Processus et martingales en temps continu
|
|
|
- Viviane Larocque
- il y a 10 ans
- Total affichages :
Transcription
1 Chapitre 3 Processus et martigales e temps cotiu 1 Quelques rappels sur les martigales e temps discret (voir [4]) O cosidère u espace filtré (Ω, F, (F ) 0, IP). O ote F = 0 F. Défiitio 1.1 Ue suite de variables (M ) 0 est dite adaptée à (F ) 0 si pour tout 0, M est F -mesurable. Ue suite de variables (M ) 0 est ue (F ) 0 -sousmartigale discrète si elle est adaptée et si pour tout 0, M L 1 et M E[M +1 F ]. Ue suite de variables (M ) 0 est ue (F ) 0 -surmartigale discrète si elle est adaptée et si pour tout 0, M L 1 et M E[M +1 F ]. Ue suite de variables (M ) 0 est ue (F ) 0 -martigale discrète si elle est adaptée et si pour tout 0, M L 1 et M = E[M +1 F ]. Exemple 1.2 Soit Z L 1, alors M = E[Z F ] est ue (F ) 0 -martigale. Propositio 1.3 Iégalité de Jese coditioelle Soit M L 1 (F), G ue sous-tribu de F et ϕ ue foctio covexe telle que ϕ(m) L 1 (F), alors ϕ (E[M G]) E [ϕ(m) G]. Coséquece 1.4 Si (M ) 0 est ue (F ) 0 -sousmartigale, alors (M + ) 0 est ue (F ) 0 - sousmartigale. Rappel : x + = x 0. Propositio 1.5 Si (M ) 0 est ue (F ) 0 -martigale et ϕ ue foctio covexe, telle que 0, ϕ(m ) L 1. Alors (ϕ(m )) 0 est ue (F ) 0 -sousmartigale. 27
2 Martigales et temps d arrêt Défiitio 1.6 Ue v.a. T à valeurs das [0, + ] est u (F ) 0 -temps d arrêt si 0 {T = } F. O défiit la tribu F T la tribu des évéemets atérieurs à T F T = {Λ F : Λ {T = } F 0}. Propositio Soit (M ) 0 ue (F ) 0 -martigale (sur ou sous) et T u (F ) 0 - temps d arrêt. Alors (M T ) 0 ue (F ) 0 -martigale (sur ou sous), où M T = M T. 2. Si Y L 1, alors E[Y F T ] = IN E[Y F ]I T =. Preuve. 1. M T = M I T + M T I T < est bie F -mesurable et das L 1 et E[M+1 F T ] = E[M +1 F ]I T +1 + M T I T <+1 = M T 2. Soit Z L (F T ), alors ZI T = est ue v.a. F -mesurable et E[Y Z] = E[Y ZI T = ] = E Z I T = E[Y F ]. IN IN Théorème 1.8 Théorème d arrêt Soit (M ) 0 est ue (F ) 0 -martigale (sur ou sous). Soit T et S deux (F ) 0 -temps d arrêt avec S T et T boré. Alors E[M T F S ] = M S (resp. et ). Preuve. Supposos que S T. Si S = p est détermiiste. Supposos T boré par K. (M T ) 0 est ue martigale, doc pour p E[M T F p ] = M T p = M p. Pour K, o a M T = M T et doc E[M T F p ] = M p. Si S est aléatoire, E[M T F S ] = E[M T F ]I S= = M I S= = M S. 1.2 Iégalités importates Propositio 1.9 Lemme Maximal Soit C > 0. Si (M ) 0 est ue sousmartigale, alors P (sup Si (M ) 0 est ue martigale, alors P (sup Si (M ) 0 est ue surmartigale positive, alors M C) 1 C sup E[M + ]. M C) 1 C sup E[ M ]. P (sup M C) 1 C E[M 0].
