Exercice de Probabilités. Série 1 Dénombrements
|
|
|
- Justin Dubois
- il y a 9 ans
- Total affichages :
Transcription
1 Exercice de Probabilités Série 1 Dénombrements CPP 2 ème Année Promo 11 (2004/2005)
2 Probabilités : Série 1 CPP 2 ème Année (2004/2005) 1 Exercice 1 On dispose de quatre boules diérentes : une rouge, une bleue, une jaune et une verte. Nous avons la possibilité de : de ne choisir aucune boule. d'en choisir une, deux, trois ou quatre. 1. Combien y a-t-il de choix distincts en tout? 2. Reprendre le problème avec 5 boules, puis n boules. Exercice 2 On peut choisir de mettre ou non une croix dans chacune des cases du carré ci-dessous. Combien y a-t-il de façons distinctes de procéder? Exercice 3 On dispose de trois boîtes et de cinq craies de couleur bleue, rouge, jaune, verte et orange. 1. De combien de façons distinctes peut-on ranger les cinq craies dans les trois boîtes? 2. Même question en laissant l'une des boîtes vides. 3. Même question si la bleue et la rouge sont rangées ensembles. 4. Même question si la bleue et la rouge sont rangées ensembles, mais seules. Exercice 4 On lance trois fois de suite un dé numéroté de 1 à 6 et on note les triplets ainsi obtenus. Combien y a-t-il de tels triplets? (Attention : il faut tenir compte de l'ordre!) Exercice 5 Pour constituer une équipe de football, on a le choix entre 20 postulants. En supposant que chaque joueur est polyvalent, combien peut-on constituer d'équipes diérentes? Parmi les 20 postulants, 17 sont joueurs de champ et 3 sont gardiens. Combien d'équipes distinctes peut-on alors constituer?
3 Probabilités : Série 1 CPP 2 ème Année (2004/2005) 2 Exercice 6 Sans répétition, combien de nombres de 3 chires peut-on former à l'aide des chires suivants : Combien de ces nombres sont : 1. inférieurs à 500? 2. pairs? 3. impairs? 4. multiples de 5? Exercice 7 2, 3, 5, 6, 7, 9 Combien de mots de 4 lettres peut-on former avec les 26 lettres de l'alphabet : 1. en admettant les répétitions des lettres? 2. sans lettres répétées? Quelle est la probabilité qu'un mot de 4 lettres n'aie pas de lettres répétées? Exercice 8 Quel est le nombre de triangles (éventuellement aplatis) que l'on peut former avec 10 points distincts? Exercice 9 Combien y a-t-il de trajectoires qui vont de 1 vers B en suivant le quadrillage : B Exercice 10 A (On n'autorise que deux directions : vers le haut et vers la droite) En hiver une compagnie aérienne déssert 6 villes. Quel est le nombre de lignes en service? En été, la compagnie a 45 lignes en service. Quel est le nombre de villes desservies? Exercice 11 (Le loto) Une urne est composée de 49 boules numérotées de 1 à 49. On choisit au hasard 7 nombres deux à deux diérents (a 1,, a 7 ), tous compris entre 1 et 49, puis on tire 7 boules sans remise de l'urne dont les numéros sont notés b 1,, b 7. Quelle est la probabilité d'avoir k résultats justes (0 k 7) (c'est à dire la probabilité qu'il y ait exactement k nombres de {a 1,, a 7 } qui appartiennent à {b 1,, b 7 })?
4 Probabilités : Série 1 CPP 2 ème Année (2004/2005) 3 Exercice Combien de mots de 5 lettres peut-on faire avec les 26 lettres de l'alphabet? 2. Combien de ces mots ne comportent que des lettres distinctes? 3. Combien de ces mots comportent exactement 4 lettres distinctes (et donc une lettre répétée)? Exercice 13 Dans un jeu de 32 cartes, on choisit 5 cartes au hasard (ces 5 cartes s'appellent une "main"). 1. Quel est le nombre total de mains que l'on peut obtenir? 2. Combien de mains contiennent exactement 4 as? 3. Combien de mains contiennent exactement 3 as et 2 rois? 4. Combien de mains contiennent au moins 3 rois? 5. Combien de mains contiennent au moins un as? Exercice 14 Un urne contient 49 boules numérotées de 1 à 49. On tire successivement 6 boules, sans remise. On appelle tirage cet ensemble de 6 numéros obtenus (sans tenir compte de l'ordre). 1. Combien y a-t-il de tirages au total? 2. Combien y a-t-il de tirages qui contiennent 3 numéros pairs et 3 numéros impairs? 3. Combien y a-t-il de tirages qui contiennent au moins 5 numéros pairs (C'est à dire 5 numéros pairs ou 6 numéros pairs)? Exercice 15 Dans une classe, on souhaite élire un comité. On suppose que chaque élève de la classe peut être élu. 1. Combien de comités de 3 personnes peut-on élire dans une classe de 31 élèves? 2. Dans une classe de n élèves, il y a 351 façons d'élire un comité de 2 personnes. Quel est le nombre n d'élèves de cette classe? Exercice 16 Combien y a-t-il de palindromes compris entre 100 et 1000? entre 1000 et 10000?
