MANOVA Analyse de la variance multivariée
|
|
|
- Thierry Després
- il y a 9 ans
- Total affichages :
Transcription
1 Chapitre 4 MANOVA Analyse de la variance multivariée
2 Objectif Un ensemble de facteurs de variation qualitatifs : les VI Expliquer Un ensemble de variables réponse quantitatives : les VD Tester les effets de VI sur l ensemble des VD Généralisation de l ANOVA à plusieurs VD
3 Les Données Les données résultent de l observation d un ensemble de variables numériques sur un échantillon aléatoire de sujets dans les différentes conditions d observation définies par les combinaison des modalités des différents facteurs
4 Plan d échantillonnage Données expérimentales : - Les facteurs sont des VI provoquées - Randomisation des sujets Données quasi-expérimentales : + des VI invoquées à valeurs fixées Données de simples observations : les facteurs varient librement!
5 Formules de plan Plan inter : mesures indépendantes les sujets sont répartis dans les groupes définis par le croisement des modalités des facteurs Plan intra : mesures répétées les sujets sont observés dans toutes les conditions définies par le croisement des facteurs Plan mixte : combine les deux types de facteurs rangé dans la rubrique mesures répétées
6 Exemple VD VD
7 Exemple suite Récapitulatif des observations groupe 1,00 2,00 Total N Variance Moyenne N Variance Moyenne N Variance Moyenne VD1 VD ,842 16,842,0000, ,842 16,842 1,5000-1, ,987 16,987,7500 -,7500 groupe 1,00 2,00 Corrélations VD1 VD2 VD1 1,651 VD2,651 1 VD1 1,669 VD2,669 1
8 Exemple suite Tests des effets inter-sujets (ANOVA univariée) Source groupe Erreur Total corrigé Variable dépendante VD1 VD2 VD1 VD2 VD1 VD2 Somme des Moyenne des carrés ddl carrés F Signification 22, ,500 1,336,255 22, ,500 1,336, , , , , , ,500 39
9 Modèle de MANOVA Soit le plan S <F k > A chaque modalité g de F (g =1,, k), on associe le vecteur des p variables réponses (Y 1 g, Y 2 g,, Y p g ) de moyenne (µ 1 g, µ 2 g,, µ p g ) et de matrice de variance covariance Σ NB : Σ ne dépend pas de g
10 Modèle de MANOVA Σ = (σ 1 ) 2 r 12 σ 1 σ 2 (σ 2 ) 2 M M O r 1p σ 1 σ p r 2 p σ 2 σ 2 L (σ p ) 2
11 Décomposition de la variance empirique Variance Totale var(y j ) SCT j Variance inter + Variance résiduelle SCF j SCR j
12 Décomposition de la covariance Covariance Totale cov(y j, Y j ) SPCT jj Covariance inter + Covariance résiduelle SPCF jj SPCR jj
13 Décomposition de la matrice de variance covariance V T = V inter +V R Matrice des sommes des carrés et des produits croisés Inter groupe Résidu VD1 VD2 VD1 VD2 VD1 VD2 22,500-22,500-22,500 22, , , , ,000
14 Table de MANOVA Source ddl SSPC facteur k-1 V inter résidu N-k V R total N-1 V T
15 Inférence en MANOVA Modèle statistique : Homogénéité des matrices de variance covariance Indépendance des observations entre sujets Normalité du vecteur des variables réponse
16 Test d existence d un effet du facteur H 0 : le facteur n a pas d effet (µ g 1,K,µ g p ) = (µ 1,K,µ p ) pour tout g = 1,K,k On rejette H 0 si les variances et covariances inter sont suffisamment grandes par rapport aux variances et covariances résiduelles
17 Comment comparer des matrices? 4 statistiques sont usuellement proposées : La trace de Pillai :P Le lambda de Wilks : W La trace d Hotelling : H La plus grande racine de Roy : R
18 Propriétés des statistiques 0 P, P quand l effet 0 W 1, W quand l effet 0 H, H quand l effet P<H et P H le facteur a peu d effet 0 R, R quand l effet et R<H R H le facteur a peu d effet ou les VD sont très liées ou l effet ne concerne qu une VD
19 Tests multivariés Pour chacune des quatre statistiques, il existe une transformation qui suit sous H 0 une loi de Fisher lorsque les hypothèses du modèles sont vérifiées. La statistique de Pillai est celle qui est la plus robuste aux violations des hypothèses du modèle.
