République Algérienne Démocratique et Populaire

Dimension: px
Commencer à balayer dès la page:

Download "République Algérienne Démocratique et Populaire"

Transcription

1 République Algérienne Démocratique et Populaire Ministère de l Enseignement Supérieur et de la Recherche Scientifique Université des Sciences et de la Technologie d Oran Mohamed BOUDIAF FACULTÉ DE GÉNIE ÉLECTRIQUE. DÉPARTEMENT D ÉLECTRONIQUE MÉMOIRE EN VUE DE L OBTENTION DU DIPLOME DE MAGISTER SPÉCIALITÉ : ÉLECTRONIQUE OPTION : COMPOSANT ET SYSTÈME DE LA MICROÉLECTRONIQUE AVANCÉE Présenté par BELLAKHDAR Mohammed Cherif Thème Etude de l association pile PEMFC / supercondensateur Soutenu le :24/06 /2013 Devant le jury composé de : Président M r.boutchacha Touati Professeur USTO-MB Rapporteur M r.tioursi Mustapha Professeur USTO-MB Examinateur M r.bourahla Mohammed Professeur USTO-MB Examinateur M me.zerhouni Fatima Zohra MC, USTO-MB

2 Sommaire Résumé.. 1 Remerciement et dédicace Nomenclature... 3 Liste des figures... 6 liste des tableaux.. 9 Introduction générale 11 Chapitre 1 : généralité sur les piles à combustible et sur les supercondensateurs 1.1. Introduction Historique Principe de fonctionnement Les différents types de piles à combustible La pile alcaline (AFC) La pile à acide phosphorique (PAFC) La pile à méthanol direct (DMFC) La pile à oxyde solide (SOFC) : La pile à carbonates fondus (MCFC) Piles à membrane électrolyte polymérique (PEMFC) Description générale d une pile PEMFC La membrane protonique Les électrodes Les composants élémentaires de l électrode Applications du PEMFC Le transport Le stationnaire Le portable Les supercondensateurs Principe de fonctionnement Les différents éléments du supercondensateur Electrodes Les charbons actifs Les tissus actifs L électrolyte Le séparateur 35

3 Collecteur de courant Comparaison supercondensateurs-batteries Les différentes familles des Supercondensateurs L intégration de micro-supercondensateurs Supercondensateurs : avantages, inconvénients, applications courantes Applications courantes des supercondensateurs.. 38 Chapitre 2 : Modélisation, simulation et dimensionnement de la PEMFC et du supercondensateur 2.1 Introduction : Transformation de l énergie chimique en énergie électrique : Potentiel de la pile : Le potentiel réel du la pile :. 41 o Phénomènes d activation o Phénomène ohmique : o Phénomène de concentration (transport de matière) : Potentiel d une cellule PEM : Caractéristique statique de la pile à combustible : Résultats de la simulation : Etudes paramétrique : Effet de la température : Effet de pression : La puissance : Rendement électrique : Dimensionnement de la pile : Détermination du nombre de cellules : Détermination de la surface des cellules : Caractéristique dynamique de la pile o Résultat de simulation Modélisation du supercondensateur Modèle du pack supercondensateur Système d équilibrage Systèmes d équilibrages passifs... 60

4 Systèmes d équilibrages actifs Dimensionnement du supercondensateur.. 61 Résultat de simulation Chapitre 3 : étude des convertisseurs de puissance associés et contrôle de la tension de bus 3.1 Introduction Association pile à combustible- bus continu Modélisation du convertisseur Différentes séquences de fonctionnement du convertisseur Commande du convertisseur Association Pack de supercondensateur-bus continu Dimensionnement du convertisseur de dévolteur/survolteur (BUCK-BOOST/inverseur) Calcul de l inductance de lissage Dans le cas de survolteur (BOOST) Dans le cas de dévolteur (BUCK) Modélisation de BUCK-BOOST/inverseur Chapitre 4 : Etude et simulation du système hybride PEMFC/SC 4.1 Introduction : Gestion du flux énergétique Résultat de la simulation Premier cas é Deuxième cas é Conclusion. 86 Conclusion générale. 87 Références 88 Index.. 89

5 Dédicaces A ma chère mère et mon cher père qui ont fait de moi ce que je suis par leurs sacrifices, a mon frère Daoud et ma chère sœur Fatima.

6 Remerciements Je tiens à remercier Monsieur TIOURSI professeur USTO-MB pour m avoir encadré et accueilli dans son laboratoire, ses qualités humaines m ont permis de réaliser cette thèse dans les meilleurs conditions. Je tiens a remercier aussi Monsieur BOUTCHACHA professeur USTO-MB pour m avoir accueilli durant la première année théorique. Je remercie aussi Monsieur MEHARRAR docteur ES-science USTO pour ces conseils et sa disponibilité sans faille et son soutien infinie. Je remercie aussi Monsieur BENMESSAOUD docteur ES-science USTO pour ces conseils et son soutien. Je remercie aussi Monsieur AZZEDINE pour sa documentation qui ma aidé à établir ce travail. Je ne peux oublier tout ceux qui m ont aidé à terminé ce travail. Chers amis, je dis merci.

7 Nomenclature S : surface [m 2 ]. D : épaisseur diélectrique. : La permittivité de vide. : La permittivité relative du diélectrique. E : tension de la pile. : Variation d enthalpie libre ou appelée énergie libre de Gibbs. n : le nombre d électron échangé. : Variation d enthalpie. : Variation d entropie. G : Energie de Gibbs standard. P : la pression d hydrogène [atm]. P : la pression d oxygène [atm]. : la pression de la vapeur d eau [atm]. E : Le potentiel standard de la pile. P : La pression d hydrogène [atm]. P : La pression d oxygène [atm]. : La pression de la vapeur d eau [atm]. F : la constante de Faraday [F= C] R : la constante universelle des gaz [R= J/K.mol]. T : la température de la cellule en [ K]. : Perte d activation. : Coefficient de transfert. : Courant d échange global [A]. V ohmic : Le voltage ohmique [V]. R c : La résistance protonique de la membrane [Ω]. : Le courant limite de la pile [A] B : coefficient paramétrique de la pile. J : la densité de courant de la pile [A/cm 2 ]. : Polarisation ohmique de l anode et de la cathode [V]. : Tension réelle d une pile unitaire [V]. : Polarisation d activation de l anode et de la cathode [V] : Polarisation de concentration de l anode et de la cathode [V].

8 N : le nombre de piles unitaires utilisées dans l assemblage. η pile : rendement d une pile a combustible. : constant du temps d une pile en dynamique.[s] : capacité de double couche.[f] : Tension donné par l équation différentielle S : Surface active des cellules [m 2 ]. : Tension par cellule [V]. j: Densité de courant [A/m2]. P : Puissance électrique brute du stack [W]. : la tension aux bornes de la capacité é. E : énergie d un élément de supercondensateur. : L énergie maximale utilisable. _ : la tension de service K :le profondeur de décharge. :L énergie du pack de supercondensateur. SOC : (state of charge)l état de charge. V bus : Tension du bus continu [V]. T : fréquence de découpage du signal de commande de l interrupteur [Hz]. I L : Courant dans l inductance [A]. I Lm : Courant minimum dans l inductance [A]. I LM : Courant maximum dans l inductance [A]. I L : Ondulation de courant dans l inductance [A]. L 1 : Valeur de l inductance de lissage [H]. Cf: Valeur du condensateur de filtrage [F]. V Cm : Tension minimum aux bornes du condensateur (V) V CM : Tension maximum aux bornes du condensateur (V) V bus : Tension du bus continu (V) V bus : Ondulation de tension aux bornes du condensateur (V) a: rapport cyclique U stack : Tension aux bornes du Stack de la pile à combustible (V) i L : Courant dans l inductance et dans la pile [A]. i bus : Courant du bus continu demandé aux convertisseurs [A]. L 1 : Inductance de lissage (H) C f : Condensateur de filtrage (F)

9 : référence de tension aux bornes de l inductance. V bus_mesuré, U stack_mesuré : les valeurs moyennes des tensions. I bus_mesuré : la valeur moyenne des courants de bus et de pile. : Tension aux bornes du pack de supercondensateur (V). : Ondulation du courant dans l inductance [A]. : l inductance de lissage (H). :L ondulation maximale. V sc : Tension aux bornes du pack de supercondensateur (V). V c : Tension aux bornes de Csc (V). : Tension du bus continu (V). i sc : Courant dans le pack de supercondensateurs et dans l inductance [A]. C sc : Capacité équivalente du pack de supercondensateurs (F). i bus : Courant du bus continu demandé aux convertisseurs [A]. L 2 : Inductance de lissage (H). u 1 : Signal de commande de l interrupteur statique 1. u 2 : Signal de commande de l interrupteur statique 2. :est la tension au borne de l interrupteur. Buck/Boost : une variable binaire.

10 Listes des figures Chapitre 1 : Figure 1.1: Schéma de principe d un assemblage de cellules élémentaires Cathode/Électrolyte/Anode et inter connecteurs. Figure 1.2 : Pile à Combustible à Membrane Echangeuse de Proton (PEMFC). Figure 1.3 : Structure chimique du Nafion Figure 1.4 : Plaque bipolaire graphite à serpentin. Figure 1.5 Prototype du tramway fabriqué par BOMBARDIER avec l utilisation du Supercondensateur comme alimentation secondaire Figure.1.6. micro piles a combustible élaboré par la technique des couches mince Figure.1.7 : Schéma de principe d'un supercondensateur Figure.1.8 : différents éléments du supercondensateur Figure.1.9 : Structure microscopique d une électrode au charbon actif (types de pore Cylindrique) Figure.1.10 : Structure microscopique d un tissue actif Figure techniques d'intégration de micro-supercondensateurs Méthode origami Chapitre 2 : Figure.2.1 : Caractéristique tension-courant générale d un PAC. Figure.2.2 : la caractéristique tension-courant de la pile. Figure.2.3 : pertes d activation. Figure.2.4 : pertes d ohmique. Figure.2.5 : pertes de concentration. Figure.2.6 : Effet de température sur la tension d une cellule élémentaire. Figure.2.7 : caractéristique courant tension en fonction de la pression (T=57 C,Po2=1atm, PH2). Figure.2.8 : caractéristique courant tension en fonction de la pression (T=57 C, PH2=1atm,PO2). Figure.2.9 : caractéristique de densité de puissance en fonction de densité de courant. Figure.2.10 : rendement électrique en fonction de courant. Figure.2.11 :circuit électrique équivalent d une cellule. Figure circuit électrique équivalent d une cellule Figure.2.13 :courant de simulation de la pile PEMFC Figure.2.14 : repense en tension d une cellule PEM

11 Listes des figures Figure.2.15 :réponse en puissance d une cellule PEM Figure.2.16 :la réponse dynamique du rendement de la pile PEM Figure.2.17 : modèle d un supercondensateur (un élément) classique (a), à deux branches (b) Figure.2.18-(a)modèle de premier ordre d un supercondensateur ;(b) modèle simplifie du supercondensateur Figure.2.19 : Modèle d un pack de supercondensateur. Figure2.20 :système d équilibrage passif Figure2.21 :système d équilibrage actif Figure2.22 : tension de charge et de la décharge de supercondensateur Figure2.23 :Etat de charge de supercondensateur pendant le régime de charge et Chapitre 3 : Figure 3.1 :schéma de système (pile à combustible /supercondensateur) Figure.3.2 : convertisseur survolteur (Boost) connecté à la pile à combustible. figure.3.3 : convertisseur survolteur (cas ou : é) figure.3.4 :convertisseur survolteur ( : ) Figure.3.5 : schéma bloc du convertisseur survolteur. Figure.3.6 : schéma bloc en courant du convertisseur Figure.3.7 :boucle de courant avec la nouvelle grandeur de commande Figure.3.8 : schéma bloc de tension du bus Figure.3.9 : schéma complet de la boucle de régulation de la tension Figure.3.10 : Convertisseur BUCK-BOOST/inverseur connecté au module de Supercondensateur. Figure.3.11 :Schéma du convertisseur BUCK-BOOST/inverseur Figure.3.12 :schéma bloc du convertisseur statique Chapitre 4 : Figure.4.1 : Différents modules constituants le système étudié Figure4.2 : organigramme de la gestion de l énergie du système PEMFC, SC et charge Figure 4.3 : schéma bloc du système Figure 4.4 a : Variation de puissance de la pile, de la charge et du supercondensateur

12 Listes des figures Figure 4.4 b : Variation de puissance de la pile, de la charge et du supercondensateur Figure 4.5 : somme de la puissance entre la pile et supercondensateur et la charge Figure4.6 : la tension de la pile Figure 4.7 : tension du Bus continu Figure4.8 : courant de la pile Figure 4.9 : courant du supercondensateur Figure 4.10 : état du charge du supercondensateur (SOC) supercondensateur Fugure 4.11.a : Variation de la puissance demandée, puissance de pile et puissance du Figure 4.11.b : Variation de puissance de la pile, de la charge et du supercondensateur Figure 4.12 : somme de la puissance de pile et la puissance de supercondensateur Figure 4.13 : courant de la pile Figure 4.14 : courant du supercondensateur Figure 4.15 : tension de pile Figure 4.16 : tension du bus continu Figure 4.17 : état du charge SOC du supercondensateur

