Intentions de la rénovation des programmes de mathématiques des BTS
|
|
|
- Huguette Grenon
- il y a 8 ans
- Total affichages :
Transcription
1 ANNEXE I Intentions de la rénovation des programmes de mathématiques des BTS Contexte a) Prise en compte de l'orientation croissante des bacheliers professionnels vers les BTS. b) Articulation avec les programmes du lycée professionnel et les nouveaux programmes du lycée technologique. Intentions générales Il ne s'agit pas d'une rénovation des spécialités de BTS, mais d'une rénovation des modules de mathématiques qui respecte la configuration présente de chaque spécialité BTS. Les modules évoluent davantage par la présentation et par la pédagogie sous-jacente, que par les contenus au sens strict qui restent relativement stables. Annexes Le lien avec les disciplines technologiques et professionnelles est accentué. Les contenus mathématiques sont mieux ajustés aux besoins réels des autres disciplines. En particulier, les exigences calculatoires sont limitées, mais la maîtrise des outils utilisés est un attendu. Modules Pour chaque spécialité de BTS, le programme est constitué de plusieurs modules, chacun comportant deux parties : un bandeau et un texte présenté sous forme d un tableau en trois colonnes. Généralement, le bandeau précise les objectifs essentiels du module et délimite le cadre du texte du tableau. Dans la première colonne du tableau figurent les contenus : il s agit de l énoncé des notions et résultats de base que l étudiant doit connaître et savoir utiliser. La deuxième colonne est celle des capacités attendues : elle liste ce que l étudiant doit savoir faire, sous forme de verbes d action, de façon à faciliter l évaluation ; il peut s agir d appliquer des techniques bien délimitées, d exploiter des méthodes s appliquant à un champ de problèmes, ou d utiliser des outils logiciels. La troisième colonne contient des commentaires précisant le sens ou les limites à donner à certaines questions du programme ; pour éviter toute ambiguïté sur celles-ci, il est indiqué que certains éléments ou certaines notions sont «hors programme» (ce qui signifie qu'ils n'ont pas à être abordés au niveau considéré) ou qu à leur sujet «aucune difficulté théorique ne sera soulevée». La mention «admis» signifie que la démonstration du résultat visé est en dehors des objectifs du programme. Pour limiter un niveau d approfondissement, il peut être indiqué en commentaire que «tout excès de technicité est exclu» ou que des «indications doivent être fournie» aux étudiants, ou encore qu'il faut se limiter à des «exemples simples». Un symbole (double flèche) introduit des thèmes d ouverture interdisciplinaire où le programme de mathématiques est susceptible d interagir avec les enseignements scientifiques, technologiques ou professionnels. Place des outils logiciels Leur place est augmentée, ce qui permet de limiter les exigences calculatoires tout en restant capable de résoudre les mêmes problèmes. La mise en activité des étudiants est ainsi élargie, les outils logiciels remplaçant le papier-crayon lorsque c est opportun. 1 / 9
2 ANNEXE II Référentiel de formation des BTS CRSA Bâtiment Travaux publics Modules de mathématiques Actualisation septembre 2013 Dans ce document, l expression «modules de mathématiques» est à comprendre au sens de la modularisation des enseignements expérimentée dans certaines spécialités de BTS, dont, pour les mathématiques, CRSA, Bâtiment et Travaux publics. Les «référentiels de formation» explicitent cette modularisation. Les référentiels de formation des BTS CRSA, Bâtiment, Travaux publics ont été, en partie, publiés au BO 41 du 10/11/2011 pour les BTS CRSA et Travaux publics et au BO 42 du 17/11/2011 pour le BTS Bâtiment. Ces référentiels de formation sont accessibles en ligne sur le site de la DGESIP : Les modules de mathématiques sont explicités aux pages suivantes : CRSA : pages 22 à 28 ; Bâtiment : pages 14 à 19 ; Travaux publics : pages 32 à 37. Les modules de mathématiques des BTS Bâtiment et Travaux Publics sont identiques. L arrêté du 4 juin 2013, fixant les objectifs, contenus de l enseignement et référentiel des capacités du domaine des mathématiques pour le brevet de technicien supérieur, conduit à quelques modifications dans la rédaction des modules de mathématiques des référentiels de formation de ces trois spécialités de BTS. 2 / 9
3 Référentiel de formation du BTS CRSA Modules de mathématiques Actualisation septembre 2013 L'enseignement des mathématiques dans les sections de technicien supérieur en Conception et réalisation de systèmes automatiques se réfère aux dispositions de l'arrêté du 4 juin 2013 fixant les objectifs, les contenus de l'enseignement et le référentiel des capacités du domaine des mathématiques pour les brevets de technicien supérieur. Cet enseignement est structuré en trois domaines, chacun ayant deux niveaux d approfondissement, soit un total de six modules de formation. Deux modules d analyse permettent d aborder l étude des fonctions d une variable réelle et le calcul différentiel et intégral puis les équations différentielles. Les modules suivants de statistique et probabilités sont relatifs à la statistique descriptive et au calcul des probabilités pour le premier puis à la statistique inférentielle et à la fiabilité pour le second. Enfin, les 2 derniers modules de mathématiques générales ont pour contenu les nombres complexes, le calcul vectoriel puis le calcul matriciel. UF3.1-M1.1 : Analyse 1 Fonctions d une variable réelle, Calcul intégral Nombre d'heures : 36 Points de crédits ECTS : 2 UF5-M1.1, UF5-M3.1 Fonction exponentielle, fonction logarithme népérien, fonctions puissances, fonctions circulaires. Dérivation, limites, développement limité en 0. Courbes paramétrées. Primitives, intégration. Formule d intégration par parties. 3 / 9
