Cours de Mathématiques. Chapitre 1 : Produit de convolution Distribution et peigne de Dirac. Distribution et peigne de Dirac
|
|
|
- Emma Aubé
- il y a 8 ans
- Total affichages :
Transcription
1 Chapire : Produi de convoluion Disribuion e peigne de Dirac UNVERSTE DE TULN UT DE TULN DEPARTEMENT GE Cours de Mahémaiques Chapire : Produi de convoluion Disribuion e peigne de Dirac Enseignane : Sylvia Le Beux [email protected] Bureau A hp://moodle.univ-ln.fr/course/view.p php?id=57 UT de Toulon Déparemen GE Deuxième année par alernance
2 Chapire : Produi de convoluion Disribuion e peigne de Dirac UT de Toulon Déparemen GE Deuxième année par alernance
3 Chapire : Produi de convoluion Disribuion e peigne de Dirac Programme de Mahémaiques (S3), d'uils Logiciels (S3) e d'uils Mahémaiques (S4) Chapire : Produi de convoluion e disribuion de Dirac (MA3) Chapire : Transformaion de Fourier (MA3) DS- MA Chapire : Séries de Fourier (MA3) Chapire V : Transformaion en Z (MA3) DS- MA Chapire V : Foncions à plusieurs variables - négrales muliples (L3) DSTP - L Chapire V : Calcul mariciel e diagonalisaion d'une marice (M4) DSTP - M Chapire V : Séries numériques (M4) Chapire V : Séries enières (M4) DS - M Fourniures Chemise A4 pour le cours Cahier A4 de 00 pages ou classeur pour les exercices de TD Carne à spirales pour noer les formules e/ou le résumé de cours. Méhodologie Apporez oujours en cours e TD les chemise e cahiers ci-dessus. Dès que vous ne connaissez pas une formule ou une noion en cours e/ou TD Noez-là immédiaemen dans vore carne à spirales Chaque semaine Travaillez les exercices donnés en parallèle avec le cours e résumez le cours dans le cahier Deux semaines avan un gros DS refaies ous les exercices de cours e de TD, e apprenez les formules du carne. UT de Toulon Déparemen GE Deuxième année par alernance 3
4 Chapire : Produi de convoluion Disribuion e peigne de Dirac Chapire : Produi de convoluion - Disribuion de Dirac. Produi de convoluion ) Définiion Soi f e g, deux foncions coninues par morceaux sur R. n appelle produi de convoluion de f par g, la foncion noée : f g, définie par l inégrale suivane : Exemples + ( f g)() = f(u)g( u) du. n peu aussi noer : = Déerminer le produi de convoluion suivan : rec e, où rec () rec () si < = 0 sinon... UT de Toulon Déparemen GE Deuxième année par alernance 4
5 Chapire : Produi de convoluion Disribuion e peigne de Dirac Si f e g son deux foncions causales (nulles sur R - ) alors : ( f g)() =... Donc ( f g)() =... ) Propriéés Les foncions f, g, g, g, h son inégrables sur R, e λϵr. f g = g f. f (g + λ.g ) = f g + λ.f g 3. ( f + λf ) g = f g + λ.f g 4. ( f g) h = f (g h) 5. ( f g)' = f' g + f g' Démonsraion du. ( g f )() =... UT de Toulon Déparemen GE Deuxième année par alernance 5
6 Chapire : Produi de convoluion Disribuion e peigne de Dirac 3) Exemples Convoluion par l échelon-unié. 0 si U() = si < 0 0 ( f U)() = U() x Donc ( f U)() =... Convoluion par une pore de largeur ( ) = 0 si si > () + n remarque que : ( ) d =... UT de Toulon Déparemen GE Deuxième année par alernance 6
7 Chapire : Produi de convoluion Disribuion e peigne de Dirac ( )( ) = f La convoluion par une pore de largeur représene donc la valeur moyenne de f sur, +.. mpulsion ou disribuion de Dirac ) Définiion n appelle impulsion de Dirac : δ = lim () où > 0 0 n défini parfois δ abusivemen par : + 0 si 0 δ( ) =, e )d + si = 0 δ( = δ n es pas une foncion, c es une disribuion, c es pourquoi on l appelle aussi disribuion de Dirac. + Comme Π x) dx représenaion graphique es : ( =, par convenion, on noe donc : δ( x)dx =, e par convenion sa δ() + UT de Toulon Déparemen GE Deuxième année par alernance 7
8 Chapire : Produi de convoluion Disribuion e peigne de Dirac Remarque De nombreux héorèmes (convergence d inégrales, de séries, inversion de limies en général, ) reposen sur des hypohèses souven rès fores poran sur les foncions. Dans la majeure parie des cas, celles-ci ne son pas vérifiées. Le recours aux disribuions perme d élargir le champ d applicaion de ces héorèmes. Une disribuion es un concep plus général que celui de foncion. l perme, enre aure, la formulaion e donc le raiemen de signaux discres. Tous les calculs sur les foncions s appliquen aussi aux disribuions. ) Dérivaion au sens des disribuions (pour la culure) Supposons qu une foncion f soi disconinue en un poin a, mais admee en ce poin une limie finie