Option Informatique Programmation dynamique : Optimisation d un produit matric
|
|
|
- Rémy Pageau
- il y a 9 ans
- Total affichages :
Transcription
1 Programmation dynamique : Optimisation d un produit matriciel Option Informatique 2015
2 De quoi s agit-il? n matrices rectangulaires A 1,, A n. On veut calculer le produit B = A 1 A n. i {1,, n}, A i est de format p i 1 p i. Divers parenthésages sont envisageables. Ils donnent tous le même résultat (associativité), mais... peut-être pas avec la même efficacité!
3 Attention aux matrices en caml! Comment définir une matrice d entiers? matrice = vecteur de vecteurs type = int vect vect let lgn = make_vect 10 0;; let mat = make_vect 10 lgn;; mat.(3).(1) 5;; mat;; on voulait modifier le terme (ligne 4, colonne 2)... c est raté! Le constater...
4 Attention aux matrices en caml! Solution correcte : mat = make_vect 10 [ ];; for i = 0 to 9 do mat.(i) make_vect 10 0 done;; mat.(3).(1) 5;; mat;; on peut aussi utiliser make_matrix
5 Produit de 2 matrices A = [ a i,j ] 1 i p 1 j q C = AB = [ c i,j ] 1 i p 1 j r et B = [ b i,j ] 1 i q 1 j r avec : (i, j) {1,, p} {1,, r}, c i,j = Algorithme naïf q k =1 a i,k b k,j
6 Produit de 2 matrices en caml let mult_matrices a b = let p = vect_length a in let q = vect_length a.(0) in let q = vect_length b in let r = vect_length b.(0) in if q <> q then failwith "produit impossible" else let c = make_matrix p r 0 in for i = 1 to p do for j = 1 to r do for k = 1 to q do c.(i-1).(j-1) c.(i-1).(j-1) + a.(i-1).(k-1) * b.(k-1).(j-1) done done done; c;; Coût = pqr multiplications
7 Parenthésages possibles pour n = 3 A 1 (A 2 A 3 ) (A 1 A 2 ) A 3 Total : 2
8 Parenthésages possibles pour n = 4 A 1 (A 2 (A 3 A 4 )) A 1 ((A 2 A 3 ) A 4 ) (A 1 A 2 ) (A 3 A 4 ) (A 1 (A 2 A 3 )) A 4 ((A 1 A 2 ) A 3 ) A 4 Total : 5
9 Impact du parenthésage sur le côut global A 1 de format , A 2 de format 100 5, A 3 de format (A 1 A 2 ) A = 7500 A 1 (A 2 A 3 ) = Rapport de 1 à 10...!
10 Et si on les essaie tous? P n = nombre de parenthésages pour n matrices. P 1 = 1.
11 Et si on les essaie tous? P n = nombre de parenthésages pour n matrices. P 1 = 1. Pour tout n 2 : P n = n 1 k =1 P k P n k. P 10 = 4 862; P 20 = ; P 30 > C est beaucoup trop...! On peut montrer que P n = 1 n ( ) 2n 2 n 1 4n 1 n 3/2 π
12 Parenthésage optimal Structure nécessaire d un parenth. Opt. de A i A j : pour un certain k {i,, j 1} : parenth. opt. de A i A k + parenth. opt. de A k +1 A j Car sinon, on pourrait réduire strictement le nb de multiplications scalaires en remplaçant le parenthésage de A i A k ou de A k +1 A j par un parenthésage meilleur.
13 Parenthésage optimal Notation m (i, j) = nb minimal de multiplications pour A i A j. Objectif calculer m (1, n). Formule de récurrence 0 si i = j m (i, j) = min { } m (i, k ) + m (k + 1, j) + p i 1 p k p j si i < j On définit pour chaque (i, j) : s (i, j) = un entier k {i,, j 1} t.q. m (i, j) = m (i, k ) + m (k + 1, j) + p i 1 p k p j.