13 Introduction générale

14 Introduction générale: Une pile à combustible utilise l énergie chimique de l hydrogène et de l oxygène pour produire de l électricité sans pollution.les autres produits sont simplement de l eau pure et de la chaleur. Les piles se différencient par la nature du gaz et de l électrolyte utilisé. Un type prometteur, léger et facile à construire, est la pile à membrane électrolyte polymère (PEMFC), utilisée par la NASA dans les années 60 dans le programme spatial Gémini. Actuellement, elle est toujours utilisée dans les nouvelles spatiales. Différents études, montrent clairement, qu à travers ces piles à combustible, l hydrogène serait à moyenne terme, un vecteur énergétique important dans le nouveau contexte énergétique mondial. Ceci étant, il faut dire que le problème des piles à combustible réside dans leur lenteur relative de réaction. En effet, lorsque les variations de charge sont rapides (par exemple, dans le cas des accélérations et freinage d un moteur électrique), la pile ne peut pas suivre. Pour résoudre ce problème, le système doit avoir une source auxiliaire rapide pour fournir ou absorber la puissance pendant les échelons de charge.la nouvelle technologie des supercondensateurs peut résoudre ce problème car ils sont caractérisés par leur réponse rapide et permet de compenser le temps de réponse lent de la pile ceci pour éviter les contraints et augmenter la durée de vie des piles et de les faire fonctionner à puissance constante. Le développement des supercondensateurs représente une des dernières innovations dans le domaine du stockage direct de l énergie électrique.ils occuperont leur place dans un grand nombre d applications, en particulier, ils seront utilisées pour couvrir les demandes de puissance instantanée élevée et de durée limitée.ces composants sont caractérisés par une densité énergétique bien plus élevée que les condensateurs classiques. Dans les systèmes de transport, par exemple, des systèmes associant pile à combustible et supercondensateurs ont déjà fait leur preuve dans l augmentation de la puissance nécessaire aux accélérations ou pour la récupération lors de freinage. [1], [2] Ce travail se situé dans cette problématique et vise à montrer l intérêt de l association des supercondensateurs avec une pile à combustible de type PEMFC. Après avoir rappelé le fonctionnement des piles et des supercondensateurs dans le premier chapitre, nous présentons la modélisation, la simulation et le dimensionnement de ces éléments en statique et en dynamique dans le chapitre deux.

15 Dans le troisième chapitre, nous étudions le convertisseur associé à ces sources. Le convertisseur associé à la pile est de type Boost, et le convertisseur associé aux supercondensateurs est un hacheur deux quadrants de type Buck/Boost. Dans ce chapitre, le contrôle et la régulation de tension du bus continu sont aussi décrits. Enfin, le quatrième chapitre est consacré à l étude du système hybride au complet, [figure 1], par une simulation en dynamique pour différents cas de fonctionnement. PEMFC DC/DC (Boost) Bus continu Puissance demandée Supercondensateur DC/DC (Buck/Boost) Gestion et commande de l énergie Figure.1 : Différents constituants du système hybride pile à combustible/supercondensateur

16 Chapitre 1 Généralité sur les piles à combustible et sur les supercondensateurs

17 Chapitre 1 généralité sur les piles à combustible et sur les supercondensateurs 1.1. Introduction : Face aux problèmes environnementaux croissants de ces dernières décennies, une prise de conscience internationale des citoyens et de nos politiques en faveur de nouvelles technologies propres est nécessaire. Depuis une décennie, d intenses recherches sont menées à travers le monde sur les piles à combustible et plus particulièrement sur la pile à combustible à membrane échangeuse de proton (PEMFC). Ce chapitre présente le principe et la structure de cette pile Historique : Les piles à combustible ne sont pas une technologie nouvelle puisque leur principe a été découvert dans la première moitié du 19ème siècle. Sir William Grove, considéré comme l inventeur de la pile à combustible, réalisa en 1839 sa célèbre expérience avec une pile à combustible : il s'agissait d'une cellule hydrogène-oxygène avec des électrodes de platine poreuse et de l'acide sulfurique comme électrolyte. Cependant, cette technique resta ensuite plus ou moins dans l'oubli tandis que se développaient les machines thermiques, les accumulateurs et les piles électriques. Seuls quelques chercheurs continuèrent desintéresser à cette technologie afin de comprendre les différents phénomènes électrochimiques se produisant dans la pile. De nouveaux matériaux d électrolytes furent également introduits tels que les carbonates fondus, les oxydes solides et l acide phosphorique qui seront la base des différents types de piles d'aujourd'hui.[3] Les piles à combustible ne retrouvèrent un réel intérêt qu en 1853 avec la réalisation d un prototype H2-O2 par F. Bacon. Cette pile utilisait des électrodes poreuses de nickel et d oxydes de nickel avec un électrolyte alcalin permettant de développer une densité de courant de 1 A/cm² pour une tension de 0,8 V. Ce prototype fut à la base des générateurs électriques propulsant les véhicules spatiaux habités de la NASA tels que Gemini en [3] Avec les chocs pétroliers des années 70, les recherches menées aux Etats-Unis, en Europe et au Japon se sont intensifiées afin d améliorer les différents composants de la pile: électrolyte, électrodes, ainsi que tous les périphériques: compresseurs, échangeurs, systèmes de stockage, de distribution et production d hydrogène, l emploi de combustibles nécessitant moins d investissements concernant les infrastructures de transport (méthanol, essence, gaz naturel et éthanol avec reformeur embarqué ou charbon et hydrocarbures légers avec reformeur stationnaire). Malgré quelques réussites, les piles restent à cette époque coûteuse, de faible durée de vie, avec un volume et un poids trop importants pour être insérées dans un véhicule. Pour ces raisons, les 13

18 Chapitre 1 généralité sur les piles à combustible et sur les supercondensateurs travaux se ralentissent en France: seule une veille technologique ainsi que des travaux universitaires sont maintenus. En revanche, les Etats Unis, le Japon et l'allemagne ont poursuivi leurs recherches. On assiste alors à une différenciation entre l'amérique du Nord et le Japon où règne une intense activité de recherche et de développement poussée par leurs gouvernements respectifs alors qu'en Europe (sauf en Allemagne), cette activité est restée assez faible pendant les années 80. Les piles ont connu un développement accentué après 1987 avec la création de la firme canadienne Ballard. [4] C'est réellement au début des années 1990 que les piles connaissent un regain d'intérêt. Cela est dû à un début de prise de conscience sur la nécessité de trouver des moyens de production d énergie moins polluants, sur les réserves limitées en énergies fossiles (pétrole, gaz naturel, charbon) et les incertitudes liées à leur approvisionnement, sur l augmentation des besoins énergétiques à l échelle mondiale et enfin sur l'intérêt d'une production d'électricité décentralisée. Les piles présentent un avantage en termes de pollution: si on utilise de l'hydrogène pur, les rejets sont pratiquement nuls et en principe plus faibles que dans les technologies concurrentes si l'hydrogène est produit par reformage. De plus, les nuisances sonores sont très faibles, ce qui facilite l'insertion urbaine. Tous les constructeurs automobiles se lancent aujourd hui dans l aventure. 30 bus Citaro de Mercedes-Benz équipés d une pile à combustible de 205 kw (fabriquée par Ballard) sillonnent différentes villes d Europe. Une cinquantaine de voitures NECAR de Mercedes- Benz ont été livrées en Et tous les autres grands constructeurs automobiles ont maintenant des prototypes similaires. Les premières stations à hydrogène gazeux ou liquide viennent également de voir le jour, en particulier en Allemagne en Islande et au Japon. [4] 14

19 Chapitre 1 généralité sur les piles à combustible et sur les supercondensateurs 1.3. Principe de fonctionnement : Dans la pratique, la pile est constituée d un grand nombre de modules qui sont raccordés électriquement en parallèle ou en série. Les gaz (carburant et comburant) doivent être alors distribués à chacun de ces modules selon le schéma de principe montré à la figure 1.1 [5] Figure 1.1: Schéma de principe d un assemblage de cellules élémentaires Cathode/Électrolyte/Anode et inter connecteurs. Les électrodes sont exposées à un flux de gaz qui leur fournit l apport en carburant et en oxydant, soit l hydrogène et l oxygène, respectivement. Les électrodes doivent être perméables à ces gaz et elles possèdent donc une structure poreuse. La structure et la composition des électrodes peuvent être complexes et requièrent donc d être optimisées pour des applications pratiques. L électrolyte, pour sa part, doit posséder une perméabilité aussi faible que possible aux gaz. Pour les piles à combustible avec un électrolyte conducteur de protons (PEMFC), l hydrogène est oxydé à l anode et les protons sont transportés à travers l électrolyte vers la cathode selon la réaction : 2 2 (1-1) Et à la cathode, l oxygène est réduit selon la réaction : 4 2 (1-2) Les électrons circulent par le circuit externe durant ces réactions. Une fois arrivés à la cathode, les protons se recombinent avec les ions oxygène pour former de l eau selon la réaction: 2 H O H2O (1-3) Par conséquent, le produit de cette réaction est l eau qui est produite à la cathode. L eau peut être produite à l anode si un électrolyte conducteur d anions est utilisé à la place, ce qui est le cas dans les piles à haute température. 15

20 Chapitre 1 généralité sur les piles à combustible et sur les supercondensateurs En théorie, toute substance pouvant être oxydée continuellement (comme un fluide) peut être utilisée et consommée comme un carburant à l anode d une pile à combustible. De la même façon, l oxydant peut être n importe quel fluide capable d être réduit avec un rendement suffisant. L hydrogène est considéré comme un carburant de choix pour beaucoup d applications, grâce à sa grande réactivité lorsqu il est utilisé avec un catalyseur adéquat. Il a également l avantage de pouvoir être produit à partir d hydrocarbures et il a une grande densité d énergie lorsqu il est stocké sous forme liquide. De la même façon, l oxydant le plus commun est l oxygène gazeux, généralement l oxygène de l air qui a l avantage d être facilement disponible et peu onéreux Les différents types de piles à combustible : Les piles à combustible sont généralement classifiées par le type d électrolyte utilisé. Une exception dans cette classification est la pile de type DMFC (Direct Methanol Fuel Cell) qui est en fait une PEMFC, mais utilisant comme carburant du méthanol qui est directement envoyé à l anode. Une autre caractéristique utilisée pour classifier les piles à combustible est leur température de fonctionnement, on distingue ainsi les piles à basse température et les piles à haute température : Les piles à basse température sont : les piles alcalines ou AFC (Alkaline Fuel Cell). les piles à membrane échangeuse de protons ou PEMFC, les piles à méthanol direct ou DMFC. les piles à acide phosphorique ou PAFC (PhosphoricAcid Fuel Cell). Les piles à haute température fonctionnent entre 600 et 1000 C. Deux types ont été développés, soit : les piles à carbonates fondus ou MCFC (Molten Carbonate Fuel Cell). les piles à oxyde solide ou SOFC (Solid Oxide Fuel Cell). Le tableau 1 récapitule les différents types de piles avec leurs caractéristiques respectives. [6] 16

21 Chapitre 1 généralité sur les piles à combustible et sur les supercondensateurs Tableau 1.1: Comparaison des différents types de piles à combustible La pile alcaline (AFC) : Les piles AFC ont l avantage d avoir le meilleur rendement de toutes les piles à combustible, mais elles travaillent correctement seulement en utilisant des gaz très purs ce qui est considéré comme un inconvénient majeur pour de nombreuses applications. Cette pile se retrouve également à bord des vaisseaux spatiaux. Fonctionnant à des températures variant de 120 à 150 C, les réactions mises en jeu sont les suivantes [6] : À l anode, avec un catalyseur au nickel ou au platine-palladium, on a la réaction : 2 H HO - 4 H 2 O + 4 e- (1-4) Et à la cathode, avec un catalyseur à l oxyde de nickel, à argent ou au platine-or, on a la réaction : O e- + 2 H 2 O 4 (1-5) Dans ce cas, l électrolyte utilisé est une solution de KOH (généralement en concentration de 30 à 40%), qui est un électrolyte conducteur d hydroxyde (OH-). Comparé aux piles à électrolyte acide, cet électrolyte a l avantage, d accélérer la réduction de l oxygène, ce qui en fait un système intéressant pour certaines applications spécifiques. 17

