and revising User Profiles : The identification of Interesting Web Sites, Machine Learning 27, Kluwer Academic Pub., pp , 1997 Pazzani M., Muramatsu J., Billsus D., Syskill and Webert: Identifying Interesting Web Sites, AAAI-96, pp54-61, 1996 Rocchio J., Relevance feedback information retrieval. In G. Salton, editor, The Smart Retrieval System-Experiments in Automatic Document Processing, pages Prentice-Hall, 1971 Salton G., The SMART Retrieval System Experiments in Automatic Document Processing, Prentice Hall, Inc., Englewood Cliffs, NJ, 1971 Salton G., Buckley C., Term-Weighting Approaches in Automatic Text Retrieval, 1988, réimprimé dans Readings in Information Retrieval,, Sparch Jones K., Willet P. eds, Morgan Kaufmann, San Mateo CA, 1997 Sebastiani F., Machine Learning in Automated Text Categorization, Computing Surveys, ACM, Vol. 34, N 1, pp1-47, March 2002 Shavlik J, Calcari S., Eliassi-Rad T., Solock J., An Instructable, Adaptive Interface for Discovering and Monitoring Information on the World-Wide Web, Proceedings of the 2000 International Conference on Intelligent User Interfaces, Redondo Beach, USA, 1999, ACM, pp , 1999 Sullivan D., Pay for Placement?, Search Engine Watch, November 15, 2002 (http://searchenginewatch.com/resources/paid-listings.html) Widyantoro D. H., Yin J., Seif El Nasr M., Yang L., Zacchi A, Yen J., Alipes : a Swift Messenger in Cyberspace, Proceedings of the Spring Symposium on Intelligents Agents in Cyberspace, Palo Alto, Ca, March 1999 Widyantoro D. H.,Ioerger T. R., Yen J., Learning User Interest with a Three-Descriptor Representation, Journal of the American Society for Information Science, 2000 Widyantoro D. H., Dynamic modeling and learning user profile in personalized news agent, Ms of Scince thesis, Texas A&M University, May 1999 Witten I., H., Frank E., Data Mining, Practical Machine Learning Tools and Techniques with Java Implementations, Morgan Kaufman Publishers, San Francisco, California, 2000

Expansion de requêtes par apprentissage dans un assistant pour la recherche d information

Expansion de requêtes par apprentissage dans un assistant pour la recherche d information Expansion de requêtes par apprentissage dans un assistant pour la recherche d information J.C. Bottraud *, ** G. Bisson ** M.F. Bruandet * * MRIM-CLIPS, Université Joseph Fourier - 38041 St Martin d Hères

Plus en détail

Accès personnalisé multicritères à de multiples sources d informations.

Accès personnalisé multicritères à de multiples sources d informations. Lyon - France Accès personnalisé multicritères à de multiples sources d informations. Samir kechid Université des Sciences et de la Technologie Houari Boumediene. USTHB BP 32 El Alia Bab Ezzouar Alger

Plus en détail

Laboratoire 4 Développement d un système intelligent

Laboratoire 4 Développement d un système intelligent DÉPARTEMENT DE GÉNIE LOGICIEL ET DES TI LOG770 - SYSTÈMES INTELLIGENTS ÉTÉ 2012 Laboratoire 4 Développement d un système intelligent 1 Introduction Ce quatrième et dernier laboratoire porte sur le développement

Plus en détail

Vers une approche Adaptative pour la Découverte et la Composition Dynamique des Services

Vers une approche Adaptative pour la Découverte et la Composition Dynamique des Services 69 Vers une approche Adaptative pour la Découverte et la Composition Dynamique des Services M. Bakhouya, J. Gaber et A. Koukam Laboratoire Systèmes et Transports SeT Université de Technologie de Belfort-Montbéliard

Plus en détail

Définition et diffusion de signatures sémantiques dans les systèmes pair-à-pair

Définition et diffusion de signatures sémantiques dans les systèmes pair-à-pair Définition et diffusion de signatures sémantiques dans les systèmes pair-à-pair Raja Chiky, Bruno Defude, Georges Hébrail GET-ENST Paris Laboratoire LTCI - UMR 5141 CNRS Département Informatique et Réseaux

Plus en détail

Une méthode d apprentissage pour la composition de services web

Une méthode d apprentissage pour la composition de services web Une méthode d apprentissage pour la composition de services web Soufiene Lajmi * Chirine Ghedira ** Khaled Ghedira * * Laboratoire SOIE (ENSI) University of Manouba, Manouba 2010, Tunisia Soufiene.lajmi@ensi.rnu.tn,

Plus en détail

Intelligence Artificielle et Systèmes Multi-Agents. Badr Benmammar bbm@badr-benmammar.com

Intelligence Artificielle et Systèmes Multi-Agents. Badr Benmammar bbm@badr-benmammar.com Intelligence Artificielle et Systèmes Multi-Agents Badr Benmammar bbm@badr-benmammar.com Plan La première partie : L intelligence artificielle (IA) Définition de l intelligence artificielle (IA) Domaines

