TD1: Statistiques descriptives
|
|
|
- Franck Lessard
- il y a 9 ans
- Total affichages :
Transcription
1 TD1: Statistiques descriptives Probabilités et Statistiques pour l Ingénieur M1 Info Etienne Birmelé, Vittorio Perduca Description statistique d un jeu de données Question 1. Charger le jeu de données CO2 à l aide de la commande data(co2). Montrer les premières observations à l aide de head(co2). Lire la description des données présente dans help(co2). Question 2. Décrire la variable uptake pour les plantes du Québec, indépendamment du traitement subi : moyenne, variance ; médiane, quartiles, valeurs extrêmes. Indication : utiliser les fonctions mean,var,median,quantile. Quelle conclusion tirer concernant la symétrie de cette variable? Question 3. Reprendre la question précédente à l aide de summary et tracer la boîte à moustache à l aide de boxplot. Question 4. Tracer sur un même graphique les boîtes à moustaches : du Québec et du Mississipi ; des plantes ayant subi le gel ou non ; des quatre possibilités issues du croisements des informations précedentes. Quelle conclusion en tirer sur la résistance au gel des plantes? Question 5. On se pose la question de la corrélation entre concentration en CO2 de l air ambiant et absorption par la plante. Calculer le coefficient de corrélation de ces deux variables sur l ensemble du jeu de données à l aide de la fonction cor. Commenter. Tracer le nuage de points de l absorption en fonction de la concentration ambiante à l aide de plot. Qu observe-t-on? Séparer l échantillon en deux parties suivant l observation précédente et calculer les nouveaux coefficients de corrélation associés. Interpréter. 2 Corrélation n est pas causalité Il existe de nombreuses situations où, malgré un coefficient de corrélation élevé entre 2 variables quantitatives, on ne peut pas établir de relation de cause à effet entre elles. L exemple suivant 1
2 Années Nombre de licenses en France Production de bière en Belgique (en milliers) (en million d hectolitres) illustre ces propos 1. On a relevé la production de bière alsacienne et le nombre de licences sportives des fédérations françaises entre 1960 et Question 6. Calculer la corrélation entre les variables Licences et Bières. Peut-on en déduire que la pratique du sport conduit à boire de la bière? Et que boire de la bière conduit à faire du sport? 3 Que peut-on conclure des statistiques descriptives? On cherche à comparer les survies de rats en fonction de leur alimentation. Pour cela, on considére quatre modes d alimentation M0 (normal), M1, M2 et M3, et on suppose qu on connaît les taux de mortalité à deux ans suivant le mode d alimentation : les rats en mode M0 ou M1 meurent avec une probabilité de 30%, les rats en mode M2 avec probabilité 35% et ceux en mode M3 avec probabilité 45%. Question 7. Générer des échantillons de taille 10 suivant chacun des modes. Pour cela, pour chaque mode, on tirera 10 observations suivant une loi de Bernoulli de paramètre égale au taux de mortalité à l aide de la fonction rbinom avec paramètre size=1. Question 8. Comparer les résultats, en incluant la variance des échantillons dans les critères de comparaison. Que peut-on conclure? Recommencez l opération plusieurs fois. Question 9. Reprendre l expérience avec des échantillons de taille 50. Question 10. Reprendre l expérience avec des échantillons de taille Cet exercice est tiré du livre Statistique Vraiment appliquée au sport. Cours et Exercices., S. Champely (2003). 2
3 Correction Correction (Q1). Chargement et exploration initiale des données : > data(co2) > head(co2) Plant Type Treatment conc uptake 1 Qn1 Quebec nonchilled Qn1 Quebec nonchilled Qn1 Quebec nonchilled Qn1 Quebec nonchilled Qn1 Quebec nonchilled Qn1 Quebec nonchilled Description des variables : > help(co2) Correction (Q2). Deux façon d accèder à uptake : CO2$Uptake ou > attach(co2) > uptake Statistiques de tendance et dispersion de la variable uptake pour les plantes du Québec : > mean(uptake[type == 'Quebec']) [1] > var(uptake[type == 'Quebec']) [1] > median(uptake[type == 'Quebec']) [1] > uptake_queb <- uptake[type == 'Quebec'] > q <- quantile(uptake_queb); q 0% 25% 50% 75% 100% Premier et troisième quartiles, écart interquartile : > q1 <-q[2]; q1 25% > q3 <- q[4]; q3 3
