[http://mp.cpgedupuydelome.fr] édité le 16 octobre 2015 Enoncés 1



Documents pareils
[ édité le 10 juillet 2014 Enoncés 1. Exercice 6 [ ] [correction] Si n est un entier 2, le rationnel H n =

Suites et séries de fonctions

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable

Etude de la fonction ζ de Riemann

Chapitre 3 : Fonctions d une variable réelle (1)

. (b) Si (u n ) est une suite géométrique de raison q, q 1, on obtient : N N, S N = 1 qn+1. n+1 1 S N = 1 1

CHAPITRE 2 SÉRIES ENTIÈRES

Exercice I ( non spé ) 1/ u 1 = u / Soit P la propriété : u n + 4. > 0 pour n 1. P est vraie au rang 1 car u 1

1 Mesure et intégrale

Exo7. Déterminants. = 4(b + c)(c + a)(a + b). c + a c + b 2c Correction. b + a 2b b + c. Exercice 2 ** X a b c a X c b b c X a c b a X

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable

Séries réelles ou complexes

Limites des Suites numériques

14 Chapitre 14. Théorème du point fixe

Groupe orthogonal d'un espace vectoriel euclidien de dimension 2, de dimension 3

x +1 + ln. Donner la valeur exacte affichée par cet algorithme lorsque l utilisateur entre la valeur n =3.

Intégration et probabilités ENS Paris, TD (20)13 Lois des grands nombres, théorème central limite. Corrigé :

Comportement d'une suite

Processus et martingales en temps continu

Séquence 5. La fonction logarithme népérien. Sommaire

4 Approximation des fonctions

Convergences 2/2 - le théorème du point fixe - Page 1 sur 9

EXERCICES : DÉNOMBREMENT

Introduction : Mesures et espaces de probabilités

Baccalauréat S Asie 19 juin 2014 Corrigé

Les Nombres Parfaits.

FEUILLE D EXERCICES 17 - PROBABILITÉS SUR UN UNIVERS FINI

Dénombrement. Introduction. 1 Cardinaux d'ensembles nis. ECE3 Lycée Carnot. 12 novembre Quelques dénitions

20. Algorithmique & Mathématiques

SÉRIES STATISTIQUES À DEUX VARIABLES

Dénombrement. Chapitre Enoncés des exercices

Polynésie Septembre Exercice On peut traiter la question 4 sans avoir traité les questions précédentes.

16.1 Convergence simple et convergence uniforme. une suite de fonctions de I dans R ou C.

Des résultats d irrationalité pour deux fonctions particulières

STATISTIQUE : TESTS D HYPOTHESES

capital en fin d'année 1 C 0 + T C 0 = C 0 (1 + T) = C 0 r en posant r = 1 + T 2 C 0 r + C 0 r T = C 0 r (1 + T) = C 0 r 2 3 C 0 r 3...

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer

Cours de Statistiques inférentielles

II LES PROPRIETES DES ESTIMATEURS MCO 1. Rappel : M1 LA REGRESSION : HYPOTHESES ET TESTS Avril 2009

LES ÉCLIPSES. Éclipser signifie «cacher». Vus depuis la Terre, deux corps célestes peuvent être éclipsés : la Lune et le Soleil.

Différentiabilité ; Fonctions de plusieurs variables réelles

Probabilités et statistique pour le CAPES

Intégrales dépendant d un paramètre

Solutions particulières d une équation différentielle...

Module 3 : Inversion de matrices

Formation d un ester à partir d un acide et d un alcool

Processus géométrique généralisé et applications en fiabilité

PROMENADE ALÉATOIRE : Chaînes de Markov et martingales

Deuxième partie : LES CONTRATS D ASSURANCE VIE CLASSIQUES

DETERMINANTS. a b et a'

Méthodes de quadrature. Polytech Paris-UPMC. - p. 1/48

UNIVERSITE MONTESQUIEU BORDEAUX IV. Année universitaire Semestre 2. Prévisions Financières. Travaux Dirigés - Séances n 4

8.1 Généralités sur les fonctions de plusieurs variables réelles. f : R 2 R (x, y) 1 x 2 y 2

Statistique descriptive bidimensionnelle

Chaînes de Markov. Arthur Charpentier

55 - EXEMPLES D UTILISATION DU TABLEUR.

PROBLEMES DIOPTIMISATION EN NOMBRES ENTIERS J. L. NICOLAS

Calcul fonctionnel holomorphe dans les algèbres de Banach

I. Polynômes de Tchebychev

Examen final pour Conseiller financier / conseillère financière avec brevet fédéral. Recueil de formules. Auteur: Iwan Brot

3 Approximation de solutions d équations

STATISTIQUE AVANCÉE : MÉTHODES

Exercices de mathématiques

TRANSFERT DE CHARGE DANS UN RÉSEAU DE PROCESSEURS TOTALEMENT CONNECTÉS (*) par Maryse BÉGUIN ( 1 )

Séries numériques. Chap. 02 : cours complet.

Théorème du point fixe - Théorème de l inversion locale

Chapitre 3 : Transistor bipolaire à jonction

Chapitre VI Fonctions de plusieurs variables

Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre

Chap. 6 : Les principaux crédits de trésorerie et leur comptabilisation

Université de Bordeaux - Master MIMSE - 2ème année. Scoring. Marie Chavent machaven/

Structures algébriques

Contribution à la théorie des entiers friables

Chap. 5 : Les intérêts (Les calculs financiers)

Exo7. Matrice d une application linéaire. Corrections d Arnaud Bodin.

Chap. 6 : Les principaux crédits de trésorerie et leur comptabilisation

Cours 5 : ESTIMATION PONCTUELLE

Statistiques appliquées à la gestion Cours d analyse de donnés Master 1

Fonctions de plusieurs variables

Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques.

c. Calcul pour une évolution d une proportion entre deux années non consécutives

FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4)

Régulation analogique industrielle ESTF- G.Thermique

Notes du cours MTH1101 Calcul I Partie II: fonctions de plusieurs variables

n N = u N u N+1 1 u pour u 1. f ( uv 1) v N+1 v N v t

Continuité d une fonction de plusieurs variables

Fonctions de plusieurs variables. Sébastien Tordeux

UV SQ 20. Automne Responsable d Rémy Garandel ( m.-el. remy.garandel@utbm.fr ) page 1

Cours d Analyse. Fonctions de plusieurs variables

3.1 Différences entre ESX 3.5 et ESXi 3.5 au niveau du réseau. Solution Cette section récapitule les différences entre les deux versions.

Théorèmes du Point Fixe et Applications aux Equations Diérentielles

Simulation de variables aléatoires

Développements limités. Notion de développement limité

2 ième partie : MATHÉMATIQUES FINANCIÈRES

Amphi 3: Espaces complets - Applications linéaires continues

Petit recueil d'énigmes

Gérer les applications

Initiation à l analyse factorielle des correspondances

Image d un intervalle par une fonction continue

Planche n o 22. Fonctions de plusieurs variables. Corrigé

Transcription:

[http://mp.cpgedupuydelome.fr] édité le 6 octobre 25 Eocés Exercice [ 43 ] [Correctio] O pose ) k+ s = et u = l e s ) k k= a) Éocer le théorème des séries spéciales alterées, e faire la preuve. b) Prouver que les suites s ) et u ) coverget. c) Étudier la ature de u. Exercice 2 [ 56 ] [Correctio] a) Doer u développemet asymptotique à deux termes de u = p=2 l p p O pourra itroduire la foctio f : t l t)/t. b) A l aide de la costate d Euler, calculer = ) l Exercice 5 [ 325 ] [Correctio] Soit j N. O ote Φ j le plus petit etier p N vérifiat a) Justifier la défiitio de Φ j. b) Démotrer que Φ j +. j + c) Démotrer Φj+ Φ j e. j + p = Exercice 6 [ 2433 ] [Correctio] Soit α > et u ) la suite défiie par : j u > et, u + = u + α u a) Coditio écessaire et suffisate sur α pour que u ) coverge. b) Equivalet de u das le cas où u ) diverge. c) Equivalet de u l) das le cas où u ) coverge vers l. Exercice 3 [ 83 ] [Correctio] Soiet a, b R. Détermier la ature de la série l + a l + ) + b l + 2) Calculer la somme lorsqu il y a covergece. Exercice 4 [ 243 ] [Correctio] O ote u = π/4 ta t) dt. a) Détermier la limite de u. b) Trouver ue relatio de récurrece etre u et u +2. c) Doer la ature de la série de terme gééral ) u. d) Discuter suivat α R, la ature de la série de terme gééral u / α. Exercice 7 [ 2429 ] [Correctio] O fixe x R +. Pour N, o pose u =! x k= l + x ) k a) Etudier la suite de terme gééral lu + ) lu ). E déduire que la suite u ) coverge et préciser sa limite. b) Etablir l existece de α R tel que la série de terme gééral : lu + ) lu ) α l + ) coverge. c) Etablir l existece de A R tel que u A α. d) Etudier la covergece de la série de terme gééral u. Diffusio autorisée à titre etièremet gratuit uiquemet - dd