22 Chapitre 1 généralité sur les piles à combustible et sur les supercondensateurs L électrolyte peut réagir avec le dioxyde de carbone pour former un composé de carbonate, ce qui réduit énormément le rendement de la pile à combustible. En effet, le CO 2 contenu dans l air réagit avec l électrolyte dans la réaction suivante [6] : (1-6) Les catalyseurs sont habituellement une combinaison de nickel et d un métal inactif, comme l'aluminium, permettant ainsi de réduire le coût global du système. Le magnésium métallique ou des composés de graphite sont utilisés pour les plaques bipolaires qui sont les connecteurs permettant de construire un assemblage (ou Stack) en reliant plusieurs piles en série La pile à acide phosphorique (PAFC) : La pile à combustible à acide phosphorique est le système le plus avancé dans le développement et la commercialisation. Elle est principalement utilisée pour des applications stationnaires, en tant que générateur électrique. Des centrales électriques de type PAFC, ont été installées dans différents endroits dans le monde pour fournir de l électricité, du chauffage et de l eau chaude à certains villages, usines ou hôpitaux. Les avantages des PAFCs sont sa facilité de fabrication, sa stabilité thermique et chimique et la faible volatilité de l électrolyte aux températures de fonctionnement (entre 150 et 220 C). Ces facteurs ont facilité le développement commercial de ce type de système. Les réactions qui se produisent dans une PAFC sont les mêmes que dans le cas de la PEMFC, avec des températures de fonctionnement variant de 150 à 220 C, on a donc [6] À l anode: 2 4 H 4 e (1-7) Et à la cathode: 4 H 4 e 2 (1-8) Dans le cas de la PAFC, l électrolyte est de l acide phosphorique (aussi un électrolyte conducteur de protons), un liquide, alors qu il s agit d'un polymère solide dans le cas de la PEMFC. Au début du développement des PAFCs, on a utilisé l acide phosphorique en solution afin de limiter la corrosion de certains constituants de la pile. Mais avec les progrès faits dans les matériaux utilisés pour la construction des piles, la concentration en acide est maintenant de 100%. Comme dans le cas des PEMFCs, cette pile utilise des électrodes de carbone, avec un catalyseur à base de platine, qui permettent la diffusion des gaz. Les plaques bipolaires sont deux plaques poreuses séparées par une mince feuille de graphite pour former un substrat côtelé dans 18

23 Chapitre 1 généralité sur les piles à combustible et sur les supercondensateurs lequel l électrolyte peut être stocké. On procède actuellement à l essai d autres catalyseurs pour ce type de piles à combustible: fer-cobalt, titane, chrome, zirconium. [6] La pile à méthanol direct (DMFC) : Il ne faut pas confondre cette pile avec les piles qui utilisent du méthanol (ou éthanol) comme source d hydrogène par le reformage externe (la pile à méthanol indirect). La DMFC est une PEMFC utilisant du méthanol comme carburant, le méthanol est alors directement en contact avec l anode, à laquelle les réactions suivantes se produisent (à des températures de fonctionnement ne dépassant jamais 80 C) [6]: À l anode on a: e- + (1-9) Et à la cathode on a: e- 6 (1-10) Il est important de noter que dans une DMFC, ce sont les protons qui se déplacent de l anode à la cathode et non les molécules de méthanol. Tout commet le cas chez la PEMFC, cette pile à combustible utilise un électrolyte polymérique échangeur d ions, cependant ces membranes ne sont pas avantageuses pour bloquer le passage du méthanol. Le mouvement des protons dans la membrane est associé à la teneur en eau de la membrane. Le méthanol et l eau ayant des propriétés comparables (moment dipolaire), les molécules de méthanol sont aussi bien transportées vers la cathode que les molécules d eau par un processus de drag osmotique. A la cathode, le méthanol cause un mélange de potentiels dû à l interférence entre les réactions d oxydation du méthanol et de réduction de l oxygène. Cela a pour effet une baisse des performances de la pile. La traversée du méthanol à travers la membrane dépend de plusieurs facteurs, les plus importants étant la perméabilité (et donc proportionnel à l épaisseur) de la membrane, la concentration en méthanol, la température de fonctionnement, et les performances de l anode elle-même. La membrane est un facteur très important dans le problème de la traversée du méthanol ; une membrane fine permet d avoir une résistance de la pile moins importante, mais elle tend à avoir une plus grande perméabilité au méthanol. Une membrane épaisse est donc avantageuse dans le cas des piles au méthanol. 19

24 Chapitre 1 généralité sur les piles à combustible et sur les supercondensateurs Les plaques bipolaires sont faites de graphite, de métal ou de matériaux composites. Le catalyseur à l anode est composé d un mélange de ruthénium et de platine qui empêche l empoisonnement par le monoxyde de carbone La pile à oxyde solide (SOFC) : Le principe de fonctionnement des SOFCs est basé sur le mécanisme suivant: l oxygène est dissocié à la cathode en O 2-, puis l anion migre à travers l électrolyte conducteur ionique à haute température et va se combiner à l anode avec l hydrogène, ou le monoxyde de carbone, pour former de l eau et libérer des électrons. Les réactions mises en jeu sont les suivantes [6]: À l anode, avec un catalyseur au cermet de zirconium et nickel on a la réaction: e- (1-11) Ou: 2 CO e- (1-12) Et à la cathode, dans les deux cas, à l aide d un catalyseur au manganite de luthane dopé au strontium, on a la réaction: + 4 e- 2 (1-13) La caractéristique principale des SOFCs réside donc dans leur haute température de fonctionnement (600 à1 000 C) nécessaire à l obtention d une conductivité ionique suffisante de l électrolyte céramique. Cette température présente un double avantage. Elle permet d abord l utilisation directe d hydrocarbures, qui pourront être facilement reformés en se passant de catalyseur à base de métaux nobles. Elle produit d autre part une chaleur élevée facilement exploitable en cogénération, le rendement pouvant atteindre ainsi 80%. Mais elle présente également un inconvénient, la mise en température est longue et complique toute utilisation à cycles courts et répétitifs (comme dans le cas des transports). Pour ces raisons, la technologie SOFC se prête particulièrement bien à la production d électricité décentralisée et à la cogénération (domaines couvrant des puissances allant de 1 kw à quelques dizaines de MW). Grâce à son fort rendement et sa capacité potentielle à fonctionner directement avec des hydrocarbures liquides, elle trouvera également un débouché dans la propulsion navale, voire terrestre (trains, camion ).La mise au point de ce type de pile implique, de par cette haute température de fonctionnement, la résolution de problèmes thermomécaniques de tenue de matériaux assez complexes, ainsi que d assemblage et d étanchéité. 20

25 Chapitre 1 généralité sur les piles à combustible et sur les supercondensateurs Les SOFCs peuvent être de conceptions planes, monolithiques et tubulaires, et utiliser de l acier inoxydable, de l acier austénitique, des matériaux céramiques selon les températures de fonctionnement et l'électrolyte désiré La pile à carbonates fondus (MCFC) : Le développement des piles à combustible à carbonates fondus a débuté dans le milieu du vingtième siècle. Les avantages et les inconvénients de ce type de pile sont sensiblement les mêmes que dans le cas des SOFCs. La température élevée améliore énormément la cinétique de la réaction de réduction de l oxygène et rend ainsi inutile l utilisation de métaux nobles comme catalyseurs. Les systèmes à base de piles MCFC peuvent atteindre des rendements supérieurs à 50%, et supérieurs à 70% lorsqu ils sont combinés à d autres générateurs. De plus, les MCFCs peuvent utiliser une large gamme de carburant (grâce au reformage interne), et ne sont pas sensibles à la contamination par CO ou CO2 comme c est le cas pour les piles à basses températures. Les réactions ayant lieu dans ce type de piles sont les suivantes [6]: À l anode, avec un catalyseur fait d'un alliage nickel-chrome/ nickel-aluminium, on a la réaction: e- (1-14) Et à la cathode, avec un catalyseur d oxyde de nickel, on a: e- 2 (1-15) Ici, du dioxyde de carbone et de l oxygène sont consommés à la cathode et l ion de carbonate ( ) voyagede la cathode à l anode. L électrolyte est fait d un mélange de carbonates de métaux alcalins (carbonates de lithium, de potassium et de sodium) retenus par une matrice céramique d oxyde d aluminium et de lithium (LiAlO2). Les plaques bipolaires sont faites d acier inoxydable recouvert de nickel du côté de l'anode. Le choix des matériaux est extrêmement important, en raison de la nature hautement corrosive de l électrolyte et de la température de fonctionnement très élevée Piles à membrane électrolyte polymérique (PEMFC) : Ce type de pile qu on va étudier dans notre thèse a été mis au point pour les missions spatiales Gemini de la NASA dans les années 1960, mais fût ensuite vite remplacé par des AFCs, faute de rendement suffisant. 21

26 Chapitre 1 généralité sur les piles à combustible et sur les supercondensateurs Cette technologie a connu des progrès énormes dans les années 1980, notamment avec l arrivée de nouvelles membranes de types Nafion (fabriquées par la société Dupont de Nemours), permettant d envisager le recours à la technologie des piles à combustible pour la généralisation des applications. La PEMFC fonctionne à une température d environ 80 C, de façon à maintenir l eau à l état liquide dans la membrane. Les réactions suivantes se produisent : À l anode, on a : 2 4 H+ + 4 e- (1-16) Et à la cathode, on a: O2 + 4 H+ + 4 e- 2 (1-17) L électrolyte est une membrane polymérique mince qui permet le passage des protons (H+). Un catalyseur à base de platine est utilisé aux électrodes. Le monoxyde de carbone peut être absorbé sur ce catalyseur s il n'est pas éliminé pendant le procédé de purification, d où une diminution de l efficacité de la pile à combustible. De nombreux centres de recherche sont à la recherche de catalyseurs plus robustes et moins chers, et d électrolytes polymériques échangeur d ions plus efficaces et également moins coûteux. Les plaques bipolaires peuvent être faites à partir de feuilles de graphite, de composites ou de métaux à base de carbone. Nous verrons les caractéristiques de cette pile plus en détail au chapitre suivant (chap. 2) Description générale d une pile PEMFC: Une PEMFC s insère dans un système complexe de stockage et de gestion des combustibles : système de stockage, compresseurs, échangeurs, circuit de régulation en température, système d humidification,... Le cœur de pile est lui constitué d'une membrane protonique et de deux électrodes formant un assemblage membrane - électrodes (MEA : Membrane Electrodes Assembly) ainsi que de deux plaques bipolaires assurant l approvisionnement en combustible, comme montré sur la figure 1.2. [7] 22

27 Chapitre 1 généralité sur les piles à combustible et sur les supercondensateurs Figure 1.2 : Pile à Combustible à Membrane Echangeuse de Proton (PEMFC). Le cœur d une cellule PEMFC est constitué d un film mince (de 10à 200 micromètre)d électrolyte solide polymère(membrane protonique )sur lequel sont pressées des deux côtes les structures d électrodes (anode à combustible et cathode a oxygène)constituant un assemblage membrane électrode (AEM). Un élément délivre une tentions comprise entre 0.9 et 0.5 V, selon la densité de courant le traversant, si bien que les AEMs séparés par des plaques bipolaires sont empilés en série afin d obtenir la tension nominale d un système PAC de puissance.les électrodes sont constituée de deux couches :une couche active composé de catalyseur et l électrolyte,en contact avec la membrane et la couche de diffusion obtenue par dépôt de carbone et de polymère hydrophobe, sur un support en fibre de carbone.[7] La membrane protonique : La membrane polymère protonique d une PEMFC doit posséder une forte conductivité protonique, une faible conductivité électronique, une forte imperméabilité vis-à-vis de l hydrogène, de l oxygène, de l azote et une haute stabilité thermique et temporelle tout en restant relativement bon marché. Bien qu il existe une multitude de membranes différentes, elles peuvent être classées en 5 catégories [8] : les membranes perfluorées, les membranes partiellement fluorées, les membranes non fluorées, 23

28 Chapitre 1 généralité sur les piles à combustible et sur les supercondensateurs les membranes composites non fluorées, les membranes hybrides organiques/inorganiques Les membranes perfluorées sont les plus répandues du fait de leur forte stabilité en environnement oxydant ou réducteur et de leur bonne conductivité protonique qui peut atteindre 0,2 S/cm. Cependant, ces membranes sont assez chères (1 m² _ 700 US$), elles peuvent désorber des gaz toxiques (à des températures supérieures à 150 C) et doivent être hydratée en permanence pour un meilleur fonctionnement. [8] Le premier modèle qui reste aujourd'hui de référence est celui de la firme Dupont de Nemours: le Nafion (Perfluorosulfonate PFSA) découvert en Les performances internes de conductivité de ces membranes sont dues aux groupes éther perfluorovinyle terminés par un groupe sulfoné SO 3 H qui ont été incorporés à une longue chaîne tetrafluorethylène (voir figure - 1-4). Dans cette membrane, les ions négatifs SO 3 sont retenus immobiles dans la structure carbonée. Seuls les ions hydrogène H+ sont mobiles et libres de transporter la charge positive à travers la membrane via les groupements SO - 3, de l'anode vers la cathode. Plusieurs modèles élaborés ont été proposés pour décrire précisément la morphologie de la membrane Nafion tel que celui montré sur la figure 1.3. [8] Figure 1.3 : Structure chimique du Nafion Dans ce cas, un réseau de clusters hydrophiles composés des groupes SO - 3 est contenu dans une matrice carbonée hydrophobe. Les modèles se différencient principalement par la taille des clusters et leur distribution. Il existe également d autres membranes commerciales telles que le Flemion et l aciplex. Toutes leurs propriétés dépendent fortement des conditions de fonctionnement. Ainsi, la conductivité ionique de la membrane varie avec sa température et son hydratation : celle-ci doit toujours rester saturée en eau pour permettre le déplacement des ions H +. La membrane va aussi gonfler lorsqu elle sera en fonctionnement : typiquement +14% en épaisseur et +15% en élongation à 100 C avec une humidité relative de 50%. Ces membranes Nafion fonctionnent à une température comprise entre 60 et 90 C et à des pressions de 1 à 5 bars. Dans ces conditions, elles se montrent très stables et résistantes, ce qui permet d'atteindre des durées de vie de à h pour un fonctionnement en condition transport. [8] 24