4 75% > as.numeric(q3-q1) [1] Pas de points extrêmes supérieurs, quatre points extrêmes inférieurs : > uptake_queb[uptake_queb > q *(q3-q1)] numeric(0) > uptake_queb[uptake_queb < q1-1.5*(q3-q1)] [1] > min(uptake_queb) [1] 9.3 > max(uptake_queb) [1] 45.5 On peut conclure que la distribution de uptake pour les plantes du Québec n est pas très symétrique, avec quatre valeurs etrêmes inférieurs. Correction (Q3). summary() donne les quartiles, le min et le max : > summary(uptake_queb) Min. 1st Qu. Median Mean 3rd Qu. Max Boxplot : > boxplot(uptake_queb,main='upatke distribution, Quebec plants') 4
5 upatke distribution, Quebec plants Correction (Q4). Distributions au Québec et Mississippi : > boxplot(uptake~type, main='uptake distributions by type') 5
6 uptake distributions by type Quebec Mississippi Distributions selon traitement : > boxplot(uptake~treatment, main='uptake distributions by treatment') 6
7 uptake distributions by treatment nonchilled chilled Distributions pour les quatre combinaisons : > boxplot(uptake~treatment+type, main='uptake distributions by treatment') 7
8 uptake distributions by treatment nonchilled.quebec nonchilled.mississippi Il semble que les plantes du Québec absorbent plus CO2 que les plantes du Mississippi. Dans chaque catégorie, les plantes qui n ont pas été gelées ont une meilleur absorption de CO2. Cependant on ne peut pas tirer de véritables conclusions sans faire de tests. Correction (Q5). Faible corrélation linéaire, nuage de points n est pas homogènes (présence de sous-groupes?) : > cor(conc,uptake) [1] > plot(conc,uptake) > plot(conc,uptake,col=type) Forte corrélation linéaire pour les plantes du Québec : > cor(conc[type=='quebec'],uptake[type=='quebec']) [1]
9 > cor(conc[type=='mississippi'],uptake[type=='mississippi']) [1] Correction (Q6). On remarque une très forte corrélation. Bien evidemment, il ne paraît pas raisonnable de croire que ces deux variables soient en lien de causalité. > l<-c(1640,2220,3240,4620,6300,8340,8980,9210) > b<-c(3.3,4.1,5.6,8.0,9.6,10.2,11.3,11.2) > plot(l,b,xlab='nb licenses',ylab='production bière') > cor(l,b) [1] Correction (Q7 et suivantes). Simulations des données : > m0 <- rbinom(n=10,size=1,prob=0.3); m0 #size=1 si on veut simuler des Bernoulli [1] > m1 <- rbinom(10,1,0.3); m1 [1] > m2 <- rbinom(10,1,0.35); m2 [1] > m3 <- rbinom(10,1,0.45); m3 [1] Moyennes et variances : > mean(m0); var(m0) [1] 0.5 [1] > mean(m1); var(m1) [1] 0.3 [1] > mean(m2); var(m2) [1] 0.5 9
10 [1] > mean(m3); var(m3) [1] 0.5 [1] Les moyennes empiriques calculées à partir des échantillons ne sont pas les moyennes théoriques utilisées pour générer les données! Si on répète l expérience, on obtient chaque fois des résultats différents. Par exemple pour M2, on répète 5 fois l expérience et on stocke les résultats : > res=data.frame(moyenne = rep(na,5), variance = rep(na,5)) > for(i in 1:5){ + m2 <- rbinom(10,1,0.35) + res$moyenne[i] <- mean(m2) + res$variance[i] <- var(m2) + } Les échantillons considérés (taille = 10) sont trop petits. Si on prends taille=200, les moyennes et variances observées sont proches des valeurs théoriques : > m0 <- rbinom(200,1,0.3); mean(m0); var(m0) #size=1 si on veut simuler des Bernoulli [1] 0.3 [1] > m1 <- rbinom(200,1,0.3); mean(m1); var(m1) [1] [1] > m2 <- rbinom(200,1,0.35); mean(m2); var(m2) [1] 0.37 [1] > m3 <- rbinom(200,1,0.45); mean(m3); var(m3) [1] [1] Leçon à retenir : il ne faut pas tirer des conclusions définitives à partir des statistiques descriptives car celles-ci sont sont très sensibles à la taille de l échantillon (plus la taille est petite, plus les statistiques descriptives sont variables). 10
Annexe commune aux séries ES, L et S : boîtes et quantiles
Annexe commune aux séries ES, L et S : boîtes et quantiles Quantiles En statistique, pour toute série numérique de données à valeurs dans un intervalle I, on définit la fonction quantile Q, de [,1] dans
Statistique : Résumé de cours et méthodes
Statistique : Résumé de cours et méthodes 1 Vocabulaire : Population : c est l ensemble étudié. Individu : c est un élément de la population. Effectif total : c est le nombre total d individus. Caractère
Lire ; Compter ; Tester... avec R
Lire ; Compter ; Tester... avec R Préparation des données / Analyse univariée / Analyse bivariée Christophe Genolini 2 Table des matières 1 Rappels théoriques 5 1.1 Vocabulaire....................................