20 Effet groupe Trace de Pillai Lambda de Wilks Trace de Hotelling Plus grande racine de Roy Tests multivariés ddl de Valeur F l'hypothèse Erreur ddl Signification,171 3,828 2,000 37,000,031,829 3,828 2,000 37,000,031,207 3,828 2,000 37,000,031,207 3,828 2,000 37,000,031
Bureau : 238 Tel : 04 76 82 58 90 Email : [email protected]
Dominique Muller Laboratoire Inter-universitaire de Psychologie Bureau : 238 Tel : 04 76 82 58 90 Email : [email protected] Supports de cours : webcom.upmf-grenoble.fr/lip/perso/dmuller/m2r/acm/
Cours (7) de statistiques à distance, élaboré par Zarrouk Fayçal, ISSEP Ksar-Said, 2011-2012 LES STATISTIQUES INFERENTIELLES
LES STATISTIQUES INFERENTIELLES (test de Student) L inférence statistique est la partie des statistiques qui, contrairement à la statistique descriptive, ne se contente pas de décrire des observations,
Analyse de la variance Comparaison de plusieurs moyennes
Analyse de la variance Comparaison de plusieurs moyennes Biostatistique Pr. Nicolas MEYER Laboratoire de Biostatistique et Informatique Médicale Fac. de Médecine de Strasbourg Mars 2011 Plan 1 Introduction
Tests paramétriques de comparaison de 2 moyennes Exercices commentés José LABARERE
Chapitre 5 UE4 : Biostatistiques Tests paramétriques de comparaison de 2 moyennes Exercices commentés José LABARERE Année universitaire 2010/2011 Université Joseph Fourier de Grenoble - Tous droits réservés.
Cours 9 : Plans à plusieurs facteurs
Cours 9 : Plans à plusieurs facteurs Table des matières Section 1. Diviser pour regner, rassembler pour saisir... 3 Section 2. Définitions et notations... 3 2.1. Définitions... 3 2.2. Notations... 4 Section
Tests de comparaison de moyennes. Dr Sahar BAYAT MASTER 1 année 2009-2010 UE «Introduction à la biostatistique»
Tests de comparaison de moyennes Dr Sahar BAYAT MASTER 1 année 2009-2010 UE «Introduction à la biostatistique» Test de Z ou de l écart réduit Le test de Z : comparer des paramètres en testant leurs différences
TABLE DES MATIÈRES. PRINCIPES D EXPÉRIMENTATION Planification des expériences et analyse de leurs résultats. Pierre Dagnelie
PRINCIPES D EXPÉRIMENTATION Planification des expériences et analyse de leurs résultats Pierre Dagnelie TABLE DES MATIÈRES 2012 Presses agronomiques de Gembloux [email protected] www.pressesagro.be
STATISTIQUES. UE Modélisation pour la biologie
STATISTIQUES UE Modélisation pour la biologie 2011 Cadre Général n individus: 1, 2,..., n Y variable à expliquer : Y = (y 1, y 2,..., y n ), y i R Modèle: Y = Xθ + ε X matrice du plan d expériences θ paramètres
Biostatistiques Biologie- Vétérinaire FUNDP Eric Depiereux, Benoît DeHertogh, Grégoire Vincke
www.fundp.ac.be/biostats Module 140 140 ANOVA A UN CRITERE DE CLASSIFICATION FIXE...2 140.1 UTILITE...2 140.2 COMPARAISON DE VARIANCES...2 140.2.1 Calcul de la variance...2 140.2.2 Distributions de référence...3
Apprentissage incrémental par sélection de données dans un flux pour une application de sécurité routière
Apprentissage incrémental par sélection de données dans un flux pour une application de sécurité routière Nicolas Saunier INRETS Télécom Paris Sophie Midenet INRETS Alain Grumbach Télécom Paris Conférence
La valeur présente (ou actuelle) d une annuité, si elle est constante, est donc aussi calculable par cette fonction : VA = A [(1-1/(1+k) T )/k]
Evaluation de la rentabilité d un projet d investissement La décision d investir dans un quelconque projet se base principalement sur l évaluation de son intérêt économique et par conséquent, du calcul
Quelques rappels concernant la méthode expérimentale
Quelques rappels concernant la méthode expérimentale 1. La Méthode expérimentale : Définition. Une définition classique de la méthode expérimentale est qu elle «correspond à la méthode d investigation
Modèles pour données répétées