[http://mp.cpgedupuydelome.fr] édité le 6 octobre 25 Eocés 2 Exercice 8 [ 2423 ] [Correctio] O pose u = p= p + ) α et v = p= ) p p + ) α a) Détermier la ature de la série de terme gééral u selo α. b) Détermier la ature de la série de terme gééral v selo α. Exercice 9 [ 2428 ] [Correctio] O pose fx) = l x x a) Nature des séries de termes gééraux f) puis ) f). b) Motrer la covergece de la série de terme gééral c) Calculer f) = ft) dt ) f) Idice : O pourra s itéresser à la quatité 2 f2k) k= Exercice [ 243 ] [Correctio] Soit a >, b > et pour N, A = 2 k= a + bk), B = k= B Trouver lim A e foctio de e. Exercice [ 2432 ] [Correctio] a) Etudier u où u = b) Etudier v où v = dx +x+ +x. x dx +x+ +x. fk) a + bk) / k= Exercice 2 [ 2434 ] [Correctio] Soit, pour x R, a) Nature la série de terme gééral u = fx) = cos x /3) x 2/3 + fx) dx f) b) Nature de la série de terme gééral f). idice : o pourra motrer que si /3) admet pas de limite quad + c) Nature de la série de terme gééral si /3) 2/3 Exercice 3 [ 248 ] [Correctio] Former u développemet asymptotique à trois termes de la suite u ) défiie par u = et N, u + = + u ) / Exercice 4 [ 397 ] [Correctio] Soit e = e ) N ue suite décroissate à termes strictemet positifs telle que la série e coverge. O pose O itroduit s = = e et r = k=+ e k pour N { + } G = d e /d ) {, } N = O dit que la suite e est ue base discrète lorsque G est u itervalle. a) Motrer que G est bie défii. Détermier so maximum et so miimum. b) O suppose das cette questio que e ) est ue base discrète. Motrer que e r pour tout N. c) O suppose que e r pour tout N. Soit t [ s, s]. O défiit la suite t ) par { t + e t = et t + = si t t t e sio Diffusio autorisée à titre etièremet gratuit uiquemet - dd

[http://mp.cpgedupuydelome.fr] édité le 6 octobre 25 Eocés 3 Motrer que t t e + r et coclure. d) Das cette questio, o suppose e = /2 pour tout N. Détermier G. Quelles suites d ) permettet d obteir respectivemet,, /2, 2 et /3? Pour x G, y a-t-il ue uique suite d ) {, } N telle que x = = d e? Exercice 5 [ 563 ] [Correctio] Soit u ) ue suite de réels de [, ] de limite. Détermier les foctios f C[, ], R) vérifiat x [, ], fx) = = Exercice 6 [ 36 ] [Correctio] Détermier les foctios f C R, R) vérifiat Exercice 7 [ 38 ] [Correctio] Détermier u équivalet de I = f f = f fu x + x) 2 x + l x) dx Exercice 8 [ 2446 ] [Correctio] a) Soit f C [a, b], R). Détermier les limites des suites b b) Calculer, pour N, a ft) sit) dt) et π/2 b a si2t) cos t si t ft) cost) dt) dt o procédera par récurrece) c) E déduire si t t d) Etudier la limite puis u équivalet de ) π/2 l2 sit/2)) cost) dt Exercice 9 [ 3334 ] [Correctio] La foctio x x siet ) dt admet-elle ue limite e +? Exercice 2 [ 396 ] [Correctio] a) Soit z u ombre complexe o réel. Détermier la limite quad A + de A A dt t z b) Soiet P, Q R [X] tels que F = P/Q soit défiie et itégrable sur R. Pour a pôle de F, o ote R a le coefficiet de /X a) das la décompositio e élémets simples de F. Calculer la somme des R a pour a décrivat l esemble des pôles de F. c) E déduire F = 2iπ dt a P + R a où P + désige l esemble des pôles de F de partie imagiaire strictemet positive. d) Soiet m, N avec > m. Calculer x 2m dx + x2 Exercice 2 [ 572 ] [Correctio] Soit f C 2 [ ; + [, R). O suppose que f et f sot itégrables.. Motrer que f x) quad x +. 2. Motrer que f.f est itégrable. Diffusio autorisée à titre etièremet gratuit uiquemet - dd

[http://mp.cpgedupuydelome.fr] édité le 6 octobre 25 Eocés 4 Exercice 22 [ 525 ] [Correctio] Justifier l existece et calculer I = t [/t] dt Exercice 23 [ 2424 ] [Correctio] Covergece et calcul, pour z complexe tel que z <, de Exercice 24 [ 44 ] [Correctio] O étudie l équatio foctioelle = z 2 z 2+ E) : f2x) = 2fx) 2fx) 2 a) Quelles sot les solutios costates sur R? b) Soit h : R R. O pose fx) = xhx) pour tout x R. À quelle coditio sur h, la foctio f est-elle solutio de E)? c) O défiit par récurrece ue suite de foctios de R das R e posat : h : x et, pour tout N, x ) h + x) = h x x )) 2 h 2 2 2 Pour x [, ], soit T x : y y xy 2 /2. Motrer que T x est -lipschitziee sur [, ] et que T x [, ]) [, ]. Motrer que la suite h ) N coverge uiformémet sur [, ]. d) Motrer que l équatio E) admet ue solutio cotiue et o costate sur [, ]. e) Motrer que l équatio E) admet ue solutio cotiue et o costate sur R +. Exercice 26 [ 24 ] [Correctio] Soit E = { f C 2 [, π], R)/f) = f ) = } a) Motrer que est ue orme sur E. b) Motrer que N est équivalete à N : f f + f ν : f f + f Exercice 27 [ 465 ] [Correctio] Soiet E = C [, ], R) et N : E R + défiie par Nf) = f 2 ) + a) Motrer que N défiit ue orme sur E. b) Comparer N et.. f 2 t)dt Exercice 28 [ 249 ] [Correctio] a) Quelles sot les valeurs de a R pour lesquelles l applicatio défiit ue orme sur R 2. b) Si N a et N b sot des ormes, calculer x, y) N a x, y) = x 2 + 2axy + y 2 N a x, y) if x,y) N b x, y) et sup N a x, y) x,y) N b x, y) Exercice 25 [ 242 ] [Correctio] Soiet l espace E = { f C [, ], R)/f) = } et N l applicatio défiie sur E par Nf) = N 3f + f ) a) Motrer que E, N) est u espace vectoriel ormé puis qu il existe α > tel que N f) αnf). b) Les ormes N et N sot-elles équivaletes? Exercice 29 [ 477 ] [Correctio] Soit E u espace vectoriel réel ormé. O pose fx) = max, x ) x Motrer que f est 2-lipschitziee. Motrer que si la orme sur E est hilbertiee alors f est -lipschitziee. Diffusio autorisée à titre etièremet gratuit uiquemet - dd

[http://mp.cpgedupuydelome.fr] édité le 6 octobre 25 Eocés 5 Exercice 3 [ 8 ] [Correctio] O mui le R-espace vectoriel des suites réelles borées de la orme u = sup u N Détermier si les sous-esembles suivats sot fermés ou o : A = {suites croissates}, B = {suites covergeat vers }, C = {suites covergetes}, D = { suites admettat pour valeur d adhérece } et E = {suites périodiques}. c) O suppose E de dimesio fiie, établir Imu Id) keru Id) = E d) O suppose de ouveau E de dimesio quelcoque. Motrer que si Imu Id) keru Id) = E alors la suite v ) coverge simplemet et l espace Imu Id) est ue partie fermée de E. e) Etudier la réciproque. Exercice 3 [ 75 ] [Correctio] Pour A M K), o ote à la trasposée de la comatrice de A. a) Calculer det Ã. b) Etudier le rag de Ã. c) Motrer que si A et B sot semblables alors à et B le sot aussi. d) Calculer Ã. Exercice 32 [ 29 ] [Correctio] Motrer qu ue forme liéaire est cotiue si, et seulemet si, so oyau est fermé. Exercice 33 [ 245 ] [Correctio] Soit A ue partie o vide de R telle que pour tout x réel il existe u et u seul y A tel que x y = dx, A). Motrer que A est u itervalle fermé. Exercice 34 [ 3285 ] [Correctio] Soiet E u espace ormé de dimesio quelcoque et u u edomorphisme de E vérifiat x E, ux) x Pour tout N, o pose v = + k= a) Simplifier v u Id). b) Motrer que Imu Id) keru Id) = {} u k Exercice 35 [ 43 ] [Correctio] E désige u espace vectoriel euclidie et f u edomorphisme de E. a) Soit x E et r >. Justifier que la boule B f x, r) est compacte. Que dire de fb f x, r))? b) Soit x E et u réel r tel que < r < x. O ote K = B f x, r) et o suppose fk) K. O fixe a K et o pose, pour tout N y = f k a) Justifier que y ) est ue suite d élémets de K et que fy ) y ted vers E. E déduire qu il existe u vecteur w K tel que fw) = w. c) O repred les otatios précédetes et o suppose toujours fk) K. Motrer que Spf et Spf [ ; ]. d) À l aide d u exemple choisi e dimesio 3, motrer que f est pas écessairemet diagoalisable. e) Das cette derière questio, o choisit dim E = 3, B = e, e 2, e 3 ) base orthoormée de E et } K = {x.e + y.e 2 + z.e 3 / x2 a 2 + y2 b 2 + z2 c 2 avec a, b, c > ) O suppose fk) = K. Motrer que ou est valeur propre de f. k= Exercice 36 [ 246 ] [Correctio] Soiet A et B das M p R). Motrer que ) )) A B lim exp exp = expa + B) + Diffusio autorisée à titre etièremet gratuit uiquemet - dd