Plus en détail

La classification automatique de données quantitatives

La classification automatique de données quantitatives La classification automatique de données quantitatives 1 Introduction Parmi les méthodes de statistique exploratoire multidimensionnelle, dont l objectif est d extraire d une masse de données des informations

Plus en détail

INF6304 Interfaces Intelligentes

INF6304 Interfaces Intelligentes INF6304 Interfaces Intelligentes filtres collaboratifs 1/42 INF6304 Interfaces Intelligentes Systèmes de recommandations, Approches filtres collaboratifs Michel C. Desmarais Génie informatique et génie

Plus en détail

Recherche d information textuelle

Recherche d information textuelle Recherche d information textuelle Pré-traitements & indexation B. Piwowarski CNRS / LIP6 Université Paris 6 benjamin@bpiwowar.net http://www.bpiwowar.net Master IP - 2014-15 Cours et travaux pratiques

Plus en détail

Introduction au datamining

Introduction au datamining Introduction au datamining Patrick Naïm janvier 2005 Définition Définition Historique Mot utilisé au départ par les statisticiens Le mot indiquait une utilisation intensive des données conduisant à des

Plus en détail

Solution A La Gestion Des Objets Java Pour Des Systèmes Embarqués

Solution A La Gestion Des Objets Java Pour Des Systèmes Embarqués International Journal of Engineering Research and Development e-issn: 2278-067X, p-issn: 2278-800X, www.ijerd.com Volume 7, Issue 5 (June 2013), PP.99-103 Solution A La Gestion Des Objets Java Pour Des

Plus en détail

Classification Automatique de messages : une approche hybride

Classification Automatique de messages : une approche hybride RECIAL 2002, Nancy, 24-27 juin 2002 Classification Automatique de messages : une approche hybride O. Nouali (1) Laboratoire des Logiciels de base, CE.R.I.S., Rue des 3 frères Aïssiou, Ben Aknoun, Alger,

Plus en détail

COMMENT DÉFINIR L ORIENTÉ OBJET

COMMENT DÉFINIR L ORIENTÉ OBJET COMMENT DÉFINIR L ORIENTÉ OBJET De manière superficielle, le terme «orienté objet», signifie que l on organise le logiciel comme une collection d objets dissociés comprenant à la fois une structure de

Plus en détail

EXTRACTION DE CONNAISSANCES À PARTIR DE DONNÉES TEXTUELLES VUE D ENSEMBLE

EXTRACTION DE CONNAISSANCES À PARTIR DE DONNÉES TEXTUELLES VUE D ENSEMBLE ème Colloque National AIP PRIMECA La Plagne - 7- avril 7 EXTRACTION DE CONNAISSANCES À PARTIR DE DONNÉES TEXTUELLES VUE D ENSEMBLE Bruno Agard Département de Mathématiques et de Génie Industriel, École

Plus en détail

Recherche d information en langue arabe : influence des paramètres linguistiques et de pondération de LSA

Recherche d information en langue arabe : influence des paramètres linguistiques et de pondération de LSA RÉCITAL 2005, Dourdan, 6-10 juin 2005 Recherche d information en langue arabe : influence des paramètres linguistiques et de pondération de LSA Siham Boulaknadel (1,2), Fadoua Ataa-Allah (2) (1) LINA FRE

Plus en détail

Modélisation agent d une Architecture Logicielle de commande d un Véhicule Autonome

Modélisation agent d une Architecture Logicielle de commande d un Véhicule Autonome Modélisation agent d une Architecture Logicielle de commande d un Véhicule Autonome ENNAJI Mourad LASC université de Metz Ile du Saulcy B.P 80794 57 012 METZ Ennaji@lasc.sciences.univ-metz.fr Résumé Cet

Plus en détail

Chapitre 1. L algorithme génétique

Chapitre 1. L algorithme génétique Chapitre 1 L algorithme génétique L algorithme génétique (AG) est un algorithme de recherche basé sur les mécanismes de la sélection naturelle et de la génétique. Il combine une stratégie de survie des

Plus en détail

AGROBASE : un système de gestion de données expérimentales

AGROBASE : un système de gestion de données expérimentales AGROBASE : un système de gestion de données expérimentales Daniel Wallach, Jean-Pierre RELLIER To cite this version: Daniel Wallach, Jean-Pierre RELLIER. AGROBASE : un système de gestion de données expérimentales.

Plus en détail

Visualisation d information

Visualisation d information Master SIAD 1 année Visualisation d information Jean-Yves Antoine http://www.info.univ-tours.fr/~antoine/ Master SIAD 1 année Visualisation d information Chapitre 1.0 Introduction Quand voir, c est comprendre

Plus en détail

À propos des matrices échelonnées

À propos des matrices échelonnées À propos des matrices échelonnées Antoine Ducros appendice au cours de Géométrie affine et euclidienne dispensé à l Université Paris 6 Année universitaire 2011-2012 Introduction Soit k un corps, soit E

Plus en détail

Introduction au Data-Mining

Introduction au Data-Mining Introduction au Data-Mining Alain Rakotomamonjy - Gilles Gasso. INSA Rouen -Département ASI Laboratoire PSI Introduction au Data-Mining p. 1/25 Data-Mining : Kèkecé? Traduction : Fouille de données. Terme

Plus en détail

Formula Negator, Outil de négation de formule.