29 Chapitre 1 généralité sur les piles à combustible et sur les supercondensateurs A des températures supérieures à 90 C, l eau s évapore et les protons ne peuvent plus migrer au sein de la membrane, les performances de la membrane commencent donc à se dégrader. Des recherches sont menées pour augmenter ces températures de fonctionnement ce qui permettrait d'augmenter l'activité des catalyseurs, d'améliorer le rendement thermique du système en permettant d'exploiter la chaleur des gaz en sortie de pile comme avec un système de cogénération. Une solution actuellement à l'étude est celle des membranes polyimides sulfonées, pouvant résister à de plus hautes températures. J. Durand et S. Rouades de l Institut Européen des Membrane de Montpellier travaillent également sur une toute nouvelle membrane déposée par procédé plasma à partir d acide triflique et de styrène. Ces deux types de membrane ont des performances comparables à celles du Nafion et peuvent résister à des températures avoisinant 120 C Les électrodes : Les électrodes doivent permettre plusieurs types de transport : la diffusion des combustibles gazeux (ou liquide en DMFC), l évacuation de l eau produite, la migration des protons et des électrons entre les sites catalytiques des deux électrodes via un polymère protonique pour les protons et via les particules de carbone, le support carboné et le circuit électrique extérieur pour les électrons. On sépare généralement les électrodes en trois [8] : la couche catalytique la couche de diffusion le support carboné (backing). Parce que toutes les réactions électrochimiques se produisent dans la couche active, les performances d une pile à combustible dépendent largement de son optimisation. Cette couche doit présenter une grande surface spécifique pour augmenter les vitesses de réaction électrochimique en favorisant la dispersion du catalyseur, une bonne conductivité électronique et protonique pour faciliter le transport des protons et des électrons, être hydrophobe pour évacuer l eau produite à la cathode nécessaire à l hydratation de la membrane, être poreuse et avoir une très bonne stabilité mécanique dans un environnement corrosif (espèces oxygénées et acidité de la membrane). En conséquence, cette couche contient non seulement le catalyseur dispersé en général sur des particules de carbone, mais également du PTFE hydrophobe (téflon) car son prix est assez faible et un ionomère protonique, identique ou compatible avec la membrane pour assurer le transport des protons de H + vers la membrane. La difficulté consiste alors à optimiser la structure sur une épaisseur qui varie de 400 nm à 20 µm selon les techniques d élaboration 25

30 Chapitre 1 généralité sur les piles à combustible et sur les supercondensateurs employées. Quant à la couche de diffusion, son rôle est d approvisionner la couche active en réactif et de contribuer à l évacuation des produits des réactions, notamment l eau dans le cas d une PEMFC fonctionnant en H 2 /O 2 purs. A ce titre, elle contient généralement des particules de PTFE ( nm).[9] Les composants élémentaires de l électrode : Le catalyseur : Dans une PEMFC, comme dans toutes les piles à basse température (PAFC, AFC), le platine et ses alliages sont toujours considérés à ce jour comme les meilleurs catalyseurs pour l oxydation de l hydrogène (ou le méthanol) et surtout pour la réduction de l oxygène. Pour bien comprendre comment agit le platine dans le cas de l oxydation de l hydrogène et de la réduction de l oxygène, voici les principales réactions se produisant de part et d autre de l électrolyte : A l anode [10]: 2 2 é (1.18) 2 é 2 2 (1.19) La première réaction est une étape relativement longue d'adsorption et de dissociation. A la cathode, la réduction de l oxygène est considérablement plus complexe à cause : de la liaison de forte énergie O-O, de la formation d espèces intermédiaires relativement sables Pt-O et Pt-OH, de la possible formation de espèce partiellement oxydée. de la mise en jeu de 4 électrons (donc quatre étapes), Voici ces 4 réactions : (1.20) (1.21) (1.22) (1.23) En résumé : (1.24) Outre la nature du catalyseur, la morphologie et la dispersion du catalyseur doivent être optimisées afin d augmenter sa surface catalytique (appelée également surface active),directement responsable des performances globales de la pile. Il se présente donc en général sous la forme de nanoparticules dispersées sur de la poudre de carbone possédant également une grande surface spécifique. Cependant, si ces nanoparticules sont trop petites, leur 26

31 Chapitre 1 généralité sur les piles à combustible et sur les supercondensateurs surface sera trop petite pour adsorber l oxygène et tous les autres composés oxygénés intermédiaires et la réaction ne pourra se produire convenablement. La taille optimale des particules de platine se situe entre 2 et 4 nm pour une efficacité catalytique maximale. Lorsque la pile est directement alimentée par un biocombustible tel que le méthanol dans une DMFC (Direct Methanol Fuel Cell), la vitesse de réaction de l oxydation est très faible notamment à cause de l empoisonnement de la surface des sites actifs du platine par le CO (la liaison Pt-CO est plus forte que la liaison Pt-H). En conséquence, l oxydation du méthanol peut seulement se produire une fois que le CO adsorbé est oxydé, ce qui mène à de fortes surtensions locales et donc à une diminution du potentiel de la pile. Pour lutter contre cet empoisonnement, deux méthodes peuvent être employées. Pour oxyder le méthanol ou l hydrogène en présence de monoxyde de carbone, La première solution consiste à utiliser un catalyseur binaire ou tertiaire à base de platine. Mehta et Cooper ont fait un inventaire de tous les catalyseurs métalliques pouvant être utilisé en anode. A ce jour, il a été démontré que les catalyseurs Platine/Ruthénium sont les plus actifs pour l oxydation du méthanol. L utilisation de ce catalyseur pour les PEMFC a été pour la première fois proposée dans les années 80. Le potentiel de la pile peut ainsi atteindre 0,65 V à 500 ma/cm² avec une charge catalytique PtxRuy (ou x et y les concentrations atomiques respectives du platine et du ruthénium sont de l ordre de 0,5) de 1 mg/cm² quand 250 ppm de CO était ajouté à l hydrogène. Alors que le potentiel chute à 0,2 V lorsque le platine (0,1 mg/cm²) est utilisé seul dans les mêmes conditions. A titre de comparaison, la densité de courant à 0,6 V pour une PEMFC peut atteindre 1 A/cm² Trois hypothèses sont avancées pour expliquer cette tolérance du catalyseur PtRu au CO [10] : CO est adsorbée par les radicaux OH à la surface du ruthénium, l énergie de liaison Pt-CO diminue en présence du ruthénium, une combinaison de ces deux effets, conduisant à la réaction globale : (1.25) La seconde solution proposée dans les années 90 réside en l ajout de quelques pourcents d oxygène dans l hydrogène contaminé par le CO. Cet ajout permet d oxyder rapidement le CO adsorbé à la surface du platine. Ainsi avec seulement 2 % d oxygène, les performances de la pile chargée en platine sous hydrogène et 100 ppm de CO sont similaires à celles obtenues sous hydrogène pur. Cependant, cette méthode ne peut être utilisée avec desfortes concentrations de 27

32 Chapitre 1 généralité sur les piles à combustible et sur les supercondensateurs CO car cela nécessiterait d augmenter le pourcentage d oxygène dans l hydrogène, d où un risque d explosion. Elle n est donc pas utilisée en DMFC[10]. Les plaques bipolaires Ces plaques sont généralement réalisées en graphite haute densité. Elles servent à assurer la distribution des gaz et l'évacuation de l'eau: pour cela, l'une des faces est parcourue de microcanaux de dimensions de l'ordre de 0,8 mm. Mais ce sont aussi des collecteurs de courant. Les électrons produits par l'oxydation de l'hydrogène traversent le support d'anode puis la plaque, passent par le circuit extérieur et arrivent du côté de la cathode. Dans un Stack (empilement de cœur de pile), ces plaques bipolaires permettent aussi de séparer les différents assemblages. Outre les contraintes au niveau de la conductivité, elles doivent présenter une bonne stabilité face aux réactifs (corrosion acide) ainsi qu'une très faible perméabilité à l'hydrogène [10]. Parallèlement, cet ensemble doit être léger afin de limiter le poids total de la pile. Afin de permettre une distribution optimale des combustibles, la forme des canaux doit être étudiée. Il ne doit y avoir aucun endroit de la plaque où la distribution de la vitesse du combustible est nulle afin que toute la surface de l assemblage membrane électrode soit utilisée. Les canaux doivent donc être usinés avec soin, d'où une fabrication délicate et des prix élevés. Les recherches se portent donc à la fois sur l'utilisation d autres matériaux que le graphite relativement cher (tel que de l inox, des résines thermodurcissables, composite inorganique, des mousses métalliques), sur la forme des canaux (généralement serpentin pour les gaz) ainsi que sur la mise en place de procédés de fabrication plus simples [11]. Figure 1.4 : Plaque bipolaire graphite à serpentin. 28

33 Chapitre 1 généralité sur les piles à combustible et sur les supercondensateurs 1.6. Applications du PEMFC : Il y a aujourd hui trois grands domaines dans lesquels on promet un brillant avenir à la pile à combustible : le portable, le transport et le stationnaire.[12] Le transport : C est le domaine d application qui est à l origine du développement de la pile à combustible à partir du début des années 90. Dans ce domaine, de nombreux prototypes ont vu le jour depuis 1993, tous de type PEMFC, parmi lesquels: le canadien Ballard en collaboration avec DaimlerChrysler, le pionnier, avec 6 bus (pile de 200 kw) testés pendant deux ans à Vancouver et à Chicago, puis une flotte de 30 bus en place depuis 2003 dans 10 villes européennes, dans le cadre des programmes européens CUTE et ECTOS et maintenant Hy Fleet et CUTE 6 autres dans le cadre du programme australien et d une petite flotte à Pékin depuis la fin l allemand Daimler (ex DaimlerChrysler), qui a réalisé 60 exemplaires de la F-Cell construits sur une base Class A, en 2005, et qui en développe une nouvelle série sur la base de la Class B. Les américains General Motors (avec ses prototypes les plus récents HydroGen3, et Sequel en 2005) et Ford (avec ses prototypes FCV Hybrid sur base Focus) les japonais Toyota (avec ses prototypes FCHV et ses concept-car FINE-X et FINE-T en 2006), Nissan associé à Renault (avec ses prototypes X-Trail), Honda (avec ses prototypes FCX) Le coréen Hyundai, avec son prototype Santa Fé FCEV et Tucson 4x4 puis i-blue en 2007, Le français PSA qui a présenté ses prototypes Taxi à la mi-2001, puis H2O et Quark. Le Chinois SAIC avec ses prototypes Start 1, 2, 3 et Shanghai en 2007 La plupart de ces constructeurs ont commencé à mettre en place des mini-flottes de 5 à 60 véhicules dès 2003, mais n envisagent pas de construction en série avant , au mieux. Le combustible utilisé jusqu ici est de l hydrogène stocké à bord sous pression (350 bars puis 700 bars) dans des réservoirs en composite, extrêmement légers. Par ailleurs, il faut aussi noter un intérêt croissant de constructeurs navals (navires civils et militaires) pour la pile PEMFC pour les sous-marins (chantier allemand DWV et espagnol Navantia), et la pile MCFC pour les navires côtiers. 29