[http://mp.cpgedupuydelome.fr] édité le 6 octobre 25 Eocés 6 Exercice 37 [ 46 ] [Correctio] O cosidère ue série etière complexe a z de rayo de covergece R >. O ote f sa somme défiie pour z < R par fz) = = a z a) Rappeler la défiitio du rayo de covergece d ue série etière et motrer que a z coverge ormalemet sur D, r) = {z C, z r} si < r < R. b) Soit r u réel tel que < r < R, motrer que la foctio 2π Im fre iθ ) ) z r ze iθ dθ est développable e série etière et exprimer la somme de cette série etière e foctio de fz) et de f). c) Détermier les foctios f, développables e série etière sur D, R), et qui e preet que des valeurs réelles sur u esemble de la forme {z C, z = r} pour < r < R. Exercice 38 [ 333 ] [Correctio] Soit f : ] R, R[ R avec R > ) de classe C vérifiat N, x [, R[, f ) x) Motrer la covergece de la série! f ) )x Exercice 4 [ 3244 ] [Correctio] Soit f la foctio somme das le domaie réel d ue série etière a x de rayo de covergece R =. O suppose l existece d u réel l = lim x fx) a) Peut-o affirmer que la série umérique a coverge et que sa somme vaut l? b) Que dire si l o sait de plus a = o/)? [Théorème de Tauber] Exercice 4 [ 2849 ] [Correctio] Ue ivolutio d u esemble E est ue applicatio f : E E vérifiat f f = Id E. Pour, o ote I le ombre d ivolutios de,. O coviet : I =. a) Motrer, si 2, que b) Motrer que la série etière O ote Sx) sa somme. c) Motrer, pour x ], [, que I = I + )I 2 I! x coverge si x ], [. S x) = + x)sx) d) E déduire ue expressio de Sx), puis ue expressio de I. pour tout x ] R, R[. Exercice 39 [ 245 ] [Correctio] O ote N, p) le ombre de permutatios de [[, ]] qui ot exactemet p poits fixes. O pose e particulier D) = N, ), puis fx) = = D) x! a) relier N, p) et D p). b) Justifier la défiitio de f sur ], [ puis calculer f. c) Calculer N, p). d) Etudier la limite de! N, p)) quad ted vers +. Exercice 42 [ 2452 ] [Correctio] Soit p ) ue suite strictemet croissate d etiers aturels telle que = op ). O pose fx) = x p a) Doer le rayo de covergece de la série etière x p et étudier la limite de x)fx) quad x ted vers par valeurs iférieures. b) Ici p = q avec q N et q 2. Doer u équivalet simple de f e. Exercice 43 [ 2483 ] [Correctio] Soit α >. = Diffusio autorisée à titre etièremet gratuit uiquemet - dd

[http://mp.cpgedupuydelome.fr] édité le 6 octobre 25 Eocés 7 a) Doer le rayo de covergece R de f α x) = = α x O désire trouver u équivalet de f α lorsque x R. b) O suppose que α est u etier p. Calculer f, f. Doer avec u logiciel de calcul formel l expressio de f 2,..., f 5. Trouver les équivalets recherchés. Motrer qu il existe Q p R [X] tel que f p x) = Q px) x) p+ o calculera f p). E déduire l équivalet recherché. c) O suppose α > quelcoque. Doer le développemet e série etière de x) +α O otera b ses coefficiets. Motrer qu il existe Aα) > tel que α Aα)b. O étudiera la ature de la série de terme gééral l + )α b + E déduire que f α x) est équivalete à quad x ted vers R. Aα) x) +α l α b Exercice 46 [ 2448 ] [Correctio] Pour >, o pose a = π/4 ta t dt a) Trouver la limite de a ). b) Trouver ue relatio simple etre a +2 et a. c) O pose u x) = a α x Doer la ature de la série de terme gééral u x) e foctio de x et de α. d) O pose fx) = Exprimer f à l aide des foctios usuelles. Exercice 47 [ 32 ] [Correctio] Soit f : x = = a x ) si x a) Détermier le rayo de covergece R de la série etière défiissat f. b) Etudier la covergece e R et e R. c) Détermier la limite de fx) quad x. d) Motrer que quad x x)fx) Exercice 44 [ 332 ] [Correctio] Etablir que la foctio x shx est développable e série etière et préciser le rayo de covergece. Exercice 45 [ 995 ] [Correctio] Réaliser le développemet e série etière e de x cette foctio. dt t 2 +x 2 et recoaître Exercice 48 [ 2449 ] [Correctio] Soit a ) la suite défiie par a = et a =! a) Rayo de covergece de a x. b) Somme de a x. k= t k) dt pour N Diffusio autorisée à titre etièremet gratuit uiquemet - dd

[http://mp.cpgedupuydelome.fr] édité le 6 octobre 25 Eocés 8 Exercice 49 [ 3989 ] [Correctio] O pose fx) = = l )x et gx) = =2 l ) x a) Détermier les rayos de covergece de f et de g. b) Motrer que g est défiie et cotiue sur [, [. c) Trouver ue relatio etre x)fx) et gx). d) Motrer que f est cotiue sur [, [ et trouver des équivalets de f et g e. Exercice 5 [ 374 ] [Correctio] Soit ue série etière a z de rayo de covergece R >. a) Détermier le rayo de covergece de la série etière O pose doc, pour t das R, ft) = a! z = a! t b) Motrer qu il existe r > tel que pour tout x > r, t ft)e xt soit itégrable sur [, + [ et exprimer cette itégrale sous forme de série etière e /x. Exercice 5 [ 389 ] [Correctio] a) Doer l itervalle de défiitio I de la foctio s qui au réel x associe sx) = = x b) Quel est le sige de s sur I R +? Quelle est la limite de s e l extrémité droite de I R +? c) Ecrire x)s x) sous forme d ue série et e déduire le sige de s sur I. d) Etudier la covexité de f défiie sur R + par E déduire que la foctio s est covexe. fx) = x + x ) x Exercice 52 [ 252 ] [Correctio] Pour z C et N, o pose P z) = z ) 2 k a) Motrer que P z) P z ). E déduire que la suite P z)) N est borée. Idice : o pourra peser à itroduire l P z ). b) E étudiat la covergece de la série P + z) P z)), établir la covergece de la suite P z)) N. O itroduit la foctio f : z lim P z) + k= c) Motrer que f est cotiue e. d) Motrer que f est l uique foctio cotiue e vérifiat z C, fz) = z)fz/2) et f) = e) Motrer que f est développable e série etière. Exercice 53 [ 3483 ] [Correctio] Soit α u réel irratioel fixé. O ote R α le rayo de covergece de la série etière x siπα) a) Démotrer que R α. b) O cosidère la suite u ) défiie par Démotrer que pour tout etier u = 2 et, u + = u ) u u u + + ) E déduire que la série de terme gééral /u coverge. Das la suite, o pose α = et o admet que α est irratioel. u = Diffusio autorisée à titre etièremet gratuit uiquemet - dd