Formula Negator, Outil de négation de formule. Formula Negator, Outil de négation de formule. Aymerick Savary 1,2, Mathieu Lassale 1,2, Jean-Louis Lanet 1 et Marc Frappier 2 1 Université de Limoges 2 Université de Sherbrooke Résumé. Cet article présente

Plus en détail

Application de K-means à la définition du nombre de VM optimal dans un cloud

Application de K-means à la définition du nombre de VM optimal dans un cloud Application de K-means à la définition du nombre de VM optimal dans un cloud EGC 2012 : Atelier Fouille de données complexes : complexité liée aux données multiples et massives (31 janvier - 3 février

Plus en détail

Exploitation des connaissances d UMLS pour la recherche d information médicale Vers un modèle bayésien d'indexation

Exploitation des connaissances d UMLS pour la recherche d information médicale Vers un modèle bayésien d'indexation 443 Exploitation des connaissances d UMLS pour la recherche d information médicale Vers un modèle bayésien d'indexation Diem Le Thi Hoang Equipe MRIM, Laboratoire CLIPS-IMAG 38041 Grenoble Cedex 9, France

Plus en détail

Département d'informatique, Université Laval, IFT-63677 SBC V&V : VÉRIFICATION ET VALIDATION DES SBC

Département d'informatique, Université Laval, IFT-63677 SBC V&V : VÉRIFICATION ET VALIDATION DES SBC Assurance qualité logicielle Logiciel conventionnel SBC Fiabilité Facilité d'entretien Facilité des modifications Principales causes d erreur Absence de spécification, manque de conformité (1) Erreurs

Plus en détail

Arbres binaires et codage de Huffman

Arbres binaires et codage de Huffman MP Option Informatique Premier TP Caml Jeudi 8 octobre 2009 Arbres baires et codage de Huffman 1 Arbres baires Soit E un ensemble non vide. On défit la notion d arbre baire étiqueté (aux feuilles) par

Plus en détail

RI sociale : intégration de propriétés sociales dans un modèle de recherche

RI sociale : intégration de propriétés sociales dans un modèle de recherche RI sociale : intégration de propriétés sociales dans un modèle de recherche Ismail Badache 1 Institut de Recherche en Informatique de Toulouse, UMR 5505 CNRS, SIG 118 Route de Narbonne F-31062 Toulouse

Plus en détail

Systèmes de Recommandation. David Loup

Systèmes de Recommandation. David Loup Systèmes de Recommandation David Loup Systèmes de recommandation Plan Définition Motivations Domaine : Films Techniques / Approches Exemples Problèmes Evolution future 2/33 Définition Une plateforme pour

Plus en détail

Description et regroupement de ressources pour les réseaux virtuels

Description et regroupement de ressources pour les réseaux virtuels École nationale d ingénieurs de Sfax Description et regroupement de ressources pour les réseaux virtuels Houssem Medhioub M. Mohamed Jmaiel Président M. Slim Kanoun Membre M. Maher Ben Jemaa Encadreur

Plus en détail

Structuration des décisions de jurisprudence basée sur une ontologie juridique en langue arabe

Structuration des décisions de jurisprudence basée sur une ontologie juridique en langue arabe Structuration des décisions de jurisprudence basée sur une ontologie juridique en langue arabe Karima Dhouib, Sylvie Després Faiez Gargouri ISET - Sfax Tunisie, BP : 88A Elbustan ; Sfax karima.dhouib@isets.rnu.tn,

Plus en détail

Francis BISSON (06 794 819) Kenny CÔTÉ (06 836 427) Pierre-Luc ROGER (06 801 883) IFT702 Planification en intelligence artificielle

Francis BISSON (06 794 819) Kenny CÔTÉ (06 836 427) Pierre-Luc ROGER (06 801 883) IFT702 Planification en intelligence artificielle Francis BISSON (06 794 819) Kenny CÔTÉ (06 836 427) Pierre-Luc ROGER (06 801 883) PLANIFICATION DE TÂCHES DANS MS PROJECT IFT702 Planification en intelligence artificielle Présenté à M. Froduald KABANZA

Plus en détail

Programme des épreuves des concours externes de recrutement des personnels techniques et administratifs de recherche et de formation

Programme des épreuves des concours externes de recrutement des personnels techniques et administratifs de recherche et de formation Programme des épreuves des concours externes de recrutement des personnels E1 RECRUTEMENT DES ASSISTANTS INGENIEURS DE RECHERCHE ET DE FORMATION...2 E1.1 Gestionnaire de base de données...2 E1.2 Développeur

Plus en détail

Apprentissage Statistique. Bureau d étude :

Apprentissage Statistique. Bureau d étude : Apprentissage Statistique Bureau d étude : Score d appétence en GRC Hélène Milhem IUP SID M2 2011/2012 Institut de Mathématiques de Toulouse UMR CNRS C5219 Equipe de Statistique et Probabilités Université

Plus en détail

Fouille de données orientée motifs, méthodes et usages.