14 Calcul des m (i, j) et des s (i, j) Approche récursive complexité exponentielle.
15 Calcul des m (i, j) et des s (i, j) Approche récursive complexité exponentielle. Approche tabulaire :
16 Calcul des m (i, j) et des s (i, j) Approche récursive complexité exponentielle. Approche tabulaire : Calcul des m(i,i)
17 Calcul des m (i, j) et des s (i, j) Approche récursive complexité exponentielle. Approche tabulaire : Calcul des m(i,i+1)
18 Calcul des m (i, j) et des s (i, j) Approche récursive complexité exponentielle. Approche tabulaire : Calcul des m(i,i+2)
19 Calcul des m (i, j) et des s (i, j) Approche récursive complexité exponentielle. Approche tabulaire : Calcul de m(1,n)
20 Calcul des m (i, j) et des s (i, j) let calc_opt p = let n = (vect_length p) - 1 in let m = make_matrix (n+1) (n+1) 0 in let s = make_matrix (n+1) (n+1) 0 in for l = 2 to n do for i = 1 to n-l+1 do let j = i+l-1 in m.(i).(j) ; for k = i to j-1 do let q = m.(i).(k) + m.(k+1).(j) + p.(i-1) * p.(k) * p.(j) in if q < m.(i).(j) then ( m.(i).(j) q; s.(i).(j) k ) done done done; (m,s);;
21 Construction d une solution optimale Récursivement : ( Ai A s(i,j) ) ( As(i,j)+1 A j ) let rec aff_opt s i j = if i = j then ( print_char A ; print_int i ) else ( print_char ( ; aff_opt s i s.(i).(j); aff_opt s (s.(i).(j) + 1) j; print_char ) ; );;
22 Construction d une solution optimale let par_opt_et_nb_mult p = let (m,s) = calc_opt p in let n = (vect_length p) - 1 in aff_opt s 1 n; print_newline (); print_string "Nombre de multiplications = "; print_int m.(1).(n); print_newline () ;; par_opt_et_nb_mult [ 10;100;5;50 ];; ((A1A2)A3) Nombre de multiplications = 7500 par_opt_et_nb_mult [ 56;27;171;10;100;5;50 ];; ((A1(A2(A3(A4A5))))A6) Nombre de multiplications = 58195
23 b y e
Résolution du Problème du Voyageur de Commerce Métaheuristique
Résolution du Problème du Voyageur de Commerce Métaheuristique ANDRÉ BIANCHERI TCHILINGUIRIAN Table des matières I Introduction 1 II Résolution par colonies de fourmis 3 1 Les fourmis.................................................
Chapitre 5 : Flot maximal dans un graphe
Graphes et RO TELECOM Nancy A Chapitre 5 : Flot maximal dans un graphe J.-F. Scheid 1 Plan du chapitre I. Définitions 1 Graphe Graphe valué 3 Représentation d un graphe (matrice d incidence, matrice d
Plus courts chemins, programmation dynamique
1 Plus courts chemins, programmation dynamique 1. Plus courts chemins à partir d un sommet 2. Plus courts chemins entre tous les sommets 3. Semi-anneau 4. Programmation dynamique 5. Applications à la bio-informatique
Recherche dans un tableau
Chapitre 3 Recherche dans un tableau 3.1 Introduction 3.1.1 Tranche On appelle tranche de tableau, la donnée d'un tableau t et de deux indices a et b. On note cette tranche t.(a..b). Exemple 3.1 : 3 6
Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes.
1 Définitions, notations Calcul matriciel Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes. On utilise aussi la notation m n pour le
La programmation linéaire : une introduction. Qu est-ce qu un programme linéaire? Terminologie. Écriture mathématique
La programmation linéaire : une introduction Qu est-ce qu un programme linéaire? Qu est-ce qu un programme linéaire? Exemples : allocation de ressources problème de recouvrement Hypothèses de la programmation
Examen Médian - 1 heure 30
NF01 - Automne 2014 Examen Médian - 1 heure 30 Polycopié papier autorisé, autres documents interdits Calculatrices, téléphones, traducteurs et ordinateurs interdits! Utilisez trois copies séparées, une
MATLAB : COMMANDES DE BASE. Note : lorsqu applicable, l équivalent en langage C est indiqué entre les délimiteurs /* */.
