Semaine 2 : Moteurs à combustion interne classiques, biomasse

Dimension: px
Commencer à balayer dès la page:

Download "Semaine 2 : Moteurs à combustion interne classiques, biomasse"

Transcription

1 Semaine 2 : Moteurs à combustion interne classiques, biomasse Objectifs pédagogiques Au cours de la deuxième semaine, nous poursuivons l application des réflexions de la semaine précédente aux moteurs à combustion interne classiques : turbines à gaz et moteurs alternatifs à essence, à gaz et diesel, ainsi qu aux installations de combustion de la biomasse. Quelques compléments sur la modélisation de la combustion dans Thermoptim sont pour cela nécessaires. Ils sont donnés en annexe 3. Les explorations dirigées de modèles portent sur les cycles suivants : - Cycle de turbine à gaz à régénération - Cycle de turbine à gaz à refroidissement intermédiaire - Turboréacteurs - Moteur alternatif à gaz A la fin de la semaine : - vous saurez calculer une combustion dans Thermoptim, en système aussi bien ouvert que fermé - vous connaîtrez les principales variantes des cycles de turbines à gaz - vous aurez étudié des cycles simplifiés des moteurs alternatifs à combustion interne - vous saurez identifier l'origine des irréversibilités et les axes d'amélioration des cycles moteurs Support de cours

2 27 3 Cycles de turbines à gaz et variantes 3.1 Turbine à gaz à combustion Dans le MOOC Modéliser et Simuler, pour simplifier les choses, nous n avons pas modélisé la combustion de la turbine à gaz, nous contentant de considérer que l air sortant du compresseur était porté à la température maximale du cycle dans une transfo de type échange. Pour remédier à cette simplification, nous utiliserons les notions de thermodynamique de la combustion qui sont présentées dans l annexe 3 relative aux combustions dans Thermoptim. Nous considérerons comme cycle de référence un cycle appelé cycle de Brayton (figure 3.1.1). Son paramétrage est le suivant : la température d entrée turbine vaut 1150 C, la haute pression 16 bar, et le compresseur et la turbine sont supposés avoir des rendements polytropiques égaux à 0,85. Figure : Cycle de turbine à gaz de référence Le rendement de ce cycle est égal à 35,8 %. Examinons les échanges de ce cycle de turbine à gaz avec ses sources externes en vue de déterminer où se situent les irréversibilités thermiques les plus importantes. Du côté de la source chaude, on brûle dans la chambre de combustion un combustible capable de produire des fumées à plus de 2000 C, mais, pour des raisons technologiques, on est obligé de limiter la température d entrée turbine en dessous de 1200 à 1400 C. Il n est pas possible de modifier le cycle à ce niveau. Du côté de la source froide, le rejet dans l atmosphère des gaz sortant de la turbine correspond à une très grande irréversibilité. Il est parfois possible de la réduire. 30/03/2017

3 Les gaz d échappement sortent ici à 533 C, alors que la température de l air sortant du compresseur est de 443 C. 3.2 Turbine à gaz à régénération Il est donc envisageable de réchauffer partiellement cet air avant entrée dans la chambre de combustion, ce qui réduit d autant la consommation de combustible. Il suffit pour cela d insérer un échangeur de chaleur entre les gaz d échappement et l air comprimé. Figure : Cycle de turbine à gaz à régénération On appelle cycle à régénération cette variante du cycle simple (figure 3.2.1). Figure : Synoptique du cycle de turbine à gaz à régénération

4 29 Comme le montre le synoptique de la figure 3.2.2, le rendement a augmenté et vaut maintenant 39,5 % au lieu de 35,8 %. Il est toutefois clair que la régénération ne peut être effectuée que si la température de sortie turbine est supérieure à la température de sortie compresseur, ce qui n est pas toujours le cas. Ce cycle fait l objet d une exploration dirigée (C-M2-V2). 3.3 Turbine à gaz à compression et détente fractionnées Une autre idée pour améliorer le cycle consiste à fractionner la compression ou la détente. Cette opération peut le cas échéant être répétée plusieurs fois. Figure : Cycle de turbine à gaz à compression fractionnée Examinons le cas d un cycle dit à refroidissement intermédiaire, dans lequel la compression est fractionnée (figure 3.3.1). En sortie du premier corps de compression, l air à 185 C est refroidi par échange avec l air extérieur à 15 C, ce qui permet de baisser sa température à 20 C. Il est alors recomprimé à la pression finale, le travail de compression étant plus faible. En revanche, comme la température de sortie du deuxième corps de compression a elle aussi baissé, il faut apporter plus de chaleur dans la chambre de combustion. Le bilan global reste cependant bénéfique. Il en résulte surtout une augmentation de la puissance et un tout petit gain de rendement (figure 3.3.2). Notez que la température de fin de compression étant beaucoup plus basse que dans le cycle simple (193 C au lieu de 442 C) une régénération complémentaire serait bénéfique. La difficulté est que la morphologie des turbines à gaz qui conduisent aux meilleures performances n'est généralement pas bien adaptée à un refroidissement intermédiaire, de telle sorte que cette solution est rarement employée 30/03/2017

5 Figure : Synoptique du cycle de turbine à gaz à refroidissement intermédiaire Ce cycle fait l objet d une exploration dirigée (C-M2-V3). Figure : Synoptique du cycle de turbine à gaz à combustion séquentielle

6 31 Il est en revanche souvent plus facile d'insérer une combustion séquentielle qu'un refroidissement intermédiaire, la chambre de combustion pouvant être de taille beaucoup plus petite qu'un échangeur de refroidissement. La figure montre une modélisation de turbine à gaz à combustion séquentielle. Il est possible de combiner les modifications précédentes en effectuant une compression biétagée avec refroidissement intermédiaire et une détente multiétagée avec combustion séquentielle, un régénérateur pouvant alors être employé. Le rendement augmente donc en conséquence, mais au prix d'une complexité accrue et d'un coût plus élevé. On s'écarte donc sensiblement de la simplicité initiale de la turbine à gaz. 3.4 Propulsion aéronautique Pendant longtemps, les avions ont été propulsés par des hélices entraînées par des moteurs à essence. Aujourd'hui encore, c'est la meilleure solution pour les petits avions de tourisme. Lorsque, pour de plus grands avions, l'hélice est conservée compte tenu de ses très bonnes performances, elle est souvent entraînée par un turbopropulseur utilisant une turbine à gaz à cycle ouvert. Cependant, les turboréacteurs ont supplanté les moteurs à hélice pour la propulsion de nombreux avions, dont la plupart des avions de ligne longs courriers. C'est par ailleurs le seul moteur qui convient pour les vols supersoniques, et il équipe à ce titre la plupart des avions militaires. Aux très grandes vitesses, ainsi que pour la propulsion des missiles longue portée, le turboréacteur atteint ses limites, et c'est le statoréacteur qui est utilisé, car il permet d'obtenir de très bons rendements. Toutefois, il ne peut fonctionner de manière autonome au décollage, qui doit alors être assuré par un turboréacteur ou par un moteur-fusée. Commençons par un petit complément de thermodynamique. Figure : Tube de courant 30/03/2017

7 Nous avons jusqu ici supposé que les variations d'énergie cinétique des fluides subissant des transformations sont négligeables. Dans les diffuseurs et les tuyères qui équipent les turboréacteurs, cette hypothèse n'est plus valable, l'effet utile étant obtenu en convertissant en énergie cinétique la pression du fluide. Pour des écoulements permanents absolus où la pression et les trois composantes de la vitesse sont supposées constantes dans le temps, et si le fluide est dépourvu de viscosité, la loi fondamentale des écoulements adiabatiques dans un repère fixe traduit la conservation de l'enthalpie totale h + K, et s'écrit, sur une ligne de courant (figure 3.4.1), C étant la vitesse du fluide : h + C 2 2 = Cste Il est possible de convertir en énergie cinétique l enthalpie d un fluide, et réciproquement Cette équation résulte simplement de la généralisation du 1 er principe avec prise en compte des énergies cinétiques. Un turboréacteur du type de ceux qui sont généralement utilisés dans l'aviation est une simple modification d'une turbine à gaz à cycle ouvert: la turbine est dimensionnée pour seulement entraîner le turbocompresseur (figure 3.4.2). Figure : Schéma d un turboréacteur En sortie de turbine, l'énergie excédentaire disponible dans les gaz à hautes pression et température est convertie en énergie cinétique dans une tuyère. La poussée résulte de la différence de quantité de mouvement entre l'air aspiré et les gaz rejetés. Je vous rappelle que la quantité de mouvement est le produit du débit-masse par la vitesse. Par définition, la poussée est égale à : F = m (C1 - C5) C1 étant la vitesse de l'avion, et C5 celle des gaz à la sortie de la tuyère. Le turboréacteur comporte de plus un diffuseur d'entrée, qui sert à créer une précompression d'origine statique en entrée du compresseur

8 33 Un turboréacteur se présente donc comme la combinaison d'un diffuseur, de ce qu on appelle un générateur de gaz et d'une tuyère. On parle de générateur de gaz car la fonction de l ensemble «compresseur, chambre de combustion et turbine» est de générer des gaz chauds et à pression supérieure à la pression ambiante, afin que ces gaz puissent ensuite être convertis en énergie cinétique dans la tuyère. Figure : Générateur de gaz Il est tout à fait possible de modéliser avec une bonne précision divers cycles de turboréacteurs avec Thermoptim (figure 3.4.4). Toutefois, les composants du noyau de Thermoptim ne suffisent pas pour réaliser de tels modèles : pour représenter le diffuseur d'entrée et la tuyère de sortie, il est nécessaire de faire appel à deux classes externes, c est-à-dire à deux extensions du Figure : Modélisation dans Thermoptim progiciel. Vous avez sans doute remarqué, sur la palette de Thermoptim, trois icônes comportant un grand E pour Externes, qui permettent de représenter à l'écran des transfos externes, des mélangeurs externes ou des diviseurs externes (figure 3.4.5). Figure : Composants externes dans Thermoptim Dans l éditeur de schémas, les transfos externes sont toutes représentées par le même composant graphique, mais leurs écrans peuvent être partiellement définis par leur concepteur en fonction de leurs caractéristiques. L écran de la tuyère 2 est donné figure Le point amont correspond à la sortie du générateur de gaz. Sa pression est ici de 2,4 bar environ, et sa température de 891 C /03/2017