Fouille de données orientée motifs, méthodes et usages. Fouille de données orientée motifs, méthodes et usages. François RIOULT GREYC - Équipe Données-Documents-Langues CNRS UMR 6072 Université de Caen Basse-Normandie France Résumé La fouille de données orientée

Plus en détail

Programmabilité du réseau avec l'infrastructure axée sur les applications (ACI) de Cisco

Programmabilité du réseau avec l'infrastructure axée sur les applications (ACI) de Cisco Livre blanc Programmabilité du réseau avec l'infrastructure axée sur les applications (ACI) de Cisco Présentation Ce document examine la prise en charge de la programmabilité sur l'infrastructure axée

Plus en détail

Discrétisation et génération de hiérarchies de concepts

Discrétisation et génération de hiérarchies de concepts Prétraitement des données 1 Pourquoi prétraiter les données? Nettoyage des données Intégration et transformation Réduction des données Discrétisation et génération de hiérarchies de g concepts Pourquoi

Plus en détail

Techniques d interaction dans la visualisation de l information Séminaire DIVA

Techniques d interaction dans la visualisation de l information Séminaire DIVA Techniques d interaction dans la visualisation de l information Séminaire DIVA Zingg Luca, luca.zingg@unifr.ch 13 février 2007 Résumé Le but de cet article est d avoir une vision globale des techniques

Plus en détail

Cours : INF 784 Systèmes à base de connaissances Trimestre : Automne 2015 Enseignant : Évariste Valéry BÉVO WANDJI

Cours : INF 784 Systèmes à base de connaissances Trimestre : Automne 2015 Enseignant : Évariste Valéry BÉVO WANDJI Faculté des sciences Centre de formation en technologies de l information Cours : INF 784 Systèmes à base de connaissances Trimestre : Automne 2015 Enseignant : Évariste Valéry BÉVO WANDJI 1. Mise en contexte

Plus en détail

Modélisation Informatique de Clients Douteux, En utilisant les Techniques de DATAMINING

Modélisation Informatique de Clients Douteux, En utilisant les Techniques de DATAMINING Modélisation Informatique de Clients Douteux, En utilisant les Techniques de DATAMINING Mostafa Hanoune, Fouzia Benabbou To cite this version: Mostafa Hanoune, Fouzia Benabbou. Modélisation Informatique

Plus en détail

Techniques de DM pour la GRC dans les banques Page 11

Techniques de DM pour la GRC dans les banques Page 11 Techniques de DM pour la GRC dans les banques Page 11 II.1 Introduction Les techniques de data mining sont utilisé de façon augmentaté dans le domaine économique. Tels que la prédiction de certains indicateurs

Plus en détail

Recherche bibliographique

Recherche bibliographique Séminaire «Maîtrise de l information scientifique» Recherche bibliographique Dernière mise à jour : 07/01/2015 - Auteur : Frédérique Flamerie Recherche bibliographique : méthode & outils La recherche bibliographique

Plus en détail

Plan 1/9/2013. Génération et exploitation de données. CEP et applications. Flux de données et notifications. Traitement des flux Implémentation

Plan 1/9/2013. Génération et exploitation de données. CEP et applications. Flux de données et notifications. Traitement des flux Implémentation Complex Event Processing Traitement de flux de données en temps réel Romain Colle R&D Project Manager Quartet FS Plan Génération et exploitation de données CEP et applications Flux de données et notifications

Plus en détail

Sciences de Gestion Spécialité : SYSTÈMES D INFORMATION DE GESTION

Sciences de Gestion Spécialité : SYSTÈMES D INFORMATION DE GESTION Sciences de Gestion Spécialité : SYSTÈMES D INFORMATION DE GESTION Classe de terminale de la série Sciences et Technologie du Management et de la Gestion Préambule Présentation Les technologies de l information

Plus en détail

Les simulations dans l enseignement des sondages Avec le logiciel GENESIS sous SAS et la bibliothèque Sondages sous R

Les simulations dans l enseignement des sondages Avec le logiciel GENESIS sous SAS et la bibliothèque Sondages sous R Les simulations dans l enseignement des sondages Avec le logiciel GENESIS sous SAS et la bibliothèque Sondages sous R Yves Aragon, David Haziza & Anne Ruiz-Gazen GREMAQ, UMR CNRS 5604, Université des Sciences

Plus en détail

Empreintes conceptuelles et spatiales pour la caractérisation des réseaux sociaux

Empreintes conceptuelles et spatiales pour la caractérisation des réseaux sociaux Empreintes conceptuelles et spatiales pour la caractérisation des réseaux sociaux Bénédicte Le Grand*, Marie-Aude Aufaure** and Michel Soto* *Laboratoire d Informatique de Paris 6 UPMC {Benedicte.Le-Grand,

Plus en détail

LES OUTILS D ALIMENTATION DU REFERENTIEL DE DB-MAIN

LES OUTILS D ALIMENTATION DU REFERENTIEL DE DB-MAIN LES OUTILS D ALIMENTATION DU REFERENTIEL DE DB-MAIN Les contenues de ce document sont la propriété exclusive de la société REVER. Ils ne sont transmis qu à titre d information et ne peuvent en aucun cas