t 100. = 8 ; le pourcentage de réduction est : 8 % 1 t Le pourcentage d'évolution (appelé aussi taux d'évolution) est le nombre :
Terminale STSS 2 012 2 013 Pourcentages Synthèse 1) Définition : Calculer t % d'un nombre, c'est multiplier ce nombre par t 100. 2) Exemples de calcul : a) Calcul d un pourcentage : Un article coûtant
Logiciel XLSTAT version 7.0. 40 rue Damrémont 75018 PARIS
Logiciel XLSTAT version 7.0 Contact : Addinsoft 40 rue Damrémont 75018 PARIS 2005-2006 Plan Présentation générale du logiciel Statistiques descriptives Histogramme Discrétisation Tableau de contingence
Introduction aux Statistiques et à l utilisation du logiciel R
Introduction aux Statistiques et à l utilisation du logiciel R Christophe Lalanne Christophe Pallier 1 Introduction 2 Comparaisons de deux moyennes 2.1 Objet de l étude On a mesuré le temps de sommeil
Statistiques à une variable
Statistiques à une variable Calcul des paramètres statistiques TI-82stats.fr? Déterminer les paramètres de la série statistique : Valeurs 0 2 3 5 8 Effectifs 16 12 28 32 21? Accès au mode statistique Touche
Représentation d une distribution
5 Représentation d une distribution VARIABLE DISCRÈTE : FRÉQUENCES RELATIVES DES CLASSES Si dans un graphique représentant une distribution, on place en ordonnées le rapport des effectifs n i de chaque
BACCALAURÉAT PROFESSIONNEL SUJET
SESSION 203 Métropole - Réunion - Mayotte BACCALAURÉAT PROFESSIONNEL ÉPREUVE E4 CULTURE SCIENTIFIQUE ET TECHNOLOGIQUE : MATHÉMATIQUES Toutes options Durée : 2 heures Matériel(s) et document(s) autorisé(s)
AC AB. A B C x 1. x + 1. d où. Avec un calcul vu au lycée, on démontre que cette solution admet deux solutions dont une seule nous intéresse : x =
LE NOMBRE D OR Présentation et calcul du nombre d or Euclide avait trouvé un moyen de partager en deu un segment selon en «etrême et moyenne raison» Soit un segment [AB]. Le partage d Euclide consiste
4 Statistiques. Les notions abordées dans ce chapitre CHAPITRE
CHAPITRE Statistiques Population (en milliers) 63 6 6 6 Évolution de la population en France 9 998 999 3 Année Le graphique ci-contre indique l évolution de la population française de 998 à. On constate
Séries Statistiques Simples
1. Collecte et Représentation de l Information 1.1 Définitions 1.2 Tableaux statistiques 1.3 Graphiques 2. Séries statistiques simples 2.1 Moyenne arithmétique 2.2 Mode & Classe modale 2.3 Effectifs &
Leçon N 4 : Statistiques à deux variables
Leçon N 4 : Statistiques à deux variables En premier lieu, il te faut relire les cours de première sur les statistiques à une variable, il y a tout un langage à se remémorer : étude d un échantillon d
Soit la fonction affine qui, pour représentant le nombre de mois écoulés, renvoie la somme économisée.
ANALYSE 5 points Exercice 1 : Léonie souhaite acheter un lecteur MP3. Le prix affiché (49 ) dépasse largement la somme dont elle dispose. Elle décide donc d économiser régulièrement. Elle a relevé qu elle
1 Importer et modifier des données avec R Commander
Université de Nantes 2015/2016 UFR des Sciences et Techniques Département de Mathématiques TP1 STATISTIQUE DESCRIPTIVE Frédéric Lavancier Avant propos Ouvrir l application R Saisir dans la console library(rcmdr)
Statistiques avec la graph 35+
Statistiques avec la graph 35+ Enoncé : Dans une entreprise, on a dénombré 59 femmes et 130 hommes fumeurs. L entreprise souhaite proposer à ses employés plusieurs méthodes pour diminuer, voire arrêter,
Exercices M1 SES 2014-2015 Ana Fermin (http:// fermin.perso.math.cnrs.fr/ ) 14 Avril 2015
Exercices M1 SES 214-215 Ana Fermin (http:// fermin.perso.math.cnrs.fr/ ) 14 Avril 215 Les exemples numériques présentés dans ce document d exercices ont été traités sur le logiciel R, téléchargeable par
Estimation et tests statistiques, TD 5. Solutions
ISTIL, Tronc commun de première année Introduction aux méthodes probabilistes et statistiques, 2008 2009 Estimation et tests statistiques, TD 5. Solutions Exercice 1 Dans un centre avicole, des études