9 Le point aval est à la pression ambiante de 0,265 bar car l avion est en altitude. Figure : Ecran de la tuyère La partie droite de l écran comprend les paramètres de la tuyère. Deux modes de calcul sont possibles : déterminer la pression de sortie connaissant la vitesse de sortie, ou bien comme ici déterminer la vitesse de sortie connaissant la pression de sortie. Les paramètres du modèle sont les suivants : la vitesse d'entrée du gaz (m/s), généralement faible le rendement isentropique de la transformation (ici 0,95)

10 35 et enfin soit la vitesse de sortie du gaz (m/s), soit la pression du gaz à la sortie de la tuyère, selon l'option de calcul choisie Le modèle dans Thermoptim d un turboréacteur simple est donné dans la figure Il fait aussi appel à un composant diffuseur 3 analogue à la tuyère. On peut dans un premier temps se contenter d'un modèle très simple, où l'on Figure : Modèle du turboréacteur fait l'hypothèse que l'on connaît le rapport de compression et le débit qui traverse la machine, ainsi que les rendements polytropiques ou isentropiques du compresseur et de la turbine. Le calcul du modèle ne pose alors aucun problème particulier. Une fois qu'il est paramétré, il devient possible de calculer les performances du moteur. La poussée spécifique, la puissance et la consommation rapportée à la poussée sont parmi les grandeurs les plus souvent utilisées pour cela. L'expression de la poussée est ici, en tenant compte de la variation du débit à travers le moteur du fait de l'injection de carburant : F = m0 C0 - m5 C5 La puissance W est égale au produit de la poussée par la vitesse de l'avion : W = F C0 Ce cycle fait l objet d une exploration dirigée (C-M2-V4) /03/2017

11 Un turboréacteur à double flux a un meilleur rendement que celui que nous venons d étudier et qui est appelé turboréacteur à simple flux. Il obtient ce résultat en accélérant à une vitesse à peine supérieure à celle de l'avion un débit d'air (appelé flux secondaire) complémentaire de celui qui traverse le générateur de gaz. Cette opération est rendue possible grâce à un compresseur additionnel à basse pression, appelé soufflante, entraîné lui aussi Figure : Turboréacteur à double flux par la turbine. On appelle rapport de dilution le rapport du débit secondaire au débit primaire. Il peut atteindre 10 pour certains turboréacteurs. La propulsion est alors assurée par un grand débit d'air à faible vitesse et un petit débit des gaz de combustion issus du cycle primaire classique. Il est possible de modéliser avec Thermoptim des turboréacteurs à double flux, à taux de dilution faible ou fort (figure 3.4.9). Il faut scinder en deux le flux d'air entrant dans le moteur, en sortie du diffuseur. Une partie est dirigée vers la chambre de combustion, puis vers deux turbines en cascade, l'une équilibrée avec le compresseur du moteur, et l'autre avec celui de la soufflante, comme le montre le synoptique de la figure Deux tuyères permettent alors de calculer la vitesse des gaz éjectés, et donc la poussée du moteur. Figure : Synoptique du turboréacteur à double flux

12 37 4 Moteurs alternatifs à combustion interne 4.1 Mode général de fonctionnement Intéressons- nous maintenant aux moteurs alternatifs à combustion interne à essence, à gaz et diesel, que nous n avons pas encore étudiés compte tenu des difficultés de modélisation qu ils présentent. Nous allons maintenant pouvoir expliquer pourquoi. Figure : Principe de fonctionnement d un moteur alternatif à combustion interne Tous les moteurs alternatifs à combustion interne fonctionnent suivant le même processus général décrit schématiquement dans la figure Un volume variable est délimité par un cylindre, l'une de ses bases qui est fixe, appelée culasse, et l'autre qui est un piston mobile dans l'alésage du cylindre, entraîné par un système bielle-manivelle. Le système piston-bielle-vilebrequin permet de transformer le mouvement alternatif du piston en mouvement de rotation de l arbre du moteur (figure 4.1.2). 30/03/2017

13 Figure : Système piston-bielle-vilebrequin Dans un moteur à quatre temps, les organes qui commandent le refoulement ou l'admission sont des soupapes actionnées par des poussoirs couplés à l'arbre moteur par un arbre à cames (figure 4.1.3). De diverses manières, selon qu'il s'agit d'un moteur à deux ou à quatre temps, on fait en sorte, dans la phase d'admission, que du gaz frais à la pression atmosphérique soit introduit dans le cylindre. Dans les moteurs à essence ou à gaz classiques, il s agit d un mélange combustible formé au préalable, et dans les moteurs Diesel il s agit d air pur. Le piston étant à une certaine distance du fond du cylindre, l'orifice d'admission est fermé, le volume V compris entre le piston et le fond étant occupé par une certaine charge de gaz frais (figure 4.1.1). Figure : Entraînement des soupapes Le piston, en se rapprochant du fond du cylindre, comprime cette charge dans le volume v de la chambre de combustion, c'est-à-dire l'espace restant lorsque le piston atteint la fin de sa course, appelé point mort haut ou PMH. Cette compression est sensiblement adiabatique et s'effectue sans frottements internes appréciables. Le facteur essentiel de fonctionnement est le rapport de compression volumétrique rho = V/v, caractéristique géométrique du cylindre. La réaction de combustion est alors déclenchée, soit par allumage local du mélange dans les moteurs à essence ou à gaz, soit par injection du combustible dans l'air comprimé

14 39 pour les moteurs diesel. La combustion se produit pendant un temps relativement court, alors que le piston poursuit sa course. En pratique, elle s'effectue selon un mode intermédiaire entre la combustion à volume constant et la combustion à pression constante. Le piston continuant à s'éloigner du fond du cylindre, les gaz brûlés se détendent jusqu'à la fin de la course appelée point mort bas ou PMB, puis sont évacués et remplacés par une nouvelle charge de gaz frais. Une différence importante entre un moteur à essence et un moteur diesel réside non dans le mode d'introduction du combustible, qui, dans certains moteurs à essence, est aussi injecté, mais dans le moment où le combustible est introduit, qui détermine la nature des gaz lorsque la réaction se déclenche. Les parois latérales et les fonds de cylindre des moteurs alternatifs sont toujours refroidis énergiquement, le plus souvent par circulation d'eau dans des évidements de la paroi, et parfois dans des moteurs de petite puissance par des ailettes extérieures très développées soumises à un courant d'air violent (figure 4.1.4). Dans un moteur à essence, le combustible est introduit suffisamment à l'avance pour que, lorsque l'allumage se Figure : Refroidissement du moteur produit, le cylindre soit rempli d'un mélange sensiblement homogène. Dans le moteur diesel, le combustible est injecté au dernier moment, et brûle au fur et à mesure de son introduction (figure 4.1.5). 30/03/2017

15 Dans les cycles à quatre temps, les plus répandus, le fond du cylindre est percé de deux orifices, contrôlés par des soupapes commandées, qui le mettent en communication avec les enceintes d'admission et d'échappement L'évolution de la pression et du volume massique des gaz dans le cylindre est souvent représentée dans le diagramme de Watt donnant la pression du fluide en ordonnée en fonction du volume du cylindre en abscisse. À la fin de la détente en 3, la soupape d'échappement s'ouvre, la pression tombe à la pression atmosphérique, et le piston effectue une course complète vers le haut, chassant ainsi les gaz brûlés. Quand il atteint le PMH, en 5, la soupape d'échappement se ferme, et celle d'admission s'ouvre. En s'éloignant, le piston aspire une charge de gaz frais. En 4, au PMB, la soupape d'admission se ferme, et la compression 4-1 commence, suivie de la combustion 1-2 et de la détente 2-3. Il s'agit donc d'un cycle à quatre courses simples, d'où le nom de moteur à quatre temps. Figure : Moteur à 4 temps Comme on le voit, le fonctionnement de ces moteurs est beaucoup plus complexe que celui d une turbine à gaz, de telle sorte que leur modélisation n est pas aussi simple. 4.2 Cycles théoriques et réels Dans sa forme classique, l'étude élémentaire des cycles est basée sur des approximations assez grossières : le fluide de travail est assimilé à de l'air pur, et luimême à un gaz parfait, et les transformations sont considérées comme parfaites. Figure : Diagramme de Watt Nous ne mentionnerons ici que les cycles idéaux. Précisons que les analyses de ces cycles excluent les phases d'admission et d'échappement des cycles réels. Comme nous venons de le voir, le fonctionnement de ces moteurs alterne des phases en système fermé (soupapes fermées) et en système ouvert (admission et échappement), ce qui a pour effet de compliquer leur analyse. Leur représentation dans un diagramme

16 41 thermodynamique est loin d être aussi simple que celle des autres cycles que nous avons étudiés Cycle de Beau de Rochas En première approximation, le fonctionnement des moteurs à essence ou à gaz peut être représenté par le cycle dit de Beau de Rochas, qui se réduit à quatre évolutions simples représentées sur cette figure dans le diagramme de Watt d un cylindre (figure 4.2.1). La première phase est une compression adiabatique réversible 4-1 ; Cette phase de compression en système fermé commence après la fermeture des soupapes d admission et se termine avant l allumage. La deuxième phase est une combustion à volume constant 1-2 ; Déclenchée en fin de compression, au Figure : Cycle de Beau de Rochas moment où la vitesse du piston s'annule, la combustion en système fermé est supposée suffisamment rapide pour être considérée comme instantanée, et donc à volume constant. La troisième phase est une détente adiabatique réversible 2-3 ; Cette détente en système fermé commence à la fin de la combustion et se termine avant l ouverture des soupapes d échappement. Figure : Synoptique de moteur à gaz industriel Enfin, la quatrième phase est un refroidissement à volume constant 3-4. En fin de détente, l'ouverture des soupapes d'échappement fait chuter brutalement la pression dans le cylindre. 30/03/2017

17 On fait ici l'hypothèse que la vidange est instantanée. La figure montre un exemple de modélisation d un tel cycle pour un moteur à gaz industriel. Ce cycle fait l objet d une exploration dirigée (C-M2-V5- b). Voici pour le moment quelques indications sur son paramétrage. Le paramétrage de la compression est le suivant : système fermé, avec un rapport de compression imposé et un rendement Figure : Paramétrage de la compression isentropique égal à 0,8 (figure 4.2.3). Le paramétrage de la chambre de combustion est différent de celui que nous avons considéré pour la turbine à gaz. La combustion a lieu en système fermé, le débit de combustible est imposé et le volume massique aval est imposé par le point amont (figure 4.2.4). Figure : Paramétrage de la combustion Compte tenu du fort refroidissement du moteur, nécessaire pour des raisons technologiques, le rendement de la chambre de combustion vaut 0,75, ce qui signifie que 25 % de la puissance thermique est perdue.