Plus en détail

Concevoir des applications Web avec UML

Concevoir des applications Web avec UML Concevoir des applications Web avec UML Jim Conallen Éditions Eyrolles ISBN : 2-212-09172-9 2000 1 Introduction Objectifs du livre Le sujet de ce livre est le développement des applications web. Ce n est

Plus en détail

IRIT, Université Paul Sabatier, 118 Route de Narbonne, 31062 Toulouse Cedex 9, France

IRIT, Université Paul Sabatier, 118 Route de Narbonne, 31062 Toulouse Cedex 9, France VERS DES SERVICES WEB ADAPTES : COMMENT INTEGRER LE CONTEXTE DANS LES DIFFERENTES ARCHITECTURES DE SERVICES WEB? Bouchra SOUKKARIEH, Dana KUKHUN, Florence SEDES {sokarieh,kukhun,sedes}@irit.fr IRIT, Université

Plus en détail

Les principaux domaines de l informatique

Les principaux domaines de l informatique Les principaux domaines de l informatique... abordés dans le cadre de ce cours: La Programmation Les Systèmes d Exploitation Les Systèmes d Information La Conception d Interfaces Le Calcul Scientifique

Plus en détail

Préparer un état de l art

Préparer un état de l art Préparer un état de l art Khalil DRIRA LAAS-CNRS, Toulouse Unité de recherche ReDCAD École Nationale d ingénieurs de Sfax Étude de l état de l art? Une étude ciblée, approfondie et critique des travaux

Plus en détail

Une calculatrice qui manipule les régions cubiques

Une calculatrice qui manipule les régions cubiques Une calculatrice qui manipule les régions cubiques Emmanuel Haucourt 1 Introduction Alors qu une calculatrice usuelle effectue des opérations numériques (addition, multiplication, soustraction, division,

Plus en détail

Guide de recherche documentaire à l usage des doctorants. Partie 1 : Exploiter les bases de données académiques

Guide de recherche documentaire à l usage des doctorants. Partie 1 : Exploiter les bases de données académiques Guide de recherche documentaire à l usage des doctorants Partie : Exploiter les bases de données académiques Sylvia Cheminel Dernière mise à jour : décembre 04 PANORAMA DES SOURCES DOCUMENTAIRES ACADEMIQUES...

Plus en détail

Arithmétique binaire. Chapitre. 5.1 Notions. 5.1.1 Bit. 5.1.2 Mot

Arithmétique binaire. Chapitre. 5.1 Notions. 5.1.1 Bit. 5.1.2 Mot Chapitre 5 Arithmétique binaire L es codes sont manipulés au quotidien sans qu on s en rende compte, et leur compréhension est quasi instinctive. Le seul fait de lire fait appel au codage alphabétique,

Plus en détail

SEO Camp'us -4 et 5 février 2009. Directeur du pôle métiers Aposition

SEO Camp'us -4 et 5 février 2009. Directeur du pôle métiers Aposition L'apport de la sémantique et de la linguistique statistique pour le SEO SEO Camp'us -4 et 5 février 2009 Philippe YONNET Directeur du pôle métiers Aposition Président de l association SEOCamp Comment classer

Plus en détail

Analyse des réseaux sociaux et apprentissage

Analyse des réseaux sociaux et apprentissage Analyse des réseaux sociaux et apprentissage Emmanuel Viennet Laboratoire de Traitement et Transport de l Information Université Paris 13 - Sorbonne Paris Cité Réseaux sociaux? Réseaux sociaux? Analyse

Plus en détail

Créer et partager des fichiers

Créer et partager des fichiers Créer et partager des fichiers Le rôle Services de fichiers... 246 Les autorisations de fichiers NTFS... 255 Recherche de comptes d utilisateurs et d ordinateurs dans Active Directory... 262 Délégation

Plus en détail

Bilan de thèse à mi-parcours

Bilan de thèse à mi-parcours Bilan de thèse à mi-parcours Benjamin Lévy 26 mars 2012 Introduction La thèse de doctorat d informatique (école doctorale 130, EDITE) dont le titre officiel est le suivant : Avatars capables d écoute,

Plus en détail

CoLab : Co-Navigation sur le Web

CoLab : Co-Navigation sur le Web CoLab : Co-Navigation sur le Web Guillermo de Jesús Hoyos Rivera*,** Roberta Lima- Gomes*, *** Roberto Willrich*, **** Jean Pierre Courtiat* ghoyos@uv.mx {rgomes, willrich, courtiat}@laas.fr * Laboratoire

Plus en détail

BI = Business Intelligence Master Data-ScienceCours 7 - Data

BI = Business Intelligence Master Data-ScienceCours 7 - Data BI = Business Intelligence Master Data-Science Cours 7 - Data Mining Ludovic DENOYER - UPMC 30 mars 2015 Ludovic DENOYER - Typologie des méthodes de Data Mining Différents types de méthodes : Méthodes