à droie f(a + ) e une limie finie à gauche f(a - ). La foncion es non dérivable en a, puisque disconinue. La variaion bruale enre f(a - ) e f(a + ) se radui au niveau de la dérivée de f (au sens des disribuions) par l addiion d un Dirac cenré en a d ampliude f(a + ) - f(a - ). + f ' D () = f '() + f (a ) f (a ). δ( a Plus généralemen, si les a i son les poins de disconinuiés : + f ' () = f '() + f (a ) f (a ). δ( a La dérivée de f au sens des disribuions s écrira donc : ( ) ) a i ( ) D i i i ) Exemples Π ( ) U() Dérivée d une pore (ou d'un recangle, noé rec ou Π) : Dérivée d'un échelon unié (ou Heaviside, noé U ou Φ) :... x... 3) Produi de convoluion par une impulsion de Dirac n adme que : (f δ)() = ( f lim )() = lim( f )() 0 n suppose que f es coninue e on noe F, une foncion primiive de f, alors : ( f )( ) = UT de Toulon Déparemen GE Deuxième année par alernance 8
9 Chapire : Produi de convoluion Disribuion e peigne de Dirac ( f )( ) = Si f es coninue alors : ( f δ) () = f () n di que l impulsion de Dirac es l élémen neure pour le produi de convoluion. 4) Convoluion par une impulsion de Dirac décalée de a δ ( a) 0 si δ( a) = + a si = a a Produi de convoluion Si f es coninue alors : f() δ( a) = f( a) Remarque Ne pas confondre avec le produi classique : f () δ( - a) = f (a) δ( - a) ( p.) 5) Disribuion en peigne de Dirac de période T 0 + δ () = δ( k.t T 0 ) 0 k= δ T 0 () -3.T 0 -.T 0 -T 0 T 0.T 0 3.T 0 UT de Toulon Déparemen GE Deuxième année par alernance 9
10 Chapire : Produi de convoluion Disribuion e peigne de Dirac Produi de convoluion par un peigne de Dirac n adme que : ( f + + δ )() = + T f 0 δ( k.t ) () = f () δ( k.t0 ) = f ( k.t k= k= k= Si f es coninue alors : ( f δ T ) )() = + k= f ( k.t ) 0 n obien la somme des ranslaés du signal f, on di que le signal f es "périodisé". exemple : ri () δ + () = ri( k) k= x0() x() * = Remarque Ne pas confondre avec le produi «classique» d une foncion par le peigne de Dirac de période T 0, e représené graphiquemen par : (f δ T )() 0 y=f() -3.T 0 -.T 0 -T 0 T 0.T 0 3.T 0 n obien ici l échanillonnage du signal f à la période T 0. UT de Toulon Déparemen GE Deuxième année par alernance 0
11 Chapire : Produi de convoluion Disribuion e peigne de Dirac Ne pas confondre les quare opéraions Le prélèvemen f() δ( a) = f(a). δ( a) exemple : ri() δ( / ) = ri(/ ). δ( / ) x0() x = Le prélèvemen muliple + f () δ () = f(kt). δ( kt exemple : ri () δ + () = ri(k). δ( k) k= T ) k= x0() x = La ranslaion f() δ( a) = f( a) exemple : ri() δ( ) = ri( ) x0() x() * = La ranslaion muliple ou périodisaion + f () δ () = f( kt T ) k= exemple : ri () δ + () = ri( k) k= x0() x() * = UT de Toulon Déparemen GE Deuxième année par alernance
12 Chapire : Produi de convoluion Disribuion e peigne de Dirac. Sinus cardinal (sinusoïde amorie) ) Définiion n appelle sinus cardinal, la foncion noée sinc, définie sur R * par : sin c() = sin( π) π ) Représenaion graphique (voir cours de première année) ) Produi de convoluion avec le peigne de Dirac sin c δ () = Périodisaion du sinus cardinal à la période 4 : ( ) + 4 k sin π( 4k) 4k) = π( UT de Toulon Déparemen GE Deuxième année par alernance
13 Chapire : Produi de convoluion Disribuion e peigne de Dirac Remarque : A ne pas confondre avec ( ) + sin π4k sin c δ 4 () =. δ( 4k) qui es k= π4k l échanillonnage du sinus cardinal à la période 4 : UT de Toulon Déparemen GE Deuxième année par alernance 3
14 Chapire : Produi de convoluion Disribuion e peigne de Dirac Exercices du chapire ) Déerminer h()=sin(3)*rec() e e x.u(x) x.u(x) ) Déerminer graphiquemen rec()*rec() 3) Représenez les signaux suivans : a) rec() δ() b) rec() δ() c) rec() δ () d) rec() δ () UT de Toulon Déparemen GE Deuxième année par alernance 4
15 Chapire : Produi de convoluion Disribuion e peigne de Dirac UT de Toulon Déparemen GE Deuxième année par alernance 5
16 Chapire : Produi de convoluion Disribuion e peigne de Dirac UT de Toulon Déparemen GE Deuxième année par alernance 6
Rappels théoriques. -TP- Modulations digitales ASK - FSK. Première partie 1 INTRODUCTION
2 IUT Blois Déparemen GTR J.M. Giraul, O. Bou Maar, D. Ceron M. Richard, P. Sevesre e M. Leberre. -TP- Modulaions digiales ASK - FSK IUT Blois Déparemen du Génie des Télécommunicaions e des Réseaux. Le
2. Quelle est la valeur de la prime de l option américaine correspondante? Utilisez pour cela la technique dite de remontée de l arbre.