4 Équations différentielles UF3.1-M1.2 : Analyse 2 Nombre d'heures : 36 Points de crédits ECTS : 2 UF5-M3.2 Équations différentielles linéaires du premier ordre. Nombres complexes. Résolution dans C des équations du second degré à coefficients réels. Équations différentielles linéaires du second ordre, à coefficients réels constants. UF3.1-M2.1 : Statistique, probabilités 1 Statistique descriptive, Probabilités 1, Probabilités 2 Nombre d'heures : 36 Points de crédits ECTS : 2 UF6.1-M1 Série statistique à une variable, représentations, caractéristiques de position et de dispersion. Série statistique à deux variables, ajustement affine par la méthode des moindres carrés, coefficient de corrélation linéaire. Conditionnement et indépendance. Loi binomiale, loi uniforme, loi normale. Théorème de la limite centrée. Loi exponentielle, vocabulaire de la fiabilité. Loi de Poisson. Exemples de processus aléatoires. 4 / 9
5 UF3.1-M2.2 : Statistique, probabilités 2 Statistique inférentielle Nombre d'heures : 36 Points de crédits ECTS : 2 UF6.2a-M1.2 Estimation ponctuelle et par intervalle de confiance d une fréquence ou d une moyenne. Test d hypothèse relatif à une fréquence ou à une moyenne. Test de comparaison de deux proportions ou de deux moyennes. Risques d erreur de première et de seconde espèce. UF3.1-M3.1 : Mathématiques générales 1 Calcul vectoriel Nombre d'heures : 18 Points de crédits ECTS : 1 UF5-M1.1 Vecteurs, barycentre, produit scalaire, produit vectoriel. 5 / 9
6 UF3.1-M3.2 : Mathématiques générales 2 Calcul matriciel Nombre d'heures : 18 Points de crédits ECTS : 1 UF5-M3.2 Calcul matriciel : addition, multiplication par un nombre, multiplication. Inverse d une matrice. Représentation et traitement d une situation à l aide d une écriture matricielle (notamment processus déterministes ou stochastiques). 6 / 9
7 Référentiel de formation des BTS Bâtiment et Travaux publics Modules de mathématiques Actualisation septembre 2013 Fonctions d une variable réelle, Calcul intégral UF3.1-M1.1 Analyse 1 Nombre d'heures : 36 h Points de crédits ECTS : 2 Fonction exponentielle, fonction logarithme népérien, fonctions puissances, fonctions circulaires. Dérivation, limites, développement limité en 0. Primitives, intégration. Formule d intégration par parties. Équations différentielles UF3.1-M1.2 Analyse 2 Nombre d'heures : 36 h Points de crédits ECTS : 2 Équations différentielles linéaires du premier ordre. Nombres complexes. Résolution dans C des équations du second degré à coefficients réels. Équations différentielles linéaires du second ordre, à coefficients réels constants. 7 / 9
8 UF3.1-M2.1 Statistique et Probabilités 1 Statistique descriptive, Probabilités 1, Probabilités 2 Nombre d'heures : 36 h Points de crédits ECTS : 2 Série statistique à une variable, représentations, caractéristiques de position et de dispersion. Série statistique à deux variables, ajustement affine par la méthode des moindres carrés, coefficient de corrélation linéaire. Conditionnement et indépendance. Loi binomiale, loi uniforme, loi normale. Théorème de la limite centrée. Loi exponentielle. Loi de Poisson. Exemples de processus aléatoires. UF3.1-M2.2 Statistique et Probabilités 2 Statistique inférentielle Nombre d'heures : 36 h Points de crédits ECTS : 2 Estimation ponctuelle et par intervalle de confiance d une fréquence ou d une moyenne. Test d hypothèse relatif à une fréquence ou à une moyenne. Test de comparaison de deux proportions ou de deux moyennes. Risques d erreur de première et de seconde espèce. 8 / 9
9 UF3.1-M3.1 Mathématiques générales 1 Nombres complexes 1 Configurations géométriques Nombre d'heures : 18 h Points de crédits ECTS : 1 Configurations du plan et de l espace (projection, section plane, intersection, parallélisme, orthogonalité, surfaces de révolution). Repérage d un point (coordonnées cartésiennes, polaires, cylindriques, sphériques). UF3.1-M3.2 Mathématiques générales 2 Calcul matriciel Calcul vectoriel Nombre d'heures : 18 h Points de crédits ECTS : 1 Calcul matriciel : addition, multiplication par un nombre, multiplication. Vecteurs, barycentre, produit scalaire, produit vectoriel. Calcul matriciel : addition, multiplication par un nombre, multiplication. Inverse d une matrice. Représentation et traitement d une situation à l aide d une écriture matricielle (notamment processus déterministes ou stochastiques). 9 / 9
Fonctions de plusieurs variables
Module : Analyse 03 Chapitre 00 : Fonctions de plusieurs variables Généralités et Rappels des notions topologiques dans : Qu est- ce que?: Mathématiquement, n étant un entier non nul, on définit comme
EXPLOITATIONS PEDAGOGIQUES DU TABLEUR EN STG
Exploitations pédagogiques du tableur en STG Académie de Créteil 2006 1 EXPLOITATIONS PEDAGOGIQUES DU TABLEUR EN STG Commission inter-irem lycées techniques contact : [email protected] La maquette
LES TYPES DE DONNÉES DU LANGAGE PASCAL
LES TYPES DE DONNÉES DU LANGAGE PASCAL 75 LES TYPES DE DONNÉES DU LANGAGE PASCAL CHAPITRE 4 OBJECTIFS PRÉSENTER LES NOTIONS D ÉTIQUETTE, DE CONS- TANTE ET DE IABLE DANS LE CONTEXTE DU LAN- GAGE PASCAL.