Page 1 de 9 MATLAB : COMMANDES DE BASE Note : lorsqu applicable, l équivalent en langage C est indiqué entre les délimiteurs /* */. Aide help, help nom_de_commande Fenêtre de travail (Command Window) Ligne
Organigramme / Algorigramme Dossier élève 1 SI
Organigramme / Algorigramme Dossier élève 1 SI CI 10, I11 ; CI 11, I10 C24 Algorithmique 8 février 2009 (13:47) 1. Introduction Un organigramme (ou algorigramme, lorsqu il est plus particulièrement appliqué
Cours d algorithmique pour la classe de 2nde
Cours d algorithmique pour la classe de 2nde F.Gaudon 10 août 2009 Table des matières 1 Avant la programmation 2 1.1 Qu est ce qu un algorithme?................................. 2 1.2 Qu est ce qu un langage
Cours de Programmation 2
Cours de Programmation 2 Programmation à moyenne et large échelle 1. Programmation modulaire 2. Programmation orientée objet 3. Programmation concurrente, distribuée 4. Programmation monadique 5. Les programmes
Cours Informatique Master STEP
Cours Informatique Master STEP Bases de la programmation: Compilateurs/logiciels Algorithmique et structure d'un programme Programmation en langage structuré (Fortran 90) Variables, expressions, instructions
Algorithmique et Programmation, IMA
Algorithmique et Programmation, IMA Cours 2 : C Premier Niveau / Algorithmique Université Lille 1 - Polytech Lille Notations, identificateurs Variables et Types de base Expressions Constantes Instructions
Probabilités. Rappel : trois exemples. Exemple 2 : On dispose d un dé truqué. On sait que : p(1) = p(2) =1/6 ; p(3) = 1/3 p(4) = p(5) =1/12
Probabilités. I - Rappel : trois exemples. Exemple 1 : Dans une classe de 25 élèves, il y a 16 filles. Tous les élèves sont blonds ou bruns. Parmi les filles, 6 sont blondes. Parmi les garçons, 3 sont
Durée de L épreuve : 2 heures. Barème : Exercice n 4 : 1 ) 1 point 2 ) 2 points 3 ) 1 point
03 Mai 2013 Collège Oasis Durée de L épreuve : 2 heures. apple Le sujet comporte 4 pages et est présenté en livret ; apple La calculatrice est autorisée ; apple 4 points sont attribués à la qualité de
Architecture des ordinateurs
Architecture des ordinateurs Cours 7 17 décembre 2012 Archi 1/1 Fonctions, suite et fin Archi 2/1 Rappel Forme générale d un sous-programme (fonction) : etiquette sousprogramme: push ebp ; empile la valeur
Optimisation Discrète
Prof F Eisenbrand EPFL - DISOPT Optimisation Discrète Adrian Bock Semestre de printemps 2011 Série 7 7 avril 2011 Exercice 1 i Considérer le programme linéaire max{c T x : Ax b} avec c R n, A R m n et
3. SPÉCIFICATIONS DU LOGICIEL. de l'expression des besoins à la conception. Spécifications fonctionnelles Analyse fonctionnelle et méthodes
PLAN CYCLE DE VIE D'UN LOGICIEL EXPRESSION DES BESOINS SPÉCIFICATIONS DU LOGICIEL CONCEPTION DU LOGICIEL LA PROGRAMMATION TESTS ET MISE AU POINT DOCUMENTATION CONCLUSION C.Crochepeyre Génie Logiciel Diapason
Calcul Formel et Numérique, Partie I
Calcul Formel et Numérique N.Vandenberghe [email protected] Table des matières 1 Introduction à Matlab 2 1.1 Quelques généralités.......................... 2 2 Où trouver des informations 2 3 Opérations
Correction Code nécessaire à la compilation : let bs ="\\" let nl = "\n" ;; let appliquer = List.map ;; (* affichage d'un noeud *)
Correction Code nécessaire à la compilation : let bs ="\\" let nl = "\n" let appliquer = List.map (* affichage d'un noeud *) let (noeud_vers_ch : int -> string) = function n -> "fib(" ^ (string_of_int
1/24. I passer d un problème exprimé en français à la réalisation d un. I expressions arithmétiques. I structures de contrôle (tests, boucles)
1/4 Objectif de ce cours /4 Objectifs de ce cours Introduction au langage C - Cours Girardot/Roelens Septembre 013 Du problème au programme I passer d un problème exprimé en français à la réalisation d
EPREUVE OPTIONNELLE d INFORMATIQUE CORRIGE
EPREUVE OPTIONNELLE d INFORMATIQUE CORRIGE QCM Remarque : - A une question correspond au moins 1 réponse juste - Cocher la ou les bonnes réponses Barème : - Une bonne réponse = +1 - Pas de réponse = 0
Cours d initiation à la programmation en C++ Johann Cuenin
Cours d initiation à la programmation en C++ Johann Cuenin 11 octobre 2014 2 Table des matières 1 Introduction 5 2 Bases de la programmation en C++ 7 3 Les types composés 9 3.1 Les tableaux.............................