1 Examen. 1.1 Prime d une opion sur un fuure On considère une opion à 85 jours sur un fuure de nominal 18 francs, e don le prix d exercice es 175 francs. Le aux d inérê (coninu) du marché monéaire es 6%
Exemples de résolutions d équations différentielles
Exemples de résoluions d équaions différenielles Table des maières 1 Définiions 1 Sans second membre 1.1 Exemple.................................................. 1 3 Avec second membre 3.1 Exemple..................................................
Caractéristiques des signaux électriques
Sie Inerne : www.gecif.ne Discipline : Génie Elecrique Caracérisiques des signaux élecriques Sommaire I Définiion d un signal analogique page 1 II Caracérisiques d un signal analogique page 2 II 1 Forme
TD/TP : Taux d un emprunt (méthode de Newton)
TD/TP : Taux d un emprun (méhode de Newon) 1 On s inéresse à des calculs relaifs à des remboursemens d empruns 1. On noera C 0 la somme emprunée, M la somme remboursée chaque mois (mensualié), le aux mensuel
Les circuits électriques en régime transitoire
Les circuis élecriques en régime ransioire 1 Inroducion 1.1 Définiions 1.1.1 égime saionnaire Un régime saionnaire es caracérisé par des grandeurs indépendanes du emps. Un circui en couran coninu es donc
CHAPITRE 13. EXERCICES 13.2 1.a) 20,32 ± 0,055 b) 97,75 ± 0,4535 c) 1953,125 ± 23,4375. 2.±0,36π cm 3
Chapire Eercices de snhèse 6 CHAPITRE EXERCICES..a), ±,55 b) 97,75 ±,455 c) 95,5 ±,475.±,6π cm.a) 44,, erreur absolue de,5 e erreur relaive de, % b) 5,56, erreur absolue de,5 e erreur relaive de,9 % 4.a)
Files d attente (1) F. Sur - ENSMN. Introduction. 1 Introduction. Vocabulaire Caractéristiques Notations de Kendall Loi de Little.
Cours de Tronc Commun Scienifique Recherche Opéraionnelle Les files d aene () Les files d aene () Frédéric Sur École des Mines de Nancy www.loria.fr/ sur/enseignemen/ro/ 5 /8 /8 Exemples de files d aene
Fonction dont la variable est borne d intégration
[hp://mp.cpgedpydelome.fr] édié le 1 jille 14 Enoncés 1 Foncion don la variable es borne d inégraion Eercice 1 [ 1987 ] [correcion] Soi f : R R ne foncion conine. Jsifier qe les foncions g : R R sivanes
CHAPITRE I : Cinématique du point matériel
I. 1 CHAPITRE I : Cinémaique du poin maériel I.1 : Inroducion La plupar des objes éudiés par les physiciens son en mouvemen : depuis les paricules élémenaires elles que les élecrons, les proons e les neurons
Texte Ruine d une compagnie d assurance
Page n 1. Texe Ruine d une compagnie d assurance Une nouvelle compagnie d assurance veu enrer sur le marché. Elle souhaie évaluer sa probabilié de faillie en foncion du capial iniial invesi. On suppose
OBJECTIFS LES PLUS DE LA FORMATION
Formaion assurance-vie e récupéraion: Quand e Commen récupérer? (Ref : 3087) La maîrise de la récupéraion des conras d'assurances-vie requalifiés en donaion OBJECTIFS Appréhender la naure d un conra d
Le mode de fonctionnement des régimes en annuités. Secrétariat général du Conseil d orientation des retraites
CONSEIL D ORIENTATION DES RETRAITES Séance plénière du 28 janvier 2009 9 h 30 «Les différens modes d acquisiion des drois à la reraie en répariion : descripion e analyse comparaive des echniques uilisées»
La rentabilité des investissements
La renabilié des invesissemens Inroducion Difficulé d évaluer des invesissemens TI : problème de l idenificaion des bénéfices, des coûs (absence de saisiques empiriques) problème des bénéfices Inangibles
CARACTERISTIQUES STATIQUES D'UN SYSTEME
CARACTERISTIQUES STATIQUES D'UN SYSTEE 1 SYSTEE STABLE, SYSTEE INSTABLE 1.1 Exemple 1: Soi un sysème composé d une cuve pour laquelle l écoulemen (perurbaion) es naurel au ravers d une vanne d ouverure
Filtrage optimal. par Mohamed NAJIM Professeur à l École nationale supérieure d électronique et de radioélectricité de Bordeaux (ENSERB)
Filrage opimal par Mohamed NAJIM Professeur à l École naionale supérieure d élecronique e de radioélecricié de Bordeaux (ENSERB) Filre adapé Définiions Filre adapé dans le cas de brui blanc 3 3 Cas d un
Chapitre 2 L investissement. . Les principales caractéristiques de l investissement
Chapire 2 L invesissemen. Les principales caracérisiques de l invesissemen.. Définiion de l invesissemen Définiion générale : ensemble des B&S acheés par les agens économiques au cours d une période donnée
Documentation Technique de Référence Chapitre 8 Trames types Article 8.14-1
Documenaion Technique de Référence Chapire 8 Trames ypes Aricle 8.14-1 Trame de Rappor de conrôle de conformié des performances d une insallaion de producion Documen valide pour la période du 18 novembre
Calcul Stochastique 2 Annie Millet
M - Mahémaiques Appliquées à l Économie e à la Finance Universié Paris 1 Spécialié : Modélisaion e Méhodes Mahémaiques en Économie e Finance Calcul Sochasique Annie Mille 15 14 13 1 11 1 9 8 7 6 5 4 3
La fonction de production dans l analyse néo-classique
La oncion de producion dans l analyse néo-classique Jean-Marie Harribey La oncion de producion es une relaion mahémaique éablie enre la quanié produie e le ou les aceurs de producion uilisés, ou encore
Mathématiques financières. Peter Tankov
Mahémaiques financières Peer ankov Maser ISIFAR Ediion 13-14 Preface Objecifs du cours L obje de ce cours es la modélisaion financière en emps coninu. L objecif es d un coé de comprendre les bases de
Programmation, organisation et optimisation de son processus Achat (Ref : M64) Découvrez le programme
Programmaion, organisaion e opimisaion de son processus Acha (Ref : M64) OBJECTIFS LES PLUS DE LA FORMATION Appréhender la foncion achas e son environnemen Opimiser son processus achas Développer un acha
Oscillations forcées en régime sinusoïdal.