18 43 La détente est modélisée par deux transfos détente, la première, en système fermé, correspond à la phase de détente dans le cylindre, les soupapes étant fermées (figure 4.2.5). Comme pour la compression, le rapport de détente est imposé, et un rendement isentropique de 0,8 est pris en compte. En fin de cette détente, les soupapes d échappement sont ouvertes, et la détente se poursuit selon la même loi adiabatique, jusqu à la pression atmosphérique. Elle se déroule cette fois en système ouvert, et sans production de travail, ce qui justifie que le type d énergie choisi soit «autre». Figure : Paramétrage de la détente en système fermé Figure : Paramétrage de la détente en système ouvert Cycle de Diesel La différence fondamentale entre le cycle diesel et le cycle de Beau de Rochas est le remplacement de la combustion à volume constant par une combustion à pression constante, comme le montre ce diagramme de Watt (figure 4.2.7). 30/03/2017

19 On fait ici l'hypothèse, surtout valable pour les moteurs lents, que l'expansion des gaz due à la combustion vient, en terme de pression, exactement compenser la détente due à la course du piston. Le modèle de la figure représente un tel cycle, avec un taux de compression volumétrique de 20 au lieu de 15. Les performances sont meilleures que celles du moteur à gaz suivant le cycle de Beau de Rochas, mais le gain provient principalement de l élévation du taux de compression. En réalité, qu il s agisse d un moteur à essence ou diesel, la Figure : Cycle de Diesel combustion ne se fait ni à volume constant ni à pression constante, mais se présente comme indiqué sur le diagramme de cette figure. Cette différence découle essentiellement de la très grande vitesse de rotation de la plupart de ces moteurs. Figure : Synoptique de moteur diesel Les modèles de Beau de Rochas et diesel à pression constante que nous avons présentés s écartent donc beaucoup de la réalité. Une meilleure approximation peut être obtenue en considérant que la combustion se déroule en trois étapes : elle commence à volume constant, se poursuit à pression constante et se termine à température constante. Toutefois ce modèle est lui aussi critiquable. Il en résulte que, à la différence des évolutions fonctionnelles que nous avons étudiées jusqu ici, la combustion dans les moteurs alternatifs à combustion interne fait appel à au moins trois évolutions de référence, ce qui en rend l analyse thermodynamique beaucoup plus complexe.

20 45 Figure : Synoptique de moteur avec combustion se déroule en trois étapes Cet exemple souligne le fait important que les fonctions des composants peuvent différer de leur configuration géométrique. Dans le cas des moteurs alternatifs à combustion interne (essence ou diesel), le même ensemble de pièces (le cylindre et le piston) joue successivement le rôle de compresseur, de chambre de combustion puis d'organe de détente. La représentation fonctionnelle d'un tel système amène à connecter entre eux trois éléments représentant ces différentes fonctions. Cette figure montre un modèle Thermoptim détaillé de moteur diesel. Il fait apparaître la combustion en trois étapes, le refroidissement du moteur, et la recirculation d une partie des gaz brûlés due à la présence de l espace mort dans les cylindres. Ce type de cycle est trop complexe pour être analysé dans le cadre de ce cours, mais une piste d approfondissement sur ce sujet vous est proposée. 5 Utilisation énergétique de la biomasse Généralités On appelle biomasse l'ensemble des matériaux organiques, d'origine principalement végétale, naturelle ou cultivée, terrestre ou marine, provenant de la conversion chlorophyllienne de l'énergie solaire, à l'exclusion des combustibles fossiles. La biomasse est principalement composée de lignine (C40H44O6) (25 %), et de carbohydrates Cn(H2O)m (cellulose C6H10O5 et hemicellulose) (75 %). La combustion à une température de l ordre de C est le mode de conversion le plus ancien et sans doute le plus employé, tant pour les utilisations domestiques qu industrielles. Son rendement est bon dans la mesure où le combustible est riche en glucides structurés (cellulose et lignine) et surtout suffisamment sec, c est-à-dire d humidité inférieure à 35 %. 30/03/2017

21 La co-combustion consiste à brûler simultanément un combustible fossile, généralement du charbon, et une biomasse (jusqu à 15 %), afin de réduire, dans une chaudière existante, la quantité de combustible initial. Le rapport C/N se définit comme celui des quantités de carbone et d azote contenus dans la biomasse. Il varie de 10 à 100 environ. La pyrolyse permet de convertir une biomasse relativement sèche (humidité inférieure à 10 %) et de rapport C/N supérieur à 30 en divers combustibles à haut pouvoir calorifique inférieur PCI, stockables sous forme gazeuse, liquide et solide (charbon de bois). Elle se déroule à des températures comprises entre 400 et 800 C, et peut se faire selon plusieurs modes. La gazéification de la biomasse à une température de 800 C à C est obtenue en réalisant une combustion en défaut d air comportant schématiquement deux grandes étapes : une pyrolyse produisant des phases gazeuse, liquide et solide, suivie de la gazéification proprement dite de ces deux dernières phases. Elle produit un gaz dit «pauvre», du fait de son faible pouvoir calorifique (1 kwh/m3 contre 10 kwh m3 pour du méthane). En remplaçant l air par de l oxygène, on obtient un gaz de synthèse (CO + H2) utilisable pour la fabrication du méthanol. Dans un gazéifieur, le combustible commence par être séché, puis il est pyrolysé. Les produits gazeux sont ensuite brûlés à haute température, dégageant de la chaleur dont une partie est utilisée par les deux étapes précédentes. Les gaz brûlés sont alors remis en contact avec la phase solide issue de la pyrolyse et avec l eau provenant du séchage, ce qui suscite une réaction de réduction qui conduit à la formation d un gaz de synthèse riche en CO et H2, dont le PCI est voisin de 70 à 75 % de celui de la biomasse d origine. Pour pouvoir simuler une chaudière ou un gazéifieur à co-courant, nous avons mis au point un modèle simplifié, dans lequel il est possible de faire varier avec une assez grande souplesse la composition et l'humidité du combustible ainsi que les conditions de la combustion. La classe externe dans laquelle il est implémenté s appelle BiomassCombustion. Ce modèle est très sommaire comparativement à ceux qui sont actuellement étudiés dans les laboratoires de recherche, notamment dans sa représentation des phénomènes de pyrolyse. Figure : Gazéifieur à cocourant Son principal intérêt est de permettre à des utilisateurs de Thermoptim d'aborder l'étude des conversions thermochimiques de la biomasse et de l'insertion de gazéifieurs ou chambres de combustion dans des systèmes complets.

22 47 Afin de simplifier l'écriture du modèle, nous avons pris le parti d'utiliser les fonctions de calcul de combustion déjà présentes dans Thermoptim, en nous contentant de rajouter les équations correspondant aux réactions que le progiciel ne prend pas en compte Les principaux paramètres qui influencent la combustion de la biomasse sont les suivants : - en premier lieu, bien évidemment, la composition du combustible ; - en second lieu, son humidité, qui d'une part détermine l'enthalpie nécessaire au séchage, d'autre part joue sur la composition des gaz, et enfin influence la dissociation du CO2 ; - enfin, la température de figeage et le taux de dissociation du CO2. Le modèle est un mélangeur externe, qui reçoit en entrée le gaz sec, son humidité et le comburant. Figure : Structure du modèle Les gaz brûlés se retrouvent en sortie. Les espèces non présentes dans Thermoptim (ammoniac et carbone) sont définies dans l écran du mélangeur Combustion en défaut d'air La figure montre l'écran du composant permettant de modéliser un gazéifieur. Dans le cas présenté, on fait l'hypothèse que le combustible comprend 0,634 % d'ammoniac et 10,5 % de carbone rapportés à la masse sèche, que la température de figeage est égale à 900 C, et que 50 % de l'humidité participe à la combustion. Bien évidemment, les débits de combustible, d'eau et de comburant en entrée jouent un rôle fondamental car leurs rapports influencent directement la composition du gaz de synthèse qui est donnée figure /03/2017

23 Figure : Ecran du composant Les éléments combustibles sont le monoxyde de carbone CO et l hydrogène, dont la fraction molaire est respectivement 12,9 % et 16,3 % Figure : Composition du gaz de synthèse Combustion en excès d'air Dans cet exemple simulant une chaudière brûlant de la biomasse, la combustion est réalisée en excès d'air. La figure montre l'écran du composant permettant de modéliser la combustion de la biomasse. Dans le cas présenté, on fait comme précédemment l'hypothèse que le combustible comprend 0,634 % d'ammoniac et 10,5 % de carbone rapportés à la masse sèche, que la température de figeage est égale à 900 C. On suppose en revanche que toute l'humidité participe à la combustion, et que le taux de dissociation du CO2 vaut 0,05, alors que sa valeur était auparavant calculée. Dans l écran du composant, outre les valeurs relatives au gaz brûlés (débit, température, enthalpie), les grandeurs affichées sont le facteur d'air lambda et le taux de dissociation du CO2