5 Probabilités : Série 1 CPP 2 ème Année (2004/2005) 4 Exercice 17 Une délégation de 4 étudiants du CPP est choisie pour représenter le CPPG à un tournoi. 1. De combien de manières diérentes peut-on former la délégation s'il y a 12 étudiants qui veulent participer? 2. De combien de manières, si, parmi eux, il y a deux étudiants qui refusent de participer ensemble? 3. De combien de manières, si 2 de ces étudiants ne veulent participer qu'ensemble? Exercice 18 Calculer les sommes suivantes : S 0 = S 1 = S 2 = k=0 C k n k Cn k k=1 k=0 1 n + 1 Ck n
Exercices de dénombrement
Exercices de dénombrement Exercice En turbo Pascal, un entier relatif (type integer) est codé sur 6 bits. Cela signifie que l'on réserve 6 cases mémoires contenant des "0" ou des "" pour écrire un entier.
I. Cas de l équiprobabilité
I. Cas de l équiprobabilité Enoncé : On lance deux dés. L un est noir et l autre est blanc. Calculer les probabilités suivantes : A «Obtenir exactement un as» «Obtenir au moins un as» C «Obtenir au plus
Probabilité. Table des matières. 1 Loi de probabilité 2 1.1 Conditions préalables... 2 1.2 Définitions... 2 1.3 Loi équirépartie...
1 Probabilité Table des matières 1 Loi de probabilité 2 1.1 Conditions préalables........................... 2 1.2 Définitions................................. 2 1.3 Loi équirépartie..............................
Les probabilités. Chapitre 18. Tester ses connaissances
Chapitre 18 Les probabilités OBJECTIFS DU CHAPITRE Calculer la probabilité d événements Tester ses connaissances 1. Expériences aléatoires Voici trois expériences : - Expérience (1) : on lance une pièce
1. Déterminer l ensemble U ( univers des possibles) et l ensemble E ( événement) pour les situations suivantes.
Corrigé du Prétest 1. Déterminer l ensemble U ( univers des possibles) et l ensemble E ( événement) pour les situations suivantes. a) Obtenir un nombre inférieur à 3 lors du lancer d un dé. U= { 1, 2,
Coefficients binomiaux
Probabilités L2 Exercices Chapitre 2 Coefficients binomiaux 1 ( ) On appelle chemin une suite de segments de longueur 1, dirigés soit vers le haut, soit vers la droite 1 Dénombrer tous les chemins allant
Distribution Uniforme Probabilité de Laplace Dénombrements Les Paris. Chapitre 2 Le calcul des probabilités
Chapitre 2 Le calcul des probabilités Equiprobabilité et Distribution Uniforme Deux événements A et B sont dits équiprobables si P(A) = P(B) Si il y a équiprobabilité sur Ω, cad si tous les événements
9 5 2 5 Espaces probabilisés
BCPST2 9 5 2 5 Espaces probabilisés I Mise en place du cadre A) Tribu Soit Ω un ensemble. On dit qu'un sous ensemble T de P(Ω) est une tribu si et seulement si : Ω T. T est stable par complémentaire, c'est-à-dire
Probabilités (méthodes et objectifs)
Probabilités (méthodes et objectifs) G. Petitjean Lycée de Toucy 10 juin 2007 G. Petitjean (Lycée de Toucy) Probabilités (méthodes et objectifs) 10 juin 2007 1 / 19 1 Déterminer la loi de probabilité d
Fluctuation d une fréquence selon les échantillons - Probabilités
Fluctuation d une fréquence selon les échantillons - Probabilités C H A P I T R E 3 JE DOIS SAVOIR Calculer une fréquence JE VAIS ÊTRE C APABLE DE Expérimenter la prise d échantillons aléatoires de taille
Exercices sur le chapitre «Probabilités»
Arnaud de Saint Julien - MPSI Lycée La Merci 2014-2015 1 Pour démarrer Exercices sur le chapitre «Probabilités» Exercice 1 (Modélisation d un dé non cubique) On considère un parallélépipède rectangle de
CALCUL DES PROBABILITES
CALCUL DES PROBABILITES Exemple On lance une pièce de monnaie une fois. Ensemble des événements élémentaires: E = pile, face. La chance pour obtenir pile vaut 50 %, pour obtenir face vaut aussi 50 %. Les
NOTIONS DE PROBABILITÉS
NOTIONS DE PROBABILITÉS Sommaire 1. Expérience aléatoire... 1 2. Espace échantillonnal... 2 3. Événement... 2 4. Calcul des probabilités... 3 4.1. Ensemble fondamental... 3 4.2. Calcul de la probabilité...