Conrôle des prérequis : Oscillaions forcées en régime sinusoïdal. - a- Rappeler l expression de la période en foncion de la pulsaion b- Donner l expression de la période propre d un circui RLC série -
Finance 1 Université d Evry Val d Essonne. Séance 2. Philippe PRIAULET
Finance 1 Universié d Evry Val d Essonne éance 2 Philippe PRIAULET Plan du cours Les opions Définiion e Caracérisiques Terminologie, convenion e coaion Les différens payoffs Le levier implicie Exemple
Sommaire de la séquence 12
Sommaire de la séquence 12 Séance 1........................................................................................................ Je prends un bon dépar.......................................................................................
DESSd ingéniérie mathématique Université d Evry Val d Essone Evaluations des produits nanciers
DESSd ingéniérie mahémaique Universié d Evry Val d Essone Evaluaions des produis nanciers Véronique Berger Cours Janvier-Mars 2003 version du 27 mars 2003 Conens I Présenaion du plan de cours 3 II Insrumens
Cours d électrocinétique :
Universié de Franche-Comé UFR des Sciences e Techniques STARTER 005-006 Cours d élecrocinéique : Régimes coninu e ransioire Elecrocinéique en régimes coninu e ransioire 1. INTRODUCTION 5 1.1. DÉFINITIONS
MATHEMATIQUES FINANCIERES
MATHEMATIQUES FINANCIERES LES ANNUITES INTRODUCTION : Exemple 1 : Une personne veu acquérir une maison pour 60000000 DH, pour cela, elle place annuellemen au CIH une de 5000000 DH. Bu : Consiuer un capial
Thème : Electricité Fiche 5 : Dipôle RC et dipôle RL
Fiche ors Thème : Elecricié Fiche 5 : Dipôle e dipôle Plan de la fiche Définiions ègles 3 Méhodologie I - Définiions oran élecriqe : déplacemen de charges élecriqes q a mesre d débi de charges donne l
Intégration de Net2 avec un système d alarme intrusion
Ne2 AN35-F Inégraion de Ne2 avec un sysème d alarme inrusion Vue d'ensemble En uilisan l'inégraion d'alarme Ne2, Ne2 surveillera si l'alarme inrusion es armée ou désarmée. Si l'alarme es armée, Ne2 permera
CHELEM Commerce International
CHELEM Commerce Inernaional Méhodes de consrucion de la base de données du CEPII Alix de SAINT VAULRY Novembre 2013 1 Conenu de la base de données Flux croisés de commerce inernaional (exporaeur, imporaeur,
Ned s Expat L assurance des Néerlandais en France
[ LA MOBILITÉ ] PARTICULIERS Ned s Expa L assurance des Néerlandais en France 2015 Découvrez en vidéo pourquoi les expariés en France choisissen APRIL Inernaional pour leur assurance sané : Suivez-nous
Froid industriel : production et application (Ref : 3494) Procédés thermodynamiques, systèmes et applications OBJECTIFS LES PLUS DE LA FORMATION
Froid indusriel : producion e applicaion (Ref : 3494) Procédés hermodynamiques, sysèmes e applicaions SUPPORT PÉDAGOGIQUE INCLUS. OBJECTIFS Appréhender les différens procédés hermodynamiques de producion
Coaching - accompagnement personnalisé (Ref : MEF29) Accompagner les agents et les cadres dans le développement de leur potentiel OBJECTIFS
Coaching - accompagnemen personnalisé (Ref : MEF29) Accompagner les agens e les cadres dans le développemen de leur poeniel OBJECTIFS LES PLUS DE LA FORMATION Le coaching es une démarche s'inscrivan dans
Un modèle de projection pour des contrats de retraite dans le cadre de l ORSA
Un modèle de proecion pour des conras de reraie dans le cadre de l ORSA - François Bonnin (Hiram Finance) - Floren Combes (MNRA) - Frédéric lanche (Universié Lyon 1, Laboraoire SAF) - Monassar Tammar (rim
DE L'ÉVALUATION DU RISQUE DE CRÉDIT