Plus en détail

modélisation solide et dessin technique

modélisation solide et dessin technique CHAPITRE 1 modélisation solide et dessin technique Les sciences graphiques regroupent un ensemble de techniques graphiques utilisées quotidiennement par les ingénieurs pour exprimer des idées, concevoir

Plus en détail

Sélection d un moteur de recherche pour intranet : Les sept points à prendre en compte

Sélection d un moteur de recherche pour intranet : Les sept points à prendre en compte Sélection d un moteur de recherche pour intranet : Les sept points à prendre en compte 1Les bases : vos objectifs 2 Sélection d un moteur de recherche pour intranet : Les sept points à prendre en compte

Plus en détail

données en connaissance et en actions?

données en connaissance et en actions? 1 Partie 2 : Présentation de la plateforme SPSS Modeler : Comment transformer vos données en connaissance et en actions? SPSS Modeler : l atelier de data mining Large gamme de techniques d analyse (algorithmes)

Plus en détail

Approche hybride de reconstruction de facettes planes 3D

Approche hybride de reconstruction de facettes planes 3D Cari 2004 7/10/04 14:50 Page 67 Approche hybride de reconstruction de facettes planes 3D Ezzeddine ZAGROUBA F. S.T, Dept. Informatique. Lab. d Informatique, Parallélisme et Productique. Campus Universitaire.

Plus en détail

Plateforme de capture et d analyse de sites Web AspirWeb

Plateforme de capture et d analyse de sites Web AspirWeb Projet Java ESIAL 2A 2009-2010 Plateforme de capture et d analyse de sites Web AspirWeb 1. Contexte Ce projet de deuxième année permet d approfondir par la pratique les méthodes et techniques acquises

Plus en détail

Cours Algorithmique, 2ème partie AS IUT

Cours Algorithmique, 2ème partie AS IUT Cours Algorithmique, 2ème partie AS IUT Cours 2 : Arbres Binaires Anne Vilnat http://www.limsi.fr/individu/anne/coursalgo Plan 1 Représentations arborescentes 2 Définition d un arbre binaire récursive

Plus en détail

Approche bayésienne des modèles à équations structurelles

Approche bayésienne des modèles à équations structurelles Manuscrit auteur, publié dans "42èmes Journées de Statistique (2010)" Approche bayésienne des modèles à équations structurelles Séverine Demeyer 1,2 & Nicolas Fischer 1 & Gilbert Saporta 2 1 LNE, Laboratoire

Plus en détail

Estimation du Quantile conditionnel par les Réseaux de neurones à fonction radiale de base

Estimation du Quantile conditionnel par les Réseaux de neurones à fonction radiale de base Estimation du Quantile conditionnel par les Réseaux de neurones à fonction radiale de base M.A. Knefati 1 & A. Oulidi 2 & P.Chauvet 1 & M. Delecroix 3 1 LUNAM Université, Université Catholique de l Ouest,

Plus en détail

basée sur le cours de Bertrand Legal, maître de conférences à l ENSEIRB www.enseirb.fr/~legal Olivier Augereau Formation UML

basée sur le cours de Bertrand Legal, maître de conférences à l ENSEIRB www.enseirb.fr/~legal Olivier Augereau Formation UML basée sur le cours de Bertrand Legal, maître de conférences à l ENSEIRB www.enseirb.fr/~legal Olivier Augereau Formation UML http://olivier-augereau.com Sommaire Introduction I) Les bases II) Les diagrammes

Plus en détail

Intégrer et gérer la temporalité dans le système d'information du territoire genevois (www.sitg.ch)

Intégrer et gérer la temporalité dans le système d'information du territoire genevois (www.sitg.ch) REPUBLIQUE ET CANTON DE GENEVE Département de l'intérieur et de la mobilité Service de la mensuration officielle 02.2012 Intégrer et gérer la temporalité dans le système d'information du territoire genevois

Plus en détail

WEKA, un logiciel libre d apprentissage et de data mining

WEKA, un logiciel libre d apprentissage et de data mining Approche Data Mining par WEKA WEKA, un logiciel libre d apprentissage et de data mining Yves Lechevallier INRIA-Rocquencourt E_mail : Yves.Lechevallier@inria.fr Yves Lechevallier Dauphine 1 1 WEKA 3.4

Plus en détail

Le Langage SQL version Oracle

Le Langage SQL version Oracle Université de Manouba École Supérieure d Économie Numérique Département des Technologies des Systèmes d Information Le Langage SQL version Oracle Document version 1.1 Mohamed Anis BACH TOBJI anis.bach@isg.rnu.tn

Plus en détail

Méthode d extraction des signaux faibles

Méthode d extraction des signaux faibles Méthode d extraction des signaux faibles Cristelle ROUX GFI Bénélux, Luxembourg cristelle.roux@gfi.be 1. Introduction Au début d une analyse stratégique, la première question posée est très souvent la

Plus en détail

Fonctions homographiques

Fonctions homographiques Fonctions homographiques On donne ci-dessous deux définitions des fonctions homographiques, et on montre que ces deux définitions sont équivalentes. On décrit la courbe représentative d une fonction homographique.