34 Chapitre 1 généralité sur les piles à combustible et sur les supercondensateurs Figure 1.5 Prototype du tramway fabriqué par BOMBARDIER avec l utilisation du Supercondensateur comme alimentation secondaire Le stationnaire : Compte tenu des nouvelles lois sur la déréglementation du secteur électrique et des tendances vers la décentralisation de la production d énergie électrique, ce secteur commence à intéresser de nombreux industriels, en particulier au Japon et aux USA. Dans ce domaine, l activité est centrée sur deux grands domaines d applications: la production collective (les puissances mises en jeu sont dans la gamme 200 kw) et la production individuelle (les puissances mises en jeu sont dans la gamme 1-5 kw) [13]. Dans le premier domaine, on trouve essentiellement l activité de UTC Power (USA) avec ses piles PAFC PureCellTM200 de 200 kw dont plus de 270 exemplaires ont été vendus dans le monde à la fin Fuel Cell Energy (USA) avec ses piles MCFC dans l gamme kw, dont plus de 40exemplaires ont déjà été vendus. Dans le deuxième domaine de la production individuelle (habitat), plusieurs projets sont en cours de réalisation [13]: Le plus important est un programme de test en vraie grandeur qui a démarré en 2005 au Japon avec plusieurs industriels : 400 installations fonctionnent en site réel et font l objet d un suivi technique. 30

35 Chapitre 1 généralité sur les piles à combustible et sur les supercondensateurs Ces piles sont toutes alimentées en combustible fossile (généralement le gaz naturel ou kérosène) Le portable : Dans cette famille on inclut essentiellement le téléphone mobile (qui consomme une puissance de l ordre de 100mW) et l ordinateur portable (qui consomme une puissance de l ordre de 20 W). Ces deux applications connaissent une très forte croissance, mais sont de plus en plus handicapées par l autonomie de leur batterie, même la plus performante comme la batterie lithium-ion. Cette dernière atteint aujourd hui une énergie spécifique de l ordre de 130 à 150 Wh/kg, qui n augmentera probablement plus significativement et qui laisse classiquement quelques jours d autonomie à un téléphone et environ 3 heures à un ordinateur portable. Or les clients demandent 5 à 10 fois mieux[13]. La solution qui apparaît et qui fait l objet de recherches importantes, essentiellement aux USA5, au Japon6, en France et en Corée7, est une micro-pile à combustible de type PEMFC ou DMFC, généralement couplée à une batterie Li-ion comme chargeur. L autonomie ne sera alors limitée que par la taille du réservoir (hydrogène ou méthanol) : on rechargera son portable comme on recharge un briquet ou un stylo à encre, en quelques secondes, et chaque recharge donnera 2 à 3 fois plus d autonomie qu une batterie actuelle pour le même encombrement![11] Figure.1.6. micro piles a combustible élaboré par la technique des couches mince L engouement pour ce secteur est tel qu aujourd hui de nombreux congrès internationaux ne traitent que de ce sujet ; on en est actuellement au stade des prototypes préindustriels et le premier produit commercial est apparu début 2008 avec le chargeur de batteries 24-7 Power Pack d une puissance de 1 Watt sous 3,6 5,5 Volt, de l américain Medis Technologies Ltd. qui assure 30 heures d utilisation d un téléphone portable. 31

36 Chapitre 1 généralité sur les piles à combustible et sur les supercondensateurs 1.7. Les supercondensateurs : Comme il a été signalé auparavant, les supercondensateurs sont utilisé dans diverses application pour lesquelles les demandes de puissances instantanées sont élevées et rapides. Dans ce qui suit nous faisons connaissances avec ces nouveaux composants très utilisé : Principe de fonctionnement : Dans un condensateur, l énergie emmagasinée est liée à la valeur de C et à la tension de service [14] : S : surface en regard. D : épaisseur diélectrique. : la permittivité de vide Où (1.26) : la permittivité relative de diélectrique. Un supercondensateur se présente sous la même forme qu un condensateur électrochimique classique à la seule différence qu il ne possède pas de couche diélectrique dans sa partie électrolytique liquide (Figure 1.7).il peut être schématisé par deux capacités connectées par une résistance associée à l électrolyte. Figure.1.7 : Schéma de principe d'un supercondensateur 32

37 Chapitre 1 généralité sur les piles à combustible et sur les supercondensateurs Le principe générale de fonctionnement des Supercondensateur est basé sur la formation d une double couche électrochimique à l interface d un électrolyte et d une électrode de grande surface spécifique polarisable.l application d une différence de potentiel aux bornes du dispositif complet résulte le stockage électrostatique de charges aux deux interfaces électrodesélectrolyte Les différents éléments du supercondensateur : Un supercondensateur est composé de deux électrodes, et d un électrolyte et d un isolant (séparateur) comme montre la figure suivante [14]: Figure.1.8 : différents éléments du supercondensateur Electrodes : Selon le type de matériaux Il existe différents types d électrodes polarisables. En particulier : les charbons actifs les fibres de tissu activé Les charbons actifs : Le charbon actif est un composé carboné, ayant des surfaces spécifiques comprises entre 100m2/g et2500m2/g. l augmentation du surface possède deux avantages la résistance est plus faible 33

38 Chapitre 1 généralité sur les piles à combustible et sur les supercondensateurs les caractéristiques électrochimiques meilleures lorsque la taille des pores sont adaptée à la taille de l ion actif dans la double couche dont le type des pores est cylindrique un taux d impuretés métalliques trop important (>100ppm) entraîne une autodécharge importante. La figure suivante montre la structure carbonée de base [16] : Figure.1.9 : Structure microscopique d une électrode au charbon actif (types de pore cylindrique) Les tissus actifs : Ce sont des produits basés sur l utilisation de fibres polymères.les surfaces spécifiques actives atteignent là encore 2000 m2/g. Par rapport aux charbons actifs, ces produits présentent des porosités bien supérieures, une meilleure conductivité électronique avec moins d impuretés. Le seul désavantage de ce type d électrode est le coût très supérieur par rapport à la technologie basée sur les charbons actifs. La figure suivante montre la structure d un tissu activé [16]: Figure.1.10 : Structure microscopique d un tissue actif L électrolyte : Selon la conductivité et le potentiel maximal supporté par l électrolyte se base le choix de l électrolyte. Il existe deux types d électrolyte : 34

39 Chapitre 1 généralité sur les piles à combustible et sur les supercondensateurs a) L électrolyte aqueux : Comme H 2 SO 4 ou KOH qui possèdent un domaine de potentiel limité, mais une conductivité élevée. b) L électrolyte organique : Tel que le Carbonate de Propylène avec un domaine de potentiel plus élevé mais une conductivité plus faible. L électrolyte peut être liquide ou polymère (plastique ou gel). Afin d obtenir des densités de puissances importantes, la technologie film mince-électrolyte liquide semble la mieux adaptée Le séparateur : Est une membrane isolante poreuse aux propriétés spécifiques. Il doit faciliter le passage des ions de l électrolyte et assurer une isolation électronique entre les deux électrodes imprégnées d électrolyte. Il est souvent à base de polyéthylène et de polypropylène (le Celgard est largement utilisé) Collecteur de courant Ils doivent être d épaisseurs minimales afin de limiter le plus possible leur contribution à la densité d énergie et la densité de puissance Comparaison supercondensateurs-batteries : Les supercondensateurs ont plusieurs atouts pour les applications de traction électrique. Leur utilisation comme système de puissance secondaire permet de fournir une source de puissance rapidement disponible lors des phases d accélération et de freinage. En effet, la constante de temps des condensateurs est plus faible que celle des générateurs électrochimiques classiques (décharge possible en quelques secondes) et les supercondensateurs sont capables de fournir une puissance importante sur un temps très court [16]. De plus, en cas de limitation énergétique, l utilisation d un supercondensateur associé à une batterie permet d augmenter la durée de vie de cette dernière en évitant les décharges profondes lors des appels de puissance. Enfin, ce genre de dispositif possède une bonne cyclabilité (plus de cycles) et une bonne stabilité du fait de l absence de réactions électrochimiques aux électrodes. Le tableau suivant nous donne une comparaison entre les trois systèmes de stockage. 35

40 Chapitre 1 généralité sur les piles à combustible et sur les supercondensateurs Tableau1.2.comparaison des différents éléments de stockage[16] 1.9. Les différentes familles des Supercondensateurs : Deux grandes familles de Supercondensateur sont en concurrence : elles se différencient par leurs matériaux d électrodes et leurs électrolytes [16]. Tableau1.3.Les différents familles des supercondensateurs 36

41 Chapitre 1 généralité sur les piles à combustible et sur les supercondensateurs L intégration de micro-supercondensateurs : La première intégration sur silicium a été réalisée par Yoon et al. en 2001, avec un empilement d électrodes RuO2 séparée par une couche LiPON (verre conducteur ionique) qui sert d électrolyte solide (classiquement utilisé pour les microbatteries) [17]. En 2003 Cette technique a été améliorée par la même équipe en utilisant des électrodes RuO2/W, plus perméables à l intercalage des ions Li+. En 2006, Lee et al. ont proposé une technique similaire mais où Ta2O5 (utilisé habituellement comme diélectrique dans les condensateurs) joue le rôle d électrolyte solide du fait de sa bonne conductivité ionique. En 2010, Liu et al. ont proposé des micro-supercondensateurs dont les électrodes sont des nanofils de RuO2 par électrodéposition suivie d un reactive sputtering, et ils atteignent 21,4 mf/cm2 à 50 mv.s-1. Ils ont également mesuré la capacité pour des vitesses de balayage plus élevées, jusqu à 14,9 mf/cm2 à 500 mv/s, pour des électrodes de 200 µm de large interdigitées, ce qui indique un effet positif de la structure du composant sur la densité de puissance[17]. Figure techniques d'intégration de micro-supercondensateurs Méthode origami[17] Supercondensateurs : avantages, inconvénients, applications courantes : Les avantages des supercondensateurs sont : Durés de vie importante comparée aux batteries chimiques ( cycles) Densité de puissance massique élevée ( W/kg) Capacité élevée (de quelque F à 5000F) 37

T4 Pourquoi éteindre les phares d une voiture quand le moteur est arrêté? Comment fabriquer une pile? un accumulateur?

T4 Pourquoi éteindre les phares d une voiture quand le moteur est arrêté? Comment fabriquer une pile? un accumulateur? T4 Pourquoi éteindre les phares d une voiture quand le moteur est arrêté? Comment fabriquer une pile? un accumulateur? Pour ce module, sont proposés et présentés des phases de recherche documentaire, de

Plus en détail

Les Rencontres Scientifiques Colas

Les Rencontres Scientifiques Colas Les Rencontres Scientifiques Colas «L avenir du véhicule électrique» 2 juin 2009 avec Yves CHABRE Docteur ès-sciences Consultant pour véhicules électriques et Pierre MIDROUILLET Directeur Général de PVI

Plus en détail

Production d hydrogène par électrolyse de l eau sur membrane acide

Production d hydrogène par électrolyse de l eau sur membrane acide 17 Production d hydrogène par électrolyse de l eau sur membrane acide PIERRE MILLET Ingénieur de l'école nationale supérieure d'électrochimie et d'électrométallurgie de Grenoble Pour beaucoup d'entre nous,

Plus en détail

Magister en : Electrotechnique. Modélisation et Contrôle du système, Pile à Combustible, Convertisseurs et Supercondensateur

Magister en : Electrotechnique. Modélisation et Contrôle du système, Pile à Combustible, Convertisseurs et Supercondensateur الجوهىريت الجسائريت الديوقراطيت الشعبيت République Algérienne Démocratique et Populaire وزارة التعلين العالي و البحث العلوي Ministère de l Enseignement Supérieur et de la Recherche Scientifique Université

Plus en détail

THEME 2. LE SPORT CHAP 1. MESURER LA MATIERE: LA MOLE

THEME 2. LE SPORT CHAP 1. MESURER LA MATIERE: LA MOLE THEME 2. LE SPORT CHAP 1. MESURER LA MATIERE: LA MOLE 1. RAPPEL: L ATOME CONSTITUANT DE LA MATIERE Toute la matière de l univers, toute substance, vivante ou inerte, est constituée à partir de particules

Plus en détail

Jean-Claude GRENIER Directeur de Recherches - CNRS

Jean-Claude GRENIER Directeur de Recherches - CNRS Institut de Chimie de la Matière Condensée de Bordeaux ICMCB - CNRS Université de BORDEAUX Jean-Claude GRENIER Directeur de Recherches - CNRS www.icmcb-bordeaux.cnrs.fr 1 Institut de Chimie de la Matière

Plus en détail

La voiture électrique. Cliquez pour modifier le style des sous-titres du masque

La voiture électrique. Cliquez pour modifier le style des sous-titres du masque La voiture électrique Cliquez pour modifier le style des sous-titres du masque I) Introduction II) Composition et Fonctionnement d une voiture électrique III) Gros plan sur les Batteries IV) Conclusion

Plus en détail

Le monde nano et ses perspectives très prometteuses.