DE L'ÉALUAION DU RISQUE DE CRÉDI François-Éric Racico * Déparemen des sciences adminisraives Universié du Québec, Ouaouais Raymond héore Déparemen Sraégie des Affaires Universié du Québec, Monréal RePAd
Copules et dépendances : application pratique à la détermination du besoin en fonds propres d un assureur non vie
Copules e dépendances : applicaion praique à la déerminaion du besoin en fonds propres d un assureur non vie David Cadoux Insiu des Acuaires (IA) GE Insurance Soluions 07 rue Sain-Lazare, 75009 Paris FRANCE
Risque associé au contrat d assurance-vie pour la compagnie d assurance. par Christophe BERTHELOT, Mireille BOSSY et Nathalie PISTRE
Ce aricle es disponible en ligne à l adresse : hp://www.cairn.info/aricle.php?id_revue=ecop&id_numpublie=ecop_149&id_article=ecop_149_0073 Risque associé au conra d assurance-vie pour la compagnie d assurance
TB 352 TB 352. Entrée 1. Entrée 2
enrées série TB logiciel d applicaion 2 enrées à émission périodique famille : Inpu ype : Binary inpu, 2-fold TB 352 Environnemen Bouon-poussoir TB 352 Enrée 1 sories 230 V Inerrupeur Enrée 2 Câblage sur
Mémoire présenté et soutenu en vue de l obtention
République du Cameroun Paix - Travail - Parie Universié de Yaoundé I Faculé des sciences Déparemen de Mahémaiques Maser de saisique Appliquée Republic of Cameroon Peace Wor Faherland The Universiy of Yaoundé
VA(1+r) = C 1. VA = C 1 v 1
Universié Libre de Bruxelles Solvay Business School La valeur acuelle André Farber Novembre 2005. Inroducion Supposons d abord que le emps soi limié à une période e que les cash flows fuurs (les flux monéaires)
Impact du vieillissement démographique sur l impôt prélevé sur les retraits des régimes privés de retraite
DOCUMENT DE TRAVAIL 2003-12 Impac du vieillissemen démographique sur l impô prélevé sur les rerais des régimes privés de reraie Séphane Girard Direcion de l analyse e du suivi des finances publiques Ce
n N = u N u N+1 1 u pour u 1. f ( uv 1) v N+1 v N v 1 1 2 t
3.La méthode de Dirichlet 99 11 Le théorème de Dirichlet 3.La méthode de Dirichlet Lorsque Dirichlet, au début des années 180, découvre les travaux de Fourier, il cherche à les justifier par des méthodes
TRAVAUX PRATIQUES N 5 INSTALLATION ELECTRIQUE DE LA CAGE D'ESCALIER DU BATIMENT A
UIMBERTEAU UIMBERTEAU TRAVAUX PRATIQUES 5 ISTALLATIO ELECTRIQUE DE LA CAE D'ESCALIER DU BATIMET A ELECTROTECHIQUE Seconde B.E.P. méiers de l'elecroechnique ELECTROTECHIQUE HABITAT Ver.. UIMBERTEAU TRAVAUX
N d ordre Année 2008 THESE. présentée. devant l UNIVERSITE CLAUDE BERNARD - LYON 1. pour l obtention. du DIPLOME DE DOCTORAT. (arrêté du 7 août 2006)
N d ordre Année 28 HESE présenée devan l UNIVERSIE CLAUDE BERNARD - LYON pour l obenion du DILOME DE DOCORA (arrêé du 7 aoû 26) présenée e souenue publiquemen le par M. Mohamed HOUKARI IRE : Mesure du
THÈSE. Pour l obtention du grade de Docteur de l Université de Paris I Panthéon-Sorbonne Discipline : Sciences Économiques
Universié de Paris I Panhéon Sorbonne U.F.R. de Sciences Économiques Année 2011 Numéro aribué par la bibliohèque 2 0 1 1 P A 0 1 0 0 5 7 THÈSE Pour l obenion du grade de Doceur de l Universié de Paris
TD1 Signaux, énergie et puissance, signaux aléatoires
TD1 Signaux, énergie et puissance, signaux aléatoires I ) Ecrire l'expression analytique des signaux représentés sur les figures suivantes à l'aide de signaux particuliers. Dans le cas du signal y(t) trouver
MIDI F-35. Canal MIDI 1 Mélodie Canal MIDI 2 Basse Canal MIDI 10 Batterie MIDI IN. Réception du canal MIDI = 1 Reproduit la mélodie.