Plus en détail

UML (Diagramme de classes) Unified Modeling Language

UML (Diagramme de classes) Unified Modeling Language UML (Diagramme de classes) Unified Modeling Language Sommaire Introduction Objectifs Diagramme de classes Classe (Nom, attribut, opération) Visibilité et portée des constituants d une classe Association

Plus en détail

Ordonnancement temps réel

Ordonnancement temps réel Ordonnancement temps réel Laurent.Pautet@enst.fr Version 1.5 Problématique de l ordonnancement temps réel En fonctionnement normal, respecter les contraintes temporelles spécifiées par toutes les tâches

Plus en détail

BASE. Vous avez alors accès à un ensemble de fonctionnalités explicitées ci-dessous :

BASE. Vous avez alors accès à un ensemble de fonctionnalités explicitées ci-dessous : BASE BioArray Software Environment (BASE) est une base de données permettant de gérer l importante quantité de données générées par des analyses de bio-puces. BASE gère les informations biologiques, les

Plus en détail

FOUILLE DE DONNEES. Anne LAURENT ECD. laurent@lirmm.fr

FOUILLE DE DONNEES. Anne LAURENT ECD. laurent@lirmm.fr FOUILLE DE DONNEES Anne LAURENT laurent@lirmm.fr ECD Pourquoi la fouille de données? Données disponibles Limites de l approche humaine Nombreux besoins : Industriels, Médicaux, Marketing, Qu est-ce que

Plus en détail

Une méthode de classification supervisée sans paramètre pour l apprentissage sur les grandes bases de données

Une méthode de classification supervisée sans paramètre pour l apprentissage sur les grandes bases de données Une méthode de classification supervisée sans paramètre pour l apprentissage sur les grandes bases de données Marc Boullé Orange Labs 2 avenue Pierre Marzin 22300 Lannion marc.boulle@orange-ftgroup.com,

Plus en détail

Proposition d activité utilisant l application. Tripatouille. (http://www.malgouyres.fr/tripatouille/)

Proposition d activité utilisant l application. Tripatouille. (http://www.malgouyres.fr/tripatouille/) IREM Clermont-Ferrand Algorithmique au lycée Malika More malika.more@u-clermont1.fr 28 janvier 2011 Proposition d activité utilisant l application Tripatouille (http://www.malgouyres.fr/tripatouille/)

Plus en détail

High Performance by Exploiting Information Locality through Reverse Computing. Mouad Bahi

High Performance by Exploiting Information Locality through Reverse Computing. Mouad Bahi Thèse High Performance by Exploiting Information Locality through Reverse Computing Présentée et soutenue publiquement le 21 décembre 2011 par Mouad Bahi pour l obtention du Doctorat de l université Paris-Sud

Plus en détail

OASIS www.oasis-open.org/committees/xacml/docs/docs.shtml Date de publication

OASIS www.oasis-open.org/committees/xacml/docs/docs.shtml Date de publication Statut du Committee Working Draft document Titre XACML Language Proposal, version 0.8 (XACML : XML Access Control Markup Language) Langage de balisage du contrôle d'accès Mot clé Attestation et sécurité

Plus en détail

Traitement et exploration du fichier Log du Serveur Web, pour l extraction des connaissances: Web Usage Mining

Traitement et exploration du fichier Log du Serveur Web, pour l extraction des connaissances: Web Usage Mining Traitement et exploration du fichier Log du Serveur Web, pour l extraction des connaissances: Web Usage Mining Mostafa HANOUNE*, Fouzia BENABBOU* *Université Hassan II- Mohammedia, Faculté des sciences

Plus en détail

Créer le schéma relationnel d une base de données ACCESS

Créer le schéma relationnel d une base de données ACCESS Utilisation du SGBD ACCESS Polycopié réalisé par Chihab Hanachi et Jean-Marc Thévenin Créer le schéma relationnel d une base de données ACCESS GENERALITES SUR ACCESS... 1 A PROPOS DE L UTILISATION D ACCESS...

Plus en détail

SAP BusinessObjects Web Intelligence (WebI) BI 4

SAP BusinessObjects Web Intelligence (WebI) BI 4 Présentation de la Business Intelligence 1. Outils de Business Intelligence 15 2. Historique des logiciels décisionnels 16 3. La suite de logiciels SAP BusinessObjects Business Intelligence Platform 18

Plus en détail

Vers une Optimisation de l Algorithme AntTreeStoch

Vers une Optimisation de l Algorithme AntTreeStoch Revue des Sciences et de la Technologie - RST- Volume 3 N 1 / janvier 2012 Vers une Optimisation de l Algorithme AntTreeStoch O. KADRI, H. MOUSS, A. ABDELHADI, R. MAHDAOUI Laboratoire d Automatique et

Plus en détail

Structures de données non linéaires

Structures de données non linéaires Structures de données non linéaires I. Graphes Définition Un graphe (simple) orienté G est un couple (S, A), où : S est un ensemble dont les éléments sont appelés les sommets. A est un ensemble de couples