Programmes des classes préparatoires aux Grandes Ecoles
Programmes des classes préparatoires aux Grandes Ecoles Filière : scientifique Voie : Biologie, chimie, physique et sciences de la Terre (BCPST) Discipline : Mathématiques Seconde année Préambule Programme
Table des matières. I Mise à niveau 11. Préface
Table des matières Préface v I Mise à niveau 11 1 Bases du calcul commercial 13 1.1 Alphabet grec...................................... 13 1.2 Symboles mathématiques............................... 14 1.3
Catalogue des connaissances de base en mathématiques dispensées dans les gymnases, lycées et collèges romands.
Catalogue des connaissances de base en mathématiques dispensées dans les gymnases, lycées et collèges romands. Pourquoi un autre catalogue en Suisse romande Historique En 1990, la CRUS (Conférences des
TESTS D'HYPOTHESES Etude d'un exemple
TESTS D'HYPOTHESES Etude d'un exemple Un examinateur doit faire passer une épreuve type QCM à des étudiants. Ce QCM est constitué de 20 questions indépendantes. Pour chaque question, il y a trois réponses
Correction du Baccalauréat S Amérique du Nord mai 2007
Correction du Baccalauréat S Amérique du Nord mai 7 EXERCICE points. Le plan (P) a une pour équation cartésienne : x+y z+ =. Les coordonnées de H vérifient cette équation donc H appartient à (P) et A n
O, i, ) ln x. (ln x)2
EXERCICE 5 points Commun à tous les candidats Le plan complee est muni d un repère orthonormal O, i, j Étude d une fonction f On considère la fonction f définie sur l intervalle ]0; + [ par : f = ln On
TABLE DES MATIÈRES. Bruxelles, De Boeck, 2011, 736 p.
STATISTIQUE THÉORIQUE ET APPLIQUÉE Tome 2 Inférence statistique à une et à deux dimensions Pierre Dagnelie TABLE DES MATIÈRES Bruxelles, De Boeck, 2011, 736 p. ISBN 978-2-8041-6336-5 De Boeck Services,
Programme Pédagogique National du DUT «Génie mécanique et productique» Présentation de la formation
Programme Pédagogique National du DUT «Génie mécanique et productique» Présentation de la formation 2 I CONCEPT GENERAL DE LA FORMATION Le diplômé des départements Génie Mécanique et Productique (GMP)
Annexe 1 Programmes des classes préparatoires aux Grandes Ecoles
Annexe 1 Programmes des classes préparatoires aux Grandes Ecoles Filière : scientifique Voie : Physique, chimie et sciences de l ingénieur (PCSI) Discipline : Mathématiques Première année Classe préparatoire
Introduction à MATLAB R
Introduction à MATLAB R Romain Tavenard 10 septembre 2009 MATLAB R est un environnement de calcul numérique propriétaire orienté vers le calcul matriciel. Il se compose d un langage de programmation, d
Spécialité auxiliaire en prothèse dentaire du brevet d études professionnelles. ANNEXE IIb DEFINITION DES EPREUVES
ANNEXE IIb DEFINITION DES EPREUVES 51 Epreuve EP1 : ANALYSE ET COMMUNICATION TECHNOLOGIQUES UP1 Coefficient 4 Finalité et objectifs de l épreuve L épreuve vise à évaluer la capacité du candidat à mobiliser
Plan du cours : électricité 1
Semestre : S2 Module Physique II 1 Electricité 1 2 Optique géométrique Plan du cours : électricité 1 Partie A : Electrostatique (discipline de l étude des phénomènes liés aux distributions de charges stationnaires)
La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1
La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1 La licence Mathématiques et Economie-MASS de l Université des Sciences Sociales de Toulouse propose sur les trois
NOTICE DOUBLE DIPLÔME