[http://mp.cpgedupuydelome.fr] édité le 6 octobre 25 Eocés 9 c) Démotrer qu il existe ue costate C strictemet positive telle que, pour tout etier : πu + k=+ C u k u u d) Démotrer que R α =. e) Questio subsidiaire : démotrer que α est effectivemet irratioel. Eocé fouri par le CENTRALE-SUPELEC CC)-BY-NC-SA Exercice 54 [ 926 ] [Correctio] Calculer lim e t si t) dt Exercice 55 [ 54 ] [Correctio] O cosidère les foctios f et g défiies sur R + par : fx) = e xt si t dt et gx) = + t2 x + t dt a) Motrer que f et g sot de classe C 2 sur R + et qu elles vérifiet l équatio différetielle Exercice 57 [ 939 ] [Correctio] Soiet α >, N. O pose u α) = π/2 si t) α cos t) dt a) Nature de la série de terme gééral u ). b) Plus gééralemet, ature de la série de terme gééral u α). c) Calculer u α) pour α = 2, 3. = Exercice 58 [ 554 ] [Correctio] Existece et calcul de sachat g) = π/2. gx) = Exercice 59 [ 2439 ] [Correctio] Soiet a C, a et Z. Calculer 2π e t2 cosxt)dt e it e it a dt y + y = x b) Motrer que f et g sot cotiues e c) E déduire que si t t Exercice 56 [ 2435 ] [Correctio] Etudier la limite de où f : [, ] R est cotiue. dt = π 2 ft ) dt Exercice 6 [ 2438 ] [Correctio] a) Démotrer la covergece de la série de terme gééral b) Comparer c) E déduire : = a et a = a =! t e t dt te t te t ) 2 dt Diffusio autorisée à titre etièremet gratuit uiquemet - dd

[http://mp.cpgedupuydelome.fr] édité le 6 octobre 25 Eocés Exercice 6 [ 2445 ] [Correctio] O pose I = pour tout etier >. a) Trouver la limite l de I ). b) Doer u équivalet de l I ). c) Justifier l + y) y + t dt dy = k= ) k k + ) 2 d) Doer u développemet asymptotique à trois termes de I ). Exercice 62 [ 32 ] [Correctio] O cosidère ϕ : x e itx + t 2 dt a) Motrer la défiie et la cotiuité de ϕ sur R. b) Motrer que ϕ est de classe C sur R et motrer que c) Motrer que pour x >, ϕ x) = i te itx + t 2 dt ϕ ue iu x) = i x 2 + u 2 du et détermier u équivalet de ϕ x) quad x +. d) La foctio ϕ est-elle dérivable e? Exercice 63 [ 3736 ] [Correctio] O pose fα) = dx x α + x) a) Etudier l esemble de défiitio de f. b) Doer u équivalet de f e. c) Motrer que le graphe de f admet ue symétrie d axe x = /2. d) Motrer que f est cotiue sur so esemble de défiitio. e) Calculer la bore iférieure de f. Eocé fouri par le cocours CENTRALE-SUPELEC CC)-BY-NC-SA Exercice 64 [ 3 ] [Correctio] O cosidère l équatio différetielle E : y e x y = a) Soit y ue solutio de E sur R. Etudier la covexité de y 2. E déduire que si y) = y) = alors y est ulle sur R. b) Soiet y et y 2 deux solutios de E telles que y ), y )) =, ) et y 2 ), y 2)) =, ) Démotrer que y, y 2 ) est u système fodametal de solutios de E. c) Soit f CR, R). Démotrer que l équatio différetielle admet ue uique solutio y telle que Exercice 65 [ 3387 ] [Correctio] O cosidère l équatio différetielle E : y e x y = fx) y) = y) = E) : y + cos 2 t)y = a) Justifier l existece d ue solutio u de E) telle que u) = et u ) =. b) Démotrer l existece de deux réels α, β vérifiat α < < β, u α) > et u β) < E déduire que u possède au mois u zéro das R et R +. c) Justifier l existece de réels γ = max {t < /ut) = } et δ = mi {t > /ut) = } d) Soit v ue solutio de E) liéairemet idépedate de u. E étudiat les variatios de W = uv u v motrer que v possède au mois u zéro das]γ, δ[. e) Soit w ue solutio o ulle de E). Démotrer que w admet ue ifiité de zéros. O pourra itroduire pour N, la foctio w : R R, t wt π) [Eocé fouri par le CENTRALE-SUPELEC CC)-BY-NC-SA] Diffusio autorisée à titre etièremet gratuit uiquemet - dd

[http://mp.cpgedupuydelome.fr] édité le 6 octobre 25 Eocés Exercice 66 [ 392 ] [Correctio] Soiet q C [a, + [, R + ) et E) l équatio différetielle y = qx)y. a) Soit f ue solutio de E) telle que fa) > et f a) >. Motrer que f et f sot strictemet positives et que f ted vers + e +. b) Soiet u et v les solutios de E) telles que { { ua) = va) = u a) = et v a) = Calculer u v uv. Motrer que, sur ]a, + [, u/v et u /v sot mootoes de mootoies cotraires. Motrer que u/v et u /v tedet e + vers la même limite réelle. c) Motrer qu il existe ue uique solutio g de E), strictemet positive, telle que ga) = et telle que g décroisse sur [a, + [. d) Détermier g lorsque qx) = /x 4 sur [, + [. O pourra poser yx) = xz/x). Exercice 67 [ 392 ] [Correctio] a) Soit N M C) ilpotete d idice p. Motrer que I, N, N 2,..., N p ) est ue famille libre. Exprimer e tλi+n) b) Soit A M C) ayat pour uique valeur propre λ C. Motrer que N = A λi est ilpotete. Motrer que les solutios du système différetiel X = AX sot toutes borées sur R si, et seulemet si, λ est imagiaire pur et A = λi. c) Soit A M C) de polyôme caractéristique X λ )... X λ m ) m les λ k état deux à deux disticts. Soit f l edomorphisme de C caoiquemet associé à A. Motrer que C = m kerf λ k Id C ) k k= E déduire l existece d ue base de C das laquelle la matrice de f est diagoale par blocs. d) Avec les otatios de c). Motrer que les solutios de X = AX sot borées si, et seulemet si, les λ k sot imagiaires purs et que A est diagoalisable. e) Motrer qu ue matrice atisymétrique réelle est diagoalisable. Exercice 68 [ 2455 ] [Correctio] a) Résoudre l équatio différetielle y + y = cost) b) Soit a ue série absolumet covergete. Résoudre l équatio différetielle y + y = = a cost) Exercice 69 [ 5 ] [Correctio] Soit f C R +, R) et g ue solutio sur R + de l équatio différetielle xy y = fx) a) Démotrer que g se prologe par cotiuité e. Détermier ue coditio écessaire sur f ) pour que la foctio aisi prologée soit dérivable e. Démotrer que cette coditio est pas suffisate. b) f est supposée de classe C 2 et la coditio précédete est vérifiée. Démotrer que g est de classe C 2. Exercice 7 [ 56 ] [Correctio] Soit E) l équatio différetielle l x)y + y x = a) Résoudre E) sur ], [ et sur ], + [. b) Soit g la foctio défiie sur ], + [ \ {} par gx) = l + x) x Motrer que g se prologe sur ], + [ e ue foctio de classe C. c) Démotrer que E) admet ue solutio de classe C sur ], + [. Exercice 7 [ 246 ] [Correctio] O pose cos x cos y ϕx, y) = pour x y x y a) Motrer que ϕ admet u prologemet par cotiuité à R 2 oté ecore ϕ. b) Motrer que ϕ est de classe C puis C. Diffusio autorisée à titre etièremet gratuit uiquemet - dd

[http://mp.cpgedupuydelome.fr] édité le 6 octobre 25 Eocés 2 Exercice 72 [ 2466 ] [Correctio] O cosidère f : x, y) = a) Détermier le domaie de défiitio D de f. b) Etudier l existece de f f x et y sur D. x + y 2 Exercice 73 [ 327 ] [Correctio] Détermier les foctios f : R + R de classe C 2 telle que vérifie Exercice 74 [ 6 ] [Correctio] Trouver les extrema sur R 2 de F : R \ {} R ) x,... x ) f x 2 + + x2 i= 2 F x 2 i = fx, y) = x 2 + xy + y 2 + 2x 2y Exercice 75 [ 2463 ] [Correctio] Détermier les extremums de x l x + y l y sur ], + [ 2. Exercice 78 [ 246 ] [Correctio] Motrer que f : R R de classe C est homogèe de degré p si, et seulemet si, x,..., x ) R, i= Exercice 79 [ 352 ] [Correctio] Soiet E = C R, R), E le dual de E et x i f x i x,..., x ) = pfx,..., x ) D = { d E / f, g) E 2, dfg) = f)dg) + g)df) } a) Motrer que D est u sous-espace vectoriel de E. b) Motrer que D est o réduit à {}. c) Soit d D et h ue foctio costate. Que vaut dh)? d) Soit f E. Motrer x R, fx) = f) + f x i tx) dt x i Vérifier que l applicatio x f x i tx) dt est das E. e) Soit d D. Etablir l existece de a,..., a ) R tel que f) Détermier la dimesio de D. f E, df) = i= i= a i f x i ) Exercice 76 [ 2465 ] [Correctio] Soit u triagle ABC et M parcourat l itérieur de ce triagle. O veut détermier e quelle positio le produit des 3 distaces de M à chacu des côtés du triagle est maximal. Idicatios : e pas oublier de justifier l existece de ce maximum, la répose est le cetre de gravité du triagle. Exercice 77 [ 7 ] [Correctio] Soit a >. Motrer que f : x, y) x + y + a xy admet u miimum strict sur R + ) 2 Diffusio autorisée à titre etièremet gratuit uiquemet - dd