FÉDÉRATION INTERNATIONALE DE PÉTANQUE ET JEU PROVENÇAL REGLEMENT DU CHAMPIONNAT DU MONDE DE TIR INDIVIDUEL
FÉDÉRATION INTERNATIONALE DE PÉTANQUE ET JEU PROVENÇAL REGLEMENT DU CHAMPIONNAT DU MONDE DE TIR INDIVIDUEL Article 1er : Pas de Tir : Il est composé d'un cercle d'un mètre de diamètre comportant les marques
Probabilités Loi binomiale Exercices corrigés
Probabilités Loi binomiale Exercices corrigés Sont abordés dans cette fiche : (cliquez sur l exercice pour un accès direct) Exercice 1 : épreuve de Bernoulli Exercice 2 : loi de Bernoulli de paramètre
Algorithmique avec Algobox
Algorithmique avec Algobox Fiche 2 Cette fiche est la suite directe de la première. 1. Instructions conditionnelles : 1.1. Reprise de la fiche 1 : Lecture d'un algorithme : ORDINATEUR INTERDIT : Après
Probabilités et Statistiques. Feuille 2 : variables aléatoires discrètes
IUT HSE Probabilités et Statistiques Feuille : variables aléatoires discrètes 1 Exercices Dénombrements Exercice 1. On souhaite ranger sur une étagère 4 livres de mathématiques (distincts), 6 livres de
Probabilités. I Petits rappels sur le vocabulaire des ensembles 2 I.1 Définitions... 2 I.2 Propriétés... 2
Probabilités Table des matières I Petits rappels sur le vocabulaire des ensembles 2 I.1 s................................................... 2 I.2 Propriétés...................................................
Probabilités. Une urne contient 3 billes vertes et 5 billes rouges toutes indiscernables au toucher.
Lycée Jean Bart PCSI Année 2013-2014 17 février 2014 Probabilités Probabilités basiques Exercice 1. Vous savez bien qu un octet est une suite de huit chiffres pris dans l ensemble {0; 1}. Par exemple 01001110
GEA II Introduction aux probabilités Poly. de révision. Lionel Darondeau
GEA II Introduction aux probabilités Poly. de révision Lionel Darondeau Table des matières Énoncés 4 Corrigés 10 TD 1. Analyse combinatoire 11 TD 2. Probabilités élémentaires 16 TD 3. Probabilités conditionnelles
Qu est-ce qu une probabilité?
Chapitre 1 Qu est-ce qu une probabilité? 1 Modéliser une expérience dont on ne peut prédire le résultat 1.1 Ensemble fondamental d une expérience aléatoire Une expérience aléatoire est une expérience dont
Couples de variables aléatoires discrètes
Couples de variables aléatoires discrètes ECE Lycée Carnot mai Dans ce dernier chapitre de probabilités de l'année, nous allons introduire l'étude de couples de variables aléatoires, c'est-à-dire l'étude
Le chiffre est le signe, le nombre est la valeur.
Extrait de cours de maths de 6e Chapitre 1 : Les nombres et les opérations I) Chiffre et nombre 1.1 La numération décimale En mathématique, un chiffre est un signe utilisé pour l'écriture des nombres.
Statistiques II. Alexandre Caboussat [email protected]. Classe : Mardi 11h15-13h00 Salle : C110. http://campus.hesge.