3. Caractéristiques et fonctions d une v.a.
3. Caractéristiques et fonctions d une v.a. MTH2302D S. Le Digabel, École Polytechnique de Montréal H2015 (v2) MTH2302D: fonctions d une v.a. 1/32 Plan 1. Caractéristiques d une distribution 2. Fonctions
FORMATION CONTINUE SUR L UTILISATION D EXCEL DANS L ENSEIGNEMENT Expérience de l E.N.S de Tétouan (Maroc)
87 FORMATION CONTINUE SUR L UTILISATION D EXCEL DANS L ENSEIGNEMENT Expérience de l E.N.S de Tétouan (Maroc) Dans le cadre de la réforme pédagogique et de l intérêt que porte le Ministère de l Éducation
Utilisation du Logiciel de statistique SPSS 8.0
Utilisation du Logiciel de statistique SPSS 8.0 1 Introduction Etude épidémiologique transversale en population générale dans 4 pays d Afrique pour comprendre les différences de prévalence du VIH. 2000
TABLE DES MATIÈRES. Bruxelles, De Boeck, 2011, 736 p.
STATISTIQUE THÉORIQUE ET APPLIQUÉE Tome 2 Inférence statistique à une et à deux dimensions Pierre Dagnelie TABLE DES MATIÈRES Bruxelles, De Boeck, 2011, 736 p. ISBN 978-2-8041-6336-5 De Boeck Services,
Statistiques 0,14 0,11
Statistiques Rappels de vocabulaire : "Je suis pêcheur et je désire avoir des informations sur la taille des truites d'une rivière. Je décide de mesurer les truites obtenues au cours des trois dernières
Chapitre 3. Les distributions à deux variables
Chapitre 3. Les distributions à deux variables Jean-François Coeurjolly http://www-ljk.imag.fr/membres/jean-francois.coeurjolly/ Laboratoire Jean Kuntzmann (LJK), Grenoble University 1 Distributions conditionnelles
Exercices Alternatifs. Une fonction continue mais dérivable nulle part
Eercices Alternatifs Une fonction continue mais dérivable nulle part c 22 Frédéric Le Rou (copleft LDL : Licence pour Documents Libres). Sources et figures: applications-continues-non-derivables/. Version
Exercices Alternatifs. Une fonction continue mais dérivable nulle part
Eercices Alternatifs Une fonction continue mais dérivable nulle part c 22 Frédéric Le Rou (copyleft LDL : Licence pour Documents Libres). Sources et figures: applications-continues-non-derivables/. Version
Christophe CANDILLIER Cours de DataMining mars 2004 Page 1
Christophe CANDILLIER Cours de DataMining mars 2004 age 1 1. Introduction 2. rocessus du DataMining 3. Analyse des données en DataMining 4. Analyse en Ligne OLA 5. Logiciels 6. Bibliographie Christophe
Aide-mémoire de statistique appliquée à la biologie
Maxime HERVÉ Aide-mémoire de statistique appliquée à la biologie Construire son étude et analyser les résultats à l aide du logiciel R Version 5(2) (2014) AVANT-PROPOS Les phénomènes biologiques ont cela
TABLE DES MATIÈRES. PRINCIPES D EXPÉRIMENTATION Planification des expériences et analyse de leurs résultats. Pierre Dagnelie
PRINCIPES D EXPÉRIMENTATION Planification des expériences et analyse de leurs résultats Pierre Dagnelie TABLE DES MATIÈRES 2012 Presses agronomiques de Gembloux [email protected] www.pressesagro.be
10 leçon 2. Leçon n 2 : Contact entre deux solides. Frottement de glissement. Exemples. (PC ou 1 er CU)
0 leçon 2 Leçon n 2 : Contact entre deu solides Frottement de glissement Eemples (PC ou er CU) Introduction Contact entre deu solides Liaisons de contact 2 Contact ponctuel 2 Frottement de glissement 2
La médiatrice d un segment
EXTRT DE CURS DE THS DE 4E 1 La médiatrice d un segment, la bissectrice d un angle La médiatrice d un segment Définition : La médiatrice d un segment est l ae de smétrie de ce segment ; c'est-à-dire que
Statistique Descriptive Élémentaire
Publications de l Institut de Mathématiques de Toulouse Statistique Descriptive Élémentaire (version de mai 2010) Alain Baccini Institut de Mathématiques de Toulouse UMR CNRS 5219 Université Paul Sabatier
Statistiques Appliquées à l Expérimentation en Sciences Humaines. Christophe Lalanne, Sébastien Georges, Christophe Pallier
Statistiques Appliquées à l Expérimentation en Sciences Humaines Christophe Lalanne, Sébastien Georges, Christophe Pallier Table des matières 1 Méthodologie expérimentale et recueil des données 6 1.1 Introduction.......................................