Plus en détail

Master ISI 2010-2011. Data Mining Recherche des sous-ensembles fréquents

Master ISI 2010-2011. Data Mining Recherche des sous-ensembles fréquents Master ISI 2010-2011 Data Mining Recherche des sous-ensembles fréquents Yves Lechevallier INRIA-Rocquencourt E_mail : Yves.Lechevallier@inria.fr 1 Processus Data Mining Phase A : Entrepôt de données Entrepôt

Plus en détail

LIVRE BLANC Décembre 2014

LIVRE BLANC Décembre 2014 PARSING MATCHING EQUALITY SEARCH LIVRE BLANC Décembre 2014 Introduction L analyse des tendances du marché de l emploi correspond à l évidence à une nécessité, surtout en période de tension comme depuis

Plus en détail

Nom de l application

Nom de l application Ministère de l Enseignement Supérieur et de la Recherche Scientifique Direction Générale des Etudes Technologiques Institut Supérieur des Etudes Technologiques de Gafsa Département Technologies de l Informatique

Plus en détail

sont appliquées à des fonds documentaires, sont destinées à fournir des informations pertinentes sur la structure globale plutôt que sur le contenu.

sont appliquées à des fonds documentaires, sont destinées à fournir des informations pertinentes sur la structure globale plutôt que sur le contenu. Introduction Les techniques informatiques permettent de stocker et d accéder à des quantités sans cesse croissantes de données, disponibles en ligne ou via des centres documentaires fermés. Cette profusion

Plus en détail

ENDNOTE X2 SOMMAIRE. 1. La bibliothèque EndNote 1.1. Créer une nouvelle bibliothèque 1.2. Ouvrir une bibliothèque EndNote 1.3. Fermer une bibliothèque

ENDNOTE X2 SOMMAIRE. 1. La bibliothèque EndNote 1.1. Créer une nouvelle bibliothèque 1.2. Ouvrir une bibliothèque EndNote 1.3. Fermer une bibliothèque 1 ENDNOTE X2 SOMMAIRE 1. La bibliothèque EndNote 1.1. Créer une nouvelle bibliothèque 1.2. Ouvrir une bibliothèque EndNote 1.3. Fermer une bibliothèque 2. Manipuler une bibliothèque EndNote 2.1. La saisie

Plus en détail

http://mondomaine.com/dossier : seul le dossier dossier sera cherché, tous les sousdomaines

http://mondomaine.com/dossier : seul le dossier dossier sera cherché, tous les sousdomaines Principales fonctionnalités de l outil Le coeur du service suivre les variations de position d un mot-clé associé à une URL sur un moteur de recherche (Google - Bing - Yahoo) dans une locale (association

Plus en détail

Définitions. Numéro à préciser. (Durée : )

Définitions. Numéro à préciser. (Durée : ) Numéro à préciser (Durée : ) On étudie dans ce problème l ordre lexicographique pour les mots sur un alphabet fini et plusieurs constructions des cycles de De Bruijn. Les trois parties sont largement indépendantes.

Plus en détail

Licence Sciences et Technologies Examen janvier 2010

Licence Sciences et Technologies Examen janvier 2010 Université de Provence Introduction à l Informatique Licence Sciences et Technologies Examen janvier 2010 Année 2009-10 Aucun document n est autorisé Les exercices peuvent être traités dans le désordre.

Plus en détail

Les Interacteurs Hiérarchisés 1

Les Interacteurs Hiérarchisés 1 Les Interacteurs Hiérarchisés 1 Une architecture orientée tâches pour la conception des dialogues. Patrick Girard, Guy Pierra, Laurent Guittet LISI, ENSMA, Site du Futuroscope - B.P. 109-86960 FUTUROSCOPE

Plus en détail

# let rec concat l1 l2 = match l1 with [] -> l2 x::l 1 -> x::(concat l 1 l2);; val concat : a list -> a list -> a list =

# let rec concat l1 l2 = match l1 with [] -> l2 x::l 1 -> x::(concat l 1 l2);; val concat : a list -> a list -> a list = <fun> 94 Programmation en OCaml 5.4.8. Concaténation de deux listes Définissons maintenant la fonction concat qui met bout à bout deux listes. Ainsi, si l1 et l2 sont deux listes quelconques, concat l1 l2 constitue

Plus en détail

Libérez votre intuition

Libérez votre intuition Présentation de Qlik Sense Libérez votre intuition Qlik Sense est une application nouvelle génération de visualisation de données en libre-service qui permet à chacun de créer facilement des visualisations

Plus en détail

La recherche d informations sur le Web par les lycéens : Pourquoi et comment faciliter le travail collaboratif?

La recherche d informations sur le Web par les lycéens : Pourquoi et comment faciliter le travail collaboratif? La recherche d informations sur le Web par les lycéens : Pourquoi et comment faciliter le travail collaboratif? Jérôme Dinet* & Michèle Archambault** *Université Paul Verlaine Metz Equipe Transdisciplinaire

Plus en détail

Pourquoi l apprentissage?

Pourquoi l apprentissage? Pourquoi l apprentissage? Les SE sont basés sur la possibilité d extraire la connaissance d un expert sous forme de règles. Dépend fortement de la capacité à extraire et formaliser ces connaissances. Apprentissage

Plus en détail