/ VARIATION/ ACCOMP PLAY/PAUSE REW TUNE/MIDI 3- LESSON 1 2 3 MIDI Qu es-ce que MIDI? MIDI es l acronyme de Musical Insrumen Digial Inerface, une norme inernaionale pour l échange de données musicales enre
Continuité et dérivabilité d une fonction
DERNIÈRE IMPRESSIN LE 7 novembre 014 à 10:3 Continuité et dérivabilité d une fonction Table des matières 1 Continuité d une fonction 1.1 Limite finie en un point.......................... 1. Continuité
Les solutions solides et les diagrammes d équilibre binaires. sssp1. sssp1 ssss1 ssss2 ssss3 sssp2
Les soluions solides e les diagrammes d équilibre binaires 1. Les soluions solides a. Descripion On peu mélanger des liquides par exemple l eau e l alcool en oue proporion, on peu solubiliser un solide
Séquence 2. Pourcentages. Sommaire
Séquence 2 Pourcenages Sommaire Pré-requis Évoluions e pourcenages Évoluions successives, évoluion réciproque Complémen sur calcularices e ableur Synhèse du cours Exercices d approfondissemen 1 1 Pré-requis
8.1 Généralités sur les fonctions de plusieurs variables réelles. f : R 2 R (x, y) 1 x 2 y 2
Chapitre 8 Fonctions de plusieurs variables 8.1 Généralités sur les fonctions de plusieurs variables réelles Définition. Une fonction réelle de n variables réelles est une application d une partie de R
Recueil d'exercices de logique séquentielle
Recueil d'exercices de logique séquenielle Les bascules: / : Bascule JK Bascule D. Expliquez commen on peu modifier une bascule JK pour obenir une bascule D. 2/ Eude d un circui D Q Q Sorie A l aide d
Cahier technique n 141
Collecion Technique... Cahier echnique n 141 Les perurbaions élecriques en BT R. Calvas Les Cahiers Techniques consiuen une collecion d une cenaine de ires édiés à l inenion des ingénieurs e echniciens
TRACER LE GRAPHE D'UNE FONCTION
TRACER LE GRAPHE D'UNE FONCTION Sommaire 1. Méthodologie : comment tracer le graphe d'une fonction... 1 En combinant les concepts de dérivée première et seconde, il est maintenant possible de tracer le
Non-résonance entre les deux premières valeurs propres d un problème quasi-linéaire
Non-résonance enre les deux premières valeurs propres d un problème quasi-linéaire AREl Amrouss MMoussaoui Absrac We consider he quasilinear Dirichle boundary value problem (φ p (u )) = f(u)+h(x),u(a)=u(b)=0,
Formation Administrateur Server 2008 (Ref : IN4) Tout ce qu'il faut savoir sur Server 2008 OBJECTIFS LES PLUS DE LA FORMATION
COMUNDICOMPETENCES-TECHNIQUESDEL INGÉNIEUR Formaion Adminisraeur Server 2008 (Ref : IN4) SUPPORT PÉDAGOGIQUE INCLUS. OBJECTIFS Gérer des ressources e des compes avec Acive Direcory e Windows Server 2008
Chapitre 1 Cinématique du point matériel
Chapitre 1 Cinématique du point matériel 7 1.1. Introduction 1.1.1. Domaine d étude Le programme de mécanique de math sup se limite à l étude de la mécanique classique. Sont exclus : la relativité et la
EVALUATION DE LA FPL PAR LES APPRENANTS: CAS DU MASTER IDS
EVALUATION DE LA FPL PAR LES APPRENANTS: CAS DU MASTER IDS CEDRIC TAPSOBA Diplômé IDS Inern/ CARE Regional Program Coordinaor and Gender Specialiy Service from USAID zzz WA-WASH Program Tel: 70 77 73 03/
Plus courts chemins, programmation dynamique
1 Plus courts chemins, programmation dynamique 1. Plus courts chemins à partir d un sommet 2. Plus courts chemins entre tous les sommets 3. Semi-anneau 4. Programmation dynamique 5. Applications à la bio-informatique
B34 - Modulation & Modems
G. Pinson - Physique Appliquée Modulaion - B34 / Caracérisiques d'un canal de communicaion B34 - Modulaion & Modems - Définiions * Half Duplex ou simplex : ransmission un sens à la fois ; exemple : alky-walky
N 2008 09 Juin. Base de données CHELEM commerce international du CEPII. Alix de SAINT VAULRY
N 2008 09 Juin Base de données CHELEM commerce inernaional du CEPII Alix de SAINT VAULRY Base de données CHELEM commerce inernaional du CEPII Alix de SAINT VAULRY N 2008-09 Juin Base de données CHELEM
- Instrumentation numérique -
- Instrumentation numérique - I.Présentation du signal numérique. I.1. Définition des différents types de signaux. Signal analogique: Un signal analogique a son amplitude qui varie de façon continue au
Sciences Industrielles pour l Ingénieur
Sciences Indusrielles pour l Ingénieur Cenre d Inérê 6 : CONVERTIR l'énergie Compéences : MODELISER, RESOUDRE CONVERSION ELECTROMECANIQUE - Machine à couran coninu en régime dynamique Procédés de piloage
Mathématiques I Section Architecture, EPFL
Examen, semestre d hiver 2011 2012 Mathématiques I Section Architecture, EPFL Chargé de cours: Gavin Seal Instructions: Mettez votre nom et votre numéro Sciper sur chaque page de l examen. Faites de même
CHAPITRE 4 RÉPONSES AUX CHOCS D INFLATION : LES PAYS DU G7 DIFFÈRENT-ILS LES UNS DES AUTRES?
CHAPITRE RÉPONSES AUX CHOCS D INFLATION : LES PAYS DU G7 DIFFÈRENT-ILS LES UNS DES AUTRES? Les réponses de la poliique monéaire aux chocs d inflaion mondiaux on varié d un pays à l aure Le degré d exposiion
Cours d Analyse. Fonctions de plusieurs variables
Cours d Analyse Fonctions de plusieurs variables Licence 1ère année 2007/2008 Nicolas Prioux Université de Marne-la-Vallée Table des matières 1 Notions de géométrie dans l espace et fonctions à deux variables........