Étude comparative sur les salaires et les échelles salariales des professeurs d université. Version finale. Présentée au
Étude comparative sur les salaires et les échelles salariales des professeurs d université Version finale Présentée au Syndicat général des professeurs et professeures de l Université de Montréal (SGPUM)
TP1 Méthodes de Monte Carlo et techniques de réduction de variance, application au pricing d options
Université de Lorraine Modélisation Stochastique Master 2 IMOI 2014-2015 TP1 Méthodes de Monte Carlo et techniques de réduction de variance, application au pricing d options 1 Les options Le but de ce
ESIEA PARIS 2011-2012
ESIEA PARIS 2011-2012 Examen MAT 5201 DATA MINING Mardi 08 Novembre 2011 Première Partie : 15 minutes (7 points) Enseignant responsable : Frédéric Bertrand Remarque importante : les questions de ce questionnaire
Statistiques Descriptives à une dimension
I. Introduction et Définitions 1. Introduction La statistique est une science qui a pour objectif de recueillir et de traiter les informations, souvent en très grand nombre. Elle regroupe l ensemble des
CHAPITRE V SYSTEMES DIFFERENTIELS LINEAIRES A COEFFICIENTS CONSTANTS DU PREMIER ORDRE. EQUATIONS DIFFERENTIELLES.
CHAPITRE V SYSTEMES DIFFERENTIELS LINEAIRES A COEFFICIENTS CONSTANTS DU PREMIER ORDRE EQUATIONS DIFFERENTIELLES Le but de ce chapitre est la résolution des deux types de systèmes différentiels linéaires
Statistiques descriptives
Statistiques descriptives L3 Maths-Eco Université de Nantes Frédéric Lavancier F. Lavancier (Univ. Nantes) Statistiques descriptives 1 1 Vocabulaire de base F. Lavancier (Univ. Nantes) Statistiques descriptives
à moyen Risque moyen Risq à élevé Risque élevé Risq e Risque faible à moyen Risq Risque moyen à élevé Risq
e élevé Risque faible Risq à moyen Risque moyen Risq à élevé Risque élevé Risq e Risque faible à moyen Risq Risque moyen à élevé Risq L e s I n d i c e s F u n d a t a é Risque Les Indices de faible risque
TD 11. Les trois montages fondamentaux E.C, B.C, C.C ; comparaisons et propriétés. Association d étages. *** :exercice traité en classe.
TD 11 Les trois montages fondamentaux.,.,. ; comparaisons et propriétés. Association d étages. *** :exercice traité en classe ***exercice 11.1 On considère le montage ci-dessous : V = 10 V R 1 R s v e
NOTE SUR LA MODELISATION DU RISQUE D INFLATION
NOTE SUR LA MODELISATION DU RISQUE D INFLATION 1/ RESUME DE L ANALYSE Cette étude a pour objectif de modéliser l écart entre deux indices d inflation afin d appréhender le risque à très long terme qui
Microsoft Excel : tables de données
UNIVERSITE DE LA SORBONNE NOUVELLE - PARIS 3 Année universitaire 2000-2001 2ème SESSION SLMD2 Informatique Les explications sur la réalisation des exercices seront fournies sous forme de fichiers informatiques.
La rémunération des concepteurs. en théâtre au Québec. de 2004 à 2006
La rémunération des concepteurs en théâtre au Québec de 2004 à 2006 Conseil québécois du théâtre - novembre 2007 Dans le cadre des travaux préparatoires des SECONDS ÉTATS GÉNÉRAUX DU THÉÂTRE PROFESSIONNEL
Evaluation de la variabilité d'un système de mesure
Evaluation de la variabilité d'un système de mesure Exemple 1: Diamètres des injecteurs de carburant Problème Un fabricant d'injecteurs de carburant installe un nouveau système de mesure numérique. Les
IBM SPSS Statistics Base 20
IBM SPSS Statistics Base 20 Remarque : Avant d utiliser ces informations et le produit qu elles concernent, lisez les informations générales sous Remarques sur p. 316. Cette version s applique à IBM SPSS
Classe de première L
Classe de première L Orientations générales Pour bon nombre d élèves qui s orientent en série L, la classe de première sera une fin d étude en mathématiques au lycée. On a donc voulu ici assurer à tous
Comparer l intérêt simple et l intérêt composé
Comparer l intérêt simple et l intérêt composé Niveau 11 Dans la présente leçon, les élèves compareront divers instruments d épargne et de placement en calculant l intérêt simple et l intérêt composé.
Analyse et interprétation des données
8 Analyse et interprétation des données Les données de l enquête peuvent être utilisées pour différents types d analyses aussi bien au niveau national qu au niveau international. Ce chapitre explique comment
Test de terrain ou test de laboratoire pour la performance en endurance?