3 Le mouvemet Browie e tat que processus de Markov 29 Preuve. 1. O cosidère le temps d arrêt T = if{ 0 : M C}. O pose τ = T, d où CI {T } M τ + car C > 0. O utilise alors le théorème d arrêt (pour la sous-martigale (M + ) avec S = τ et T = ), C IP(T ) E[M τ + ] E[M + ]. et o fait +. Comme IP(T < ) = P (sup M C), o a le résultat. 2. M et M sot des sousmartigales. 3. De même o a CI {T } M τ et par le théorème d arrêt E[M τ ] E[M 0 ]. Propositio 1.10 Iégalité du ombre de motées 1. Soit (M ) 0 est ue surmartigale et m M a,b () le ombre de motées de a à b effectuées par M avat l istat. Alors E[m M a,b()] 1 b a E[(M a) ]. 2. Soit (M ) 0 est ue sousmartigale et m M a,b () le ombre de descetes de b à a effectuées par M avat l istat. Alors E[m M a,b()] 1 b a E[(M b) + ]. Preuve. O remarque que 2. implique 1. car M est ue sousmartigale et m M a,b () = m M b, a (). Prouvos 2. O décrit les périodes de descete avec la suite croissate de temps d arrêt suivats : T 0 = 0, T 1 = if{ 0 : M > b}, T 2 = if{ T 1 : M < a},..., T 2p 1 = if{ T 2p 2 : M > b}, T 2p = if{ T 2p 1 : M < a},... Pour tout p, M T2p 1 b est ue sousmartigale, positive sur {T 2p 1 }. O a doc Par coséquet, 0 E[(M T2p 1 b)i T2p 1 ] E[(M T2p b)i T2p 1 ] (Théorème d arrêt) E[(M T2p b)i T2p ] + E[(M b)i T2p 1 <T 2p ] (a b) IP(T 2p ) + E[(M b) + I T2p 1 <T 2p ] (b a) p IP(m M a,b () p) p E[(M b) + I T2p 1 <T 2p ] c est à dire (b a)e[m M a,b ()] E[(M b) + ]. Propositio 1.11 Iégalité de Doob Soit (M ) 0 est ue martigale (ou sousmartigale positive), p, q > 1 tels que 1 = 1 p + 1 q. Alors sup M p q sup M p, N N où. p est la orme L p. Preuve. Il suffit de motrer que si X, Y sot deux v.a. positives telles que C > 0 C IP(Y C) E[XI Y C ] alors p, q > 1 tels que 1 = 1 p + 1 q Y p q X p.
4 30 E effet, car si M martigale alors M est ue sousmartigale positive, il doc suffit d utiliser le résultat avec Y = sup N M et X = M. Si f est ue foctio positive croissate càd telle que f(0) = 0, alors Y E[f(Y )] = E[X 0 1 z df(z)] E preat, f(y) = y p, o obtiet le résultat. 1.3 Théorèmes de covergece Défiitio 1.12 Ue famille de v.a. (X i ) i I est dite uiformémet itégrable (U.I.) si lim sup E[ X i I a + Xi >a] = 0. i I Exemple Si i I, X i X avec X L 1, la famille (X i ) i I est uiformémet itégrable. Par coséquet, ue suite borée est U.I. 2. Si p > 1, sup i I E[ X i p ] <, la famille (X i ) i I est uiformémet itégrable. Preuve. 1. E[ X i I Xi >a] E[XI X>a ] et comme X L 1, o a bie lim a + E[XI X>a] = E[ X i I Xi >a] E[ X i p ] 1/p IP( X i > a) 1/q E[ X i p ]/a p/q. Théorème 1.14 Soit (X ) 0 ue suite de v.a. et X L 1. X L 1 X ssi X proba X et (X ) 0 U.I. Covergece p.s. Théorème 1.15 Soit (M ) 0 ue sous-martigale à valeurs das IR telle que sup E[M + ] <, alors il existe M L 1 telle que M + M ps. Preuve. Le ombre de descetes vérifie E[m M a,b (IN)] <, doc mm a,b (IN) < p.s. Soit N l esemble de mesure sur lequel m M a,b ( ) = pour tout a, b Q. Soit ω / N. Si M t(ω) e coverge pas, alors il existe a, b Q : lim if M t (ω) < a < b < lim sup M t (ω). Cotradictio, doc la martigale coverge p.s.. Notos M sa limite. Par ailleurs, comme M = 2M + M et E[M 0 ] E[M ], o a E[ M ] 2E[M + ] E[M 0 ] Doc sup E[ M ] <. D après le lemme de Fatou, E[ M ] lim if E[ M ] sup E[ M ] <. Doc M L 1.