SYSTEME D ALARME SANS FIL BI-DIRECTIONNEL
NOICE D UILISAION SYSEME D ALARME SANS FIL BI-DIRECIONNEL Version 4/05 Renseignements, conseils n hésitez pas à nous contacter au 0892 35 01 85 (0,34 / minute) 1 Vous trouverez au sein de votre kit d alarme
Continuité d une fonction de plusieurs variables
Chapitre 2 Continuité d une fonction de plusieurs variables Maintenant qu on a défini la notion de limite pour des suites dans R n, la notion de continuité s étend sans problème à des fonctions de plusieurs
J AUVRAY Systèmes Electroniques TRANSMISSION DES SIGNAUX NUMERIQUES : SIGNAUX EN BANDE DE BASE
RANSMISSION DES SIGNAUX NUMERIQUES : SIGNAUX EN BANDE DE BASE Un message numérique est une suite de nombres que l on considérera dans un premier temps comme indépendants.ils sont codés le plus souvent
MINISTERE DE L ECONOMIE ET DES FINANCES
Un Peuple - Un Bu Une Foi MINISTERE DE L ECONOMIE ET DES FINANCES DIRECTION DE LA PREVISION ET DES ETUDES ECONOMIQUES Documen d Eude N 08 ENJEUX ECONOMIQUES ET COMMERCIAUX DE L ACCORD DE PARTENARIAT ECONOMIQUE
F 2 = - T p K 0. ... F T = - T p K 0 - K 0
Correcion de l exercice 2 de l assisana pré-quiz final du cours Gesion financière : «chéancier e aux de renabilié inerne d empruns à long erme» Quesion : rappeler la formule donnan les flux à chaque échéance
= 1 si n = m& où n et m sont souvent des indices entiers, par exemple, n, m = 0, 1, 2, 3, 4... En fait,! n m
1 épartement de Physique, Université Laval, Québec Pierre Amiot, 1. La fonction delta et certaines de ses utilisations. Clientèle Ce texte est destiné aux physiciens, ingénieurs et autres scientifiques.
CAHIER 13-2000 ANALYSE DES CHOCS D'OFFRE ET DE DEMANDE DANS LA ZONE CFA : UNE MÉTHODE STRUCTURELLE D'AUTORÉGRESSION VECTORIELLE
CAHIER 13- ANALYSE DES CHOCS D'OFFRE ET DE DEMANDE DANS LA ZONE CFA : UNE MÉTHODE STRUCTURELLE D'AUTORÉGRESSION VECTORIELLE Jean-Michel BOSCO N'GOMA CAHIER 13- ANALYSE DES CHOCS D'OFFRE ET DE DEMANDE DANS
Le mécanisme du multiplicateur (dit "multiplicateur keynésien") revisité
Le mécanisme du muliplicaeur (di "muliplicaeur kenésien") revisié Gabriel Galand (Ocobre 202) Résumé Le muliplicaeur kenésien remone à Kenes lui-même mais il es encore uilisé de nos jours, au moins par
Exercices Alternatifs. Une fonction continue mais dérivable nulle part
Eercices Alternatifs Une fonction continue mais dérivable nulle part c 22 Frédéric Le Rou (copleft LDL : Licence pour Documents Libres). Sources et figures: applications-continues-non-derivables/. Version
Exercices Alternatifs. Une fonction continue mais dérivable nulle part
Eercices Alternatifs Une fonction continue mais dérivable nulle part c 22 Frédéric Le Rou (copyleft LDL : Licence pour Documents Libres). Sources et figures: applications-continues-non-derivables/. Version
Chafa Azzedine - Faculté de Physique U.S.T.H.B 1
Chafa Azzedine - Faculté de Physique U.S.T.H.B 1 Définition: La cinématique est une branche de la mécanique qui étudie les mouements des corps dans l espace en fonction du temps indépendamment des causes
Différentiabilité ; Fonctions de plusieurs variables réelles
Différentiabilité ; Fonctions de plusieurs variables réelles Denis Vekemans R n est muni de l une des trois normes usuelles. 1,. 2 ou.. x 1 = i i n Toutes les normes de R n sont équivalentes. x i ; x 2
CERES logiciel de gestion commerciale pour négociants en vin
CERES logicil gion commrcial pour négocian n vin. Gion complè acha vn : comman, rérvaion, gion courag commrciaux.. Moul campagn primur : piloag la campagn via un ablau bor prman viualir accér aux informaion
Vous vous installez en france? Société Générale vous accompagne (1)
Parenaria Sociéé Générale Execuive relocaions Vous vous insallez en france? Sociéé Générale vous accompagne (1) offre valable jusqu au 29/02/2012 offre valable jusqu au 29/02/2012 offre valable jusqu au
Traitement du signal avec Scilab : la transformée de Fourier discrète
Traitement du signal avec Scilab : la transformée de Fourier discrète L objectif de cette séance est de valider l expression de la transformée de Fourier Discrète (TFD), telle que peut la déterminer un
Théorèmes du Point Fixe et Applications aux Equations Diérentielles
Université de Nice-Sophia Antipolis Mémoire de Master 1 de Mathématiques Année 2006-2007 Théorèmes du Point Fixe et Applications aux Equations Diérentielles Auteurs : Clémence MINAZZO - Kelsey RIDER Responsable
Chapitre 11. Séries de Fourier. Nous supposons connues les formules donnant les coefficients de Fourier d une fonction 2 - périodique :