[http://mp.cpgedupuydelome.fr] édité le 6 octobre 25 Correctios 3 Correctios Exercice : [éocé] a) Si v ) est ue suite alterée dot la valeur absolue décroît vers alors la série v coverge. Ce résultat s obtiet e costatat l adjacece des suites extraites de rags pairs et impairs de la suite des sommes partielles. b) La suite s ) coverge e vertu du critère spécial éocé ci-dessus. E fait, il est «cou» que s ) ted vers l 2 et doc u ) ted vers. c) O peut écrire s = l 2 r avec O a r = k=+ r r + = ) + et r + r + = ) k+ k k=+ ) k+ ) kk + ) = O 2 car par, applicatio du critère spécial à la série ) k+ kk+), o peut majorer le reste par la valeur absolue du premier terme qui l exprime. O e déduit ) r = ) 2 + O 2 O sait et doc avec Aisi, lx) = x x + O x ) 2) u = e s 2 + O e s 2) 2) e s 2 = 2 e r ) = 2r + Or 2 ) = )+ u = )+ ) + O 2 ) + O 2 La série u coverge car c est la somme d ue série vérifiat le critère spécial et d ue autre absolumet covergete. Exercice 2 : [éocé] a) f est décroissate sur [e, + [. Pour p 4, p+ doc u = l 2 2 + l 3 3 + v avec p + 4 l t l p p dt t p l t p t dt l t t dt v l t 3 t dt doc v 2 l )2. Etudios w = u 2 l )2, w w = l l t t dt doc w ) est décroissate. D autre part les calculs précédets doet w ) miorée et doc o peut coclure que w coverge. Aisi b) doc 2N = 2N = ) l ) l = N = u = 2 l )2 + C + o) l2) = N = l2) 2 2N = l) N = = l 2 l2 ) 2 N = Par le développemet asymptotique précédet, o obtiet : 2N = ) l et après simplificatio De plus 2N+ = + u N u 2N = l 2. l + l2)γ + 2 l )2 + C 2 l 2)2 C + o) 2N = ) l ) l l2)2γ l 2) 2 = 2N = ) l + o) l2)2γ l 2) 2 Diffusio autorisée à titre etièremet gratuit uiquemet - dd

[http://mp.cpgedupuydelome.fr] édité le 6 octobre 25 Correctios 4 doc N est-ce pas magifique? Exercice 3 : [éocé] O a = ) l = l2)2γ l 2) 2 l + a l + ) + b l + 2) = + a + b) l + a + 2b ) + O 2 Il y a covergece si, et seulemet si, + a + b = et a + 2b = ce qui correspod à a = 2 et b =. Das ce cas : N l + a l + ) + b l + 2) = = N = N+ N+2 l 2 l + l =2 =3 Exercice 5 : [éocé] a) Puisque o peut affirmer que l esemble { p = p + + p N, p = } j est ue partie o vide de N. Celle admet doc u plus petit élémet, oté Φ j. b) Par défiitio de Φ j, o a j Or, par comparaiso avec ue itégrale Φ j = Φ j = Φj + dt t = + l Φ j puis c) Par défiitio de Φ N j, o a l + a l + ) + b l + 2) = l +l 2 2 l 2 2 ln+)+ln+)+ln+2) l 2 = O e déduit Φ j e j puis Φ j j + Φ j = +. j Φ j = Exercice 4 : [éocé] a) Par covergece domiée par la foctio ϕ : t, o obtiet u. b) u + u +2 = π/4 ta t) ta t) dt = + c) O vérifie aisémet u + et u + u. Par applicatio du critère spécial des séries alterées, ) u coverge. d) Par mootoie u + u +2 2u u + u 2 O e déduit u 2 puis par comparaiso de séries à termes positifs, u α coverge si, et seulemet si, α >. Or, sachat que Φ j +, o a Par suite Or doc puis Φ j = = l Φ j + γ + o) et Φ j = = lφ j ) + γ + o) lφ j ) + γ + o) j l Φ j + γ + o) lφ j ) = l Φ j + o) j = l Φ j + γ + o) Φ j = e j γ+o) Diffusio autorisée à titre etièremet gratuit uiquemet - dd

[http://mp.cpgedupuydelome.fr] édité le 6 octobre 25 Correctios 5 O e déduit Φ j+ Φ j = ej+ γ+o) e j γ+o) = e +o) e c) O suppose α >. Posos v = u l. O a v + v = α u α l Exercice 6 : [éocé] a) Notos la suite u ) est bie défiie, strictemet positive et croissate. Si α >, o a u + u + α u puis par récurrece u k= k α u Aisi u ) coverge. Si u ) coverge. Posos l = lim u, o observe l >. O a u + u = α u α l or la série de terme gééral u + u est covergete doc α >. b) O suppose α. O a u 2 + u 2 = 2 α + 2α u 2 2 α doc par sommatio de relatio de comparaiso de séries à termes positifs divergetes u 2 2 k α or par comparaiso série-itégrale, et O coclut alors u k= k= k α α α quad α < k= 2 α l quad α = k α si α < et u 2 l si α = doc par sommatio de relatio de comparaiso de séries à termes positifs covergetes v k+ v k = v l α α l α puis k= Exercice 7 : [éocé] a) avec x > doc k= v = α l α l u + l u x 2 l u k+ l u k k= puis u. b) Pour α = x/2, lu + ) lu ) α l + ) ) = O 2 doc il y a covergece de c) Puisque lu+ ) lu ) α l + ) lu + ) lu ) α l + ) = l u + + ) α l u α la suite de terme gééral l u coverge puis u α A avec A >. α d) Par comparaiso de séries à termes positifs, u coverge si, et seulemet si, α < i.e. x > 2. Diffusio autorisée à titre etièremet gratuit uiquemet - dd

[http://mp.cpgedupuydelome.fr] édité le 6 octobre 25 Correctios 6 Exercice 8 : [éocé] a) Pour défiir u, il est écessaire de supposer α >. Par comparaiso avec ue itégrale, o motre u α α Par comparaiso de séries à termes positifs, u coverge si, et seulemet si, α > 2. b) Pour défiir u, il est écessaire de supposer α >. Par applicatio du critère spécial des séries alterées, v état le reste de la série ) p p+) est du sige de ) et v α +). α De plus doc v v + = v v + = p= p= Par le théorème des accroissemets fiis ) p + p + + ) α ) p p + + 2) α p= ) ) p p + + ) α p + + 2) α p + + 2) α p + + ) α = α c ) α+ avec c ]p + +, p + + 2[. La suite c ) est croissate doc o peut appliquer le critère spécial des séries alterées à ) ) p p + + ) α p + + 2) α et coclure que sa somme est du sige de so premier terme. Au fial, v ) est décroissat et e appliquat ue derière fois le critère spécial des séries alterées, o coclut que v coverge. Exercice 9 : [éocé] a) f) diverge et ) f) coverge e applicatio du critère spécial. b) Pour 4, doc f) ft) dt f ) ft) dt f) f ) f) avec =4 f ) f) = f3) doc la série de terme gééral ft)dt f) coverge et il e est de même de la série de terme gééral f) ft)dt. c) O a avec Or = 2 k= fk) = f) + k= ) f) = ) k fk) = 2 k=2 et e exploitat l2k) = l 2 + l k 2 f2k) = l 2 k= O e déduit Au fial 2 k= lim 2 + k= f2k) k= k fk) ft) dt + k k + f2k) k= Exercice : [éocé] O a = A = a + k= 2 k= l k k ) k fk) 2 k= fk) ft) dt = 2 l )2 + C = l 2 l + l2)γ + o) + 2 l )2 + C fk) = l2)γ 2 l 2)2 + o) ) l = l2)2γ l 2) 2 b + ), l B = 2 Posos ft) = la + bt) foctio croissate. A l aide d ue comparaiso série-itégrale la + bk) k= fk) = la + b) + o) k= Diffusio autorisée à titre etièremet gratuit uiquemet - dd