Résumé Les données répétées, ou données longitudinales, constituent un domaine à la fois important et assez particulier de la statistique. On entend par données répétées des données telles que, pour chaque
Application sur le Dispositif en Blocs Complètement Randomisés
Roger Vumilia. KIZUNGU Directeur de l Expérimentation Agricole à l INERA Professeur Associé Faculté des Sciences Agronomiques Université de Kinshasa Utilisation des Logiciels de base dans la Recherche
MODELE A CORRECTION D ERREUR ET APPLICATIONS
MODELE A CORRECTION D ERREUR ET APPLICATIONS Hélène HAMISULTANE Bibliographie : Bourbonnais R. (2000), Econométrie, DUNOD. Lardic S. et Mignon V. (2002), Econométrie des Séries Temporelles Macroéconomiques
1 Définition de la non stationnarité
Chapitre 2: La non stationnarité -Testsdedétection Quelques notes de cours (non exhaustives) 1 Définition de la non stationnarité La plupart des séries économiques sont non stationnaires, c est-à-direqueleprocessusquiles
TESTS D'HYPOTHESES Etude d'un exemple
TESTS D'HYPOTHESES Etude d'un exemple Un examinateur doit faire passer une épreuve type QCM à des étudiants. Ce QCM est constitué de 20 questions indépendantes. Pour chaque question, il y a trois réponses
DETERMINATION DE L INCERTITUDE DE MESURE POUR LES ANALYSES CHIMIQUES QUANTITATIVES
Agence fédérale pour la Sécurité de la Chaîne alimentaire Administration des Laboratoires Procédure DETERMINATION DE L INCERTITUDE DE MESURE POUR LES ANALYSES CHIMIQUES QUANTITATIVES Date de mise en application
Chapitre 3 : Principe des tests statistiques d hypothèse. José LABARERE
UE4 : Biostatistiques Chapitre 3 : Principe des tests statistiques d hypothèse José LABARERE Année universitaire 2010/2011 Université Joseph Fourier de Grenoble - Tous droits réservés. Plan I. Introduction
Principe d un test statistique
Biostatistiques Principe d un test statistique Professeur Jean-Luc BOSSON PCEM2 - Année universitaire 2012/2013 Faculté de Médecine de Grenoble (UJF) - Tous droits réservés. Objectifs pédagogiques Comprendre
Régression linéaire. Nicolas Turenne INRA [email protected]
Régression linéaire Nicolas Turenne INRA [email protected] 2005 Plan Régression linéaire simple Régression multiple Compréhension de la sortie de la régression Coefficient de détermination R
Chapitre 6 Test de comparaison de pourcentages χ². José LABARERE
UE4 : Biostatistiques Chapitre 6 Test de comparaison de pourcentages χ² José LABARERE Année universitaire 2010/2011 Université Joseph Fourier de Grenoble - Tous droits réservés. Plan I. Nature des variables
Exemples d application
AgroParisTech Exemples d application du modèle linéaire E Lebarbier, S Robin Table des matières 1 Introduction 4 11 Avertissement 4 12 Notations 4 2 Régression linéaire simple 7 21 Présentation 7 211 Objectif
Introduction aux Statistiques et à l utilisation du logiciel R
Introduction aux Statistiques et à l utilisation du logiciel R Christophe Lalanne Christophe Pallier 1 Introduction 2 Comparaisons de deux moyennes 2.1 Objet de l étude On a mesuré le temps de sommeil
Chapitre 3. Les distributions à deux variables
Chapitre 3. Les distributions à deux variables Jean-François Coeurjolly http://www-ljk.imag.fr/membres/jean-francois.coeurjolly/ Laboratoire Jean Kuntzmann (LJK), Grenoble University 1 Distributions conditionnelles
Estimation et tests statistiques, TD 5. Solutions
ISTIL, Tronc commun de première année Introduction aux méthodes probabilistes et statistiques, 2008 2009 Estimation et tests statistiques, TD 5. Solutions Exercice 1 Dans un centre avicole, des études
CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE. Cinquième épreuve d admissibilité STATISTIQUE. (durée : cinq heures)
CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE Cinquième épreuve d admissibilité STATISTIQUE (durée : cinq heures) Une composition portant sur la statistique. SUJET Cette épreuve est composée d un