1. Structure d'un programme FORTRAN 95
FORTRAN se caractérise par la nécessité de compiler les scripts, c'est à dire transformer du texte en binaire.(transforme un fichier de texte en.f95 en un executable (non lisible par un éditeur) en.exe.)
Programmation linéaire et Optimisation. Didier Smets
Programmation linéaire et Optimisation Didier Smets Chapitre 1 Un problème d optimisation linéaire en dimension 2 On considère le cas d un fabricant d automobiles qui propose deux modèles à la vente, des
TRIGONOMETRIE Algorithme : mesure principale
TRIGONOMETRIE Algorithme : mesure principale Déterminer la mesure principale d un angle orienté de mesure! 115" Problèmatique : Appelons θ la mesure principale, θ et! 115" sont deux mesures du même angle,
Découverte de Python
Découverte de Python Python est un des langages informatiques au programme des concours à partir de la session 2015. Ce tutoriel vous permettra de vous mettre à peu près à niveau de ce qui a été fait en
SNT4U16 - Initiation à la programmation 2014-2015. TD - Dynamique de POP III - Fichiers sources
SNT4U16 - Initiation à la programmation Licence SVT 2 ème année 2014-2015 TD - Dynamique de POP III - Fichiers sources contacts : [email protected], [email protected], [email protected],
Programmation linéaire
1 Programmation linéaire 1. Le problème, un exemple. 2. Le cas b = 0 3. Théorème de dualité 4. L algorithme du simplexe 5. Problèmes équivalents 6. Complexité de l Algorithme 2 Position du problème Soit
Communications collectives et ordonnancement en régime permanent pour plates-formes hétérogènes
Loris MARCHAL Laboratoire de l Informatique du Parallélisme Équipe Graal Communications collectives et ordonnancement en régime permanent pour plates-formes hétérogènes Thèse réalisée sous la direction
Algorithmes et Programmes. Introduction à l informatiquel. Cycle de vie d'un programme (d'un logiciel) Cycle de vie d'un programme (d'un logiciel)
Algorithmes et Programmes Introduction à l informatiquel! Vie d'un programme! Algorithme! Programmation : le langage! Exécution et test des programmes Chapitre : Algorithmes et Programmes 2 Cycle de vie
La NP-complétude. Johanne Cohen. PRISM/CNRS, Versailles, France.
La NP-complétude Johanne Cohen PRISM/CNRS, Versailles, France. Références 1. Algorithm Design, Jon Kleinberg, Eva Tardos, Addison-Wesley, 2006. 2. Computers and Intractability : A Guide to the Theory of
Algorithmique, graphes et programmation dynamique Notes de Cours Rapport de Travaux Pratiques. Laurent Canet
Algorithmique, graphes et programmation dynamique Notes de Cours Rapport de Travaux Pratiques Laurent Canet Le 2 juillet 2003 Table des matières I IN202 - Algorithmique 6 1 Système formel de preuve de
Cours d Algorithmique-Programmation 2 e partie (IAP2): programmation 24 octobre 2007impérative 1 / 44 et. structures de données simples
Cours d Algorithmique-Programmation 2 e partie (IAP2): programmation impérative et structures de données simples Introduction au langage C Sandrine Blazy - 1ère année 24 octobre 2007 Cours d Algorithmique-Programmation
Les deux points les plus proches
MPSI Option Informatique Année 2001, Deuxième TP Caml Vcent Simonet (http://cristal.ria.fr/~simonet/) Les eux pots les plus proches Lors e cette séance, nous allons nous téresser au problème suivant :
Programmation C++ (débutant)/instructions for, while et do...while
Programmation C++ (débutant)/instructions for, while et do...while 1 Programmation C++ (débutant)/instructions for, while et do...while Le cours du chapitre 4 : le for, while et do...while La notion de
Projet L1, S2, 2015: Simulation de fourmis, Soutenance la semaine du 4 mai.
Projet L1, S2, 2015: Simulation de fourmis, Soutenance la semaine du 4 mai. 1 Introduction On considère une grille de 20 lignes 20 colonnes. Une case de la grille peut être vide, ou contenir une et une
Chap III : Les tableaux
Chap III : Les tableaux Dans cette partie, on va étudier quelques structures de données de base tels que : Les tableaux (vecteur et matrice) Les chaînes de caractères LA STRUCTURE DE TABLEAU Introduction
1. Structure d un programme C. 2. Commentaire: /*..texte */ On utilise aussi le commentaire du C++ qui est valable pour C: 3.