24 49 Figure : Ecran du composant On considère un débit de 1,25 g/s de combustible sec, de composition donnée dans cette figure, d'humidité 50 % en masse, le débit d'eau étant lui aussi de 1,25 g/s. Ce combustible est brûlé avec 10 g/s d'air sec, conduisant à un facteur d'air lambda = 1,23. Figure : Composition du combustible de biomasse sec (PCI : 17,2 MJ/kg) La composition des gaz brûlés est donnée figure Figure : Composition des gaz brûlés (PCI : 0,15 MJ/kg) 30/03/2017

25 Annexe 3 : Compléments sur Thermoptim : combustion La plupart des combustibles sans cendres sont des hydrocarbures. En négligeant les traces d azote et de soufre, leur molécule comporte essentiellement des atomes de carbone C et d hydrogène H ainsi qu un peu d oxygène O. En ramenant la formulation à un atome de carbone, la formule générale d un combustible est donc C Hy Ox. Comme la condition x y/2 est toujours vérifiée, on peut considérer que la formule C Hy Ox devient : CHa + x H2O a représente ainsi ce qu il est convenu d appeler l hydrogène disponible pour la combustion rapporté à l oxydation complète du carbone unitaire. L eau contenue dans le combustible ne participe pas à la réaction de combustion. Elle se retrouve dans les fumées. La combustion complète d'un combustible de formule CHa avec de l oxygène pur serait régie par cette équation : il faut 1 molécule d oxygène pour former CO2, et a/4 molécules d oxygène pour former a/2 H2O. C Ha + (1 + a 4 ) O2 CO2 + a 2 H2O Toutefois, dans les systèmes énergétiques, les combustions sont presque toujours réalisées avec de l'air comme comburant. L air sec ayant comme composition volumique approchée 79 % d azote et 21 % d oxygène, le rapport azote/oxygène vaut 79/21 = 3,76. C est pourquoi l air peut être représenté par la formulation O2 + 3,76 N2. La combustion complète avec l'air d'un combustible de formule CHa est donc régie par cette équation. C Ha + (1 + a 4 ) (O2+ 3,76 N2) CO2 + a 2 H2O + 3,76 (1 + a 4 )N2 On appelle combustion stœchiométrique une combustion réalisée avec la quantité exacte de comburant permettant de complètement oxyder le combustible. C'est celle qui conduit à la température de fin de combustion la plus élevée. Nous la considérerons comme combustion de référence. Cette équation signifie que la combustion stœchiométrique d une mole de combustible CHa nécessite (1 + a/4) moles de dioxygène et produit 1 mole de dioxyde de carbone et a/2 moles d eau.

26 125 Si le comburant est l'air, 3,76 (1 + a/4) moles d azote sont aussi mises en jeu, mais, comme elles ne réagissent pas avec le combustible, elles se retrouvent dans les gaz brûlés. On dit que l azote reste inerte. Lorsque la combustion est non stœchiométrique, elle peut être caractérisée de plusieurs manières : Soit par l'excès d'air e, qui comme son nom l'indique, représente la quantité d'air en excès Soit par le facteur d'air, qui est égal à 1 + l excès d air Soit par la richesse R, rapport du nombre de moles (ou de la masse) de combustible contenu dans une quantité déterminée de mélange, au nombre de moles (ou à la masse) de combustible dans le mélange stœchiométrique. R = 1 correspond au mélange stœchiométrique, R < 1 à un excès d'air, et R > 1 à un excès de combustible Ces trois grandeurs sont reliées par les relations simples : 1 R = 1 + e et = 1 + e = 1 R Nous utiliserons préférentiellement dans ce cours, car c est le terme multiplicateur de l'air dans l'équation de la combustion Si est supérieur à 1, c est-à-dire en excès d'air, la combustion complète avec l'air d'un combustible de formule CHa est régie par cette équation : C Ha + (1 + a 4 ) (O2+ 3,76 N2) CO2 + a 2 H2O + ( -1) (1 + a 4 ) O2 + 3,76 (1 + a 4 )N2 Thermoptim utilise une généralisation de cette équation pour des combustibles plus complexes que CHa. La comparaison de ces deux équations permet de comprendre ce qui se passe lorsque l air est disponible en excès. Le combustible réagit avec l oxygène comme dans la réaction stœchiométrique, et tout l air en excès se retrouve sans réagir dans les gaz brûlés. est le terme qui multiplie le nombre de moles d'air dans l'équation de la combustion Pour = 1, la réaction est stœchiométrique Lors d'une combustion, le maximum de dégagement d'énergie est obtenu lorsque l'eau contenue dans les fumées est suffisamment refroidie pour se retrouver liquéfiée, ce qui impose que leur température soit très basse. La valeur de la chaleur de réaction complète prend alors le nom de pouvoir calorifique supérieur, ou PCS. 30/03/2017

27 Dans le cas le plus général où toute l'eau produite reste à l'état de vapeur, on lui donne le nom de pouvoir calorifique inférieur ou PCI. Les chaudières à condensation sont celles où l'eau contenue dans les fumées est liquéfiée Dans Thermoptim, une transfo combustion est représentée par un composant chambre de combustion comportant deux transfos en entrée, d une part le comburant, ici de l air en sortie de compresseur, connecté sur le port bleu, et d autre part le combustible connecté sur le port rouge (figure A3.1). Les gaz brûlés en sortent par le port vert, ici connecté à la turbine. La composition du combustible est définie dans le point aval de la Figure A3.1 : Modèle de chambre de combustion transfo «combustible», dont le corps doit être un gaz pur ou composé. Celle du gaz naturel de Montoir de Bretagne est affichée figure A3.2. Figure A3.2 : Déclaration du combustible L'écran d'une combustion comporte de nombreux paramètres (figure A3.3). Les trois principaux modes de calcul sont les suivants : L'option "Calculer lambda" détermine le facteur d'air lambda ( 1), à partir de la valeur de la température de fin de combustion Tc imposée. L'option "Calculer T" détermine Tc à partir de la valeur de lambda imposée. Dans les deux cas, le débit de la transfo "combustible" est ajusté pour que le rapport entre les débits volumiques de comburant et de combustible soit égal au facteur d'air. L'option "Imposer le débit de combustible" détermine lambda et Tc à partir des caractéristiques du combustible et du comburant. Le débit masse de la transfo en cours d'évaluation (la combustion) est quant à lui égal à la somme des débits de combustible et de comburant, ce qui signifie que la transfo combustion se comporte, sur le plan hydraulique, comme un mélangeur de débits.

28 127 Figure A3.3 : Ecran d une transfo combustion Pour les autres paramétrages, lorsque la combustion a lieu en système ouvert, on choisit généralement la pression imposée par le point amont, ce qui signifie que la chambre de combustion est isobare. Figure A3.4 : Ecran d une transfo combustion avec dissociation 30/03/2017

29 Pour une utilisation simple de Thermoptim, ces paramétrages suffisent. Nous avons supposé dans ce qui précède que la combustion était complète, alors qu il arrive que ce ne soit pas le cas, notamment à haute température, et que des imbrûlés apparaissent dans les fumées. On parle alors de dissociation. Si, partant d'une telle situation, on baisse progressivement la température du milieu réactif, on constate qu'à partir d'un certain seuil sa composition se stabilise et ne varie plus. On dit qu'il y a figeage de la réaction et on appelle température de figeage la valeur de ce seuil. Thermoptim peut prendre en compte ce phénomène lorsque le mode dissociation est coché, et si on lui indique d une part le taux de dissociation du CO2 en CO, et d autre part la valeur de la température de figeage (figure A3.4). Dans cet exemple, le taux de dissociation du CO2 en CO a été fixé à 5 %, et la valeur de la température de figeage à 900 C. Figure A3.5 : Composition des fumées sans dissociation L impact de ce changement de paramétrage sur la composition des fumées est illustré par les figures A3.5 et A3.6 : du monoxyde de carbone CO et de l hydrogène H2 apparaissent en cas de dissociation. Figure A3.6 : Composition des fumées avec dissociation

PRINCIPE DE FONCTIONNEMENT DU MOTEUR 4 TEMPS

PRINCIPE DE FONCTIONNEMENT DU MOTEUR 4 TEMPS PRINCIPE DE FONCTIONNEMENT DU MOTEUR 4 TEMPS I:PRINCIPE DE BASE. 1-1:Situation problème. Lorsque nous voulons déplacer un véhicule manuellement, il est plus facile de le déplacer en créant une force sur

Plus en détail

ÉJECTEURS. CanmetÉNERGIE Juillet 2009

ÉJECTEURS. CanmetÉNERGIE Juillet 2009 ÉJECTEURS CanmetÉNERGIE Juillet 2009 ÉJECTEURS 1 ÉJECTEURS INTRODUCTION Les éjecteurs sont activés par la chaleur perdue ou la chaleur provenant de sources renouvelables. Ils sont actionnés directement

Plus en détail

Réduction de la pollution d un moteur diesel

Réduction de la pollution d un moteur diesel AUBERT Maxime SUP B Professeur accompagnateur : DELOFFRE Maximilien SUP B Mr Françcois BOIS PAGES Simon SUP E Groupe n Réduction de la pollution d un moteur diesel Introduction L Allemand Rudolf Diesel

Plus en détail

T.I.P.E. Optimisation d un. moteur

T.I.P.E. Optimisation d un. moteur LEPLOMB Romain Année universitaire 2004-2005 LE ROI Gautier VERNIER Marine Groupe Sup B, C, D Professeur accompagnateur : M. Guerrier T.I.P.E Optimisation d un moteur 1 1. Présentation du fonctionnement

Plus en détail

Le turbo met les gaz. Les turbines en équation

Le turbo met les gaz. Les turbines en équation Le turbo met les gaz Les turbines en équation KWOK-KAI SO, BENT PHILLIPSEN, MAGNUS FISCHER La mécanique des fluides numérique CFD (Computational Fluid Dynamics) est aujourd hui un outil abouti de conception

Plus en détail

I. Introduction: L énergie consommée par les appareils de nos foyers est sous forme d énergie électrique, facilement transportable.