Biostatistiques : Petits effectifs
Biostatistiques : Petits effectifs Master Recherche Biologie et Santé P. Devos DRCI CHRU de Lille EA2694 [email protected] Plan Données Générales : Définition des statistiques Principe de l
DCG 6. Finance d entreprise. L essentiel en fiches
DCG 6 Finance d entreprise L essentiel en fiches DCG DSCG Collection «Express Expertise comptable» J.-F. Bocquillon, M. Mariage, Introduction au droit DCG 1 L. Siné, Droit des sociétés DCG 2 V. Roy, Droit
Transformations nucléaires
Transformations nucléaires Stabilité et instabilité des noyaux : Le noyau d un atome associé à un élément est représenté par le symbole A : nombre de masse = nombre de nucléons (protons + neutrons) Z :
Comparaison de populations
Ricco Rakotomalala Comparaison de populations Tests paramétriques Version 1.2 Université Lumière Lyon 2 Page: 1 job: Comp_Pop_Tests_Parametriques macro: svmono.cls date/time: 11-Jun-2013/6:32 Page: 2 job:
La pratique du coaching en France. Baromètre 2010
SFCoach : crée du lien entre le monde du travail et les professionnels de l accompagnement La pratique du coaching en France Baromètre 2010 Fondée en 1996 22, Bd Sébastopol 75004 Paris Association 1901
SOCLE COMMUN - La Compétence 3 Les principaux éléments de mathématiques et la culture scientifique et technologique
SOCLE COMMUN - La Compétence 3 Les principaux éléments de mathématiques et la culture scientifique et technologique DOMAINE P3.C3.D1. Pratiquer une démarche scientifique et technologique, résoudre des
Température corporelle d un castor (une petite introduction aux séries temporelles)
Température corporelle d un castor (une petite introduction aux séries temporelles) GMMA 106 GMMA 106 2014 2015 1 / 32 Cas d étude Temperature (C) 37.0 37.5 38.0 0 20 40 60 80 100 Figure 1: Temperature
Probabilités III Introduction à l évaluation d options
Probabilités III Introduction à l évaluation d options Jacques Printems Promotion 2012 2013 1 Modèle à temps discret 2 Introduction aux modèles en temps continu Limite du modèle binomial lorsque N + Un
Chapitre 7. Statistique des échantillons gaussiens. 7.1 Projection de vecteurs gaussiens
Chapitre 7 Statistique des échantillons gaussiens Le théorème central limite met en évidence le rôle majeur tenu par la loi gaussienne en modélisation stochastique. De ce fait, les modèles statistiques
Statistiques. Rappels de cours et travaux dirigés. Master 1 Biologie et technologie du végétal. Année 2010-2011
Master 1 Biologie et technologie du végétal Année 010-011 Statistiques Rappels de cours et travaux dirigés (Seul ce document sera autorisé en examen) auteur : Jean-Marc Labatte [email protected]
I- Définitions des signaux.
101011011100 010110101010 101110101101 100101010101 Du compact-disc, au DVD, en passant par l appareil photo numérique, le scanner, et télévision numérique, le numérique a fait une entrée progressive mais
PROGRAMME (Susceptible de modifications)
Page 1 sur 8 PROGRAMME (Susceptible de modifications) Partie 1 : Méthodes des revues systématiques Mercredi 29 mai 2013 Introduction, présentation du cours et des participants Rappel des principes et des
TABLE DES MATIÈRES. Bruxelles, De Boeck, 2011, 736 p.
STATISTIQUE THÉORIQUE ET APPLIQUÉE Tome 2 Inférence statistique à une et à deux dimensions Pierre Dagnelie TABLE DES MATIÈRES Bruxelles, De Boeck, 2011, 736 p. ISBN 978-2-8041-6336-5 De Boeck Services,
Probabilités et Statistiques. Feuille 2 : variables aléatoires discrètes
IUT HSE Probabilités et Statistiques Feuille : variables aléatoires discrètes 1 Exercices Dénombrements Exercice 1. On souhaite ranger sur une étagère 4 livres de mathématiques (distincts), 6 livres de
Modélisation géostatistique des débits le long des cours d eau.