Test de terrain ou test de laboratoire pour la performance en endurance? Ajaccio 12 mai 2012 F. Carré Université Rennes 1 Hopital Pontchaillou Inserm UMR 1099 Les «tests» chez le sportif Exploration performance
Licence Sciences, Technologie et Santé Présentation de l interface IPWEB (Inscriptions pédagogiques en ligne)
Licence Sciences, Technologie et Santé Présentation de l interface IPWEB (Inscriptions pédagogiques en ligne) mercredi 2 septembre 2015 Pourquoi s inscrire pédagogiquement? 1- Certaines seulement de vos
Théorie des sondages : cours 5
Théorie des sondages : cours 5 Camelia Goga IMB, Université de Bourgogne e-mail : [email protected] Master Besançon-2010 Chapitre 5 : Techniques de redressement 1. poststratification 2. l estimateur
DETERMINATION DE L INCERTITUDE DE MESURE POUR LES ANALYSES CHIMIQUES QUANTITATIVES
Agence fédérale pour la Sécurité de la Chaîne alimentaire Administration des Laboratoires Procédure DETERMINATION DE L INCERTITUDE DE MESURE POUR LES ANALYSES CHIMIQUES QUANTITATIVES Date de mise en application
Définitions. Numéro à préciser. (Durée : )
Numéro à préciser (Durée : ) On étudie dans ce problème l ordre lexicographique pour les mots sur un alphabet fini et plusieurs constructions des cycles de De Bruijn. Les trois parties sont largement indépendantes.
Biostatistiques : Petits effectifs
Biostatistiques : Petits effectifs Master Recherche Biologie et Santé P. Devos DRCI CHRU de Lille EA2694 [email protected] Plan Données Générales : Définition des statistiques Principe de l
Séquence 4. Statistiques. Sommaire. Pré-requis Médiane, quartiles, diagramme en boîte Moyenne, écart-type Synthèse Exercices d approfondissement
Séquence 4 Statistiques Sommaire Pré-requis Médiane, quartiles, diagramme en boîte Moyenne, écart-type Synthèse Exercices d approfondissement 1 Introduction «Etude méthodique des faits sociaux par des
Licence Economie-Gestion, 1ère Année Polycopié de Statistique Descriptive. Année universitaire : 2014-2015.
Licence Economie-Gestion, 1ère Année Polycopié de Statistique Descriptive. Année universitaire : 2014-2015. Thèmes des séances de TD Thème n.1: Tableaux statistiques et représentations graphiques. Thème
Fluctuation d une fréquence selon les échantillons - Probabilités
Fluctuation d une fréquence selon les échantillons - Probabilités C H A P I T R E 3 JE DOIS SAVOIR Calculer une fréquence JE VAIS ÊTRE C APABLE DE Expérimenter la prise d échantillons aléatoires de taille
Introduction au datamining
Introduction au datamining Patrick Naïm janvier 2005 Définition Définition Historique Mot utilisé au départ par les statisticiens Le mot indiquait une utilisation intensive des données conduisant à des
Oscillations libres des systèmes à deux degrés de liberté
Chapitre 4 Oscillations libres des systèmes à deux degrés de liberté 4.1 Introduction Les systèmes qui nécessitent deux coordonnées indépendantes pour spécifier leurs positions sont appelés systèmes à
Cours 9 : Plans à plusieurs facteurs
Cours 9 : Plans à plusieurs facteurs Table des matières Section 1. Diviser pour regner, rassembler pour saisir... 3 Section 2. Définitions et notations... 3 2.1. Définitions... 3 2.2. Notations... 4 Section
FORMULAIRE DE STATISTIQUES
FORMULAIRE DE STATISTIQUES I. STATISTIQUES DESCRIPTIVES Moyenne arithmétique Remarque: population: m xμ; échantillon: Mx 1 Somme des carrés des écarts "# FR MOYENNE(série) MOYENNE(série) NL GEMIDDELDE(série)
Un exemple de régression logistique sous
Fiche TD avec le logiciel : tdr341 Un exemple de régression logistique sous A.B. Dufour & A. Viallefont Etude de l apparition ou non d une maladie cardiaque des coronaires 1 Présentation des données Les
Modélisation et étude d un système de trading directionnel diversifié sur 28 marchés à terme
Modélisation et étude d un système de trading directionnel diversifié sur 28 marchés à terme Trading system : Trend following Breakout Janvier 1996 - Janvier 2009 Etude de la performance du système Le
Exercices du Cours de la programmation linéaire donné par le Dr. Ali DERBALA
75. Un plombier connaît la disposition de trois tuyaux sous des dalles ( voir figure ci dessous ) et il lui suffit de découvrir une partie de chacun d eux pour pouvoir y poser les robinets. Il cherche
ACP Voitures 1- Méthode
acp=princomp(voit,cor=t) ACP Voitures 1- Méthode Call: princomp(x = voit, cor = T) Standard deviations: Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 2.1577815 0.9566721 0.4903373 0.3204833 0.2542759 0.1447788
Examen de Logiciels Statistiques
G. Hunault Angers, mai 2011 Licence MEF Examen de Logiciels Statistiques On s intéresse ici au dossier EAEF01 qui contient un extrait des données du recensement américain. On trouvera ces données et leur
N 1 2 1 L a R e v u e F r a n c o p h o n e d u M a n a g e m e n t d e P r o j e t 2 è m e t r i m e s t r e 2 0 1 3
Du côté de la Recherche > Managemen t de projet : p1 L intégration des systèmes de management Qualité -Sécurité- Environnement : résultats d une étude empirique au Maroc Le co ntex te d es p roj et s a
Température corporelle d un castor (une petite introduction aux séries temporelles)
Température corporelle d un castor (une petite introduction aux séries temporelles) GMMA 106 GMMA 106 2014 2015 1 / 32 Cas d étude Temperature (C) 37.0 37.5 38.0 0 20 40 60 80 100 Figure 1: Temperature
données en connaissance et en actions?