NOTICE DOUBLE DIPLÔME MINES ParisTech / HEC MINES ParisTech/ AgroParisTech Diplômes obtenus : Diplôme d ingénieur de l Ecole des Mines de Paris Diplôme de HEC Paris Ou Diplôme d ingénieur de l Ecole des
Calculer avec Sage. Revision : 417 du 1 er juillet 2010
Calculer avec Sage Alexandre Casamayou Guillaume Connan Thierry Dumont Laurent Fousse François Maltey Matthias Meulien Marc Mezzarobba Clément Pernet Nicolas Thiéry Paul Zimmermann Revision : 417 du 1
Les formations de remise à niveau(!) l'entrée des licences scientifiques. Patrick Frétigné CIIU
Les formations de remise à niveau(!) pour les bacheliers «non-s» à l'entrée des licences scientifiques. Patrick Frétigné CIIU Cinq exemples Nantes Clermont Ferrand Lorraine Rennes 1 Rouen Nantes REUSCIT
Réforme du du BTS Comptabilité Gestion. Comptabilité Gestion. Jean-Charles Diry Nathalie Freydière Jean-Philippe Minier Amélie Zurita
Réforme du du BTS Jean-Charles Diry Nathalie Freydière Jean-Philippe Minier Amélie Zurita 1 Bacs Généraux S & ES Retours d université Bacs Professionnels (notamment Gestion Administration) Bacs Technologiques
ECTS INFORMATIQUE ET RESEAUX POUR L INDUSTRIE ET LES SERVICES TECHNIQUES
ECTS INFORMATIQUE ET RESEAUX POUR L INDUSTRIE ET LES SERVICES TECHNIQUES CHAPITRES PAGES I DEFINITION 3 II CONTEXTE PROFESSIONNEL 3 HORAIRE HEBDOMADAIRE 1 er ET 2 ème ANNEE 4 FRANÇAIS 4 ANGLAIS 5 MATHEMATIQUES
Modélisation aléatoire en fiabilité des logiciels
collection Méthodes stochastiques appliquées dirigée par Nikolaos Limnios et Jacques Janssen La sûreté de fonctionnement des systèmes informatiques est aujourd hui un enjeu économique et sociétal majeur.
SCIENCES ET TECHNOLOGIES DE LA GESTION S.T.G.
SERIE SCIENCES ET TECHNOLOGIES DE LA GESTION S.T.G. LES SCIENCES ET TECHNOLOGIES DE LA GESTION - Pourquoi rénover la filière Sciences et Technologies Tertiaires (STT)? - Quelles sont les principales caractéristiques
GESTION DES ENTREPRISES ET DES ADMINISTRAT I O N S
Le B.O. 2 5 3 GESTION DES ENTREPRISES ET DES ADMINISTRAT I O N S S O M M A I R E O B J E C T I F S TRONC COMMUN A - LANGAGES FONDAMENTAUX M1- Expression et communication M2 - Psychologie sociale M3 - Langue
Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer
Pour commencer Exercice 1 - Ensembles de définition - Première année - 1. Le logarithme est défini si x + y > 0. On trouve donc le demi-plan supérieur délimité par la droite d équation x + y = 0.. 1 xy
Cours de Mécanique du point matériel
Cours de Mécanique du point matériel SMPC1 Module 1 : Mécanique 1 Session : Automne 2014 Prof. M. EL BAZ Cours de Mécanique du Point matériel Chapitre 1 : Complément Mathématique SMPC1 Chapitre 1: Rappels
ENSEIGNEMENT DES SCIENCES ET DE LA TECHNOLOGIE A L ECOLE PRIMAIRE : QUELLE DEMARCHE?
ENSEIGNEMENT DES SCIENCES ET DE LA TECHNOLOGIE A L ECOLE PRIMAIRE : QUELLE DEMARCHE? Les nouveaux programmes 2008 confirment que l observation, le questionnement, l expérimentation et l argumentation sont
Formation Excel, Niveau initiation, module 1 DUREE DE LA FORMATION OBJECTIFS DE LA FORMATION
Niveau initiation, module 1 Acquérir une philosophie de travail dans un tableur, Acquérir les bons réfl exes tableur, Familiarisation avec le vocabulaire, Créer, Enregistrer et présenter un tableau. Notions
NOM : Prénom : Date de naissance : Ecole : CM2 Palier 2
NOM : Prénom : Date de naissance : Ecole : CM2 Palier 2 Résultats aux évaluations nationales CM2 Annexe 1 Résultats de l élève Compétence validée Lire / Ecrire / Vocabulaire / Grammaire / Orthographe /
Les travaux doivent être remis sous forme papier.