1. Structure d un programme C Un programme est un ensemble de fonctions. La fonction "main" constitue le point d entrée pour l exécution. Un exemple simple : #include int main() { printf ( this
Algorithmes sur les mots (séquences)
Introduction Algorithmes sur les mots (séquences) Algorithmes sur les mots (textes, séquences, chines de crctères) Nomreuses pplictions : ses de données iliogrphiques ioinformtique (séquences de iomolécules)
Corrigé des TD 1 à 5
Corrigé des TD 1 à 5 1 Premier Contact 1.1 Somme des n premiers entiers 1 (* Somme des n premiers entiers *) 2 program somme_entiers; n, i, somme: integer; 8 (* saisie du nombre n *) write( Saisissez un
L ALGORITHMIQUE. Algorithme
L ALGORITHMIQUE Inspirée par l informatique, cette démarche permet de résoudre beaucoup de problèmes. Quelques algorithmes ont été vus en 3 ième et cette année, au cours de leçons, nous verrons quelques
IN 102 - Cours 1. 1 Informatique, calculateurs. 2 Un premier programme en C
IN 102 - Cours 1 Qu on le veuille ou non, les systèmes informatisés sont désormais omniprésents. Même si ne vous destinez pas à l informatique, vous avez de très grandes chances d y être confrontés en
Application 1- VBA : Test de comportements d'investissements
Application 1- VBA : Test de comportements d'investissements Notions mobilisées Chapitres 1 à 5 du cours - Exemple de récupération de cours en ligne 1ère approche des objets (feuilles et classeurs). Corps
Représentation d un entier en base b
Représentation d un entier en base b 13 octobre 2012 1 Prérequis Les bases de la programmation en langage sont supposées avoir été travaillées L écriture en base b d un entier est ainsi défini à partir
Éléments d informatique Cours 3 La programmation structurée en langage C L instruction de contrôle if
Éléments d informatique Cours 3 La programmation structurée en langage C L instruction de contrôle if Pierre Boudes 28 septembre 2011 This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike
Enseignement secondaire technique
Enseignement secondaire technique Régime technique Division technique générale Cycle moyen Informatique 11TG Nombre de leçons: 2.0 Nombre minimal de devoirs: - Langue véhiculaire: / Remarque générale:
ALGORITHMIQUE II NOTION DE COMPLEXITE. SMI AlgoII
ALGORITHMIQUE II NOTION DE COMPLEXITE 1 2 Comment choisir entre différents algorithmes pour résoudre un même problème? Plusieurs critères de choix : Exactitude Simplicité Efficacité (but de ce chapitre)
Propagation sur réseau statique et dynamique
Université de la Méditerranée UFR Sciences de Luminy Rapport de stage informatique pour le Master 2 de Physique, Parcours Physique Théorique et Mathématique, Physique des Particules et Astroparticules.
Cours 02 : Problème général de la programmation linéaire
Cours 02 : Problème général de la programmation linéaire Cours 02 : Problème général de la Programmation Linéaire. 5 . Introduction Un programme linéaire s'écrit sous la forme suivante. MinZ(ou maxw) =
Algorithmique et programmation : les bases (VBA) Corrigé
PAD INPT ALGORITHMIQUE ET PROGRAMMATION 1 Cours VBA, Semaine 1 mai juin 2006 Corrigé Résumé Ce document décrit l écriture dans le langage VBA des éléments vus en algorithmique. Table des matières 1 Pourquoi
Cours intensif Java. 1er cours: de C à Java. Enrica DUCHI LIAFA, Paris 7. Septembre 2009. [email protected]
. Cours intensif Java 1er cours: de C à Java Septembre 2009 Enrica DUCHI LIAFA, Paris 7 [email protected] LANGAGES DE PROGRAMMATION Pour exécuter un algorithme sur un ordinateur il faut le
Résolution de systèmes linéaires par des méthodes directes
Résolution de systèmes linéaires par des méthodes directes J. Erhel Janvier 2014 1 Inverse d une matrice carrée et systèmes linéaires Ce paragraphe a pour objet les matrices carrées et les systèmes linéaires.