Statistiques II Alexandre Caboussat [email protected] Classe : Mardi 11h15-13h00 Salle : C110 http://campus.hesge.ch/caboussata 1 mars 2011 A. Caboussat, HEG STAT II, 2011 1 / 23 Exercice 1.1
PROBABILITÉS CONDITIONNELLES
PROBABILITÉS CONDITIONNELLES A.FORMONS DES COUPLES Pour la fête de l école, les élèves de CE 2 ont préparé une danse qui s exécute par couples : un garçon, une fille. La maîtresse doit faire des essais
Analyse Combinatoire
Analyse Combinatoire 1) Équipes On dispose d un groupe de cinq personnes. a) Combien d équipes de trois personnes peut-on former? b) Combien d équipes avec un chef, un sous-chef et un adjoint? c) Combien
MATHÉMATIQUES APPLIQUÉES S4 Exercices
Unité D Probabilité Exercice 1 : Chemins 1. Aline habite la maison illustrée ci-dessous. Le diagramme illustre les murs et les portes. a) Combien existe-t-il de chemins possibles entre la pièce A et la
Probabilités sur un univers fini
[http://mp.cpgedupuydelome.fr] édité le 7 août 204 Enoncés Probabilités sur un univers fini Evènements et langage ensembliste A quelle condition sur (a, b, c, d) ]0, [ 4 existe-t-il une probabilité P sur
Travaux dirigés d introduction aux Probabilités
Travaux dirigés d introduction aux Probabilités - Dénombrement - - Probabilités Élémentaires - - Variables Aléatoires Discrètes - - Variables Aléatoires Continues - 1 - Dénombrement - Exercice 1 Combien
ELASTICITE DE LA DEMANDE Calcul de l'elasticite & Applications Plan du cours I. L'elasticite de la demande & ses determinants II. Calcul de l'elasticite & pente de la courbe de demande III. Applications
Calculs de probabilités conditionelles
Calculs de probabilités conditionelles Mathématiques Générales B Université de Genève Sylvain Sardy 20 mars 2008 1. Indépendance 1 Exemple : On lance deux pièces. Soit A l évènement la première est Pile
Date : 18.11.2013 Tangram en carré page
Date : 18.11.2013 Tangram en carré page Titre : Tangram en carré Numéro de la dernière page : 14 Degrés : 1 e 4 e du Collège Durée : 90 minutes Résumé : Le jeu de Tangram (appelé en chinois les sept planches
Ripper vos DVD (extraire vos fichier du DVD pour les mettre sur votre pc)
Format Factory est un programme qui permet de réaliser beaucoup de choses sur vos vidéos (ainsi que vos fichiers audio et images), il est assez simple, totalement gratuit et le tout en français (si la
Bureau N301 (Nautile) [email protected]
Pre-MBA Statistics Seances #1 à #5 : Benjamin Leroy-Beaulieu Bureau N301 (Nautile) [email protected] Mise à niveau statistique Seance #1 : 11 octobre Dénombrement et calculs de sommes 2 QUESTIONS
Chaînes de Markov au lycée
Journées APMEP Metz Atelier P1-32 du dimanche 28 octobre 2012 Louis-Marie BONNEVAL Chaînes de Markov au lycée Andreï Markov (1856-1922) , série S Problème 1 Bonus et malus en assurance automobile Un contrat
Indépendance Probabilité conditionnelle. Chapitre 3 Événements indépendants et Probabilités conditionnelles
Chapitre 3 Événements indépendants et Probabilités conditionnelles Indépendance Indépendance Probabilité conditionnelle Definition Deux événements A et B sont dits indépendants si P(A B) = P(A).P(B) Attention
COMBINATOIRES ET PROBABILITÉS
COMBINATOIRES ET PROBABILITÉS ème année. Analyse combinatoire.. Outils.. Principe de décomposition.. Permutations.. Arrangements..5 Combinaisons 8.. Développement du binôme 9..7 Ce qu il faut absolument
ACTUARIAT 1, ACT 2121, AUTOMNE 2013 #4-5
ACTUARIAT 1, ACT 2121, AUTOMNE 2013 #4-5 ARTHUR CHARPENTIER 1 Un certain test médical révèle correctement, avec probabilité 0.85, qu une personne a le sida lorsqu elle l a vraiment et révèle incorrectement,
Vous incarnez un surdoué en informatique qui utilise son ordinateur afin de pirater des comptes bancaires un peu partout dans le monde et s en mettre
Vous incarnez un surdoué en informatique qui utilise son ordinateur afin de pirater des comptes bancaires un peu partout dans le monde et s en mettre plein les poches. Problème : vous n êtes pas seul!
Exemple On lance une pièce de monnaie trois fois de suite. Calculer la probabilité d obtenir exactement deux fois pile.
Probabilités Définition intuitive Exemple On lance un dé. Quelle est la probabilité d obtenir un multiple de 3? Comme il y a deux multiples de 3 parmi les six issues possibles, on a chances sur 6 d obtenir
Problèmes de dénombrement.