Modélisation géostatistique des débits le long des cours d eau. C. Bernard-Michel (actuellement à ) & C. de Fouquet MISTIS, INRIA Rhône-Alpes. 655 avenue de l Europe, 38334 SAINT ISMIER Cedex. Ecole des
Projet SENTINELLE Appel àprojets «CO 2»Déc. 2007
Projet SENTINELLE Appel àprojets «CO 2»Déc. 2007 Philippe de DONATO Université de Lorraine/CNRS Co-auteurs: C. PRINET, B. GARCIA, H. LUCAS, Z. POKRYSZKA, S. LAFORTUNE, P. FLAMANT, F. GIBERT, D. EDOUART,
Plan de cours. Introduction à la recherche scientifique Théorie et approche méthodologique Les principaux auteurs
Méthodologie de recherche en sciences de gestion Rachid Alami Post Graduate diploma Management MIT Boston Doctorate in Management Sciences Paris Dauphine University MBA Paris Dauphine Master of Sciences
TABLE DES MATIERES. C Exercices complémentaires 42
TABLE DES MATIERES Chapitre I : Echantillonnage A - Rappels de cours 1. Lois de probabilités de base rencontrées en statistique 1 1.1 Définitions et caractérisations 1 1.2 Les propriétés de convergence
Le risque Idiosyncrasique
Le risque Idiosyncrasique -Pierre CADESTIN -Magali DRIGHES -Raphael MINATO -Mathieu SELLES 1 Introduction Risque idiosyncrasique : risque non pris en compte dans le risque de marché (indépendant des phénomènes
Une introduction. Lionel RIOU FRANÇA. Septembre 2008
Une introduction INSERM U669 Septembre 2008 Sommaire 1 Effets Fixes Effets Aléatoires 2 Analyse Classique Effets aléatoires Efficacité homogène Efficacité hétérogène 3 Estimation du modèle Inférence 4
La problématique des tests. Cours V. 7 mars 2008. Comment quantifier la performance d un test? Hypothèses simples et composites
La problématique des tests Cours V 7 mars 8 Test d hypothèses [Section 6.1] Soit un modèle statistique P θ ; θ Θ} et des hypothèses H : θ Θ H 1 : θ Θ 1 = Θ \ Θ Un test (pur) est une statistique à valeur
Se Perfectionner à Excel 2003-2007
Se Perfectionner à Excel 2003-2007 Nos formations sur notre site web Les formations Excel Se Perfectionner permettent d'acquérir un usage professionnel du plus réputé des tableurs. Le stagiaire doit maîtriser
Méthodes d apprentissage statistique «Machine Learning»
Méthodes d apprentissage statistique «Machine Learning» Fabrice TAILLIEU, Sébastien DELUCINGE, Rémi BELLINA Le marché de l assurance a rarement été marqué par un environnement aussi difficile qu au cours
Introduction à l approche bootstrap
Introduction à l approche bootstrap Irène Buvat U494 INSERM buvat@imedjussieufr 25 septembre 2000 Introduction à l approche bootstrap - Irène Buvat - 21/9/00-1 Plan du cours Qu est-ce que le bootstrap?
Introduction à la Statistique Inférentielle
UNIVERSITE MOHAMMED V-AGDAL SCIENCES FACULTE DES DEPARTEMENT DE MATHEMATIQUES SMI semestre 4 : Probabilités - Statistique Introduction à la Statistique Inférentielle Prinemps 2013 0 INTRODUCTION La statistique
Premiers Pas en Programmation Objet : les Classes et les Objets
Chapitre 2 Premiers Pas en Programmation Objet : les Classes et les Objets Dans la première partie de ce cours, nous avons appris à manipuler des objets de type simple : entiers, doubles, caractères, booléens.
Evaluation de la variabilité d'un système de mesure
Evaluation de la variabilité d'un système de mesure Exemple 1: Diamètres des injecteurs de carburant Problème Un fabricant d'injecteurs de carburant installe un nouveau système de mesure numérique. Les
L Econométrie des Données de Panel
Ecole Doctorale Edocif Séminaire Méthodologique L Econométrie des Données de Panel Modèles Linéaires Simples Christophe HURLIN L Econométrie des Données de Panel 2 Figure.: Présentation Le but de ce séminaire
Le Modèle Linéaire par l exemple :
Publications du Laboratoire de Statistique et Probabilités Le Modèle Linéaire par l exemple : Régression, Analyse de la Variance,... Jean-Marc Azaïs et Jean-Marc Bardet Laboratoire de Statistique et Probabilités
Marchés Financiers. Cours appliqué de finance de marché. Change
Marchés Financiers Cours appliqué de finance de marché Change Aoris Conseil Emmanuel Laffort 1 Finance de marché (Devise) 2009-2010 Change - Généralités Caractéristiques Marché international Premier marché
Probabilité et Statistique pour le DEA de Biosciences. Avner Bar-Hen
Probabilité et Statistique pour le DEA de Biosciences Avner Bar-Hen Université Aix-Marseille III 2000 2001 Table des matières 1 Introduction 3 2 Introduction à l analyse statistique 5 1 Introduction.................................