Initiation à la programmation en Python
I-Conventions Initiation à la programmation en Python Nom : Prénom : Une commande Python sera écrite en caractère gras. Exemples : print 'Bonjour' max=input("nombre maximum autorisé :") Le résultat de
Journées Télécom-UPS «Le numérique pour tous» David A. Madore. [email protected]. 29 mai 2015
et et Journées Télécom-UPS «Le numérique pour tous» David A. Madore Télécom ParisTech [email protected] 29 mai 2015 1/31 et 2/31 : définition Un réseau de R m est un sous-groupe (additif) discret L
TD3: tableaux avancées, première classe et chaînes
TD3: tableaux avancées, première classe et chaînes de caractères 1 Lestableaux 1.1 Élémentsthéoriques Déclaration des tableaux Pour la déclaration des tableaux, deux notations sont possibles. La première
Licence ST Université Claude Bernard Lyon I LIF1 : Algorithmique et Programmation C Bases du langage C 1 Conclusion de la dernière fois Introduction de l algorithmique générale pour permettre de traiter
Cours d analyse numérique SMI-S4
ours d analyse numérique SMI-S4 Introduction L objet de l analyse numérique est de concevoir et d étudier des méthodes de résolution de certains problèmes mathématiques, en général issus de problèmes réels,
UE Programmation Impérative Licence 2ème Année 2014 2015
UE Programmation Impérative Licence 2 ème Année 2014 2015 Informations pratiques Équipe Pédagogique Florence Cloppet Neilze Dorta Nicolas Loménie [email protected] 2 Programmation Impérative
Exo7. Matrice d une application linéaire. Corrections d Arnaud Bodin.
Exo7 Matrice d une application linéaire Corrections d Arnaud odin. Exercice Soit R muni de la base canonique = ( i, j). Soit f : R R la projection sur l axe des abscisses R i parallèlement à R( i + j).
Les algorithmes de base du graphisme
Les algorithmes de base du graphisme Table des matières 1 Traçage 2 1.1 Segments de droites......................... 2 1.1.1 Algorithmes simples.................... 3 1.1.2 Algorithmes de Bresenham (1965).............
http://cermics.enpc.fr/scilab
scilab à l École des Ponts ParisTech http://cermics.enpc.fr/scilab Introduction à Scilab Graphiques, fonctions Scilab, programmation, saisie de données Jean-Philippe Chancelier & Michel De Lara cermics,
Exercices du Cours de la programmation linéaire donné par le Dr. Ali DERBALA
75. Un plombier connaît la disposition de trois tuyaux sous des dalles ( voir figure ci dessous ) et il lui suffit de découvrir une partie de chacun d eux pour pouvoir y poser les robinets. Il cherche
1.6- Génération de nombres aléatoires
1.6- Génération de nombres aléatoires 1- Le générateur aléatoire disponible en C++ 2 Création d'un générateur aléatoire uniforme sur un intervalle 3- Génération de valeurs aléatoires selon une loi normale
introduction Chapitre 5 Récursivité Exemples mathématiques Fonction factorielle ø est un arbre (vide) Images récursives
introduction Chapitre 5 Images récursives http ://univ-tln.fr/~papini/sources/flocon.htm Récursivité http://www.poulain.org/fractales/index.html Image qui se contient elle-même 1 Exemples mathématiques
# let rec concat l1 l2 = match l1 with [] -> l2 x::l 1 -> x::(concat l 1 l2);; val concat : a list -> a list -> a list = <fun>
94 Programmation en OCaml 5.4.8. Concaténation de deux listes Définissons maintenant la fonction concat qui met bout à bout deux listes. Ainsi, si l1 et l2 sont deux listes quelconques, concat l1 l2 constitue
Plan du cours 2014-2015. Cours théoriques. 29 septembre 2014
numériques et Institut d Astrophysique et de Géophysique (Bât. B5c) Bureau 0/13 email:[email protected] Tél.: 04-3669771 29 septembre 2014 Plan du cours 2014-2015 Cours théoriques 16-09-2014 numériques pour
ARDUINO DOSSIER RESSOURCE POUR LA CLASSE