Problèmes de dénombrement. 1. On se déplace dans le tableau suivant, pour aller de la case D (départ) à la case (arrivée). Les déplacements utilisés sont exclusivement les suivants : ller d une case vers
POKER ET PROBABILITÉ
POKER ET PROBABILITÉ Le poker est un jeu de cartes où la chance intervient mais derrière la chance il y a aussi des mathématiques et plus précisément des probabilités, voici une copie d'écran d'une main
DENOMBREMENT-COMBINATOIRE-PROBABILITES GENERALES
BTS GPN ERE ANNEE-MATHEMATIQUES-DENOMBREMENT-COMBINATOIRE-EXERCICE DE SYNTHESE EXERCICE RECAPITULATIF (DE SYNTHESE) CORRIGE Le jeu au poker fermé DENOMBREMENT-COMBINATOIRE-PROBABILITES GENERALES On joue
Plus petit, plus grand, ranger et comparer
Unité 11 Plus petit, plus grand, ranger et comparer Combien y a-t-il de boules sur la tige A? Sur la tige B? A B Le nombre de boules sur la tige A est plus grand que sur la tige B. On écrit : > 2 On lit
P1 : Corrigés des exercices
P1 : Corrigés des exercices I Exercices du I I.2.a. Poker : Ω est ( l ensemble ) des parties à 5 éléments de l ensemble E des 52 cartes. Cardinal : 5 I.2.b. Bridge : Ω est ( l ensemble ) des parties à
4. Exercices et corrigés
4. Exercices et corrigés. N 28p.304 Dans une classe de 3 élèves, le club théâtre (T) compte 0 élèves et la chorale (C) 2 élèves. Dix-huit élèves ne participent à aucune de ces activités. On interroge au
Les devoirs en Première STMG
Les devoirs en Première STMG O. Lader Table des matières Devoir sur table 1 : Proportions et inclusions....................... 2 Devoir sur table 1 : Proportions et inclusions (corrigé)..................
S initier aux probabilités simples «Question de chance!»
«Question de chance!» 29-11 Niveau 1 Entraînement 1 Objectifs - S entraîner à activer la rapidité du balayage visuel. - Réactiver le comptage par addition jusqu à 20. - Développer le raisonnement relatif
RapidMiner. Data Mining. 1 Introduction. 2 Prise en main. Master Maths Finances 2010/2011. 1.1 Présentation. 1.2 Ressources
Master Maths Finances 2010/2011 Data Mining janvier 2011 RapidMiner 1 Introduction 1.1 Présentation RapidMiner est un logiciel open source et gratuit dédié au data mining. Il contient de nombreux outils
Probabilités conditionnelles Loi binomiale
Exercices 23 juillet 2014 Probabilités conditionnelles Loi binomiale Équiprobabilité et variable aléatoire Exercice 1 Une urne contient 5 boules indiscernables, 3 rouges et 2 vertes. On tire au hasard
ATTENTION AU DÉPART! GUIDE DE QUESTIONS DU MENEUR DE JEU. www.grand-cerf.com
VOCABULAIRE Les questions visent à travailler le vocabulaire matliématique, le repérage... Quelques exemples, à compléter par le meneur de jeu : - Chaque joueur te donne un passager. - Prends 1 passager
Unité 2 Leçon 2 Les permutations et les combinaisons
Unité 2 Leçon 2 Les permutations et les combinaisons Qu'apprenons nous dans cette leçon? La différence entre un arrangement ordonné (une permutation) et un arrangement nonordonné (une combinaison). La
Consigne : je remplis le tableau en tenant compte des informations de la ligne supérieure et de la colonne de gauche (droite pour les gauchers)
Découverte du monde : traiter deux informations Compétence : Savoir utiliser un tableau à double entrée. Matériel : - un plateau de jeu quadrillé : cinq lignes et cinq colonnes, - quatre pièces "couleur",
Probabilités. C. Charignon. I Cours 3
Probabilités C. Charignon Table des matières I Cours 3 1 Dénombrements 3 1.1 Cardinal.................................................. 3 1.1.1 Définition............................................. 3
TEST 17 FORCE 2. gums. chewing gums. Russie : badge. rouge. trompé.
TEST 17 éclencher lee chronomètree pour 20 minutes FORCE 2 3 Lire le texte et répondre aux questions. 1 GLOP et GLUP collectionnent les chaussettes trouées et en possènt ensemble 216. Si GLUP donnait 3
EXERCICES : DÉNOMBREMENT
Chapitre 7 ECE 1 - Grad Nouméa - 015 EXERCICES : DÉNOMBREMENT LISTES / ARRANGEMENTS Exercice 1 : Le code ativol Pour so vélo, Toto possède u ativol a code. Le code est ue successio de trois chiffres compris
LES GENERATEURS DE NOMBRES ALEATOIRES
LES GENERATEURS DE NOMBRES ALEATOIRES 1 Ce travail a deux objectifs : ====================================================================== 1. Comprendre ce que font les générateurs de nombres aléatoires
Série TD 3. Exercice 4.1. Exercice 4.2 Cet algorithme est destiné à prédire l'avenir, et il doit être infaillible! Exercice 4.3. Exercice 4.