I. Introduction: L énergie consommée par les appareils de nos foyers est sous forme d énergie électrique, facilement transportable. DE3: I. Introduction: L énergie consommée par les appareils de nos foyers est sous forme d énergie électrique, facilement transportable. Aujourd hui, nous obtenons cette énergie électrique en grande partie

Plus en détail

SOLUTIONS TECHNOLOGIQUES D AVENIR

SOLUTIONS TECHNOLOGIQUES D AVENIR CPTF et CSC CYCLES COMBINES A GAZ (CCG) COGÉNÉRATION DÉVELOPPEMENT DES RENOUVELABLES SOLUTIONS DE STOCKAGE CPTF ET CSC Le parc thermique est un outil essentiel pour ajuster l offre et la demande, indispensable

Plus en détail

L offre DualSun pour l eau chaude et le chauffage (SSC)

L offre DualSun pour l eau chaude et le chauffage (SSC) L offre DualSun pour l eau chaude et le chauffage (SSC) SSC signifie : Système Solaire Combiné. Une installation SSC, est une installation solaire qui est raccordée au circuit de chauffage de la maison,

Plus en détail

L énergie sous toutes ses formes : définitions

L énergie sous toutes ses formes : définitions L énergie sous toutes ses formes : définitions primaire, énergie secondaire, utile ou finale. Quelles sont les formes et les déclinaisons de l énergie? D après le dictionnaire de l Académie française,

Plus en détail

Production d eau chaude sanitaire thermodynamique, que dois-je savoir?

Production d eau chaude sanitaire thermodynamique, que dois-je savoir? COURS-RESSOURCES Production d eau chaude sanitaire thermodynamique, que Objectifs : / 1 A. Les besoins en eau chaude sanitaire La production d'eau chaude est consommatrice en énergie. Dans les pays occidentaux,

Plus en détail

4 ème PHYSIQUE-CHIMIE TRIMESTRE 1. Sylvie LAMY Agrégée de Mathématiques Diplômée de l École Polytechnique. PROGRAMME 2008 (v2.4)

4 ème PHYSIQUE-CHIMIE TRIMESTRE 1. Sylvie LAMY Agrégée de Mathématiques Diplômée de l École Polytechnique. PROGRAMME 2008 (v2.4) PHYSIQUE-CHIMIE 4 ème TRIMESTRE 1 PROGRAMME 2008 (v2.4) Sylvie LAMY Agrégée de Mathématiques Diplômée de l École Polytechnique Les Cours Pi e-mail : lescourspi@cours-pi.com site : http://www.cours-pi.com

Plus en détail

Présentation générale des principales sources d énergies fossiles.

Présentation générale des principales sources d énergies fossiles. Présentation générale des principales sources d énergies fossiles. Date : 19/09/2012 NOM / Name SIGNATURE Etabli / Prepared Vérifié / Checked Approuvé /Approved G J-L & R-SENE R.SENE R.SENE Sommaire 1.

Plus en détail

CORRIGE. CHAP 04-ACT PB/DOC Electrolyse de l eau 1/12 1. ALIMENTATION ELECTRIQUE D'UNE NAVETTE SPATIALE

CORRIGE. CHAP 04-ACT PB/DOC Electrolyse de l eau 1/12 1. ALIMENTATION ELECTRIQUE D'UNE NAVETTE SPATIALE Thème : L eau CHAP 04-ACT PB/DOC Electrolyse de l eau 1/12 Domaine : Eau et énergie CORRIGE 1. ALIMENTATION ELECTRIQUE D'UNE NAVETTE SPATIALE 2.1. Enoncé L'alimentation électrique d'une navette spatiale

Plus en détail

LE CHAUFFAGE. Peu d entretien. Entretien. fréquent. Peu d entretien. Pas d entretien. Pas d entretien. Entretien. fréquent. Peu d entretien.

LE CHAUFFAGE. Peu d entretien. Entretien. fréquent. Peu d entretien. Pas d entretien. Pas d entretien. Entretien. fréquent. Peu d entretien. LE CHAUFFAGE 1. LE CHAUFFAGE ELECTRIQUE Le chauffage électrique direct ne devrait être utilisé que dans les locaux dont l isolation thermique est particulièrement efficace. En effet il faut savoir que

Plus en détail

NOTIONS FONDAMENTALES SUR LES ENERGIES

NOTIONS FONDAMENTALES SUR LES ENERGIES CHAPITRE 1 NOTIONS FONDAMENTALES SUR LES ENERGIES 1 suite Chapitre 1 : NOTIONS FONDAMENTALES SUR LES ENERGIES 1.1 Généralités 1.2 L'énergie dans le monde 1.2.1 Qu'est-ce que l'énergie? 1.2.2 Aperçu sur

Plus en détail

U-31 CHIMIE-PHYSIQUE INDUSTRIELLES

U-31 CHIMIE-PHYSIQUE INDUSTRIELLES Session 200 BREVET de TECHNICIEN SUPÉRIEUR CONTRÔLE INDUSTRIEL et RÉGULATION AUTOMATIQUE E-3 SCIENCES PHYSIQUES U-3 CHIMIE-PHYSIQUE INDUSTRIELLES Durée : 2 heures Coefficient : 2,5 Durée conseillée Chimie

Plus en détail

C3. Produire de l électricité

C3. Produire de l électricité C3. Produire de l électricité a. Electricité : définition et génération i. Définition La matière est constituée d. Au centre de l atome, se trouve un noyau constitué de charges positives (.) et neutres

Plus en détail

Chapitre 1 : Qu est ce que l air qui nous entoure?

Chapitre 1 : Qu est ce que l air qui nous entoure? Chapitre 1 : Qu est ce que l air qui nous entoure? Plan : 1. Qu est ce que l atmosphère terrestre? 2. De quoi est constitué l air qui nous entoure? 3. Qu est ce que le dioxygène? a. Le dioxygène dans la

Plus en détail

MOTEURS A DEUX TEMPS Comment fonctionnent-ils?

MOTEURS A DEUX TEMPS Comment fonctionnent-ils? MOTEURS A DEUX TEMPS Comment fonctionnent-ils? Ce n est pas un hasard si, en modélisme, les moteurs à deux temps sont utilisés dans 95% des cas. Le deux temps est un moteur très simple quant à sa composition;

Plus en détail

Annexe 3 Captation d énergie

Annexe 3 Captation d énergie 1. DISPOSITIONS GENERALES 1.a. Captation d'énergie. Annexe 3 Captation Dans tous les cas, si l exploitation de la ressource naturelle est soumise à l octroi d un permis d urbanisme et/ou d environnement,

Plus en détail

Premier principe : bilans d énergie

Premier principe : bilans d énergie MPSI - Thermodynamique - Premier principe : bilans d énergie page 1/5 Premier principe : bilans d énergie Table des matières 1 De la mécanique à la thermodynamique : formes d énergie et échanges d énergie

Plus en détail

MODELISATION DE LA COMBUSTION D'UN MOTEUR A ESSENCE

MODELISATION DE LA COMBUSTION D'UN MOTEUR A ESSENCE MODELISATION DE LA COMBUSTION D'UN MOTEUR A ESSENCE Master 2 ème année MNPM Participants : Stéphane BARBE Hamida BEN ABDEL JAOUED Mohd Arieff HAMZAH Guanchen LI Encadrés par : Manuel OFIALA Makhmout DIOUARA

Plus en détail

Premier principe de la thermodynamique - conservation de l énergie

Premier principe de la thermodynamique - conservation de l énergie Chapitre 5 Premier principe de la thermodynamique - conservation de l énergie 5.1 Bilan d énergie 5.1.1 Énergie totale d un système fermé L énergie totale E T d un système thermodynamique fermé de masse

Plus en détail

Variantes du cycle à compression de vapeur

Variantes du cycle à compression de vapeur Variantes du cycle à compression de vapeur Froid indirect : circuit à frigoporteur Cycle mono étagé et alimentation par regorgement Cycle bi-étagé en cascade Froid direct et froid indirect Froid direct

Plus en détail

ProSimPlus HNO3 Résumé des nouvelles fonctionnalités, décembre 2008

ProSimPlus HNO3 Résumé des nouvelles fonctionnalités, décembre 2008 ProSimPlus HNO3 Résumé des nouvelles fonctionnalités, décembre 2008 Cette page présente un résumé des derniers développements effectués dans le logiciel ProSimPlus HNO3. Ceux-ci correspondent à de nouvelles

Plus en détail

Les véhicules La chaîne cinématique

Les véhicules La chaîne cinématique Un peu d histoire 1862 : M. BEAU DE ROCHAS invente le cycle à 4 temps 1864 : premier moteur à 4 temps, par M.OTTO 1870 : industrialisation de la voiture 1881 : première voiture électrique par M. JEANTAUD

Plus en détail

Les Énergies Capter et Stocker le Carbone «C.C.S»

Les Énergies Capter et Stocker le Carbone «C.C.S» Les Énergies Capter et Stocker le Carbone «C.C.S» La lutte contre le changement climatique Initiative concertée au niveau mondial Pour limiter à 2 à 3 C l élévation moyenne de la température, il faudrait

Plus en détail

COURS DE THERMODYNAMIQUE

COURS DE THERMODYNAMIQUE I.U.T. de Saint-Omer Dunkerque Département Génie Thermique et énergie COURS DE THERMODYNAMIQUE eme Semestre Olivier PERROT 010-011 1 Avertissement : Ce cours de thermodynamique présente quelques applications

Plus en détail

Mesurer la consommation d air comprimé ; économiser sur les coûts d énergie

Mesurer la consommation d air comprimé ; économiser sur les coûts d énergie Mesurer la consommation d air comprimé ; économiser sur les coûts d énergie L'air comprimé est un porteur d'énergie indispensable. A titre d exemple, environ 60.000 installations sont présentes en Allemagne.