ARDUINO DOSSIER RESSOURCE POUR LA CLASSE Sommaire 1. Présentation 2. Exemple d apprentissage 3. Lexique de termes anglais 4. Reconnaître les composants 5. Rendre Arduino autonome 6. Les signaux d entrée
Exercice : la frontière des portefeuilles optimaux sans actif certain
Exercice : la frontière des portefeuilles optimaux sans actif certain Philippe Bernard Ingénierie Economique & Financière Université Paris-Dauphine Février 0 On considère un univers de titres constitué
Programmation linéaire
Programmation linéaire DIDIER MAQUIN Ecole Nationale Supérieure d Electricité et de Mécanique Institut National Polytechnique de Lorraine Mathématiques discrètes cours de 2ème année Programmation linéaire
INTRODUCTION AUX SYSTEMES D EXPLOITATION. TD2 Exclusion mutuelle / Sémaphores
INTRODUCTION AUX SYSTEMES D EXPLOITATION TD2 Exclusion mutuelle / Sémaphores Exclusion mutuelle / Sémaphores - 0.1 - S O M M A I R E 1. GENERALITES SUR LES SEMAPHORES... 1 1.1. PRESENTATION... 1 1.2. UN
Cours de Master Recherche
Cours de Master Recherche Spécialité CODE : Résolution de problèmes combinatoires Christine Solnon LIRIS, UMR 5205 CNRS / Université Lyon 1 2007 Rappel du plan du cours 16 heures de cours 1 - Introduction
Introduction à MATLAB R
Introduction à MATLAB R Romain Tavenard 10 septembre 2009 MATLAB R est un environnement de calcul numérique propriétaire orienté vers le calcul matriciel. Il se compose d un langage de programmation, d
Cours 6 : Programmation répartie
Cours 6 - PC2R - M2 STL - UPMC - 2008/2009 p. 1/49 Cours 6 : Programmation répartie modèle à mémoire répartie Interneteries Client/serveur Exemples en O Caml Classe Java clients/serveur multi-langages
ALGORITHMIQUE ET PROGRAMMATION En C
Objectifs ALGORITHMIQUE ET PROGRAMMATION Une façon de raisonner Automatiser la résolution de problèmes Maîtriser les concepts de l algorithmique Pas faire des spécialistes d un langage Pierre TELLIER 2
Cryptographie RSA. Introduction Opérations Attaques. Cryptographie RSA NGUYEN Tuong Lan - LIU Yi 1
Cryptographie RSA Introduction Opérations Attaques Cryptographie RSA NGUYEN Tuong Lan - LIU Yi 1 Introduction Historique: Rivest Shamir Adleman ou RSA est un algorithme asymétrique de cryptographie à clé
Algorithmes de recherche d itinéraires en transport multimodal
de recherche d itinéraires en transport multimodal Fallou GUEYE 14 Décembre 2010 Direction : Christian Artigues LAAS-CNRS Co-direction : Marie José Huguet LAAS-CNRS Encadrant industriel : Frédéric Schettini
Le Langage C Version 1.2 c 2002 Florence HENRY Observatoire de Paris Université de Versailles [email protected]
Le Langage C Version 1.2 c 2002 Florence HENRY Observatoire de Paris Université de Versailles [email protected] Table des matières 1 Les bases 3 2 Variables et constantes 5 3 Quelques fonctions indispensables
4. Les structures de données statiques
4. Les structures de données statiques 4.1 Tableaux à une dimension 4.1.1 Introduction Imaginons que dans un programme, nous ayons besoin simultanément de 25 valeurs (par exemple, des notes pour calculer
FOCUS Evolution. Lisez-Moi. Version FE 7.0.t
Lisez-Moi Version FE 7.0.t SOMMAIRE 1. PARAMETRAGE... 5 1.1. Banque... 5 1.1.1. Code Banque... 6 1.1.2. Comptes bancaires... 7 1.1.3. Edition... 8 2. FICHE CLIENTS... 9 2.1. Renseignements Comptables...
Souad EL Bernoussi. Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/
Recherche opérationnelle Les démonstrations et les exemples seront traités en cours Souad EL Bernoussi Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/ Table des matières 1 Programmation
Application de K-means à la définition du nombre de VM optimal dans un cloud
Application de K-means à la définition du nombre de VM optimal dans un cloud EGC 2012 : Atelier Fouille de données complexes : complexité liée aux données multiples et massives (31 janvier - 3 février
Peut-on tout programmer?