Série TD 3 Exercice 4.1 Formulez un algorithme équivalent à l algorithme suivant : Si Tutu > Toto + 4 OU Tata = OK Alors Tutu Tutu + 1 Tutu Tutu 1 ; Exercice 4.2 Cet algorithme est destiné à prédire l'avenir,
Principes de mathématiques 12 SÉRIE DE PROBLÈMES. Septembre 2001. Student Assessment and Program Evaluation Branch
Principes de mathématiques 12 SÉRIE DE PROBLÈMES Septembre 2001 Student Assessment and Program Evaluation Branch REMERCIEMENTS Le Ministère de l Éducation tient à remercier chaleureusement les professionnels
Actuariat I ACT2121. septième séance. Arthur Charpentier. Automne 2012. [email protected]. http ://freakonometrics.blog.free.
Actuariat I ACT2121 septième séance Arthur Charpentier [email protected] http ://freakonometrics.blog.free.fr/ Automne 2012 1 Exercice 1 En analysant le temps d attente X avant un certain événement
Andrey Nikolaevich Kolmogorov
PROBABILITÉS La théorie des probabilités est née de l étude par les mathématiciens des jeux de hasard. D'ailleurs, le mot hasard provient du mot arabe «az-zahr» signifiant dé à jouer. On attribue au mathématicien
Cours de Probabilités et de Statistique
Cours de Probabilités et de Statistique Licence 1ère année 2007/2008 Nicolas Prioux Université Paris-Est Cours de Proba-Stat 2 L1.2 Science-Éco Chapitre Notions de théorie des ensembles 1 1.1 Ensembles
MATH0062-1 ELEMENTS DU CALCUL DES PROBABILITES
MATH0062-1 ELEMENTS DU CALCUL DES PROBABILITES REPETITIONS et PROJETS : INTRODUCTION F. Van Lishout (Février 2015) Pourquoi ce cours? Sciences appliquées Modélisation parfaite vs monde réel Comment réussir
Université Paris 8 Introduction aux probabilités 2014 2015 Licence Informatique Exercices Ph. Guillot. 1 Ensemble fondamental loi de probabilité
Université Paris 8 Introduction aux probabilités 2014 2015 Licence Informatique Exercices Ph. Guillot 1 Ensemble fondamental loi de probabilité Exercice 1. On dispose de deux boîtes. La première contient
Indications pour une progression au CM1 et au CM2
Indications pour une progression au CM1 et au CM2 Objectif 1 Construire et utiliser de nouveaux nombres, plus précis que les entiers naturels pour mesurer les grandeurs continues. Introduction : Découvrir
Guide d'utilisation. Centre des ressources Demande électronique de matériel publicitaire. Juin 2005
Centre des ressources Demande électronique de Compagnie d'assurance vie RBC 2005. Tous droits réservés. Table des matières INTRODUCTION... 3 ACCÈS À LA DEMANDE ÉLECTRONIQUE DE MATÉRIEL PUBLICITAIRE...