[http://mp.cpgedupuydelome.fr] édité le 6 octobre 25 Correctios 7 doc puis l B ) a + b = l B l A = l + o) l 2 A a + b/2 B A 2 e Le terme etre crochet est ul il suffit d écrire x = h avec h, pour étudier la limite e ) Il reste v = l x + )dx + Par développemet e série etière de la foctio u l u) Exercice : [éocé] a) L itégrale défiissat u est bie défiie car elle porte sur ue foctio sur le segmet [, ]. O peut aussi la compredre comme ue itégrale impropre covergete sur [, [ dx u = + x + + x = dx [,[ + x + + x et par sommatio géométrique dx + x + + x = [,[ [,[ x dx x+ Posos f x) = x x + Sur [, [, la suite de foctios f ) coverge simplemet vers la foctio f : x x. Les foctios f et f sot cotiues par morceaux et x x + x x = = ϕx) avec ϕ itégrable. Par covergece domiée u x)dx = 2 et doc la série u diverge grossièremet. b) O amorce les calculs comme au dessus pour écrire v = x dx + x + + x = x x)dx x+ Par itégratio par parties impropre justifiée par deux covergeces x [ x)dx = ] x+ + l x+ ) x) l x + )dx + Posos v = k= k x+)k dx g k x) = k x+)k La série de foctios g k coverge simplemet sur [, [ e vertu de la décompositio e série etière précédete. Les foctios g k et la foctio somme + g k : x l x + ) sot cotiues par morceaux. Efi, les foctios g k sot itégrables sur [, [ et + k x+)k dx = k + )k + ) < + k= k= k= O peut doc itégrer terme à terme pour écrire doc v = + k k= Or puis fialemet k= x +)k dx = + k= k + )k + ) + ) k 2 k= v C + ) 2 La série à termes positifs v est doc covergete. k + )k + ) Exercice 2 : [éocé] a) a) Ue comparaiso série itégrale est iadaptée, f est pas mootoe comme e témoige ses chagemets de sige. E revache : u = + fx) f) dx Diffusio autorisée à titre etièremet gratuit uiquemet - dd

[http://mp.cpgedupuydelome.fr] édité le 6 octobre 25 Correctios 8 Or par le théorème des accroissemets fii, avec c x ], x[. Après calcul de f x), o e déduit fx) f) = f c x )x ) L égalité doe u + = exp l + 2 l )) + v u + = exp 2 l + v + O l ) 2 / )) puis u = O 4/3 ). fx) f) 3 4/3 + 2 3 5/3 b) La série de terme gééral + diverge. E effet si si /3) covergeait vers l alors par extractio si) aussi et ft) dt diverge car ft) dt = 3 si /3) il est classique d établir la divergece de si)). O e déduit que cos /3 ) 2/3 diverge. c) Il suffit de repredre la même étude pour parveir à la mêmeu = + fx) dx f) coclusio. Exercice 3 : [éocé] O observe que u + u =. Puisque ue série à termes positifs divergete o peut, par sommatio de relatio de comparaiso, affirmer u + k 2 2 E composat avec le logarithme épérie cet équivalet de limite ifii, o obtiet l u + 2 l puis Par suite u + puis k= l u + 2 l u + = + 2 l ) l + o Or 2u + 2 doc exp l2) + v + O l ) 2 / )) puis v l2). Aisi u + = + 2 l l 2 ) + o Exercice 4 : [éocé] a) Puisque d e e avec covergece de e, o peut affirmer que les élémets de G sot des sommes de séries absolumet covergetes. Les élémets de G sot doc bie défiis et puisque d e e = s = o a G [ s, s]. Efi s G avec d ) N = ) N et s G avec d ) N = ) N. b) Si e est ue base discrète alors G = [ s, s]. Par l absurde, supposos qu il existe N N tel que e N > r N. Itroduisos compredre x = si N = ). Soit y = x = = N k= S il existe k N tel que d k = alors = e k [ s, s] d e avec d {, } Posos v = u + 2 l y = d e 2e k = s 2e k Diffusio autorisée à titre etièremet gratuit uiquemet - dd

[http://mp.cpgedupuydelome.fr] édité le 6 octobre 25 Correctios 9 Or doc Si d k = pour tout k N alors y = e k e N y < s 2e N = x + r N e N < x N e k + = =N+ d k e k x + e N r N > x Das tous les cas, y x et doc x / G. C est absurde. c) Raisoos par récurrece sur N. Cas = : o a bie t t = t s = e + r Supposos la propriété vérifiée au rag. Si t t alors t t + = t t e r et Aisi Si t > t alors et l étude est aalogue. Récurrece établie. O e déduit que t t puis que t G. E coclusio t t + e r t t + r = e + + r + t + t = t t e e est ue base discrète si, et seulemet si, N, e r d) La coditio précédete est vérifiée et, puisque s = 2, o obtiet G = [ 2, 2]. O peut écrire et = + = ) 2, = + + 2 + 2 = =2 = ) 2, 2 = 2 4 + + 2 =3 2 E remarquat o peut proposer = ) 2 = 2 3 3 = + 2 + =2 ) Il peut y avoir uicité de la suite d ) c est le cas pour x = s) ou o c est le cas pour x = où lorsque d ) coviet, d ) coviet aussi). Exercice 5 : [éocé] Soit f ue foctio solutio. Puisque celle-ci est cotiue sur u segmet, elle y admet u miimum e u certai x [, ]. O a alors fu x + x ) fx ) fx ) = 2 2 = fx ) = = O e déduit 2 N, fu x + x ) = fx ) E passat à la limite quad +, o obtiet f) = fx ) Aisi f) est la valeur miimale de f sur [, ] U raisoemet symétrique assure aussi que f) est la valeur maximale de f sur [, ]. O e déduit que f est costate. La réciproque est immédiate. Exercice 6 : [éocé] Si f est solutio alors e dérivat f f = f o obtiet x R, f x) = f x) f fx)) puis e exploitat à ouveau f f = f, o obtiet x R, f fx)) = f fx)) 2 Puisque la foctio f f est cotiue, o peut affirmer que celle-ci est costate égale à ou. Diffusio autorisée à titre etièremet gratuit uiquemet - dd

[http://mp.cpgedupuydelome.fr] édité le 6 octobre 25 Correctios 2 Cas f f = La relatio f x) = f x) f fx)) doe f x) = et o e déduit que f est costate. Cas f f = Nous savos que I = Imf = fr) est u itervalle o vide. Puisque f x) = pour tout x I, o peut affirmer qu il existe C R tel que fx) = x + C pour tout x I. Or o a ffx)) = fx) + C car fx) I) et ffx)) = fx) doc C =. Aisi x I, fx) = x Pour coclure, il reste à motrer I = R. Par l absurde supposos l itervalle I majoré et posos m = sup I. Par cotiuité de f et de f e m, o a fm) = m et f m) = Puisque f m) =, f pred des valeurs strictemet supérieures à fm) = m. Ceci cotredit la défiitio de m. De même, o obtiet qu il est absurde d affirmer que I est mioré et doc o coclut I = R. Fialemet, si f est solutio alors f est costate ou égale à l idetité. La réciproque est immédiate. Notos que sas l hypothèse classe C, de ombreuses foctios peuvet être solutios comme la suivate prologée par cotiuité e. Notos que cette foctio est positive et croissate. Itroduisos a, b ], [ dot les valeurs serot détermiées ultérieuremet. O peut écrire + )I = A + B + C avec A = a Par mootoie de f, + ) x fx) dx, B = A Pour a = ε avec ε = l car O e déduit Par la croissace de f b a a, o a + ) x fx) dx et C = + )x = a + f) l)a + = e ll )++) l ε) ll ) + + ) l ε ) l ) A = o l b + ) x fx) dx C b + )x fb) Pour b = η avec η = l ), o a b + et fb) l dx = b+ fb) Exercice 7 : [éocé] Posos f : ], [ R défiie par Ue foctio cotiue vérifiat f f = f l x) x fx) = = x + = de sorte que Efi, toujours par la croissace de f, et puisque b + a + fb) ) C o l B b+ a + fa) b + a + et fb) fa) l Diffusio autorisée à titre etièremet gratuit uiquemet - dd

[http://mp.cpgedupuydelome.fr] édité le 6 octobre 25 Correctios 2 o parviet à et fialemet + )I l I l Remarque : Par le chagemet de variable t = l x), x = e t I = e t ) + e t dt t E développat par la formule du biôme ) + + + I = ) k e t e k+)t dt k t k= et o peut motrer par découpage d itégrale et u chagemet de variable affie que e t e k+)t e t e k+)t dt = lim dt = lk + ) t ε ε t Ce qui précède permet alors d établir ) + + ) k lk + ) k l k= Exercice 8 : [éocé] a), cf. lemme de Lebesgue. b) Posos I = π/2 si2t) cos t si t Cette itégrale existe car u prologemet par cotiuité est possible e. O observe si2 + )t) si2t) = 2 si t cos2 + )t et doc I + I = π/2 La suite I ) est costate égale à I = π/2 dt 2 cos2 + )t) cos t dt = 2 cos 2 t dt = π 2 c) O a π/2 si2t) cos t si t π/2 si2t) dt dt = t π/2 avec ft) = cot t t qui se prologe e ue foctio de classe C sur [, π/2]. Aisi π/2 si2t) dt π t 2 Or π/2 si2t) t dt = π si u u du si2t)ft) dt doc la covergece de l itégrale de Dirichlet état supposée coue, o obtiet d) O a π/2 l2 sit/2)) cost) dt = Par itégratio par parties, π/2 La foctio t l Par itégratio par parties, π/2 sit/2) l t/2 La foctio t l π/2 si t t dt = π 2 ) sit/2) l cost) dt + t/2 lπ/2) siπ/2) π/2 π/2 si u u lt) cost) dt lt) cost) dt = du ) sit/2) t/2 se prologe e ue foctio de classe C 2 sur [, π/2]. ) cost) dt = 2 2 l π ) siπ/2) π/2 )) sit/2) t/2 état de classe C sur [, π/2], o a π/2 sit/2) l t/2 et doc π/2 l2 sit/2)) cost) dt )) sit) dt = o ) l 2) siπ/2) π 2 )) sit/2) l sit t/2 Diffusio autorisée à titre etièremet gratuit uiquemet - dd