T de Student Khi-deux Corrélation
Les tests d inférence statistiques permettent d estimer le risque d inférer un résultat d un échantillon à une population et de décider si on «prend le risque» (si 0.05 ou 5 %) Une différence de moyennes
Évaluation de la régression bornée
Thierry Foucart UMR 6086, Université de Poitiers, S P 2 M I, bd 3 téléport 2 BP 179, 86960 Futuroscope, Cedex FRANCE Résumé. le modèle linéaire est très fréquemment utilisé en statistique et particulièrement
Bilan Protection Sociale & Rémunération. Etude réalisée pour Monsieur DUPONT. Le 25/04/2008
Bilan Protection Sociale & Rémunération Etude réalisée pour Monsieur DUPONT Le 25/04/2008 Contact : Madame MARTIN Casagande & Associés, Membre de PRAGMA 1 LES OBJECTIFS DE L ETUDE Votre système de rémunération
UFR de Sciences Economiques Année 2008-2009 TESTS PARAMÉTRIQUES
Université Paris 13 Cours de Statistiques et Econométrie I UFR de Sciences Economiques Année 2008-2009 Licence de Sciences Economiques L3 Premier semestre TESTS PARAMÉTRIQUES Remarque: les exercices 2,
CAPTEURS - CHAINES DE MESURES
CAPTEURS - CHAINES DE MESURES Pierre BONNET Pierre Bonnet Master GSI - Capteurs Chaînes de Mesures 1 Plan du Cours Propriétés générales des capteurs Notion de mesure Notion de capteur: principes, classes,
(51) Int Cl.: H04L 29/06 (2006.01) G06F 21/55 (2013.01)
(19) TEPZZ 8 8 4_A_T (11) EP 2 838 241 A1 (12) DEMANDE DE BREVET EUROPEEN (43) Date de publication: 18.02.1 Bulletin 1/08 (1) Int Cl.: H04L 29/06 (06.01) G06F 21/ (13.01) (21) Numéro de dépôt: 141781.4
Introduction au pricing d option en finance
Introduction au pricing d option en finance Olivier Pironneau Cours d informatique Scientifique 1 Modélisation du prix d un actif financier Les actions, obligations et autres produits financiers cotés
THÉÂTRE DU BEAUVAISIS
THÉÂTRE DU BEAUVAISIS THÉÂTRE DU BEAUVAISIS Un peu d histoire Enquête publique : le cadre Le dossier Déroulement de l enquête Avis et conclusions du CE Après remise du rapport Octobre 2014 : où en est-on?
Statistiques Appliquées à l Expérimentation en Sciences Humaines. Christophe Lalanne, Sébastien Georges, Christophe Pallier
Statistiques Appliquées à l Expérimentation en Sciences Humaines Christophe Lalanne, Sébastien Georges, Christophe Pallier Table des matières 1 Méthodologie expérimentale et recueil des données 6 1.1 Introduction.......................................
Nouvelle norme de révision: Contrôle du rapport de gestion sur les comptes annuels (ou consolidés)
Nouvelle norme de révision: Contrôle du rapport de gestion sur les comptes annuels (ou consolidés) INTRODUCTION Historique 1. Le 6 octobre 1989, le Conseil de l IRE a approuvé une recommandation de révision
Une fonction ressources humaines performante?*
Une fonction ressources humaines performante?* Depuis quelques années, les services du personnel ont pour la plupart été rebaptisés en départements Ressources humaines, sous l influence des tendances observées
Modèles et Méthodes de Réservation
Modèles et Méthodes de Réservation Petit Cours donné à l Université de Strasbourg en Mai 2003 par Klaus D Schmidt Lehrstuhl für Versicherungsmathematik Technische Universität Dresden D 01062 Dresden E
Journée des utilisateurs de Salome-Meca et code_aster ETUDE SISMIQUE DE LA PINCE VAPEUR
Journée des utilisateurs de Salome-Meca et code_aster 18 Mars 2014 ETUDE SISMIQUE DE LA PINCE VAPEUR 1 CIPN/GC - Groupe Séisme Sommaire Description de la pince vapeur et du contexte Présentation des diagnostics
$SSOLFDWLRQGXNULJHDJHSRXUOD FDOLEUDWLRQPRWHXU
$SSOLFDWLRQGXNULJHDJHSRXUOD FDOLEUDWLRQPRWHXU Fabien FIGUERES [email protected] 0RWVFOpV : Krigeage, plans d expériences space-filling, points de validations, calibration moteur. 5pVXPp Dans le
OSGOODE HALL LAW SCHOOL Université York MÉMOIRE PRIVILÉGIÉ ET CONFIDENTIEL
OSGOODE HALL LAW SCHOOL Université York MÉMOIRE PRIVILÉGIÉ ET CONFIDENTIEL À : &' 1$,'6 M. Richard Drouin, O.C., c.r. Président, Commission d examen sur la rémunération des juges 2CVTKEM,/QPCJCP DATE :
DEMANDE D AUTORISATION D UN SYSTEME DE VIDEOPROTECTION
HAUT-COMMISSARIAT DE LA REPUBLIQUE EN NOUVELLE-CALEDONIE DEMANDE D AUTORISATION D UN SYSTEME DE VIDEOPROTECTION Loi du 21 janvier 1995 modifiée, article 10 Décret du 17 octobre 1996 modifié ATTENTION :
RACCOURCIS CLAVIERS. DEFINITION : Une «combinaison de touches» est un appui simultané sur plusieurs touches.