1 Partie 2 : Présentation de la plateforme SPSS Modeler : Comment transformer vos données en connaissance et en actions? SPSS Modeler : l atelier de data mining Large gamme de techniques d analyse (algorithmes)
L ANALYSE EN COMPOSANTES PRINCIPALES (A.C.P.) Pierre-Louis GONZALEZ
L ANALYSE EN COMPOSANTES PRINCIPALES (A.C.P.) Pierre-Louis GONZALEZ INTRODUCTION Données : n individus observés sur p variables quantitatives. L A.C.P. permet d eplorer les liaisons entre variables et
Armand HATCHUEL Mines ParisTech Chaire de théorie et méthodes de la Conception innovante. Les défis contemporains
Créativité et innovation : apports de la théorie C- Armand HATCHUEL Mines ParisTech Chaire de théorie et méthodes de la Conception innovante 5th Ideas day Minatec 1 Les défis contemporains ITRS (International
Rappels sur les suites - Algorithme
DERNIÈRE IMPRESSION LE 14 septembre 2015 à 12:36 Rappels sur les suites - Algorithme Table des matières 1 Suite : généralités 2 1.1 Déition................................. 2 1.2 Exemples de suites............................
Chapitre 6. Fonction réelle d une variable réelle
Chapitre 6 Fonction réelle d une variable réelle 6. Généralités et plan d étude Une application de I dans R est une correspondance entre les éléments de I et ceu de R telle que tout élément de I admette
Cycle de formation certifiante Sphinx
Cycle de formation certifiante Sphinx 28, 29, 30 Mai 2015 Initiation, Approfondissement et Maîtrise Etudes qualitatives / quantitatives Initiation, approfondissement et maîtrise des études qualitatives
Logistique, Transports
Baccalauréat Professionnel Logistique, Transports 1. France, juin 2006 1 2. Transport, France, juin 2005 2 3. Transport, France, juin 2004 4 4. Transport eploitation, France, juin 2003 6 5. Transport,
Chapitre 3 : Principe des tests statistiques d hypothèse. José LABARERE
UE4 : Biostatistiques Chapitre 3 : Principe des tests statistiques d hypothèse José LABARERE Année universitaire 2010/2011 Université Joseph Fourier de Grenoble - Tous droits réservés. Plan I. Introduction
Lecture critique d article. Bio statistiques. Dr MARC CUGGIA MCU-PH Laboratoire d informatique médicale EA-3888
Lecture critique d article Rappels Bio statistiques Dr MARC CUGGIA MCU-PH Laboratoire d informatique médicale EA-3888 Plan du cours Rappels fondamentaux Statistiques descriptives Notions de tests statistiques
TD1 Signaux, énergie et puissance, signaux aléatoires
TD1 Signaux, énergie et puissance, signaux aléatoires I ) Ecrire l'expression analytique des signaux représentés sur les figures suivantes à l'aide de signaux particuliers. Dans le cas du signal y(t) trouver
TD d économétrie appliquée : Introduction à STATA
Ecole normale supérieure (ENS) Département d économie TD d économétrie appliquée : Introduction à STATA Marianne Tenand [email protected] OBJECTIFS DU TD Découvrir le logiciel d économétrie STATA,
L'évaluation par les pairs dans un MOOC. Quelle fiabilité et quelle légitimité? Rémi Bachelet Ecole Centrale de Lille 24 novembre 2014, Université
L'évaluation par les pairs dans un MOOC. Quelle fiabilité et quelle légitimité? Rémi Bachelet Ecole Centrale de Lille 24 novembre 2014, Université Paris-Est séminaire annuel IDEA Les diapos seront tweetées
La classification automatique de données quantitatives
La classification automatique de données quantitatives 1 Introduction Parmi les méthodes de statistique exploratoire multidimensionnelle, dont l objectif est d extraire d une masse de données des informations
Résumé du Cours de Statistique Descriptive. Yves Tillé
Résumé du Cours de Statistique Descriptive Yves Tillé 15 décembre 2010 2 Objectif et moyens Objectifs du cours Apprendre les principales techniques de statistique descriptive univariée et bivariée. Être
Intégration et probabilités TD1 Espaces mesurés Corrigé
Intégration et probabilités TD1 Espaces mesurés Corrigé 2012-2013 1 Petites questions 1 Est-ce que l ensemble des ouverts de R est une tribu? Réponse : Non, car le complémentaire de ], 0[ n est pas ouvert.