Le monde nano et ses perspectives très prometteuses. Le monde nano et ses perspectives très prometteuses. I/ Présentation du monde nano. Vidéo «Science Suisse : Christian Schönenberger, nano-physicien», 12 min. «Christian Schönenberger conduit le Swiss Nanoscience

Plus en détail

PRODUCTION D HYDROGÈNE PAR ÉLECTROLYSE DE L EAU

PRODUCTION D HYDROGÈNE PAR ÉLECTROLYSE DE L EAU Mémento de l Hydrogène FICHE 3.2.1 PRODUCTION D HYDROGÈNE PAR ÉLECTROLYSE DE L EAU Sommaire 1 Introduction 2 - Quelques rappels sur l électrolyse 3 - Les technologies en concurrence 4 - L hydrogène par

Plus en détail

FICHE DE DONNEES DE SECURITE

FICHE DE DONNEES DE SECURITE PAGE 1/7 DATE DE MISE A JOUR : 16/11/2011 1/ - IDENTIFICATION DU PRODUIT ET DE LA SOCIETE Identification du produit : Gaines, films, housses, et/ou sacs transparents et colorés en polyéthylène. Famille

Plus en détail

Origine du courant électrique Constitution d un atome

Origine du courant électrique Constitution d un atome Origine du courant électrique Constitution d un atome Electron - Neutron ORIGINE DU COURANT Proton + ELECTRIQUE MATERIAUX CONDUCTEURS Électrons libres CORPS ISOLANTS ET CORPS CONDUCTEURS L électricité

Plus en détail

Calcaire ou eau agressive en AEP : comment y remédier?

Calcaire ou eau agressive en AEP : comment y remédier? Calcaire ou eau agressive en AEP : comment y remédier? Les solutions techniques Principes et critères de choix Par Sébastien LIBOZ - Hydrogéologue Calcaire ou eau agressive en AEP : comment y remédier?

Plus en détail

Utilisation historique de nanomatériaux en pneus et possibilités de nouveaux développements

Utilisation historique de nanomatériaux en pneus et possibilités de nouveaux développements Utilisation historique de nanomatériaux en pneus et possibilités de nouveaux développements 7 juin 2012 Francis Peters Bien qu il n y ait pas de nano particules dans les usines qui produisent les mélanges

Plus en détail

GUIDE DE BONNES PRATIQUES POUR LA COLLECTE DE PILES ET ACCUMULATEURS AU LUXEMBOURG

GUIDE DE BONNES PRATIQUES POUR LA COLLECTE DE PILES ET ACCUMULATEURS AU LUXEMBOURG GUIDE DE BONNES PRATIQUES POUR LA COLLECTE DE PILES ET ACCUMULATEURS AU LUXEMBOURG Version 1.0 1 Avant-propos Ce guide de bonnes pratiques a été préparé pour fournir des informations concernant la collecte

Plus en détail

Notes. Schéma général PRODUCTION ÉLECTROLYTIQUE Composés inorganiques, nonmétaux

Notes. Schéma général PRODUCTION ÉLECTROLYTIQUE Composés inorganiques, nonmétaux XXXX C25 PROCÉDÉS ÉLECTROLYTIQUES OU ÉLECTROPHORÉTIQUES; APPAREILLAGES À CET EFFET (électrodialyse, électro-osmose, séparation de liquides par l électricité B01D; usinage du métal par action d une forte

Plus en détail

Épreuve collaborative

Épreuve collaborative Épreuve collaborative Épreuve collaborative 1. Faire une présentation de quelqu idé fort relativ au mix énergétique (ou bouquet énergétique). (Exposé de 5 minut maximum) 2. Faut-il encore brûler le charbon?

Plus en détail

La gravure. *lagravureparvoiehumide *lagravuresèche

La gravure. *lagravureparvoiehumide *lagravuresèche La gravure Après avoir réalisé l étape de masquage par lithographie, il est alors possible d effectuer l étape de gravure. L étape de gravure consiste à éliminer toutes les zones non protégées par la résine

Plus en détail

1 ère partie : tous CAP sauf hôtellerie et alimentation CHIMIE ETRE CAPABLE DE. PROGRAMME - Atomes : structure, étude de quelques exemples.

1 ère partie : tous CAP sauf hôtellerie et alimentation CHIMIE ETRE CAPABLE DE. PROGRAMME - Atomes : structure, étude de quelques exemples. Référentiel CAP Sciences Physiques Page 1/9 SCIENCES PHYSIQUES CERTIFICATS D APTITUDES PROFESSIONNELLES Le référentiel de sciences donne pour les différentes parties du programme de formation la liste

Plus en détail

Synthèse des convertisseurs statiques DC/AC pour les systèmes photovoltaïques

Synthèse des convertisseurs statiques DC/AC pour les systèmes photovoltaïques Revue des Energies Renouvelables ICESD 11 Adrar (2011) 101 112 Synthèse des convertisseurs statiques DC/AC pour les systèmes photovoltaïques M. Meddah *, M. Bourahla et N. Bouchetata Faculté de Génie Electrique,

Plus en détail

CORRIGE. CHAP 04-ACT PB/DOC Electrolyse de l eau 1/12 1. ALIMENTATION ELECTRIQUE D'UNE NAVETTE SPATIALE

CORRIGE. CHAP 04-ACT PB/DOC Electrolyse de l eau 1/12 1. ALIMENTATION ELECTRIQUE D'UNE NAVETTE SPATIALE Thème : L eau CHAP 04-ACT PB/DOC Electrolyse de l eau 1/12 Domaine : Eau et énergie CORRIGE 1. ALIMENTATION ELECTRIQUE D'UNE NAVETTE SPATIALE 2.1. Enoncé L'alimentation électrique d'une navette spatiale

Plus en détail

Mater. Environ. Sci. 5 (S1) (2014) 2101-2106 ISSN : 2028-2508 CODEN: JMESCN MPE14

Mater. Environ. Sci. 5 (S1) (2014) 2101-2106 ISSN : 2028-2508 CODEN: JMESCN MPE14 Effect of hygrothermal cycles on physicochemical behavior of a PEM (Proton Exchange Membrane) [L effet des cycles hygrothermiques sur le comportement physicochimique d une PEM (Proton Exchange Membrane)]

Plus en détail

SOLUTIONS TECHNOLOGIQUES D AVENIR

SOLUTIONS TECHNOLOGIQUES D AVENIR CPTF et CSC CYCLES COMBINES A GAZ (CCG) COGÉNÉRATION DÉVELOPPEMENT DES RENOUVELABLES SOLUTIONS DE STOCKAGE CPTF ET CSC Le parc thermique est un outil essentiel pour ajuster l offre et la demande, indispensable

Plus en détail

Réduction de la pollution d un moteur diesel

Réduction de la pollution d un moteur diesel AUBERT Maxime SUP B Professeur accompagnateur : DELOFFRE Maximilien SUP B Mr Françcois BOIS PAGES Simon SUP E Groupe n Réduction de la pollution d un moteur diesel Introduction L Allemand Rudolf Diesel

Plus en détail

THESE. Présentée devant L INSTITUT NATIONAL DES SCIENCES APPLIQUEES DE LYON. Pour obtenir le grade de. Préparé au sein de

THESE. Présentée devant L INSTITUT NATIONAL DES SCIENCES APPLIQUEES DE LYON. Pour obtenir le grade de. Préparé au sein de THESE Présentée devant L INSTITUT NATIONAL DES SCIENCES APPLIQUEES DE LYON Pour obtenir le grade de DOCTEUR Préparé au sein de L ECOLE DOCTORALE MATERIAUX DE LYON Spécialité : Matériaux Polymères et Composites

Plus en détail

Principe de fonctionnement des batteries au lithium

Principe de fonctionnement des batteries au lithium Principe de fonctionnement des batteries au lithium Université de Pau et des pays de l Adour Institut des Sciences Analytiques et de Physicochimie pour l Environnement et les Matériaux 22 juin 2011 1 /

Plus en détail

Enseignement secondaire

Enseignement secondaire Enseignement secondaire Classe de IIIe Chimie 3e classique F - Musique Nombre de leçons: 1.5 Nombre minimal de devoirs: 4 devoirs par an Langue véhiculaire: Français I. Objectifs généraux Le cours de chimie

Plus en détail

La citadine 100% électrique 250 KM D AUTONOMIE

La citadine 100% électrique 250 KM D AUTONOMIE La citadine 100% électrique 250 KM D AUTONOMIE BIENVENUE DANS L UNIVERS La Bluecar est la citadine 100% électrique du Groupe Bolloré, développée en collaboration avec le célèbre constructeur italien Pininfarina.

Plus en détail

L École nationale des pompiers du Québec. Dans le cadre de son programme de formation Pompier I

L École nationale des pompiers du Québec. Dans le cadre de son programme de formation Pompier I L École nationale des pompiers du Québec Dans le cadre de son programme de formation Pompier I QUATRIÈME ÉDITION MANUEL DE LUTTE CONTRE L INCENDIE EXPOSÉ DU PROGRAMME D ÉTUDES POMPIER 1 SUJET 4 Énergie

Plus en détail

2 C est quoi la chimie?

2 C est quoi la chimie? PARTIE 1 AVANT LA CHIMIE VERTE... 2 C est quoi la chimie? L inconnu étant source d angoisse, nous allons essayer de définir les grands domaines de la chimie pour mieux la connaître, l appréhender et donc

Plus en détail

Energie nucléaire. Quelques éléments de physique

Energie nucléaire. Quelques éléments de physique Energie nucléaire Quelques éléments de physique Comment produire 1 GW électrique Nucléaire (rendement 33%) Thermique (38%) Hydraulique (85%) Solaire (10%) Vent : 27t d uranium par an : 170 t de fuel par

Plus en détail

Contribution à la conception par la simulation en électronique de puissance : application à l onduleur basse tension

Contribution à la conception par la simulation en électronique de puissance : application à l onduleur basse tension Contribution à la conception par la simulation en électronique de puissance : application à l onduleur basse tension Cyril BUTTAY CEGELY VALEO 30 novembre 2004 Cyril BUTTAY Contribution à la conception

Plus en détail

4 ème PHYSIQUE-CHIMIE TRIMESTRE 1. Sylvie LAMY Agrégée de Mathématiques Diplômée de l École Polytechnique. PROGRAMME 2008 (v2.4)

4 ème PHYSIQUE-CHIMIE TRIMESTRE 1. Sylvie LAMY Agrégée de Mathématiques Diplômée de l École Polytechnique. PROGRAMME 2008 (v2.4) PHYSIQUE-CHIMIE 4 ème TRIMESTRE 1 PROGRAMME 2008 (v2.4) Sylvie LAMY Agrégée de Mathématiques Diplômée de l École Polytechnique Les Cours Pi e-mail : lescourspi@cours-pi.com site : http://www.cours-pi.com

Plus en détail

contributions Les multiples de la chimie dans la conception des tablettes et des Smartphones Jean-Charles Flores

contributions Les multiples de la chimie dans la conception des tablettes et des Smartphones Jean-Charles Flores Les multiples contributions de la chimie dans la conception des tablettes et des Smartphones Jean-Charles Flores Jean-Charles Flores est spécialiste de l électronique organique au sein de la société BASF

Plus en détail

Énergie. 26] Énergie Pour la Science - n 405 - Juillet 2011

Énergie. 26] Énergie Pour la Science - n 405 - Juillet 2011 Énergie V. Artero, N. Guillet, D. Fruchart et M. Fontecave À l heure où la plupart des constructeurs automobiles annoncent la mise sur le marché de véhicules électriques pour 2011, faut-il encore croire

Plus en détail

BTS BAT 1 Notions élémentaires de chimie 1

BTS BAT 1 Notions élémentaires de chimie 1 BTS BAT 1 Notions élémentaires de chimie 1 I. L ATOME NOTIONS EÉLEÉMENTAIRES DE CIMIE Les atomes sont des «petits grains de matière» qui constituent la matière. L atome est un système complexe que l on

Plus en détail

www.mesureo.com A N A L Y S E U R E N L I G N E D A G V D E S B I C A R B O N A T E S D E L A L C A L I N I T E

www.mesureo.com A N A L Y S E U R E N L I G N E D A G V D E S B I C A R B O N A T E S D E L A L C A L I N I T E www.mesureo.com A N A L Y S E U R E N L I G N E D A G V D E S B I C A R B O N A T E S D E L A L C A L I N I T E Solutions pour l analyse de l eau en ligne AnaSense Analyseur en ligne d AGV, des bicarbonates

Plus en détail

Batteries. Choix judicieux, résultats performants

Batteries. Choix judicieux, résultats performants Batteries Choix judicieux, résultats performants Batteries pour tous les défi s, besoins et budgets Sans danger - pas de dégazement Sans entretien Facile à installer Puissance constante Mastervolt vous

Plus en détail

Système d énergie solaire et de gain énergétique

Système d énergie solaire et de gain énergétique Système d énergie solaire et de gain énergétique Pour satisfaire vos besoins en eau chaude sanitaire, chauffage et chauffage de piscine, Enerfrance vous présente Néo[E]nergy : un système utilisant une

Plus en détail

Compétence 3-1 S EXPRIMER A L ECRIT Fiche professeur

Compétence 3-1 S EXPRIMER A L ECRIT Fiche professeur Compétence 3-1 S EXPRIMER A L ECRIT Fiche professeur Nature de l activité : Réaliser 3 types de productions écrites (réécriture de notes, production d une synthèse de documents, production d une argumentation)