[http://mp.cpgedupuydelome.fr] édité le 6 octobre 25 Correctios 22 Exercice 9 : [éocé] Par itégratio par parties x D ue part sie t ) dt = x e t sie t )e t dt = [ cose t )e t] x x cose t )e t dt cose x )e x x + et d autre part t cose t )e t est itégrable sur [ ; + ] car t 2 cose t )e t doc l itégrale sie t ) dt coverge. t + Exercice 2 : [éocé] a) O écrit z = a + ib avec a, b R. E multipliat par la quatité cojuguée puis doc A A A A dt A t z = t a + ib A t a) 2 + b 2 dt [ dt t z = 2 l t a) 2 + b 2) ] A [ + i arcta t a ] A A b A A A dt t z A + { iπ si Imz > iπ sio b) Les pôles de F sot assurémet o réels. La partie etière de F est écessairemet ulle car F est itégrable. Das la décompositio e élémets simples de F, les termes e /X a) k avec k 2 détermiet des expressios itégrables. Puisque F est aussi itégrable, o peut affirmer par différece que le terme a P R a t a) avec P l esemble des pôles de F ) est itégrable sur R. Or t a P R a t a) t + a P R a Il est doc écessaire que R a = a P c) Les termes e /X a) k avec k 2) de la décompositio e élémets simples de F iduiset des itégrales sur R ulles. Par coséquet F = a P R a t a dt = lim A + a P Puisque les parties polaires sot deux à deux cojuguées puis Mais doe a P A A R a t a dt = a P + A A F = 2iπ R a = a P a P + R a + R a = 2 A A R a t a + R a t ā dt a P + ImR a ) Fialemet F = 2iπ a P + ReR a ) = a P + R a R a t a dt d) Puisque m +, l itégrabilité est acquise. Les pôles de la fractio sot simples et ce sot les avec k {,..., 2 }. Pour chaque k {,..., 2 }, R zk = X 2m + X 2 z k = e i2k+) 2 π X 2m + X 2 ) X=zk = z2m+ k 2 Diffusio autorisée à titre etièremet gratuit uiquemet - dd

[http://mp.cpgedupuydelome.fr] édité le 6 octobre 25 Correctios 23 Les pôles de parties imagiaires positives sot obteus pour k {,..., } et après sommatio géométrique o obtiet Exercice 2 : [éocé]. O a x 2m + x 2 dx = π si f x) = f ) + 2m+)π 2 x f t) dt doc f x) admet ue limite fiie l quad x +. Si l > alors pour x assez grad f x) l/2 puis fx) lx/2 + m ce qui empêche la covergece de ft) dt. Si l < o obtiet aussi ue absurdité. Il reste doc l =. 2. Puisque la foctio f est cotiue et coverge e +, cette foctio est borée et doc t ft)f t) est itégrable sur [ ; + [. Exercice 22 : [éocé] La foctio f : t t [/t] est défiie et cotiue par morceaux sur ], + [. Pour t >, [/t] = et doc ft) =. Aisi f est itégrable sur [, + [. Pour t >, /t [/t] /t et doc ft) t + ], ]. O a Or puis / ft) dt = k= I = lim ft) dt + / /k /k+) / ft) dt = 2 Par décompositio e élémets simples / ft) dt = 2 k= t [/t] dt = k= ). Aisi f est itégrable sur k= 2k + kk + ) 2 /k /k+) k ) k + + k + ) 2 kt dt et après réorgaisatio O e déduit Exercice 23 : [éocé] / ft) dt = 2 I = π2 2 k= k 2 Puisque z <, o peut écrire par sommatio géométrique et doc = = z 2+ k z 2+ k= z 2 + = z 2 z 2+k = z 2+ = k= z 2 2k+) = k= Tout etier aturel o ul p s écrit de faço uique sous la forme p = 2 2k + ) avec, k N O peut doc affirmer que N est la réuio des esembles deux à deux disjoits suivats A = {2 2k + )/k N} Puisque la famille z p ) p N est sommable, o peut sommer par paquets et écrire Fialemet p= z p = = = m A z m = z 2 2k+) = k= z 2 = z p = z z 2+ z p= Exercice 24 : [éocé] a) Si f est costate égale à C alors l équatio E) est vérifiée si, et seulemet si, C = 2C 2C 2. Cette derière équatio est vérifiée pour C = et C = /2 seulemet. Diffusio autorisée à titre etièremet gratuit uiquemet - dd

[http://mp.cpgedupuydelome.fr] édité le 6 octobre 25 Correctios 24 b) Après substitutio et étude séparée du cas x =, o obtiet f solutio de E) si, et seulemet si, h vérifie h2x) = hx) xhx) 2 c) L applicatio T x est de classe C et T xy) = xy. Sur [, ], o vérifie T xy) et la foctio T x est doc -lipschitziee sur [, ]. Au surplus, la foctio T x est croissate sur [, ] avec T x ) = et T x ) = x/2. O e déduit T x [, ]) [, ]. Par ue récurrece immédiate, o vérifie N, x [, ], h x) [, ] Pour et x [, ], o a par lipschitziaité x ) x ) h + x) h x) h h 2 2 E répétat cette majoratio h + x) h x) x ) x ) x h 2 h = 2 2 + 2 + La série télescopique h + x) h x) coverge doc absolumet et la suite h x)) est doc covergete. La suite de foctios h ) coverge doc simplemet vers ue foctio h. Au surplus hx) h x) = k= + h k+ x) h k x) k= 2 k+ = 2 + La covergece de la suite h ) est doc uiforme sur [, ]. d) La foctio h est limite uiforme d ue suite de foctios cotiues, elle est doc cotiue sur [, ]. E passat à la limite la relatio o obtiet l idetité x [, ], h + x) = h x 2 ) x x ) 2 2 h 2 x ) x [, ], hx) = h x x ) 2 2 2 h 2 Puisque h ) = pour tout N, o a h) = et la foctio h est pas ulle. O peut alors défiir la foctio f : x xhx) qui est cotiue, o costate et vérifie x ) x ) 2 x [, ], fx) = 2f 2f 2 2 e) O peut esuite défiir ue solutio sur [, 2] e posat x ) x ) 2 x ], 2], fx) = 2f 2f 2 2 Cette solutio est bie cotiue e car lim fx) = 2f x + 2 ) 2f De même, o prologe la solutio sur [, 4], [, 8], etc. ) 2 = f) 2 Exercice 25 : [éocé] a) Les propriétés Nf + g) Nf) + Ng) et Nλf) = λ Nf) sot faciles. Si Nf) = alors la résolutio de l équatio différetielle f + 3f = avec la coditio iitiale f) = doe f =. Aisi l applicatio N est bie ue orme sur E. O remarque x fx) = e 3x ft)e 3t ) x dt = e 3x 3ft) + f t))e 3t dt Par suite fx) e 3 Nf) pour tout x [, ] et doc N f) αnf) avec α = e 3. b) Pour f x) = x, N f) = et Nf) = N x 3x + x ) = + 3 +. Les ormes N et N e sot pas équivaletes. Exercice 26 : [éocé] a) L applicatio N : E R + est bie défiie et o vérifie aisémet Nλf) = λ Nf) et Nf + g) Nf) + Ng). Supposos maiteat Nf) =, la foctio f est alors solutio de l équatio différetielle y + y = vérifiat les coditios iitiales y) = y ) = ce qui etraîe f =. Fialemet N est ue orme sur E. b) O a évidemmet N ν. Iversemet, soit f E et g = f + f. La foctio f est solutio de l équatio différetielle y + y = g vérifiat les coditios iitiales y) = y ) =. Après résolutio via la méthode de variatio des costates, o obtiet fx) = x six t)gt) dt Diffusio autorisée à titre etièremet gratuit uiquemet - dd