2010 Minitab, Inc. Tous droits réservés. Version 16.1.0 Minitab, le logo Minitab, Quality Companion by Minitab et Quality Trainer by Minitab sont des
2010 Minitab, Inc. Tous droits réservés. Version 16.1.0 Minitab, le logo Minitab, Quality Companion by Minitab et Quality Trainer by Minitab sont des marques déposées de Minitab, Inc. aux Etats-Unis et
Terminale STMG Lycée Jean Vilar 2014/2015. Terminale STMG. O. Lader
Terminale STMG O. Lader Table des matières Interrogation 1 : Indice et taux d évolution........................... 2 Devoir maison 1 : Taux d évolution................................ 4 Devoir maison 1
SINE QUA NON. Découverte et Prise en main du logiciel Utilisation de bases
SINE QUA NON Découverte et Prise en main du logiciel Utilisation de bases Sine qua non est un logiciel «traceur de courbes planes» mais il possède aussi bien d autres fonctionnalités que nous verrons tout
glossaire Appellation commerciale Voir nom de marque.
glossaire Accessibilité financière Le coût d un traitement par rapport au revenu de la population. dans cette enquête, le salaire journalier minimum d un employé non-qualifié du secteur public est comparé
Programmation Objet - Cours II
Programmation Objet - Cours II - Exercices - Page 1 Programmation Objet - Cours II Exercices Auteur : E.Thirion - Dernière mise à jour : 05/07/2015 Les exercices suivants sont en majorité des projets à
Qui fait quoi sur internet?
Ans Note d éducation permanente de l ASBL Fondation Travail-Université (FTU) N 2015 8, avril 2015 www.ftu.be/ep Qui fait quoi sur internet? Analyse des inégalités sociales dans l utilisation d internet
Note:... Q1 :... Q2 :... Q3 :... Q4 :... Bonus :... Total :...
FACUL S HAUS US COMMRCIALS L'UNIVRSI LAUSANN Professeurs :. Andrei C. Bobtcheff Matière : Principes généraux de finance Session : té Informations générales: o ocumentation autorisée. o Calculatrices autorisées
Les devoirs en Première STMG
Les devoirs en Première STMG O. Lader Table des matières Devoir sur table 1 : Proportions et inclusions....................... 2 Devoir sur table 1 : Proportions et inclusions (corrigé)..................
Fonctions homographiques
Seconde-Fonctions homographiques-cours Mai 0 Fonctions homographiques Introduction Voir le TP Géogébra. La fonction inverse. Définition Considérons la fonction f définie par f() =. Alors :. f est définie
Gouvernance des mesures de sécurité avec DCM-Manager. Présentation du 22 mai 2014
Gouvernance des mesures de sécurité avec DCM-Manager Présentation du 22 mai 2014 Gérer les actifs logiciels et leur répartition Maîtriser le durcissement des configurations Suivre l application des correctifs
Attirez les meilleurs employés et consolidez votre entreprise
Attirez les meilleurs employés et consolidez votre entreprise Grâce à leur régime d assurance collective, les employés sont toujours gagnants Augmentation salariale ou régime d assurance collective? Il
Relation entre deux variables : estimation de la corrélation linéaire
CHAPITRE 3 Relation entre deux variables : estimation de la corrélation linéaire Parmi les analyses statistiques descriptives, l une d entre elles est particulièrement utilisée pour mettre en évidence
TSTI 2D CH X : Exemples de lois à densité 1
TSTI 2D CH X : Exemples de lois à densité I Loi uniforme sur ab ; ) Introduction Dans cette activité, on s intéresse à la modélisation du tirage au hasard d un nombre réel de l intervalle [0 ;], chacun
Introduction à l approche bootstrap
Introduction à l approche bootstrap Irène Buvat U494 INSERM buvat@imedjussieufr 25 septembre 2000 Introduction à l approche bootstrap - Irène Buvat - 21/9/00-1 Plan du cours Qu est-ce que le bootstrap?
LE GRAND ÉCART L INÉGALITÉ DE LA REDISTRIBUTION DES BÉNÉFICES PROVENANT DU FRACTIONNEMENT DU REVENU
LE GRAND ÉCART L INÉGALITÉ DE LA REDISTRIBUTION DES BÉNÉFICES PROVENANT DU FRACTIONNEMENT DU REVENU RÉSUMÉ Une étude de Tristat Resources commandée par l Institut Broadbent démontre que la majorité des