Plus en détail

Mesure de conductivité on-line. Mesurer Surveiller Régler. Mesure de conductivité on-line. Eaux d égout communales et eaux usées industrielles

Mesure de conductivité on-line. Mesurer Surveiller Régler. Mesure de conductivité on-line. Eaux d égout communales et eaux usées industrielles Mesure de conductivité on-line Mesurer Surveiller Régler La mesure de conductivité est un paramètre reconnu, dont on ne peut plus se passer en analyse moderne des process, des eaux et eaux usées. On utilise

Plus en détail

RAPPORT D ÉTUDE 10/06/2008 N DRA-08-95313-07833B. Les techniques de production de l hydrogène et les risques associés

RAPPORT D ÉTUDE 10/06/2008 N DRA-08-95313-07833B. Les techniques de production de l hydrogène et les risques associés RAPPORT D ÉTUDE 10/06/2008 N DRA-08-95313-07833B Les techniques de production de l hydrogène et les risques associés Les techniques de production de l hydrogène et les risques associés Verneuil en Halatte

Plus en détail

ACIDES BASES. Chap.5 SPIESS

ACIDES BASES. Chap.5 SPIESS ACIDES BASES «Je ne crois pas que l on me conteste que l acide n ait des pointes Il ne faut que le goûter pour tomber dans ce sentiment car il fait des picotements sur la langue.» Notion d activité et

Plus en détail

TECHNIQUES: Principes de la chromatographie

TECHNIQUES: Principes de la chromatographie TECHNIQUES: Principes de la chromatographie 1 Définition La chromatographie est une méthode physique de séparation basée sur les différentes affinités d un ou plusieurs composés à l égard de deux phases

Plus en détail

Eau chaude sanitaire FICHE TECHNIQUE

Eau chaude sanitaire FICHE TECHNIQUE FICHE TECHNIQUE Eau chaude sanitaire 2 5 6 6 CONNAÎTRE > Les besoins d eau chaude sanitaire > Les modes de production > La qualité de l eau > Les réseaux de distribution > La température de l eau REGARDER

Plus en détail

Introduction : Les modes de fonctionnement du transistor bipolaire. Dans tous les cas, le transistor bipolaire est commandé par le courant I B.

Introduction : Les modes de fonctionnement du transistor bipolaire. Dans tous les cas, le transistor bipolaire est commandé par le courant I B. Introduction : Les modes de fonctionnement du transistor bipolaire. Dans tous les cas, le transistor bipolaire est commandé par le courant. - Le régime linéaire. Le courant collecteur est proportionnel

Plus en détail

Les batteries électriques pour les camions et bus électriques Etat de l'art, perspectives et interrogations

Les batteries électriques pour les camions et bus électriques Etat de l'art, perspectives et interrogations Les batteries électriques pour les camions et bus électriques Etat de l'art, perspectives et interrogations L Ion Rallye 2012 : Camions et Bus électriques - Le transport branché Lyon 30/11/2012 Serge PELISSIER

Plus en détail

L énergie sous toutes ses formes : définitions

L énergie sous toutes ses formes : définitions L énergie sous toutes ses formes : définitions primaire, énergie secondaire, utile ou finale. Quelles sont les formes et les déclinaisons de l énergie? D après le dictionnaire de l Académie française,

Plus en détail

Capteur à CO2 en solution

Capteur à CO2 en solution Capteur à CO2 en solution Référence PS-2147CI Boîtier adaptateur Sonde ph Sonde température Sonde CO2 Page 1 sur 9 Introduction Cette sonde est conçue pour mesurer la concentration de CO 2 dans les solutions

Plus en détail

Présentation générale des principales sources d énergies fossiles.

Présentation générale des principales sources d énergies fossiles. Présentation générale des principales sources d énergies fossiles. Date : 19/09/2012 NOM / Name SIGNATURE Etabli / Prepared Vérifié / Checked Approuvé /Approved G J-L & R-SENE R.SENE R.SENE Sommaire 1.

Plus en détail

Electrification statique - Problèmes et solutions L application des sources ionisantes. Auteur: Dr Mark G Shilton, CChem, MRSC. (Copie du document

Electrification statique - Problèmes et solutions L application des sources ionisantes. Auteur: Dr Mark G Shilton, CChem, MRSC. (Copie du document Electrification statique - Problèmes et solutions L application des sources ionisantes. Auteur: Dr Mark G Shilton, CChem, MRSC. (Copie du document présenté à la Conférence sur la sécurité et la fiabilité

Plus en détail

stockage électrique, le besoin de lisser la production et la nécessité de modifier les réseaux de transport de l électricité, d où le développement

stockage électrique, le besoin de lisser la production et la nécessité de modifier les réseaux de transport de l électricité, d où le développement Stockage de l électricité : élément clé pour le déploiement des énergies renouvelables et du véhicule électrique Marion Perrin Marion Perrin est directrice de laboratoire à l Institut national de l énergie

Plus en détail

CHROMATOGRAPHIE SUR COUCHE MINCE

CHROMATOGRAPHIE SUR COUCHE MINCE CHROMATOGRAPHIE SUR COUCHE MINCE I - PRINCIPE La chromatographie est une méthode physique de séparation de mélanges en leurs constituants; elle est basée sur les différences d affinité des substances à

Plus en détail

Méthodes de Caractérisation des Matériaux. Cours, annales http://www.u-picardie.fr/~dellis/

Méthodes de Caractérisation des Matériaux. Cours, annales http://www.u-picardie.fr/~dellis/ Méthodes de Caractérisation des Matériaux Cours, annales http://www.u-picardie.fr/~dellis/ 1. Symboles standards et grandeurs électriques 3 2. Le courant électrique 4 3. La résistance électrique 4 4. Le

Plus en détail

Phénomènes dangereux et modélisation des effets

Phénomènes dangereux et modélisation des effets Phénomènes dangereux et modélisation des effets B. TRUCHOT Responsable de l unité Dispersion Incendie Expérimentations et Modélisations Phénomènes dangereux Description et modélisation des phénomènes BLEVE

Plus en détail

WWW.ELCON.SE Multichronomètre SA10 Présentation générale

WWW.ELCON.SE Multichronomètre SA10 Présentation générale WWW.ELCON.SE Multichronomètre SA10 Présentation générale Le SA10 est un appareil portable destiné au test des disjoncteurs moyenne tension et haute tension. Quoiqu il soit conçu pour fonctionner couplé

Plus en détail

Principe de la corrosion galvanique :

Principe de la corrosion galvanique : Préconisations d installation d un ballon d ECS face à la corrosion galvanique Des questions reviennent fréquemment sur le forum de l APPER concernant la corrosion, les couples galvaniques, les cuves ballons

Plus en détail

EXERCICE II. SYNTHÈSE D UN ANESTHÉSIQUE : LA BENZOCAÏNE (9 points)

EXERCICE II. SYNTHÈSE D UN ANESTHÉSIQUE : LA BENZOCAÏNE (9 points) Bac S 2015 Antilles Guyane http://labolycee.org EXERCICE II. SYNTHÈSE D UN ANESTHÉSIQUE : LA BENZOCAÏNE (9 points) La benzocaïne (4-aminobenzoate d éthyle) est utilisée en médecine comme anesthésique local

Plus en détail

BICNanoCat. Bombardement Ionique pour la Création de Nano Catalyseurs. Denis Busardo Directeur Scientifique, Quertech

BICNanoCat. Bombardement Ionique pour la Création de Nano Catalyseurs. Denis Busardo Directeur Scientifique, Quertech BICNanoCat Bombardement Ionique pour la Création de Nano Catalyseurs Denis Busardo Directeur Scientifique, Quertech ANR BICNanoCat DAS Concerné : Énergie Environnement Appel à projets : réduction des émissions

Plus en détail

Accumulateurs portables

Accumulateurs portables Accumulateurs portables par Georges CAILLON Ingénieur de l École Supérieure de Physique et de Chimie Industrielles de la ville de Paris (ESPCI) Ingénieur de Recherche et Développement Société SAFT 1. Principe

Plus en détail

Prix Pierre Potier L innovation en chimie au bénéfice de l environnement

Prix Pierre Potier L innovation en chimie au bénéfice de l environnement Prix Pierre Potier L innovation en chimie au bénéfice de l environnement A l initiative de François Loos Ministre délégué à l Industrie Page 1 Prix Pierre Potier L innovation en chimie au bénéfice de l

Plus en détail

TS1 TS2 02/02/2010 Enseignement obligatoire. DST N 4 - Durée 3h30 - Calculatrice autorisée

TS1 TS2 02/02/2010 Enseignement obligatoire. DST N 4 - Durée 3h30 - Calculatrice autorisée TS1 TS2 02/02/2010 Enseignement obligatoire DST N 4 - Durée 3h30 - Calculatrice autorisée EXERCICE I : PRINCIPE D UNE MINUTERIE (5,5 points) A. ÉTUDE THÉORIQUE D'UN DIPÔLE RC SOUMIS À UN ÉCHELON DE TENSION.

Plus en détail

Présentations GTF. Point de vue d un utilisateur final. Durée de vie des ouvrages : Approche Prédictive, PerformantielLE et probabiliste

Présentations GTF. Point de vue d un utilisateur final. Durée de vie des ouvrages : Approche Prédictive, PerformantielLE et probabiliste Présentations GTF Présenté par : Georges NAHAS Organismes : Institut de Radioprotection et de Sûreté Nucléaire (IRSN) Paris 26 mai 2009 Introduction Le vieillissement des ouvrages de génie civil et plus

Plus en détail

Stockage de chaleur solaire par sorption : Analyse et contrôle du système à partir de sa simulation dynamique

Stockage de chaleur solaire par sorption : Analyse et contrôle du système à partir de sa simulation dynamique Stockage de chaleur solaire par sorption : Analyse et contrôle du système à partir de sa simulation dynamique Kokouvi Edem N TSOUKPOE 1, Nolwenn LE PIERRÈS 1*, Lingai LUO 1 1 LOCIE, CNRS FRE3220-Université

Plus en détail

ÉJECTEURS. CanmetÉNERGIE Juillet 2009

ÉJECTEURS. CanmetÉNERGIE Juillet 2009 ÉJECTEURS CanmetÉNERGIE Juillet 2009 ÉJECTEURS 1 ÉJECTEURS INTRODUCTION Les éjecteurs sont activés par la chaleur perdue ou la chaleur provenant de sources renouvelables. Ils sont actionnés directement

Plus en détail

Mario Geiger octobre 08 ÉVAPORATION SOUS VIDE

Mario Geiger octobre 08 ÉVAPORATION SOUS VIDE ÉVAPORATION SOUS VIDE 1 I SOMMAIRE I Sommaire... 2 II Évaporation sous vide... 3 III Description de l installation... 5 IV Travail pratique... 6 But du travail... 6 Principe... 6 Matériel... 6 Méthodes...

Plus en détail

Chapitre 02. La lumière des étoiles. Exercices :

Chapitre 02. La lumière des étoiles. Exercices : Chapitre 02 La lumière des étoiles. I- Lumière monochromatique et lumière polychromatique. )- Expérience de Newton (642 727). 2)- Expérience avec la lumière émise par un Laser. 3)- Radiation et longueur

Plus en détail

Formation Bâtiment Durable :

Formation Bâtiment Durable : Formation Bâtiment Durable : Rénovation à haute performance énergétique: détails techniques Bruxelles Environnement LE SYSTÈME DE CHAUFFAGE ET LA PRODUCTION D EAU CHAUDE SANITAIRE François LECLERCQ et

Plus en détail

MÉTHODE DE DÉSEMBOUAGE DE CIRCUITS DE CHAUFFAGE

MÉTHODE DE DÉSEMBOUAGE DE CIRCUITS DE CHAUFFAGE MÉTHODE DE DÉSEMBOUAGE DE CIRCUITS DE CHAUFFAGE (Radiateurs et planchers chauffants) Brevet de désembouage N 0116861 EURO FILTR'EAUX 18/22 RUE D ARRAS - F 92000 NANTERRE TÉL. : (33) 01 30 94 37 60 FAX

Plus en détail

Les Énergies Capter et Stocker le Carbone «C.C.S»

Les Énergies Capter et Stocker le Carbone «C.C.S» Les Énergies Capter et Stocker le Carbone «C.C.S» La lutte contre le changement climatique Initiative concertée au niveau mondial Pour limiter à 2 à 3 C l élévation moyenne de la température, il faudrait

Plus en détail

document proposé sur le site «Sciences Physiques en BTS» : http://nicole.cortial.net BTS AVA 2015

document proposé sur le site «Sciences Physiques en BTS» : http://nicole.cortial.net BTS AVA 2015 BT V 2015 (envoyé par Frédéric COTTI - Professeur d Electrotechnique au Lycée Régional La Floride Marseille) Document 1 - Etiquette énergie Partie 1 : Voiture à faible consommation - Une étiquette pour