Physique mathématique II Calendrier: Date Pondération/note nale Matériel couvert ExercicesSérie 1 : 25 septembre 2014 5% RH&B: Ch. 3 ExercicesSérie 2 : 23 octobre 2014 5% RH&B: Ch. 12-13 Examen 1 : 24
TABLE DES MATIERES. C Exercices complémentaires 42
TABLE DES MATIERES Chapitre I : Echantillonnage A - Rappels de cours 1. Lois de probabilités de base rencontrées en statistique 1 1.1 Définitions et caractérisations 1 1.2 Les propriétés de convergence
Corrigé des TD 1 à 5
Corrigé des TD 1 à 5 1 Premier Contact 1.1 Somme des n premiers entiers 1 (* Somme des n premiers entiers *) 2 program somme_entiers; n, i, somme: integer; 8 (* saisie du nombre n *) write( Saisissez un
Ce cours introduit l'électrodynamique classique. Les chapitres principaux sont :
11P001 ELECTRDYNAMIQUE I Automne 4 crédits BACHELR 1ère ANNEE MASTER BIDISCIPLINAIRE MINEURE PHYSIQUE CURS BLIGATIRES Enseignant(s) G. Iacobucci P Automne (A) Horaire A C2 E2 LU 1113 EPA JE 810 EPA = obligatoire
Chapitre 3. Quelques fonctions usuelles. 1 Fonctions logarithme et exponentielle. 1.1 La fonction logarithme
Chapitre 3 Quelques fonctions usuelles 1 Fonctions logarithme et eponentielle 1.1 La fonction logarithme Définition 1.1 La fonction 7! 1/ est continue sur ]0, +1[. Elle admet donc des primitives sur cet
Cours Fonctions de deux variables
Cours Fonctions de deux variables par Pierre Veuillez 1 Support théorique 1.1 Représentation Plan et espace : Grâce à un repère cartésien ( ) O, i, j du plan, les couples (x, y) de R 2 peuvent être représenté
MATHÉMATIQUES EN PREMIER CYCLE PRÉSENTATION DU PROGRAMME
Notre cadre de réflexion MATHÉMATIQUES EN PREMIER CYCLE PRÉSENTATION DU PROGRAMME La proposition de programme qui suit est bien sûr issue d une demande du Premier Cycle : demande de rénovation des contenus
BACCALAURÉAT PROFESSIONNEL ÉPREUVE DE MATHEMATIQUES. EXEMPLE DE SUJET n 2
Exemple de sujet n 2 Page 1/7 BACCALAURÉAT PROFESSIONNEL ÉPREUVE DE MATHEMATIQUES EXEMPLE DE SUJET n 2 Ce document comprend : Pour l examinateur : - une fiche descriptive du sujet page 2/7 - une fiche
SOCLE COMMUN - La Compétence 3 Les principaux éléments de mathématiques et la culture scientifique et technologique
SOCLE COMMUN - La Compétence 3 Les principaux éléments de mathématiques et la culture scientifique et technologique DOMAINE P3.C3.D1. Pratiquer une démarche scientifique et technologique, résoudre des
Après le collège. Terminale. Terminale générale. Terminale professionnelle. technologique. 2 ème année de. 1 ère générale.
Le Baccalauréat Professionnel Gestion-Administration au Lycée Professionnel Camille Claudel à Caen Enseignement supérieur Insertion professionnelle Terminale générale 1 ère générale Baccalauréat général
ÉdIteur officiel et fournisseur de ServIceS professionnels du LogIcIeL open Source ScILab
ÉdIteur officiel et fournisseur de ServIceS professionnels du LogIcIeL open Source ScILab notre compétence d'éditeur à votre service créée en juin 2010, Scilab enterprises propose services et support autour
DécliCC. savoir. cahier des charges
DécliCC savoir S ORGANISER cahier des charges Du PARCOURS déclicc savoir S ORGANISER Développer ses compétences clés pour savoir s organiser Module A 30 à 40 heures Organiser l exécution d une tâche Contexte
Exercices Alternatifs. Quelqu un aurait-il vu passer un polynôme?
Exercices Alternatifs Quelqu un aurait-il vu passer un polynôme? c 2004 Frédéric Le Roux, François Béguin (copyleft LDL : Licence pour Documents Libres). Sources et figures: polynome-lagrange/. Version
Exercices Alternatifs. Quelqu un aurait-il vu passer un polynôme?
Exercices Alternatifs Quelqu un aurait-il vu passer un polynôme? c 2004 Frédéric Le Roux, François Béguin (copyleft LDL : Licence pour Documents Libres). Sources et figures: polynome-lagrange/. Version
Exercice du cours Gestion Financière à Court Terme : «Analyse d un reverse convertible»
Exercice du cours Gestion Financière à Court Terme : «Analyse d un reverse convertible» Quand la trésorerie d une entreprise est positive, le trésorier cherche le meilleur placement pour placer les excédents.
10 REPÈRES «PLUS DE MAÎTRES QUE DE CLASSES» JUIN 2013 POUR LA MISE EN ŒUVRE DU DISPOSITIF
10 REPÈRES POUR LA MISE EN ŒUVRE DU DISPOSITIF «PLUS DE MAÎTRES QUE DE CLASSES» JUIN 2013 MEN-DGESCO 2013 Sommaire 1. LES OBJECTIFS DU DISPOSITIF 2. LES ACQUISITIONS PRIORITAIREMENT VISÉES 3. LES LIEUX
PROBABILITES ET STATISTIQUE I&II
PROBABILITES ET STATISTIQUE I&II TABLE DES MATIERES CHAPITRE I - COMBINATOIRE ELEMENTAIRE I.1. Rappel des notations de la théorie des ensemble I.1.a. Ensembles et sous-ensembles I.1.b. Diagrammes (dits
Exercices du Cours de la programmation linéaire donné par le Dr. Ali DERBALA
75. Un plombier connaît la disposition de trois tuyaux sous des dalles ( voir figure ci dessous ) et il lui suffit de découvrir une partie de chacun d eux pour pouvoir y poser les robinets. Il cherche
Calcul différentiel sur R n Première partie
Calcul différentiel sur R n Première partie Université De Metz 2006-2007 1 Définitions générales On note L(R n, R m ) l espace vectoriel des applications linéaires de R n dans R m. Définition 1.1 (différentiabilité
La problématique des tests. Cours V. 7 mars 2008. Comment quantifier la performance d un test? Hypothèses simples et composites
La problématique des tests Cours V 7 mars 8 Test d hypothèses [Section 6.1] Soit un modèle statistique P θ ; θ Θ} et des hypothèses H : θ Θ H 1 : θ Θ 1 = Θ \ Θ Un test (pur) est une statistique à valeur
Chapitre 6. Fonction réelle d une variable réelle
Chapitre 6 Fonction réelle d une variable réelle 6. Généralités et plan d étude Une application de I dans R est une correspondance entre les éléments de I et ceu de R telle que tout élément de I admette
CONSULTATION PUBLIQUE SUR LA CREATION D UN REGISTRE NATIONAL DES CREDITS AUX PARTICULIERS
CONSULTATION PUBLIQUE SUR LA CREATION D UN REGISTRE NATIONAL DES CREDITS AUX PARTICULIERS Consultation publique : veuillez adresser vos réponses avant le 27 février 2013 à l adresse électronique [email protected].