Chapitre 8 Peut-on tout programmer? 8.1 Que peut-on programmer? Vous voici au terme de votre initiation à la programmation. Vous avez vu comment représenter des données de plus en plus structurées à partir
Algorithmes pour la planification de mouvements en robotique non-holonome
Algorithmes pour la planification de mouvements en robotique non-holonome Frédéric Jean Unité de Mathématiques Appliquées ENSTA Le 02 février 2006 Outline 1 2 3 Modélisation Géométrique d un Robot Robot
Rappel sur les bases de données
Rappel sur les bases de données 1) Généralités 1.1 Base de données et système de gestion de base de donnés: définitions Une base de données est un ensemble de données stockées de manière structurée permettant
Chapitre 2. Matrices
Département de mathématiques et informatique L1S1, module A ou B Chapitre 2 Matrices Emmanuel Royer emmanuelroyer@mathuniv-bpclermontfr Ce texte mis gratuitement à votre disposition a été rédigé grâce
Cours 1 : La compilation
/38 Interprétation des programmes Cours 1 : La compilation Yann Régis-Gianas [email protected] PPS - Université Denis Diderot Paris 7 2/38 Qu est-ce que la compilation? Vous avez tous déjà
Projet de programmation (IK3) : TP n 1 Correction
Projet de programmation (IK3) : TP n 1 Correction Semaine du 20 septembre 2010 1 Entrées/sorties, types de bases et structures de contrôle Tests et types de bases Tests et types de bases (entiers) public
Simulation de variables aléatoires
Chapter 1 Simulation de variables aléatoires Références: [F] Fishman, A first course in Monte Carlo, chap 3. [B] Bouleau, Probabilités de l ingénieur, chap 4. [R] Rubinstein, Simulation and Monte Carlo
Polynômes à plusieurs variables. Résultant
Polynômes à plusieurs variables. Résultant Christophe Ritzenthaler 1 Relations coefficients-racines. Polynômes symétriques Issu de [MS] et de [Goz]. Soit A un anneau intègre. Définition 1.1. Soit a A \
Ordonnancement temps réel
Ordonnancement temps réel [email protected] Version 1.5 Problématique de l ordonnancement temps réel En fonctionnement normal, respecter les contraintes temporelles spécifiées par toutes les tâches
L analyse d images regroupe plusieurs disciplines que l on classe en deux catégories :
La vision nous permet de percevoir et d interpreter le monde qui nous entoure. La vision artificielle a pour but de reproduire certaines fonctionnalités de la vision humaine au travers de l analyse d images.
Théorie de la Programmation
Théorie de la Programmation http://perso.ens-lyon.fr/daniel.hirschkoff/thpr hop Programmation, Théorie de la programmation Langages de programmation I il existe de nombreux langages de programmation I
1 Recherche en table par balayage
1 Recherche en table par balayage 1.1 Problème de la recherche en table Une table désigne une liste ou un tableau d éléments. Le problème de la recherche en table est celui de la recherche d un élément
Optimisation multi-critère pour l allocation de ressources sur Clouds distribués avec prise en compte de l énergie
Optimisation multi-critère pour l allocation de ressources sur Clouds distribués avec prise en compte de l énergie 1 Présenté par: Yacine KESSACI Encadrement : N. MELAB E-G. TALBI 31/05/2011 Plan 2 Motivation
Rappel. Analyse de Données Structurées - Cours 12. Un langage avec des déclaration locales. Exemple d'un programme
Rappel Ralf Treinen Université Paris Diderot UFR Informatique Laboratoire Preuves, Programmes et Systèmes [email protected] 6 mai 2015 Jusqu'à maintenant : un petit langage de programmation
Première partie. Préliminaires : noyaux itérés. MPSI B 6 juin 2015
Énoncé Soit V un espace vectoriel réel. L espace vectoriel des endomorphismes de V est désigné par L(V ). Lorsque f L(V ) et k N, on désigne par f 0 = Id V, f k = f k f la composée de f avec lui même k
L exclusion mutuelle distribuée
L exclusion mutuelle distribuée L algorithme de L Amport L algorithme est basé sur 2 concepts : L estampillage des messages La distribution d une file d attente sur l ensemble des sites du système distribué
TP n 2 Concepts de la programmation Objets Master 1 mention IL, semestre 2 Le type Abstrait Pile
TP n 2 Concepts de la programmation Objets Master 1 mention IL, semestre 2 Le type Abstrait Pile Dans ce TP, vous apprendrez à définir le type abstrait Pile, à le programmer en Java à l aide d une interface