Plus en détail

ETUDE DE LA SECONDE VIE DES BATTERIES DES VEHICULES ELECTRIQUES ET HYBRIDES RECHARGEABLES

ETUDE DE LA SECONDE VIE DES BATTERIES DES VEHICULES ELECTRIQUES ET HYBRIDES RECHARGEABLES ETUDE DE LA SECONDE VIE DES BATTERIES DES VEHICULES ELECTRIQUES ET HYBRIDES RECHARGEABLES Juin 2011 Étude réalisée pour le compte de l'ademe par Schwartz and Co et AJI Europe Coordination technique : Patrick

Plus en détail

Chapitre 7. Circuits Magnétiques et Inductance. 7.1 Introduction. 7.1.1 Production d un champ magnétique

Chapitre 7. Circuits Magnétiques et Inductance. 7.1 Introduction. 7.1.1 Production d un champ magnétique Chapitre 7 Circuits Magnétiques et Inductance 7.1 Introduction 7.1.1 Production d un champ magnétique Si on considère un conducteur cylindrique droit dans lequel circule un courant I (figure 7.1). Ce courant

Plus en détail

LABORATOIRES DE CHIMIE Techniques de dosage

LABORATOIRES DE CHIMIE Techniques de dosage LABORATOIRES DE CHIMIE Techniques de dosage Un dosage (ou titrage) a pour but de déterminer la concentration molaire d une espèce (molécule ou ion) en solution (généralement aqueuse). Un réactif de concentration

Plus en détail

IR Temp 210. Thermomètre infrarouge. Des techniques sur mesure

IR Temp 210. Thermomètre infrarouge. Des techniques sur mesure IR Temp 210 Thermomètre infrarouge Contenu 1. Spécifications...26 2. Touches et affichages...28 3. Utilisation...30 4. Entretien...31 5. Elimination des piles et de l appareil...31 6. Tableau de facteur

Plus en détail

Chapitre n 6 MASSE ET ÉNERGIE DES NOYAUX

Chapitre n 6 MASSE ET ÉNERGIE DES NOYAUX Chapitre n 6 MASSE ET ÉNERGIE DES NOYAUX T ale S Introduction : Une réaction nucléaire est Une réaction nucléaire provoquée est L'unité de masse atomique est une unité permettant de manipuler aisément

Plus en détail

2195257 ballons ECS vendus en France, en 2010

2195257 ballons ECS vendus en France, en 2010 SOLUTIONS D EAU CHAUDE SANITAIRE En 2010, le marché de l ECS en France représente 2 195 257 ballons ECS de différentes technologies. Dans ce marché global qui était en baisse de 1,8 %, les solutions ENR

Plus en détail

SECTEUR 4 - Métiers de la santé et de l hygiène

SECTEUR 4 - Métiers de la santé et de l hygiène SECTEUR 4 - Métiers de la santé et de l hygiène A lire attentivement par les candidats Sujet à traiter par tous les candidats inscrit au BEP Les candidats répondront sur la copie. Les annexes éventuelles

Plus en détail

de faible capacité (inférieure ou égale à 75 litres) doivent être certifiés et porter la marque NF électricité performance.

de faible capacité (inférieure ou égale à 75 litres) doivent être certifiés et porter la marque NF électricité performance. 9.5. PRODUCTION D EAU CHAUDE sanitaire Les équipements doivent être dimensionnés au plus juste en fonction du projet et une étude de faisabilité doit être réalisée pour les bâtiments collectifs d habitation

Plus en détail

Chap 1: Toujours plus vite... Introduction: Comment déterminer la vitesse d une voiture?

Chap 1: Toujours plus vite... Introduction: Comment déterminer la vitesse d une voiture? Thème 2 La sécurité Chap 1: Toujours plus vite... Introduction: Comment déterminer la vitesse d une voiture?! Il faut deux informations Le temps écoulé La distance parcourue Vitesse= distance temps > Activité

Plus en détail

Rappels sur les couples oxydantsréducteurs

Rappels sur les couples oxydantsréducteurs CHAPITRE 1 TRANSFORMATIONS LENTES ET RAPIDES 1 Rappels sur les couples oxydantsréducteurs 1. Oxydants et réducteurs Un réducteur est une espèce chimique capable de céder au moins un électron Demi-équation

Plus en détail

Nous vous présentons la technologie du traitement de surfaces du 21 ème siècle

Nous vous présentons la technologie du traitement de surfaces du 21 ème siècle Nous vous présentons la technologie du traitement de surfaces du 21 ème siècle 2009 NADICO Ltd. Germany www.nadico.de Le revêtement Titan Effect TE1022 améliorer la rentabilité des installations solaires

Plus en détail

Responsabilité sociale et environnementale POLITIQUE SECTORIELLE PRODUCTION D ELECTRICITE A PARTIR DU CHARBON

Responsabilité sociale et environnementale POLITIQUE SECTORIELLE PRODUCTION D ELECTRICITE A PARTIR DU CHARBON Responsabilité sociale et environnementale POLITIQUE SECTORIELLE PRODUCTION D ELECTRICITE A PARTIR DU CHARBON P.1/11 Sommaire Préambule... 3 1. Politique sectorielle... 4 1.1 Objectif... 4 1.2 Portée...

Plus en détail

RAID PIEGES ANTI-FOURMIS x 2 1/5 Date de création/révision: 25/10/1998 FICHE DE DONNEES DE SECURITE NON CLASSE

RAID PIEGES ANTI-FOURMIS x 2 1/5 Date de création/révision: 25/10/1998 FICHE DE DONNEES DE SECURITE NON CLASSE RAID PIEGES ANTI-FOURMIS x 2 1/5 RAISON SOCIALE JOHNSONDIVERSEY FICHE DE DONNEES DE SECURITE RISQUES SPECIFIQUES NON CLASSE 1 IDENTIFICATION DU PRODUIT ET DE LA SOCIETE - NOM DU PRODUIT RAID PIEGES ANTI-FOURMIS

Plus en détail

L'hydrogène : solution pour des transports automobiles inscrits dans une politique de durabilité?

L'hydrogène : solution pour des transports automobiles inscrits dans une politique de durabilité? L'hydrogène : solution pour des transports automobiles inscrits dans une politique de durabilité? 1 Introduction Grandjean Jonathan, L3 Géosciences, Jonathan.Grandjean-Dias@e.ujf-grenoble.fr Daly James,

Plus en détail

Préparations avant peinture. Solutions sans CrVI. Michel JANNIER (expert)

Préparations avant peinture. Solutions sans CrVI. Michel JANNIER (expert) Les rendez-vous technologiques «Les traitements de surface des alliages légers» Préparations avant peinture. Solutions sans CrVI. Michel JANNIER (expert) 1 Préparation avant peinture Les traitements avant

Plus en détail

ELEC2753 Electrotechnique examen du 11/06/2012

ELEC2753 Electrotechnique examen du 11/06/2012 ELEC2753 Electrotechnique examen du 11/06/2012 Pour faciliter la correction et la surveillance, merci de répondre aux 3 questions sur des feuilles différentes et d'écrire immédiatement votre nom sur toutes

Plus en détail

Molécules et Liaison chimique

Molécules et Liaison chimique Molécules et liaison chimique Molécules et Liaison chimique La liaison dans La liaison dans Le point de vue classique: l approche l de deux atomes d hydrogd hydrogènes R -0,9-1 0 0,5 1 1,5,5 3 3,5 4 R

Plus en détail

Le cabriolet 100% électrique 200 KM D AUTONOMIE

Le cabriolet 100% électrique 200 KM D AUTONOMIE Le cabriolet 100% électrique 200 KM D AUTONOMIE LA NOUVELLE VOITURE CABRIOLET 100% ÉLECTRIQUE UN NOUVEAU SENTIMENT DE LIBERTÉ Derrière son design résolument innovant, la Bluesummer s adapte à toutes les

Plus en détail

SOCIETE NATIONALE DES CHEMINS DE FER BELGES SPECIFICATION TECHNIQUE

SOCIETE NATIONALE DES CHEMINS DE FER BELGES SPECIFICATION TECHNIQUE SOCIETE NATIONALE DES CHEMINS DE FER BELGES SPECIFICATION TECHNIQUE L - 72 FOURNITURE DE SEMELLES ELASTIQUES POUR LA FIXATION DE VOIE "TYPE BOTZELAER" EDITION: 04/2001 Index 1. INTRODUCTION... 3 1.1. DOMAINE

Plus en détail

Si on fabriquait une pile *?

Si on fabriquait une pile *? Si on fabriquait une pile *? Situation d apprentissage sur le courant électrique Durée : 5 à 8 périodes Troisième cycle du primaire *Cette situation d apprentissage s inspire de l activité Produire du

Plus en détail

Energie Nucléaire. Principes, Applications & Enjeux. 6 ème - 2014/2015

Energie Nucléaire. Principes, Applications & Enjeux. 6 ème - 2014/2015 Energie Nucléaire Principes, Applications & Enjeux 6 ème - 2014/2015 Quelques constats Le belge consomme 3 fois plus d énergie que le terrien moyen; (0,56% de la consommation mondiale pour 0,17% de la

Plus en détail

Réduction des consommations d hydrocarbures par pré-traitement physique

Réduction des consommations d hydrocarbures par pré-traitement physique Réduction des consommations d hydrocarbures par pré-traitement physique Florent PERRIN Responsable région Rhône Alpes CleanTuesday Rhône-Alpes Juin 2010 CONTEXTE ENVIRONNEMENTAL Le GIEC a confirmé que

Plus en détail

COMPRESSEURS DENTAIRES

COMPRESSEURS DENTAIRES FRANCE COMPRESSEURS DENTAIRES TECHNOLOGIE SILENCIEUSE MGF NOS SERVICES, NOS ENGAGEMENTS - Les pièces détachées sont disponibles sur stock dans notre site localisé en Saône-et-Loire. Envoi express en h

Plus en détail

Circuits RL et RC. Chapitre 5. 5.1 Inductance

Circuits RL et RC. Chapitre 5. 5.1 Inductance Chapitre 5 Circuits RL et RC Ce chapitre présente les deux autres éléments linéaires des circuits électriques : l inductance et la capacitance. On verra le comportement de ces deux éléments, et ensuite

Plus en détail

LA MESURE DE PRESSION PRINCIPE DE BASE

LA MESURE DE PRESSION PRINCIPE DE BASE Page 1 / 6 LA MESURE DE PRESSION PRINCIPE DE BASE 1) Qu est-ce qu un sensor de pression? Tout type de sensor est composé de 2 éléments distincts : Un corps d épreuve soumit au Paramètre Physique φ à mesurer

Plus en détail

BALAIS Moteur (charbons)

BALAIS Moteur (charbons) BALAIS Moteur (charbons) 1/ Rôle a) Pour les machines électriques comportant des bagues (alternateur moteur asynchrone) : moteur universel Les balais doivent maintenir un contact constant avec la bague

Plus en détail

K W = [H 3 O + ] [OH - ] = 10-14 = K a K b à 25 C. [H 3 O + ] = [OH - ] = 10-7 M Solution neutre. [H 3 O + ] > [OH - ] Solution acide

K W = [H 3 O + ] [OH - ] = 10-14 = K a K b à 25 C. [H 3 O + ] = [OH - ] = 10-7 M Solution neutre. [H 3 O + ] > [OH - ] Solution acide La constante d autoprotolyse de l eau, K W, est égale au produit de K a par K b pour un couple acide/base donné : En passant en échelle logarithmique, on voit donc que la somme du pk a et du pk b d un

Plus en détail

BAC BLANC SCIENCES PHYSIQUES. Durée : 3 heures 30

BAC BLANC SCIENCES PHYSIQUES. Durée : 3 heures 30 Terminales S1, S2, S3 2010 Vendredi 29 janvier BAC BLANC SCIENCES PHYSIQUES Durée : 3 heures 30 Toutes les réponses doivent être correctement rédigées et justifiées. Chaque exercice sera traité sur une

Plus en détail

Économie d énergie dans les centrales frigorifiques : La haute pression flottante

Économie d énergie dans les centrales frigorifiques : La haute pression flottante Économie d énergie dans les centrales frigorifiques : La haute pression flottante Juillet 2011/White paper par Christophe Borlein membre de l AFF et de l IIF-IIR Make the most of your energy Sommaire Avant-propos

Plus en détail

Projet SETHER Appel à projets 2008. Adrien Patenôtre, POWEO Adrien.patenotre@poweo.com

Projet SETHER Appel à projets 2008. Adrien Patenôtre, POWEO Adrien.patenotre@poweo.com Projet SETHER Appel à projets 2008 Adrien Patenôtre, POWEO Adrien.patenotre@poweo.com SETHER STOCKAGE D ELECTRICITÉ SOUS FORME THERMIQUE À HAUTE TEMPÉRATURE Partenaires : POWEO, SAIPEM, CEA, CNAM, GEMH,

Plus en détail