L isomorphisme entre les tours de Lubin-Tate et de Drinfeld et applications cohomologiques par Laurent Fargues
Préambule.................................... xv Bibliographie... xxi I L isomorphisme entre les tours de Lubin-Tate et de Drinfeld et applications cohomologiques par Laurent Fargues Introduction...................................
Chaînes de Markov au lycée
Journées APMEP Metz Atelier P1-32 du dimanche 28 octobre 2012 Louis-Marie BONNEVAL Chaînes de Markov au lycée Andreï Markov (1856-1922) , série S Problème 1 Bonus et malus en assurance automobile Un contrat
Directive 05_04 Prise en compte des études déjà effectuées
Haute école pédagogique Comité de Direction Avenue de Cour CH 04 Lausanne www.hepl.ch Directives du Comité de direction Chapitre 05 : Filières de formation Directive 05_04 Prise en compte des études déjà
Seconde Généralités sur les fonctions Exercices. Notion de fonction.
Seconde Généralités sur les fonctions Exercices Notion de fonction. Exercice. Une fonction définie par une formule. On considère la fonction f définie sur R par = x + x. a) Calculer les images de, 0 et
OM 1 Outils mathématiques : fonction de plusieurs variables
Outils mathématiques : fonction de plusieurs variables PCSI 2013 2014 Certaines partie de ce chapitre ne seront utiles qu à partir de l année prochaine, mais une grande partie nous servira dès cette année.
Corrigé du baccalauréat S Asie 21 juin 2010
Corrigé du baccalauréat S Asie juin 00 EXERCICE Commun à tous les candidats 4 points. Question : Le triangle GBI est : Réponse a : isocèle. Réponse b : équilatéral. Réponse c : rectangle. On a GB = + =
L ACCOMPAGNEMENT PERSONNALISE AU LYCEE PICASSO DE PERPIGNAN (Document de travail)
L ACCOMPAGNEMENT PERSONNALISE AU LYCEE PICASSO DE PERPIGNAN (Document de travail) 1. Définition L'accompagnement personnalisé, qui s'adresse à tous les élèves, est un espace de liberté pédagogique permettant
COURS COLLÉGIAUX PRÉALABLES À L ADMISSION
Le candidat est tenu d avoir complété tous les cours préalables à la date limite prévue, soit le 15 septembre pour le trimestre d automne et le 1 er février pour le trimestre d hiver. L Université peut
Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes.
1 Définitions, notations Calcul matriciel Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes. On utilise aussi la notation m n pour le
FORMATION CONTINUE SUR L UTILISATION D EXCEL DANS L ENSEIGNEMENT Expérience de l E.N.S de Tétouan (Maroc)
87 FORMATION CONTINUE SUR L UTILISATION D EXCEL DANS L ENSEIGNEMENT Expérience de l E.N.S de Tétouan (Maroc) Dans le cadre de la réforme pédagogique et de l intérêt que porte le Ministère de l Éducation
PHYSIQUE 2 - Épreuve écrite
PHYSIQUE - Épreuve écrite WARIN André I. Remarques générales Le sujet de physique de la session 010 comprenait une partie A sur l optique et une partie B sur l électromagnétisme. - La partie A, à caractère
Probabilités III Introduction à l évaluation d options
Probabilités III Introduction à l évaluation d options Jacques Printems Promotion 2012 2013 1 Modèle à temps discret 2 Introduction aux modèles en temps continu Limite du modèle binomial lorsque N + Un
Référence : Circulaire nationale d'organisation émise le 8 décembre 2014 par l'académie de Nancy-Metz. Nombre de candidats inscrits : 215 candidats
Documents à l attention : Des établissements privés hors contrat et enseignements à distance Des candidats individuels Rectorat DEC 5 [email protected] Affaire suivie par : Aurélie LACOSTE-OIX (Gestionnaire)
MATLAB : COMMANDES DE BASE. Note : lorsqu applicable, l équivalent en langage C est indiqué entre les délimiteurs /* */.