Chapitre Chapitre. Séries de Fourier Nous supposons connues les formules donnant les coefficients de Fourier d une fonction - périodique : c c a0 f x dx c an f xcosnxdx c c bn f xsinn x dx c L objet de
Systèmes de communications numériques 2
Systèmes de Communications Numériques Philippe Ciuciu, Christophe Vignat Laboratoire des Signaux et Systèmes cnrs supélec ups supélec, Plateau de Moulon, 9119 Gif-sur-Yvette [email protected] Université
ENV AUTRES BIENS MOBILIERS R 1 200.00
Foncionnemen - dépenses Chapire 011 CHARGES A CARACTERE GENERAL 02 2012 c D n F e 011 e ENV n 812 605 n e ENV e ACHATS DE MATERIEL, EQUIPEMENTS ET TRAVAUX R u 1 r. 5 200.00 02 2012 D F 011 ENV 812 60611
AMPLIFICATEUR OPERATIONNEL EN REGIME NON LINEAIRE
AMPLIFICATEUR OPERATIONNEL EN REGIME NON LINEAIRE Dans e hapire l'amplifiaeur différeniel inégré sera oujours onsidéré omme parfai, mais la ension de sorie ne pourra prendre que deux valeurs : V sa e V
Université Technique de Sofia, Filière Francophone d Informatique Notes de cours de Réseaux Informatiques, G. Naydenov Maitre de conférence, PhD
LA COUCHE PHYSIQUE 1 FONCTIONS GENERALES Cee couche es chargée de la conversion enre bis informaiques e signaux physiques Foncions principales de la couche physique : définiion des caracérisiques de la
Calcul fonctionnel holomorphe dans les algèbres de Banach
Chapitre 7 Calcul fonctionnel holomorphe dans les algèbres de Banach L objet de ce chapitre est de définir un calcul fonctionnel holomorphe qui prolonge le calcul fonctionnel polynômial et qui respecte
Christian JUTTEN Théorie du signal
Christian UTTEN Théorie du signal Cours de deuxième année (3i4) du département 3i Université oseph Fourier - Polytech Grenoble novembre 2009 1 Table des matières 1 Introduction à la théorie du signal 6
2009-01 EFFICIENCE INFORMATIONNELLE DES 1948-2008 UNE VERIFICATION ECONOMETRIQUE MARCHES DE L OR A PARIS ET A LONDRES, DE LA FORME FAIBLE
009-01 EFFICIENCE INFORMATIONNELLE DES MARCHES DE L OR A PARIS ET A LONDRES, 1948-008 UNE VERIFICATION ECONOMETRIQUE DE LA FORME FAIBLE Thi Hong Van HOANG Efficience informaionnelle des marchés de l or
Les Comptes Nationaux Trimestriels
REPUBLIQUE DU CAMEROUN Paix - Travail Parie ---------- INSTITUT NATIONAL DE LA STATISTIQUE ---------- REPUBLIC OF CAMEROON Peace - Work Faherland ---------- NATIONAL INSTITUTE OF STATISTICS ----------
Continuité en un point
DOCUMENT 4 Continuité en un point En général, D f désigne l ensemble de définition de la fonction f et on supposera toujours que cet ensemble est inclus dans R. Toutes les fonctions considérées sont à
Séminaire d Économie Publique
Séminaire d Économie Publique Les niveaux de dépenses d'infrasrucure son-ils opimaux dans les pays en développemen? Sonia Bassi, LAEP Discuan : Evans Salies, MATISSE & ADIS, U. Paris 11 Mardi 8 février
CONTRIBUTION A L ANALYSE DE LA GESTION DU RESULTAT DES SOCIETES COTEES
CONTRIBUTION A L ANALYSE DE LA GESTION DU RESULTAT DES SOCIETES COTEES Thomas Jeanjean To cie his version: Thomas Jeanjean. CONTRIBUTION A L ANALYSE DE LA GESTION DU RESULTAT DES SOCIETES COTEES. 22ÈME
Développements limités. Notion de développement limité
MT12 - ch2 Page 1/8 Développements limités Dans tout ce chapitre, I désigne un intervalle de R non vide et non réduit à un point. I Notion de développement limité Dans tout ce paragraphe, a désigne un
Un exemple d étude de cas
Un exemple d'étude de cas 1 Un exemple d étude de cas INTRODUCTION Le cas de la Boulangerie Lépine ltée nous permet d exposer ici un type d étude de cas. Le processus utilisé est identique à celui qui
No 1996 13 Décembre. La coordination interne et externe des politiques économiques : une analyse dynamique. Fabrice Capoën Pierre Villa
No 996 3 Décembre La coordinaion inerne e exerne des poliiques économiques : une analyse dynamique Fabrice Capoën Pierre Villa CEPII, documen de ravail n 96-3 SOMMAIRE Résumé...5 Summary...7. La problémaique...9
Fonctions de deux variables. Mai 2011
Fonctions de deux variables Dédou Mai 2011 D une à deux variables Les fonctions modèlisent de l information dépendant d un paramètre. On a aussi besoin de modéliser de l information dépendant de plusieurs
COURS GESTION FINANCIERE A COURT TERME SEANCE 3 PLANS DE TRESORERIE. François LONGIN www.longin.fr
COURS GESTION FINANCIERE A COURT TERME SEANCE 3 PLANS DE TRESORERIE SEANCE 3 PLANS DE TRESORERIE Obje de la séance 3 : dans la séance 2, nous avons monré commen le besoin de financemen éai couver par des