S Vous n aimez pas la souris Les raccourcis clavier sont là pour vous faciliter la vie! INTRODUCTION : Vous avez du mal à vous habituer à la manipulation de la souris Des solutions existent : les raccourcis
Temps Réel. Jérôme Pouiller <[email protected]> Septembre 2011
Temps Réel Jérôme Pouiller Septembre 2011 Sommaire Problèmatique Le monotâche Le multitâches L ordonnanement Le partage de ressources Problèmatiques des OS temps réels J. Pouiller
Lois de probabilité. Anita Burgun
Lois de probabilité Anita Burgun Problème posé Le problème posé en statistique: On s intéresse à une population On extrait un échantillon On se demande quelle sera la composition de l échantillon (pourcentage
Loi binomiale Lois normales
Loi binomiale Lois normales Christophe ROSSIGNOL Année scolaire 204/205 Table des matières Rappels sur la loi binomiale 2. Loi de Bernoulli............................................ 2.2 Schéma de Bernoulli
Chapitre 2. Les Processus Aléatoires Non Stationnaires 1. Chapitre 2. Tests de Non Stationnarité et Processus Aléatoires Non Stationnaires
Chapitre 2. Les Processus Aléatoires Non Stationnaires 1 Chapitre 2 Tests de Non Stationnarité et Processus Aléatoires Non Stationnaires Chapitre 2. Les Processus Aléatoires Non Stationnaires 2 Dans le
Gestion des Clés Publiques (PKI)
Chapitre 3 Gestion des Clés Publiques (PKI) L infrastructure de gestion de clés publiques (PKI : Public Key Infrastructure) représente l ensemble des moyens matériels et logiciels assurant la gestion des
Calcul élémentaire des probabilités
Myriam Maumy-Bertrand 1 et Thomas Delzant 1 1 IRMA, Université Louis Pasteur Strasbourg, France Licence 1ère Année 16-02-2006 Sommaire La loi de Poisson. Définition. Exemple. 1 La loi de Poisson. 2 3 4
Tests non-paramétriques de non-effet et d adéquation pour des covariables fonctionnelles
Tests non-paramétriques de non-effet et d adéquation pour des covariables fonctionnelles Valentin Patilea 1 Cesar Sanchez-sellero 2 Matthieu Saumard 3 1 CREST-ENSAI et IRMAR 2 USC Espagne 3 IRMAR-INSA
Analyses de Variance à un ou plusieurs facteurs Régressions Analyse de Covariance Modèles Linéaires Généralisés
Analyses de Variance à un ou plusieurs facteurs Régressions Analyse de Covariance Modèles Linéaires Généralisés Professeur Patrice Francour [email protected] Une grande partie des illustrations viennent
DISCOUNTED CASH-FLOW
DISCOUNTED CASH-FLOW Principes généraux La méthode des flux futurs de trésorerie, également désignée sous le terme de Discounted Cash Flow (DCF), est très largement admise en matière d évaluation d actif
distribution quelconque Signe 1 échantillon non Wilcoxon gaussienne distribution symétrique Student gaussienne position
Arbre de NESI distribution quelconque Signe 1 échantillon distribution symétrique non gaussienne Wilcoxon gaussienne Student position appariés 1 échantillon sur la différence avec référence=0 2 échantillons
AICp. Vincent Vandewalle. To cite this version: HAL Id: inria-00386678 https://hal.inria.fr/inria-00386678
Sélection prédictive d un modèle génératif par le critère AICp Vincent Vandewalle To cite this version: Vincent Vandewalle. Sélection prédictive d un modèle génératif par le critère AICp. 41èmes Journées
FOAD COURS D ECONOMETRIE 1 CHAPITRE 2 : Hétéroscédasicité des erreurs. 23 mars 2012.