Page 1 de 9 MATLAB : COMMANDES DE BASE Note : lorsqu applicable, l équivalent en langage C est indiqué entre les délimiteurs /* */. Aide help, help nom_de_commande Fenêtre de travail (Command Window) Ligne
La programmation linéaire : une introduction. Qu est-ce qu un programme linéaire? Terminologie. Écriture mathématique
La programmation linéaire : une introduction Qu est-ce qu un programme linéaire? Qu est-ce qu un programme linéaire? Exemples : allocation de ressources problème de recouvrement Hypothèses de la programmation
A PROPOS DES CRITERES D ATTRIBUTION DES EQUIVALENCES
IED PARIS 8 A PROPOS DES CRITERES D ATTRIBUTION DES EQUIVALENCES La procédure d équivalence permet de dispenser les étudiants de certains enseignements dans la mesure où ils peuvent justifier de l acquisition
Cours Informatique Master STEP
Cours Informatique Master STEP Bases de la programmation: Compilateurs/logiciels Algorithmique et structure d'un programme Programmation en langage structuré (Fortran 90) Variables, expressions, instructions
TSTI 2D CH X : Exemples de lois à densité 1
TSTI 2D CH X : Exemples de lois à densité I Loi uniforme sur ab ; ) Introduction Dans cette activité, on s intéresse à la modélisation du tirage au hasard d un nombre réel de l intervalle [0 ;], chacun
Circulaire NBB_2012_12 - Annexe 4
Politique prudentielle et stabilité financière boulevard de Berlaimont 14 BE-1000 Bruxelles Tél. +32 2 221 35 88 Fax + 32 2 221 31 04 numéro d entreprise: 0203.201.340 RPM Bruxelles www.bnb.be Circulaire
Sites web éducatifs et ressources en mathématiques
Sites web éducatifs et ressources en mathématiques Exercices en ligne pour le primaire Calcul mental élémentaire : http://www.csaffluents.qc.ca/wlamen/tables-sous.html Problèmes de soustraction/addition
Dualité dans les espaces de Lebesgue et mesures de Radon finies
Chapitre 6 Dualité dans les espaces de Lebesgue et mesures de Radon finies Nous allons maintenant revenir sur les espaces L p du Chapitre 4, à la lumière de certains résultats du Chapitre 5. Sauf mention
Eteindre. les. lumières MATH EN JEAN 2013-2014. Mme BACHOC. Elèves de seconde, première et terminale scientifiques :
MTH EN JEN 2013-2014 Elèves de seconde, première et terminale scientifiques : Lycée Michel Montaigne : HERITEL ôme T S POLLOZE Hélène 1 S SOK Sophie 1 S Eteindre Lycée Sud Médoc : ROSIO Gauthier 2 nd PELGE
Nombres, mesures et incertitudes en sciences physiques et chimiques. Groupe des Sciences physiques et chimiques de l IGEN
Nombres, mesures et incertitudes en sciences physiques et chimiques. Groupe des Sciences physiques et chimiques de l IGEN Table des matières. Introduction....3 Mesures et incertitudes en sciences physiques
Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures)
Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures) Eercice 1 (5 points) pour les candidats n ayant pas choisi la spécialité MATH Le tableau suivant donne l évolution du chiffre
Complément d information concernant la fiche de concordance
Sommaire SAMEDI 0 DÉCEMBRE 20 Vous trouverez dans ce dossier les documents correspondants à ce que nous allons travailler aujourd hui : La fiche de concordance pour le DAEU ; Page 2 Un rappel de cours
Programme de la classe de première année MPSI
Objectifs Programme de la classe de première année MPSI I - Introduction à l analyse L objectif de cette partie est d amener les étudiants vers des problèmes effectifs d analyse élémentaire, d introduire
Créer le schéma relationnel d une base de données ACCESS
Utilisation du SGBD ACCESS Polycopié réalisé par Chihab Hanachi et Jean-Marc Thévenin Créer le schéma relationnel d une base de données ACCESS GENERALITES SUR ACCESS... 1 A PROPOS DE L UTILISATION D ACCESS...
Maple: premiers calculs et premières applications
TP Maple: premiers calculs et premières applications Maple: un logiciel de calcul formel Le logiciel Maple est un système de calcul formel. Alors que la plupart des logiciels de mathématiques utilisent
Circulaire 2015/1 «Comptabilité banques»
Foire aux questions (FAQ) Circulaire 2015/1 «Comptabilité banques» (Dernière modification : 22 juillet 2015) 1. Comment faut-il traiter les provisions, constituées initialement pour des limites de crédit
LIVRET DU CANDIDAT LES DEUX OPTIONS FACULTATIVES DANSE AU BACCALAURÉAT
LIVRET DU CANDIDAT LES DEUX OPTIONS FACULTATIVES DANSE AU BACCALAURÉAT EPS / DANSE ART / DANSE Elèves du lycée Bréquigny à Rennes, Avril 2014 1 Les deux options facultatives danse au BAC Ce livret a été
de calibration Master 2: Calibration de modèles: présentation et simulation d
Master 2: Calibration de modèles: présentation et simulation de quelques problèmes de calibration Plan de la présentation 1. Présentation de quelques modèles à calibrer 1a. Reconstruction d une courbe
Experts de Bologne /////////// Guide pratique. pour la mise en place du Supplément au diplôme. 2e 2f.fr
Experts de Bologne /////////// Guide pratique pour la mise en place du Supplément au diplôme 2e 2f.fr POURQUOI CE GUIDE? > De nombreux établissements d enseignement supérieur désirent mettre en place
Simulation de variables aléatoires
Chapter 1 Simulation de variables aléatoires Références: [F] Fishman, A first course in Monte Carlo, chap 3. [B] Bouleau, Probabilités de l ingénieur, chap 4. [R] Rubinstein, Simulation and Monte Carlo
Théorème du point fixe - Théorème de l inversion locale
Chapitre 7 Théorème du point fixe - Théorème de l inversion locale Dans ce chapitre et le suivant, on montre deux applications importantes de la notion de différentiabilité : le théorème de l inversion
FORMULAIRE DE STATISTIQUES
FORMULAIRE DE STATISTIQUES I. STATISTIQUES DESCRIPTIVES Moyenne arithmétique Remarque: population: m xμ; échantillon: Mx 1 Somme des carrés des écarts "# FR MOYENNE(série) MOYENNE(série) NL GEMIDDELDE(série)
L ANALYSE EN COMPOSANTES PRINCIPALES (A.C.P.) Pierre-Louis GONZALEZ
L ANALYSE EN COMPOSANTES PRINCIPALES (A.C.P.) Pierre-Louis GONZALEZ INTRODUCTION Données : n individus observés sur p variables quantitatives. L A.C.P. permet d eplorer les liaisons entre variables et
Réseau SCEREN. Ce document a été numérisé par le CRDP de Bordeaux pour la. Base Nationale des Sujets d Examens de l enseignement professionnel.