Elfenland Règles du jeu
Home > Elfenland > Règles de base Choisir un jeu Elfenland Règles du jeu Idée du jeu Dans le Pays des Elfes, les jeunes elfes doivent passer une épreuve très particulière avant de pouvoir pénétrer dans
Mode d emploi base de données AIFRIS : Commande et inscriptions
Mode d emploi base de données AIFRIS : Commande et inscriptions Vous trouverez dans les pages qui suivent la démarche à suivre pour les inscriptions en ligne au congrès de l AIFRIS. La présentation suit
Probabilités-énoncés et corrections
2012-2013 Probabilités-énoncés et corrections Exercice 1. Une entreprise décide de classer 20 personnes susceptibles d'être embauchées ; leurs CV étant très proches, le patron décide de recourir au hasard
Trier les ventes (sales order) avec Vtiger CRM
Trier les ventes (sales order) avec Vtiger CRM Dans l'activité d'une entreprise, on peut avoir besoin d'un outil pour trier les ventes, ce afin de réaliser un certain nombre de statistiques sur ces ventes,
YANN ROUDAUT - Professeur de l Ecole Française de Poker - [email protected] - 06 28 76 48 93
MODULE LES MATHEMATIQUES DU POKER Probabilités et Notions de Cotes - Partie 1 YANN ROUDAUT - Professeur de l Ecole Française de Poker - [email protected] - 06 28 76 48 93 A/ POKER ET MATHEMATIQUES
1 TD1 : rappels sur les ensembles et notion de probabilité
1 TD1 : rappels sur les ensembles et notion de probabilité 1.1 Ensembles et dénombrement Exercice 1 Soit Ω = {1, 2, 3, 4}. Décrire toutes les parties de Ω, puis vérier que card(p(ω)) = 2 4. Soit k n (
Recherche dans un tableau
Chapitre 3 Recherche dans un tableau 3.1 Introduction 3.1.1 Tranche On appelle tranche de tableau, la donnée d'un tableau t et de deux indices a et b. On note cette tranche t.(a..b). Exemple 3.1 : 3 6
REPRESENTER LA TERRE Cartographie et navigation
REPRESENTER LA TERRE Seconde Page 1 TRAVAUX DIRIGES REPRESENTER LA TERRE Cartographie et navigation Casterman TINTIN "Le trésor de Rackham Le Rouge" 1 TRIGONOMETRIE : Calcul du chemin le plus court. 1)
Jean Dubuffet AUTOPORTRAIT II - 1966
Jean Dubuffet AUTOPORTRAIT II - 1966 MON VISAGE A LA MANIERE DE JEAN DUBUFFET OBJECTIFS - utiliser son expérience sensorielle visuelle pour produire une œuvre picturale. - réaliser une œuvre s'inspirant
Plan général du cours
BTS GPN 1ERE ANNEE-MATHEMATIQUES-PROBABILITES-DENOMBREMENT,COMBINATOIRE PROBABILITES Plan général du cours 1. Dénombrement et combinatoire (permutations, arrangements, combinaisons). 2. Les probabilités
Mesure de probabilité, indépendance.
MATHEMATIQUES TD N 2 : PROBABILITES ELEMENTAIRES. R&T Saint-Malo - 2nde année - 2011/2012 Mesure de probabilité, indépendance. I. Des boules et des cartes - encore - 1. On tire simultanément 5 cartes d
FileZilla. Sauvegarder son site Guppy à l aide de. Sommaire:
FileZilla http://filezilla.sourceforge.net/ Sauvegarder son site Guppy à l aide de Sommaire: P. 2 Téléchargement et installation P. 3 Paramétrage du transfert P. 3 L'environnement de Filezilla P. Sauvegarde
Evaluation diagnostique de CM1 Circonscription de Saint Just en Chaussée Livret du maître partie Français
Evaluation diagnostique de CM1 Circonscription de Saint Just en Chaussée Livret du maître partie Français Avant de débuter, demander aux élèves de préparer le matériel suivant : crayon à papier, gomme,
P our appeler : Décrochez le combiné et composez le numéro OU Composez le numéro et décrochez le combiné
Appareil analogique Meridian Fonctions du système téléphonique Numéro d'appel Haut parleur Touche de libération Touche de garde Touche de commande de volume Indicateur ICL Voyant de message en attente
Comment utiliser les générateurs de mots clés?
Comment utiliser les générateurs de mots clés? Une seconde méthode complémentaire à la méthode de réflexion consiste à utiliser les générateurs de mots clés. (Google Adwords) https://adwords.google.fr/select/keywordtoolexternal
Arbre de probabilité(afrique) Univers - Evénement
Arbre de probabilité(afrique) Univers - Evénement Exercice 1 Donner l univers Ω de l expérience aléatoire consistant à tirer deux boules simultanément d une urne qui en contient 10 numérotés puis à lancer
Introduction au Calcul des Probabilités
Université des Sciences et Technologies de Lille U.F.R. de Mathématiques Pures et Appliquées Bât. M2, F-59655 Villeneuve d Ascq Cedex Introduction au Calcul des Probabilités Probabilités à Bac+2 et plus
Quel Sont les 7 couleurs de l arc en ciel?
Quel Sont les 7 couleurs de l arc en ciel? Rouge, orange, jaune, vert, bleu, indigo et violet Pourquoi a on défini 7 couleurs pour l arc an ciel A cause de l'analogie entre la lumière et le son, la gamme
Jeu de tirs et passes L artilleur
Livret de jeux L'artilleur La queue du scorpion Le ballon couloir La balle aux chasseurs Qui attrape? Les contrebandiers Les petits paquets La queue du diable Le tunnel ballon Le relais abattre les quilles
8 : Comme ser e Cr e r e C.V.
Page 1 de 5 À l aide des renseignements que vous avez entrés dans votre Plan, vous pouvez monter un curriculum vitae d apparence professionnelle en vous servant du Créateur de C.V. de Career Cruising.