FOAD COURS D ECONOMETRIE CHAPITRE 2 : Hétéroscédasicité des erreurs. 23 mars 202. Christine Maurel Maître de conférences en Sciences Economiques Université de Toulouse - Capitole Toulouse School of Economics-ARQADE
PROGRAMME DES NATIONS UNIES POUR LE DEVELOPPEMENT
PROGRAMME DES NATIONS UNIES POUR LE DEVELOPPEMENT TERMES DE REFERENCE I. Information sur la consultation/contrat de service Titre Projet Type de contrat Durée initiale Lieu d affectation CONSULTANT NATIONAL
Équations non linéaires
Équations non linéaires Objectif : trouver les zéros de fonctions (ou systèmes) non linéaires, c-à-d les valeurs α R telles que f(α) = 0. y f(x) α 1 α 2 α 3 x Equations non lineaires p. 1/49 Exemples et
Gaz à effet de serre émis et consommations énergétiques inhérentes. à l habitation et aux déplacements d
Gaz à effet de serre émis et consommations énergétiques inhérentes à l habitation et aux déplacements d des ménagesm Exemple d un ménage de 3 personnes habitant un logement de 100m² à Lille Métropole Mars
PROBABILITES ET STATISTIQUE I&II
PROBABILITES ET STATISTIQUE I&II TABLE DES MATIERES CHAPITRE I - COMBINATOIRE ELEMENTAIRE I.1. Rappel des notations de la théorie des ensemble I.1.a. Ensembles et sous-ensembles I.1.b. Diagrammes (dits
Arbres binaires de décision
1 Arbres binaires de décision Résumé Arbres binaires de décision Méthodes de construction d arbres binaires de décision, modélisant une discrimination (classification trees) ou une régression (regression
TP Service HTTP Serveur Apache Linux Debian
Compte rendu de Raphaël Boublil TP Service HTTP Serveur Apache Linux Debian Tout au long du tp, nous redémarrons le service apache constamment pour que les fi de configuration se remettent à jour - /etc/init.d/apache2
FIMA, 7 juillet 2005
F. Corset 1 S. 2 1 LabSAD Université Pierre Mendes France 2 Département de Mathématiques Université de Franche-Comté FIMA, 7 juillet 2005 Plan de l exposé plus court chemin Origine du problème Modélisation
CONSOMMATION INTERTEMPORELLE & MARCHE FINANCIER. Epargne et emprunt Calcul actuariel
CONSOMMATION INTERTEMPORELLE & MARCHE FINANCIER Epargne et emprunt Calcul actuariel Plan du cours Préambule : la contrainte budgétaire intertemporelle et le calcul actuariel I II III Demandes d épargne
Cours de Probabilités et de Statistique
Cours de Probabilités et de Statistique Licence 1ère année 2007/2008 Nicolas Prioux Université Paris-Est Cours de Proba-Stat 2 L1.2 Science-Éco Chapitre Notions de théorie des ensembles 1 1.1 Ensembles
Présentation du logiciel
Chapitre A Présentation du logiciel R Pré-requis et objectif La lecture du chapitre sur l installation de R dans les Annexes peut se révéler utile. Ce chapitre présente les origines, l objectif et les
Probabilités Loi binomiale Exercices corrigés
Probabilités Loi binomiale Exercices corrigés Sont abordés dans cette fiche : (cliquez sur l exercice pour un accès direct) Exercice 1 : épreuve de Bernoulli Exercice 2 : loi de Bernoulli de paramètre
UEO11 COURS/TD 1. nombres entiers et réels codés en mémoire centrale. Caractères alphabétiques et caractères spéciaux.
UEO11 COURS/TD 1 Contenu du semestre Cours et TDs sont intégrés L objectif de ce cours équivalent a 6h de cours, 10h de TD et 8h de TP est le suivant : - initiation à l algorithmique - notions de bases