Plus en détail

Physique Chimie. Utiliser les langages scientifiques à l écrit et à l oral pour interpréter les formules chimiques

Physique Chimie. Utiliser les langages scientifiques à l écrit et à l oral pour interpréter les formules chimiques C est Niveau la représentation 4 ème 2. Document du professeur 1/6 Physique Chimie LES ATOMES POUR COMPRENDRE LA TRANSFORMATION CHIMIQUE Programme Cette séance expérimentale illustre la partie de programme

Plus en détail

Page : 1 de 6 MAJ: 01.03.2010. 2-10_Chaudieresbuches_serie VX_FR_010310.odt. Gamme de chaudières VX avec régulation GEFIcontrol :

Page : 1 de 6 MAJ: 01.03.2010. 2-10_Chaudieresbuches_serie VX_FR_010310.odt. Gamme de chaudières VX avec régulation GEFIcontrol : Page : 1 de 6 Gamme de chaudières VX avec régulation GEFIcontrol : Référence article 058.01.250: VX18 Référence article 058.01.251: VX20 Référence article 058.01.252: VX30 Chaudière spéciale à gazéification

Plus en détail

Prescriptions Techniques

Prescriptions Techniques Prescriptions Techniques Application du décret n 2004-555 du 15 juin 2004 relatif aux prescriptions techniques applicables aux Canalisations et Raccordements des installations de transport, de distribution

Plus en détail

1 RÉPUBLIQUE FRANÇAISE MINISTÈRE DE L EMPLOI, DE LA COHÉSION SOCIALE ET DU LOGEMENT ARRÊTÉ

1 RÉPUBLIQUE FRANÇAISE MINISTÈRE DE L EMPLOI, DE LA COHÉSION SOCIALE ET DU LOGEMENT ARRÊTÉ 1 RÉPUBLIQUE FRANÇAISE MINISTÈRE DE L EMPLOI, DE LA COHÉSION SOCIALE ET DU LOGEMENT NOR : SOCU 00611881A ARRÊTÉ relatif au diagnostic de performance énergétique pour les bâtiments existants proposés à

Plus en détail

Matériels de Formation du GCE Inventaires Nationaux de Gaz à Effet de Serre. Secteur de l'energie Combustion de Combustibles

Matériels de Formation du GCE Inventaires Nationaux de Gaz à Effet de Serre. Secteur de l'energie Combustion de Combustibles Convention Cadre des Nations Unies sur les Changements Climatiques Matériels de Formation du GCE Inventaires Nationaux de Gaz à Effet de Serre Secteur de l'energie Combustion de Combustibles Version du

Plus en détail

Comment réduire les émissions de CO 2? Les réponses de l'ifp

Comment réduire les émissions de CO 2? Les réponses de l'ifp Septembre 2005 Comment réduire les émissions de CO 2? Les réponses de l'ifp L'IFP inscrit les travaux sur la réduction des émissions de CO 2 au cœur de ses programmes de recherche. La stratégie de l'ifp

Plus en détail

AIDE-MÉMOIRE LA THERMOCHIMIE TABLE DES MATIERES

AIDE-MÉMOIRE LA THERMOCHIMIE TABLE DES MATIERES Collège Voltaire, 2014-2015 AIDE-MÉMOIRE LA THERMOCHIMIE http://dcpe.net/poii/sites/default/files/cours%20et%20ex/cours-ch2-thermo.pdf TABLE DES MATIERES 3.A. Introduction...2 3.B. Chaleur...3 3.C. Variation

Plus en détail

L ENERGIE CORRECTION

L ENERGIE CORRECTION Technologie Lis attentivement le document ressource mis à ta disposition et recopie les questions posées sur une feuille de cours (réponds au crayon) : 1. Quelles sont les deux catégories d énergie que

Plus en détail

CONCEPT H 2 ZERO ENERGY ZERO EMISSION

CONCEPT H 2 ZERO ENERGY ZERO EMISSION CONCEPT H 2 ZERO ENERGY ZERO EMISSION Concept H 2 : L idée est de produire, de stocker et d assurer 100% des besoins énergétiques d un immeuble résidentiel sans aucun rejet de CO 2 et sans frais énergétiques.

Plus en détail

TP N 3 La composition chimique du vivant

TP N 3 La composition chimique du vivant Thème 1 : La Terre dans l'univers, la vie et l'évolution du vivant : une planète habitée Chapitre II : La nature du vivant TP N 3 La composition chimique du vivant Les conditions qui règnent sur terre

Plus en détail

Ce dispositif fiscal, mis en place en 2005, est en vigueur jusqu'en 2016.

Ce dispositif fiscal, mis en place en 2005, est en vigueur jusqu'en 2016. FINANCER MON PROJET Crédit d'impôt développement durable Ce dispositif fiscal, mis en place en 2005, est en vigueur jusqu'en 2016. Mais attention, il ne s'applique pas dans les mêmes conditions et au même

Plus en détail

Thermodynamique (Échange thermique)

Thermodynamique (Échange thermique) Thermodynamique (Échange thermique) Introduction : Cette activité est mise en ligne sur le site du CNRMAO avec l autorisation de la société ERM Automatismes Industriels, détentrice des droits de publication

Plus en détail

SCIENCES TECHNOLOGIES

SCIENCES TECHNOLOGIES R essources MICHEL WAUTELET SCIENCES TECHNOLOGIES et SOCIÉTÉ Questions et réponses pour illustrer les cours de sciences De Boeck Introduction générale 5 Sciences, technologies, société 1. Quels sont les

Plus en détail

Chaudières et chaufferies fioul basse température. Olio 1500, 2500, 3500, 4500, 7000

Chaudières et chaufferies fioul basse température. Olio 1500, 2500, 3500, 4500, 7000 Olio 1500, 2500, 3500, 4500, 7000 Chaudières et chaufferies fioul basse température 2 Chaudières et chaufferies fioul basse température Olio 1500 F. La qualité et la robustesse au meilleur prix. Les chaudières

Plus en détail

2 ) Appareillage :L'appareil utilisé est un banc d'essai portatif CEV dont la photo et le schéma de principe indiqués ci-dessous ( figures 1 et 2 )

2 ) Appareillage :L'appareil utilisé est un banc d'essai portatif CEV dont la photo et le schéma de principe indiqués ci-dessous ( figures 1 et 2 ) NOTICE TECHNIQUE N : 026 Date :19/02/08 Révisée le : CONTROLE ETALONNAGE BADIN I ) TEST n 1 1 ) Introduction : La manipulation décrite ci-dessous, permet de controler en place, l'étalonnage de l'anémomètre

Plus en détail

Formation Bâtiment Durable :

Formation Bâtiment Durable : Formation Bâtiment Durable : Rénovation à haute performance énergétique: détails techniques Bruxelles Environnement LE SYSTÈME DE CHAUFFAGE ET LA PRODUCTION D EAU CHAUDE SANITAIRE François LECLERCQ et

Plus en détail

Phénomènes dangereux et modélisation des effets

Phénomènes dangereux et modélisation des effets Phénomènes dangereux et modélisation des effets B. TRUCHOT Responsable de l unité Dispersion Incendie Expérimentations et Modélisations Phénomènes dangereux Description et modélisation des phénomènes BLEVE

Plus en détail

CENTRALES HYDRAULIQUES

CENTRALES HYDRAULIQUES CENTRALES HYDRAULIQUES FONCTIONNEMENT Les différentes centrales hydrauliques Les centrales hydrauliques utilisent la force de l eau en mouvement, autrement dit l énergie hydraulique des courants ou des

Plus en détail

document proposé sur le site «Sciences Physiques en BTS» : http://nicole.cortial.net BTS AVA 2015

document proposé sur le site «Sciences Physiques en BTS» : http://nicole.cortial.net BTS AVA 2015 BT V 2015 (envoyé par Frédéric COTTI - Professeur d Electrotechnique au Lycée Régional La Floride Marseille) Document 1 - Etiquette énergie Partie 1 : Voiture à faible consommation - Une étiquette pour

Plus en détail

Comment peut-on produire du chauffage et de l'eau chaude à partir de l'air? EFFICACITÉ POUR LES MAISONS

Comment peut-on produire du chauffage et de l'eau chaude à partir de l'air? EFFICACITÉ POUR LES MAISONS Comment peut-on produire du chauffage et de l'eau chaude à partir de l'air? Découvrez la gamme Aquarea de Panasonic Pompe à chaleur Source Air CONÇUE POUR LES MAISONS Une pompe à chaleur Aquarea avec Source

Plus en détail

GLOSSAIRE A L USAGE DU FORMATEUR DE CONDUITE TOUT-TERRAIN

GLOSSAIRE A L USAGE DU FORMATEUR DE CONDUITE TOUT-TERRAIN GLOSSAIRE A L USAGE DU FORMATEUR DE CONDUITE TOUT-TERRAIN Auteurs Comité pédagogique «COD 3» de l ECASC Glossaire «Formateur de conduite tout terrain» A Angle d attaque : Angle formé par le sol, le point

Plus en détail

36% T.Flow VMC hygroréglable & chauffe eau thermodynamique QUAND LA VENTILATION RÉINVENTE L EAU CHAUDE. BÉNÉFICIEZ DE

36% T.Flow VMC hygroréglable & chauffe eau thermodynamique QUAND LA VENTILATION RÉINVENTE L EAU CHAUDE. BÉNÉFICIEZ DE T.Flow VMC hygroréglable & chauffe eau thermodynamique QUAND LA VENTILATION RÉINVENTE L EAU CHAUDE. BÉNÉFICIEZ DE 36% DE CRÉDIT D'IMPÔTS Loi de finance 2011 T.Flow Un système révolutionnaire 2 en 1 Seul

Plus en détail

Qu'est-ce que la biométhanisation?