Feuille d exercices 2 : Espaces probabilisés
Feuille d exercices 2 : Espaces probabilisés Cours de Licence 2 Année 07/08 1 Espaces de probabilité Exercice 1.1 (Une inégalité). Montrer que P (A B) min(p (A), P (B)) Exercice 1.2 (Alphabet). On a un
ELECTIONS MUNICIPALES ET COMMUNAUTAIRES DES 23 ET 30 MARS 2014. Dans les communes de moins de 1000 habitants
ELECTIONS MUNICIPALES ET COMMUNAUTAIRES DES 23 ET 30 MARS 2014 Dans les communes de moins de 1000 habitants LOI DU 17 MAI 2013 PORTANT REFORMES ELECTORALES ET SON DECRET D APPLICATION DU 18 OCTOBRE 2013
LIVRET DE RÈGLES. @AsmadiGames. facebook.com/asmadigames
LIVRET DE RÈGLES @AsmadiGames facebook.com/asmadigames VOUS JOUEZ À RED La règle pour gagner au Rouge est simple : avoir la plus haute carte! Mais jouerez-vous toujours au même jeu lorsque votre tour prendra
PROBABILITÉS ET STATISTIQUES. 1. Calculs de probabilités B) 0.1 C) 0.56 3
PROBABILITÉS ET STATISTIQUES ARTHUR CHARPENTIER 1. Calculs de probabilités 1 Un système est formé de deux composants indépendants. L'un a une probabilité p de tomber en panne et l'autre 2p. Le système
Comparer des surfaces suivant leur aire en utilisant leurs propriétés géométriques Découverte et manipulation
Socle commun - palier 2 : Compétence 3 : les principaux éléments de mathématiques Grandeurs et mesures Compétences : Comparer des surfaces selon leurs aires (par pavage) Mesurer l aire d une surface par
315 et 495 sont dans la table de 5. 5 est un diviseur commun. Leur PGCD n est pas 1. Il ne sont pas premiers entre eux
Exercice 1 : (3 points) Un sac contient 10 boules rouges, 6 boules noires et 4 boules jaunes. Chacune des boules a la même probabilité d'être tirée. On tire une boule au hasard. 1. Calculer la probabilité
Service juridique CSFV
Service juridique LE CALENDRIER DES OPERATIONS ELECTORALES Les délais mentionnés dans cet exemple le sont à titre purement indicatif, dans le respect des minima et maxima imposés par le code du travail.
Informations générales
Net sur 2 Téléprospection Informations générales mairie-annuaire.fr Net sur 2 w w w. n e t s u r 2. c o m / t e l e p r o s p e c t i o n. p h p Fonctionnement du service La plateforme Net sur 2 Téléprospection
chapitre 4 Nombres de Catalan
chapitre 4 Nombres de Catalan I Dénitions Dénition 1 La suite de Catalan (C n ) n est la suite dénie par C 0 = 1 et, pour tout n N, C n+1 = C k C n k. Exemple 2 On trouve rapidement C 0 = 1, C 1 = 1, C
Terminal Infocomm et Poste Infocomm
Terminal Infocomm et Poste Infocomm Introduction Ces deux programmes permettent la communication entre le serveur et les autres postes InformaStock du réseau d un commerce. Généralement, le serveur exécutera
L E Ç O N. Marches aléatoires. Niveau : Terminale S Prérequis : aucun
9 L E Ç O N Marches aléatoires Niveau : Terminale S Prérequis : aucun 1 Chaînes de Markov Définition 9.1 Chaîne de Markov I Une chaîne de Markov est une suite de variables aléatoires (X n, n N) qui permet
La vie des étoiles. La vie des étoiles. Mardi 7 août
La vie des étoiles La vie des étoiles Mardi 7 août A l échelle d une ou plusieurs vies humaines, les étoiles, que l on retrouve toujours à la même place dans le ciel, au fil des saisons ; nous paraissent
Trajet d'une recette payée par un tiers (2)
Trajet d'une recette payée par un tiers (2) niveau : confirmé Nous avons vu dans l'article précédent la saisie d'une recette en mode "tierspayant" dans le dossier-patient. Il est déjà possible d'aller
BADPLUS V5 MANUEL D'UTILISATION. Imports de données joueurs à partir de la base fédérale en ligne Poona. Stéphan KIEFFER - Dominique BOSSERT
BADPLUS V5 Imports de données joueurs à partir de la base fédérale en ligne Poona MANUEL D'UTILISATION Stéphan KIEFFER - Dominique BOSSERT Sommaire Pages RECHERCHE DE JOUEURS...- 3-1. RECHERCHE A PARTIR