[http://mp.cpgedupuydelome.fr] édité le 6 octobre 25 Correctios 25 O e déduit fx) x g π g et doc f πnf). De plus f f + f + f doc νf) π + )Nf). Exercice 27 : [éocé] a) Posos ϕf, g) = f)g) + f t)g t)dt. ϕ est ue forme biliéaire symétrique, ϕf, f) et si ϕf, f) = alors f) = et pour tout t [, ], f t) = doc f =. ϕ est doc u produit scalaire et N apparaît comme état la orme associée. b) Pour tout x [, ], fx) f) + x f t)dt 2Nf), doc f 2Nf).Pour fx) = sixπ), f = et Nf) = π/ 2 +. Les deux ormes e sot doc pas équivaletes. Exercice 28 : [éocé] a) N a, ) et N a, ) doivet exister et être strictemet positifs. Cela fourit les coditios écessaires 2a + 2 > et 2 2a > d où a ], [. Motros que cette coditio est suffisate. Supposos a ], [ et cosidéros ϕ : R 2 R 2 R défiie par ϕ x, y), x, y )) = xx + yy + axy + ayx. L applicatio ϕ est ue forme biliéaire symétrique sur R 2 et pour x, y), ), ϕ x, y), x, y)) a ) x 2 + y 2 ) > e vertu de 2axy a x 2 + y 2). Aisi ϕ est u produit scalaire sur R 2 et N a est la orme euclidiee associée. b) Le cas a = b est immédiat. Quitte à échager, o peut désormais supposer a < b. Par homogééité, o peut limiter l étude de Nax,y) N b x,y) avec t ] π/2, π/2]. Posos O a ft) = ) 2 Na cos t, si t) + a si 2t = N b cos t, si t) + b si 2t f a b) cos2t) t) = 2 + b si 2t) 2 au couple x, y) = cos t, si t) Les variatios de f sot faciles et les extremums de ft) sot e t = π/4 et t = π/4. Ils valet a +a b et +b. O e déduit N a x, y) + a if x,y) N b x, y) = + b et N a x, y) a sup x,y) N b x, y) = b das le cas a < b). Exercice 29 : [éocé] Si x, y alors fy) fx) = y x. Si x et y > alors fy) fx) = y y x = y y y + y x Si x, y > alors fy) fx) = y y x x = y x y + x y + y x 2 y x y x Au fial f est 2-lipschitziee. Supposos maiteat que la orme. soit hilbertiee. Si x, y alors fy) fx) = y x Si x et y > alors ) fy) fx) 2 y x 2 = y 2 2 y x y) y Or x y) x y y doc fy) fx) 2 y x 2 y 2 + 2 y ) = y ) 2 Si x, y > alors fy) fx) 2 y x 2 = 2 y 2 x 2 2 Or x y) x y doc y x x y + 2 y y x y x y) x y fy) fx) 2 y x 2 = 2 y 2 x 2 + 2 x y ) = x y ) 2 Au fial f est -lipschitziee. Exercice 3 : [éocé] A est fermé car si u p = u p ) est ue suite d élémets de A covergeat vers ue suite u = u ) pour la orme. alors pour tout N et tout p N, u p u p + qui doe à la limite u u + et doc u A. Diffusio autorisée à titre etièremet gratuit uiquemet - dd

[http://mp.cpgedupuydelome.fr] édité le 6 octobre 25 Correctios 26 B est fermé car si u p = u p ) est ue suite d élémets de B covergeat vers ue suite u = u ) pour la orme. alors pour tout ε > il existe p N tel que u u p ε/2 et puisque u p, il existe N N tel que et doc N, u p ε/2 u u u p + u p ε Aisi u et doc u B. C est fermé. E effet si u p = u p ) est ue suite d élémets de C covergeat vers ue suite u = u ) pour la orme. alors e otat l p la limite de u p, la suite l p ) est ue suite de Cauchy puisque l p l q u p u q. Posos l la limite de la suite l p ) et cosidéros v p = u p l p. v p B et v p u l doc u l B et u C. D est fermé car si u p = u p ) est ue suite d élémets de D covergeat vers ue suite u = u ) pour la orme. alors pour tout ε > il existe p N tel que u u p ε/2 et puisque est valeur d adhérece de u p, il existe ue ifiité de tels que u p ε/2 et doc tels que u u u p + u p ε Aisi est valeur d adhérece de u et doc u D. E est pas fermé. Notos δ p, la suite détermiée par δ p = si p et sio. La suite δ p est périodique et toute combiaiso liéaire de suites δ p l est ecore. Posos alors p u p = 2 k δk k= qui est élémet de E. La suite u p coverge car u p+q u p p+q k=p+ et la limite u de cette suite est pas périodique car u = lim p p + k= 2 k 2 p 2 k = et que u < pour tout puisque pour que u = il faut k pour tout k N. Exercice 3 : [éocé] a) O sait Si A est iversible alors doe ÃA = Aà = det A.I det Ã. det A = det A) det à = det A) L applicatio A det à état cotiue et coïcidat avec l applicatio elle aussi cotiue A det A) sur GL K) qui est dese das M K), o peut assurer que det à = det A) pour tout A M K). b) Si A est iversible alors à aussi doc rga) = rgã) = Si rga) 2 alors A e possède pas de détermiat extrait o ul d ordre et doc à =. Aisi rga) 2 rgã) = Si rga) = alors dim ker A = or Aà = det A.I = doe Imà ker A et doc rgã). Or puisque rga) =, A possède u détermiat extrait d ordre o ul et doc à O. Aisi rga) = rgã) = c) Soit P ue matrice iversible. Pour tout A GL K), et P AP iversible doc Aisi P ÃP )P AP ) = det A.I P ÃP = P AP à = P P AP P Les applicatios A à et A P P AP P sot cotiues et coïcidet sur la partie dese GL K) elles sot doc égales sur M K). Si A et B sot semblables alors il existe P iversible vérifiat P AP = B et par la relatio ci-dessus P ÃP = P AP = B doc à et B sot semblables. d) Si A est iversible alors à = deta)a et à = det Ã)à = deta) 2 A Par coïcidece d applicatios cotiues sur ue partie dese, pour tout A M K), à = deta) 2 A Diffusio autorisée à titre etièremet gratuit uiquemet - dd

[http://mp.cpgedupuydelome.fr] édité le 6 octobre 25 Correctios 27 Exercice 32 : [éocé] Si la forme liéaire est cotiue assurémet so oyau est fermé car image réciproque du fermé {}. Iversemet, supposos que ϕ est ue forme liéaire discotiue. Pour tout k R +, il existe alors x E tel que ϕx) > k x E preat k = N, o défiit aisi ue suite x ) d élémets de E vérifiat pour tout N ϕx ) > x Posos alors y = ϕx ) x O a par costructio ϕy ) = et y / doc y E. Cosidéros efi z = y y O a ϕz ) = et doc z ker ϕ. Or z y avec y / ker ϕ. Aisi ker ϕ est pas fermé car e cotiet pas toutes les limites de ses suites covergetes. Exercice 33 : [éocé] Soit x ) A N covergeat vers x R. Il existe u uique y A tel que x y = dx, A). Or dx, A) = doc x = y A. Aisi A est fermé. Par l absurde supposos que A e soit pas u itervalle. Il existe a < c < b tel que a, b A et c / A. Posos α = sup {x A/x c} et β = if {x A/x c}. O a α, β A, α < c < β et ]α, β[ C R A. Posos alors γ = α+β β α 2. O a dγ, A) = 2 = γ α = γ β ce qui cotredit l hypothèse d uicité. Absurde. Exercice 34 : [éocé] a) Par télescopage ) u k u Id) = u + Id k= doc v u Id) = u + Id ) + ) b) Soit x Imu Id) keru Id). O peut écrire x = ua) a et o a ux) = x. O e déduit v u Id)a) = x Or car O e déduit x =. c) Par la formule du rag v u Id)a) = u + a) a ) + u + a) a u + a) + a 2 a dim Imu Id) + dim keru Id) = dim E et puisque les deux espaces sot e somme directe, ils sot supplémetaires. d) Soit z E. O peut écrire z = x + y avec x Imu Id) et y keru Id). O a alors v z) = v x) + y avec, comme das l étude du b), v x). O e déduit v z) y. Aisi la suite de foctios v ) coverge simplemet vers la projectio p sur keru Id) parallèlemet à Imu Id). Puisque pour tout x E, o a v x) + u k x) x = x + k= o obtiet à la limite px) x. O e déduit que la projectio p est cotiue puis que Imu Id) = ker p est ue partie fermée. e) Supposos la covergece simple de la suite de foctios v ) et la fermeture de Imu Id). Soit z E. Posos y = D ue part, puisque uv z)) = + o obtiet à la limite lim v z) et x = z y. + k= k= u k+ z) = v z) + u + z) z ) + uy) = y car l applicatio liéaire u est cotiue et u + z) z. O e déduit y keru Id). Diffusio autorisée à titre etièremet gratuit uiquemet - dd