Qu'est-ce que la biométhanisation? Qu'est-ce que la biométhanisation? La biométhanisation consiste en une série d'opérations de dégradations biologiques de matières organiques qui se produisent en l'absence d'oxygène. Les produits résultants

Plus en détail

DOCUMENT RESSOURCE SONDES PRESENTATION

DOCUMENT RESSOURCE SONDES PRESENTATION Documentation technique DOCUMENT RESSOURCE SONDES PRESENTATION SEP du LPo N-J Cugnot 93 Neuilly/Marne LE CALCULATEUR Il est placé dans le boîtier à calculateurs, sur le passage de roue avant droit. Les

Plus en détail

Incitants relatifs à l installation de pompes à chaleur en Région wallonne

Incitants relatifs à l installation de pompes à chaleur en Région wallonne Incitants relatifs à l installation de pompes à chaleur en Région wallonne G. FALLON Energie Facteur 4 asbl - Chemin de Vieusart 175-1300 Wavre Tél: 010/23 70 00 - Site web: www.ef4.be email: ef4@ef4.be

Plus en détail

l entretien des chaudières

l entretien des chaudières Préservez et améliorez les performances de votre installation de chauffage : l entretien des chaudières L H A B I T A T I N D I V I D U E L pour un chauffage sûr et efficace Votre logement est équipé d

Plus en détail

Aide à l'application EN-1 Part maximale d'énergies non renouvelables dans les bâtiments à construire Edition janvier 2009

Aide à l'application EN-1 Part maximale d'énergies non renouvelables dans les bâtiments à construire Edition janvier 2009 Aide à l'application EN-1 Part maximale d'énergies non renouvelables dans les bâtiments à construire Contenu et but Cette aide à l application traite des exigences à respecter concernant la part maximale

Plus en détail

Économie d énergie dans les centrales frigorifiques : La haute pression flottante

Économie d énergie dans les centrales frigorifiques : La haute pression flottante Économie d énergie dans les centrales frigorifiques : La haute pression flottante Juillet 2011/White paper par Christophe Borlein membre de l AFF et de l IIF-IIR Make the most of your energy Sommaire Avant-propos

Plus en détail

2 e partie de la composante majeure (8 points) Les questions prennent appui sur six documents A, B, C, D, E, F (voir pages suivantes).

2 e partie de la composante majeure (8 points) Les questions prennent appui sur six documents A, B, C, D, E, F (voir pages suivantes). SUJET DE CONCOURS Sujet Exploitation d une documentation scientifique sur le thème de l énergie 2 e partie de la composante majeure (8 points) Les questions prennent appui sur six documents A, B, C, D,

Plus en détail

Rappels sur les couples oxydantsréducteurs

Rappels sur les couples oxydantsréducteurs CHAPITRE 1 TRANSFORMATIONS LENTES ET RAPIDES 1 Rappels sur les couples oxydantsréducteurs 1. Oxydants et réducteurs Un réducteur est une espèce chimique capable de céder au moins un électron Demi-équation

Plus en détail

Aide à l'application Preuve du besoin de réfrigération et/ou d humidification de l air Edition mai 2003

Aide à l'application Preuve du besoin de réfrigération et/ou d humidification de l air Edition mai 2003 CONFERENCE DES SERVICES CANTONAUX DE L'ENERGIE KONFERENZ KANTONALER ENERGIEFACHSTELLEN Aide à l'application Preuve du besoin de réfrigération et/ou d humidification de l air 1. Contexte Une série d'aides

Plus en détail

GLEIZE ENERGIE SERVICE

GLEIZE ENERGIE SERVICE GLEIZE ENERGIE SERVICE Page 1 sur 17 #/ -#0/.1# 2 1# 11 - " 1 GLEIZE ENERGIE SERVICE -1 " " #/ / &3 %$". 1! "#$$ %" & "# '%# () *+, -". GLEIZE ENERGIE SERVICE Page 2 sur 17 SOMMAIRE 1. Introduction - Rappel...

Plus en détail

Fiche d application. 7 octobre 2013 1.0

Fiche d application. 7 octobre 2013 1.0 MINISTÈRE DE L ÉGALITÉ DES TERRITOIRES ET DU LOGEMENT MINISTÈRE DE L ÉCOLOGIE, DU DÉVELOPPEMENT DURABLE ET DE L ÉNERGIE Diagnostic de Performance Energétique Fiche d application Date Version 7 octobre

Plus en détail

INTRODUCTION. A- Modélisation et paramétrage : CHAPITRE I : MODÉLISATION. I. Paramétrage de la position d un solide : (S1) O O1 X

INTRODUCTION. A- Modélisation et paramétrage : CHAPITRE I : MODÉLISATION. I. Paramétrage de la position d un solide : (S1) O O1 X INTRODUCTION La conception d'un mécanisme en vue de sa réalisation industrielle comporte plusieurs étapes. Avant d'aboutir à la maquette numérique du produit définitif, il est nécessaire d'effectuer une

Plus en détail

CREATING POWER SOLUTIONS. 1D42 1D42C 1D50 1D81 1D81C 1D90 1D90V. Moteurs diesel Hatz. www.hatz-diesel.com

CREATING POWER SOLUTIONS. 1D42 1D42C 1D50 1D81 1D81C 1D90 1D90V. Moteurs diesel Hatz. www.hatz-diesel.com CREATING POWER SOLUTIONS. 1D42 1D42C 1D81 1D81C 1D90 1D90V Moteurs diesel Hatz www.hatz-diesel.com 1D42C et 1D81C - SilentPack Depuis des décennies, les "Silentpacks" (packs Silence) Hatz posent les jalons

Plus en détail

À propos d ITER. 1- Principe de la fusion thermonucléaire

À propos d ITER. 1- Principe de la fusion thermonucléaire À propos d ITER Le projet ITER est un projet international destiné à montrer la faisabilité scientifique et technique de la fusion thermonucléaire contrôlée. Le 8 juin 005, les pays engagés dans le projet

Plus en détail

PHYSIQUE Discipline fondamentale

PHYSIQUE Discipline fondamentale Examen suisse de maturité Directives 2003-2006 DS.11 Physique DF PHYSIQUE Discipline fondamentale Par l'étude de la physique en discipline fondamentale, le candidat comprend des phénomènes naturels et

Plus en détail

Exemples d utilisation de G2D à l oral de Centrale

Exemples d utilisation de G2D à l oral de Centrale Exemples d utilisation de G2D à l oral de Centrale 1 Table des matières Page 1 : Binaire liquide-vapeur isotherme et isobare Page 2 : Page 3 : Page 4 : Page 5 : Page 6 : intéressant facile facile sauf

Plus en détail

Stockage de chaleur solaire par sorption : Analyse et contrôle du système à partir de sa simulation dynamique

Stockage de chaleur solaire par sorption : Analyse et contrôle du système à partir de sa simulation dynamique Stockage de chaleur solaire par sorption : Analyse et contrôle du système à partir de sa simulation dynamique Kokouvi Edem N TSOUKPOE 1, Nolwenn LE PIERRÈS 1*, Lingai LUO 1 1 LOCIE, CNRS FRE3220-Université

Plus en détail

Production électrique : la place de l énergie éolienne

Production électrique : la place de l énergie éolienne Production électrique : la place de l énergie éolienne I Production électrique : principes de base L énergie électrique n est pas un fluide que l on pourrait «mettre en conserve», l énergie électrique

Plus en détail

La combinaison. naturelle DAIKIN ALTHERMA HYDRIDE POMPE À CHALEUR CHAUFFAGE ET EAU CHAUDE SANITAIRE. Informations préliminaires

La combinaison. naturelle DAIKIN ALTHERMA HYDRIDE POMPE À CHALEUR CHAUFFAGE ET EAU CHAUDE SANITAIRE. Informations préliminaires La combinaison naturelle DAIKIN ALTHERMA HYDRIDE POMPE À CHALEUR CHAUFFAGE ET EAU CHAUDE SANITAIRE Informations préliminaires 2 Le futur c'est maintenant 3 et le futur est plus respectueux de l'environnement,

Plus en détail

Le chauffe-eau à pompe à chaleur: fiche technique à l intention des installateurs

Le chauffe-eau à pompe à chaleur: fiche technique à l intention des installateurs Le chauffe-eau à pompe à chaleur: fiche technique à l intention des installateurs 1. Bases 1.1. Fonctionnement du chauffe-eau à pompe à chaleur (CEPAC) Comme son nom l indique, un chauffe-eau pompe à chaleur

Plus en détail

Bilan GES Entreprise. Bilan d émissions de Gaz à effet de serre

Bilan GES Entreprise. Bilan d émissions de Gaz à effet de serre Bilan GES Entreprise Bilan d émissions de Gaz à effet de serre Conformément à l article 75 de la loi n 2010-788 du 12 Juillet 2010 portant engagement national pour l environnement (ENE) Restitution pour

Plus en détail

Simuler le cumul pour valider

Simuler le cumul pour valider Énergies renouvelables et eau chaude Simuler le cumul pour valider Est-il opportun de cumuler les énergies pour améliorer les installations de production d eau chaude sanitaire? Quelles sont les interactions

Plus en détail

Livret de chaufferie

Livret de chaufferie Livret de chaufferie Edition 2011 Livret de chaufferie ÉTABLI LE ADRESSE DE LA CHAUFFERIE CACHET Apave P R É A M B U L E La tenue de ce livret est demandée par la réglementation sur l utilisation de l

Plus en détail

que devez vous savoir avant le 26/09/2015?

que devez vous savoir avant le 26/09/2015? Réglementation ErP - éco-conception et étiquetage énergétique Réglementation ErP, éco-conception et étiquetage énergétique : que devez vous savoir avant le 26/09/2015? Préparez-vous au mieux à la réglementation

Plus en détail

ELEC2753 Electrotechnique examen du 11/06/2012

ELEC2753 Electrotechnique examen du 11/06/2012 ELEC2753 Electrotechnique examen du 11/06/2012 Pour faciliter la correction et la surveillance, merci de répondre aux 3 questions sur des feuilles différentes et d'écrire immédiatement votre nom sur toutes

Plus en détail

Le réchauffement climatique, c'est quoi?