Ce document a été numérisé par le CRDP de Bordeaux pour la Base Nationale des Sujets d Examens de l enseignement professionnel. Campagne 2013 Ce fichier numérique ne peut être reproduit, représenté, adapté
CHAPITRE V SYSTEMES DIFFERENTIELS LINEAIRES A COEFFICIENTS CONSTANTS DU PREMIER ORDRE. EQUATIONS DIFFERENTIELLES.
CHAPITRE V SYSTEMES DIFFERENTIELS LINEAIRES A COEFFICIENTS CONSTANTS DU PREMIER ORDRE EQUATIONS DIFFERENTIELLES Le but de ce chapitre est la résolution des deux types de systèmes différentiels linéaires
Session d accompagnement de la rénovation du BTSA GEMEAU Bordeaux, mai 2011. Atelier n 4. Formation en milieu professionnel EPREUVE E7- SPV/SPS
Session d accompagnement de la rénovation du BTSA GEMEAU Bordeaux, mai 2011 Atelier n 4 Formation en milieu professionnel EPREUVE E7- SPV/SPS L épreuve 7 permet d évaluer la capacité intégrative 10 du
Qu est-ce que le relevé de compte?
Qu est-ce que le relevé de compte? Le relevé de compte constitue la trace légale de toutes les opérations effectuées sur un compte bancaire. Ce document permet au titulaire d'un compte de connaître en
Compétence 2 : Comparer, ranger, encadrer des nombres, les placer sur une droite graduée
1/5 Compétence 2 : Comparer, ranger, encadrer des nombres, les placer sur une droite graduée Étape 1 : associer la droite graduée à deux objets du quotidien : la règle graduée ici, celle de l'enseignant
Sciences de Gestion Spécialité : SYSTÈMES D INFORMATION DE GESTION
Sciences de Gestion Spécialité : SYSTÈMES D INFORMATION DE GESTION Classe de terminale de la série Sciences et Technologie du Management et de la Gestion Préambule Présentation Les technologies de l information
Chapitre 3. Les distributions à deux variables
Chapitre 3. Les distributions à deux variables Jean-François Coeurjolly http://www-ljk.imag.fr/membres/jean-francois.coeurjolly/ Laboratoire Jean Kuntzmann (LJK), Grenoble University 1 Distributions conditionnelles
PRIME D UNE OPTION D ACHAT OU DE VENTE
Université Paris VII - Agrégation de Mathématiques François Delarue) PRIME D UNE OPTION D ACHAT OU DE VENTE Ce texte vise à modéliser de façon simple l évolution d un actif financier à risque, et à introduire,
Introduction à la Statistique Inférentielle
UNIVERSITE MOHAMMED V-AGDAL SCIENCES FACULTE DES DEPARTEMENT DE MATHEMATIQUES SMI semestre 4 : Probabilités - Statistique Introduction à la Statistique Inférentielle Prinemps 2013 0 INTRODUCTION La statistique
«Dire et écrire» pour réaliser une composition en travail collaboratif en géographie. Agnès Dullin, lycée J. Racine 20 rue du Rocher, 75008 Paris
«Dire et écrire» pour réaliser une composition en travail collaboratif en géographie Agnès Dullin, lycée J. Racine 20 rue du Rocher, 75008 Paris OBJECTIFS 1- Niveau et insertion dans la programmation 2-
Différentiabilité ; Fonctions de plusieurs variables réelles
Différentiabilité ; Fonctions de plusieurs variables réelles Denis Vekemans R n est muni de l une des trois normes usuelles. 1,. 2 ou.. x 1 = i i n Toutes les normes de R n sont équivalentes. x i ; x 2
Mises en relief. Information supplémentaire relative au sujet traité. Souligne un point important à ne pas négliger.
Cet ouvrage est fondé sur les notes d un cours dispensé pendant quelques années à l Institut universitaire de technologie de Grenoble 2, au sein du Département statistique et informatique décisionnelle