Le réchauffement climatique, c'est quoi? LE RECHAUFFEMENT CLIMATIQUE Le réchauffement climatique, c'est quoi? Le réchauffement climatique est l augmentation de la température moyenne à la surface de la planète. Il est dû aux g az à effet de serre

Plus en détail

QU EST-CE QU UN CHAUFFE-EAU THERMODYNAMIQUE?

QU EST-CE QU UN CHAUFFE-EAU THERMODYNAMIQUE? QU EST-CE QU UN CHAUFFE-EAU THERMODYNAMIQUE? > Le chauffe-eau thermodynamique est un appareil de production d eau chaude sanitaire. Il se compose d une pompe à chaleur et d une cuve disposant d une isolation

Plus en détail

la climatisation automobile

la climatisation automobile Un équipement en question : la climatisation automobile LES TRANSPORTS la climatisation en question La climatisation automobile, grand luxe il y a encore peu de temps, devient presque banale pour tous

Plus en détail

DYNAMIQUE DE FORMATION DES ÉTOILES

DYNAMIQUE DE FORMATION DES ÉTOILES A 99 PHYS. II ÉCOLE NATIONALE DES PONTS ET CHAUSSÉES, ÉCOLES NATIONALES SUPÉRIEURES DE L'AÉRONAUTIQUE ET DE L'ESPACE, DE TECHNIQUES AVANCÉES, DES TÉLÉCOMMUNICATIONS, DES MINES DE PARIS, DES MINES DE SAINT-ÉTIENNE,

Plus en détail

Eau chaude sanitaire FICHE TECHNIQUE

Eau chaude sanitaire FICHE TECHNIQUE FICHE TECHNIQUE Eau chaude sanitaire 2 5 6 6 CONNAÎTRE > Les besoins d eau chaude sanitaire > Les modes de production > La qualité de l eau > Les réseaux de distribution > La température de l eau REGARDER

Plus en détail

Propriétés thermodynamiques du mélange. Eau-Ammoniac-Hélium

Propriétés thermodynamiques du mélange. Eau-Ammoniac-Hélium International Renewable Energy Congress November 5-7, 2010 Sousse, Tunisia Propriétés thermodynamiques du mélange Eau-Ammoniac-Hélium Chatti Monia 1, Bellagi Ahmed 2 1,2 U.R. Thermique et Thermodynamique

Plus en détail

Gaz à effet de serre émis et consommations énergétiques inhérentes. à l habitation et aux déplacements d

Gaz à effet de serre émis et consommations énergétiques inhérentes. à l habitation et aux déplacements d Gaz à effet de serre émis et consommations énergétiques inhérentes à l habitation et aux déplacements d des ménagesm Exemple d un ménage de 3 personnes habitant un logement de 100m² à Lille Métropole Mars

Plus en détail

Energie nucléaire. Quelques éléments de physique

Energie nucléaire. Quelques éléments de physique Energie nucléaire Quelques éléments de physique Comment produire 1 GW électrique Nucléaire (rendement 33%) Thermique (38%) Hydraulique (85%) Solaire (10%) Vent : 27t d uranium par an : 170 t de fuel par

Plus en détail

CRÉDIT D IMPÔT LES GRANDS PRINCIPES. Un crédit d impôt : pourquoi? AVANT-PROPOS. Un crédit d impôt : comment? Un crédit d impôt : dans quels cas?

CRÉDIT D IMPÔT LES GRANDS PRINCIPES. Un crédit d impôt : pourquoi? AVANT-PROPOS. Un crédit d impôt : comment? Un crédit d impôt : dans quels cas? Mise à jour mars 2006 CRÉDIT D IMPÔT LES GRANDS PRINCIPES AVANT-PROPOS Le crédit d impôt en faveur des économies d énergie et du développement durable constitue une triple opportunité : Il offre à l utilisateur

Plus en détail

Qu est ce qu un gaz comprimé?

Qu est ce qu un gaz comprimé? Qu est ce qu un gaz comprimé? Il existe plusieurs produits à base de gaz ou de mélanges de gaz sous pression conservés dans des bouteilles 1. La plupart de ces gaz sont classés dans la catégorie des «gaz

Plus en détail

Oléagineux, Corps Gras, Lipides. Volume 9, Numéro 5, 296-8, Septembre - Octobre 2002, La filière

Oléagineux, Corps Gras, Lipides. Volume 9, Numéro 5, 296-8, Septembre - Octobre 2002, La filière L'impact des biocarburants sur l'effet de serre Oléagineux, Corps Gras, Lipides. Volume 9, Numéro 5, 296-8, Septembre - Octobre 2002, La filière Auteur(s) : Etienne POITRAT, ADEME (Agence de l'environnement

Plus en détail

L ÉNERGIE C EST QUOI?

L ÉNERGIE C EST QUOI? L ÉNERGIE C EST QUOI? L énergie c est la vie! Pourquoi à chaque fois qu on fait quelque chose on dit qu on a besoin d énergie? Parce que l énergie est à l origine de tout! Rien ne peut se faire sans elle.

Plus en détail

Bilan des émissions de gaz à effet de serre

Bilan des émissions de gaz à effet de serre Bilan des émissions de gaz à effet de serre SOMMAIRE 1 Contexte réglementaire 3 2 Description de la personne morale 4 3 Année de reporting de l exercice et l année de référence 6 4 Emissions directes de

Plus en détail

THEME 2. LE SPORT CHAP 1. MESURER LA MATIERE: LA MOLE

THEME 2. LE SPORT CHAP 1. MESURER LA MATIERE: LA MOLE THEME 2. LE SPORT CHAP 1. MESURER LA MATIERE: LA MOLE 1. RAPPEL: L ATOME CONSTITUANT DE LA MATIERE Toute la matière de l univers, toute substance, vivante ou inerte, est constituée à partir de particules

Plus en détail

Convertisseurs statiques d'énergie électrique

Convertisseurs statiques d'énergie électrique Convertisseurs statiques d'énergie électrique I. Pourquoi des convertisseurs d'énergie électrique? L'énergie électrique utilisée dans l'industrie et chez les particuliers provient principalement du réseau

Plus en détail

Notice d'utilisation. Installation solaire avec appareil de régulation KR 0106. 6302 1500 05/2002 FR Pour l'utilisateur

Notice d'utilisation. Installation solaire avec appareil de régulation KR 0106. 6302 1500 05/2002 FR Pour l'utilisateur 6302 1500 05/2002 FR Pour l'utilisateur Notice d'utilisation Installation solaire avec appareil de régulation KR 0106 Lire attentivement avant utilisation SVP Préface Remarque Les appareils répondent aux

Plus en détail

neotower Principe de fonctionnement

neotower Principe de fonctionnement Le neotower de RMB/Energie La petite centrale de couplage-chaleur-force de l'avenir Silencieux Robuste Efficace Compact La fascination est contagieuse Allumez le feu neotower Principe de fonctionnement

Plus en détail

Instructions d'utilisation

Instructions d'utilisation U22 K 7208 5500 0/2003 FR (FR) Pour l'opérateur Instructions d'utilisation Chaudière à condensation à gaz Logamax plus GB22-24/24K Prière de lire ces instructions avec soin avant l'utilisation Avant-propos

Plus en détail

Quelques chiffres clés de l énergie et de l environnement

Quelques chiffres clés de l énergie et de l environnement Quelques chiffres clés de l énergie et de l environnement GSE 2011-2012 I.1 Que représente : - 1 kcal en kj? : 1 kcal = 4,187 kj - 1 frigorie (fg) en kcal? : 1 fg = 1 kcal - 1 thermie (th) en kcal? : 1

Plus en détail

AQUACIAT2 HYBRID LA SOLUTION BI-ÉNERGIES COMPACTE PAC & CHAUDIÈRE GAZ. Puissances frigorifiques et calorifiques de 45 à 80 kw

AQUACIAT2 HYBRID LA SOLUTION BI-ÉNERGIES COMPACTE PAC & CHAUDIÈRE GAZ. Puissances frigorifiques et calorifiques de 45 à 80 kw COMMERCIALISATION 2 ÈME TRIMESTRE 2014 C O N F O R T Q U A L I T É D A I R O P T I M I S A T I O N É N E R G É T I Q U E PAC & CHAUDIÈRE GAZ AQUACIAT2 HYBRID Puissances frigorifiques et calorifiques de

Plus en détail

Fiche de lecture du projet de fin d étude

Fiche de lecture du projet de fin d étude GENIE CLIMATIQUE ET ENERGETIQUE Fiche de lecture du projet de fin d étude Analyse du phénomène de condensation sur l aluminium Par Marine SIRE Tuteurs : J.C. SICK Manager du Kawneer Innovation Center &

Plus en détail

Synthèse N 6. Les unités du boisénergie

Synthèse N 6. Les unités du boisénergie Mémento aquitain du bois énergie Synthèse N 6 Synthèse bibliographique Les unités du boisénergie Octobre 2013 2 Les unités du bois-énergie Objectifs : Connaître les unités du bois énergie. Clarifier les

Plus en détail

ETUDE DES PERFORMANCES D UN SYSTEME EOLIEN. APPLICATION POUR DES SITES ALGERIENS

ETUDE DES PERFORMANCES D UN SYSTEME EOLIEN. APPLICATION POUR DES SITES ALGERIENS èmes Journées Internationales de Thermique ETUDE DES PERFORMANES D UN SYSTEME EOLIEN. APPLIATION POUR DES SITES ALGERIENS Rachid MAOUEDJ*, Souad BOUSALEM** et Boumedien BENYOUEF ** * Unité de Recherche

Plus en détail

TP : Suivi d'une réaction par spectrophotométrie

TP : Suivi d'une réaction par spectrophotométrie Nom : Prénom: n groupe: TP : Suivi d'une réaction par spectrophotométrie Consignes de sécurité de base: Porter une blouse en coton, pas de nu-pieds Porter des lunettes, des gants (en fonction des espèces

Plus en détail