5 Le mouvemet Browie e tat que processus de Markov 31 Covergece e moyee Théorème 1.16 Soit (M ) 0 ue martigale. Il y a équivalece etre les propriétés suivates : 1. Z L 1 tel que IN M = E[Z F ], 2. (M ) 0 est U.I., 3. (M ) 0 coverge das L 1. O a alors Z = M, la martigale est dite fermée, i.e. (M ) est ue martigale. IN Preuve. 1 2 : Par Jese E[ M I M >a] E[ Z I M >a]. Comme Z L 1, la suite ( Z I M >a) est U.I. (Voir l exemple ), doc (M ) 0 est U.I. 2 3 : D après le théorème précédet, o a M coverge p.s. vers M, doc coverge das L 1 car U.I. 3 1 : O a M = E[M +p F ] pour tout p 0. Comme l espérace coditioelle est cotiue sur L 1, e faisat tedre p +, d où le résultat. Corollaire 1.17 Soit (M ) ue sous-martigale idexée par IN ou Z, i.e. F F +1 et M = E[M +1 F ] pour 0. Alors M coverge quad p.s. et das L 1. Par coséquet, (M ) sous martigale. IN Preuve. E effet, pour tout 0, E[X + ] E[X 0 + ] <. Il y a doc covergece p.s. Par ailleurs, M E[M 0 F ] pour tout 0. La sous-martigale est doc U.I. Propositio 1.18 Soit (M ) 0 ue surmartigale positive, alors (M ) 0 coverge p.s. et das L 1 vers M et (M ) est ue surmartigale. IN 2 Processus e temps cotiu Soit (Ω, F, (F t ) t 0, IP) u espace probabilisé filtré. Défiitio 2.1 Soit X = (X t, t 0) u processus défii sur (Ω, F, (F t ) t 0, IP). Le processus X est dit mesurable si l applicatio X : [0, [ Ω (E, E) (t, ω) X t (ω) est mesurable par rapport à B([0, [) F. Le processus X est dit adapté si t 0 X t est F t -mesurable. Le processus X est dit progressivemet mesurable (ou progressif) si t 0 l applicatio X : [0, t] Ω E est mesurable par rapport à la tribu B([0, t]) F t. (s, ω) X s (ω) Défiitio 2.2 Soit X = (X t, t 0) u processus. La filtratio aturelle de X est défiie par Ft X = σ(x s, 0 s t). Remarque Si (F X t ) t 0 est la filtratio aturelle de X alors X est adapté à (F X t ) t U processus progressif est adapté (la réciproque est fausse).
6 32 3. U processus mesurable et adapté admet ue versio progressivemet mesurable (Théorème de Chug et Doob (1965), voir [4]). Exemple Cosidéros ue suite de temps 0 < t 1 <... < t, et h 1,..., h des v.a. telles que i h i est F ti -mesurable. O pose t 0 = 0 et t +1 = +. Les processus suivats X = h i I [ti,t i+1[ et Y = h 0 I {0} + h i I ]ti,t i+1] sot progressivemet mesurables. i=0 2. Si la filtratio est complète, u processus X adapté dot les trajectoires sot cotiues à gauche (càg) est progessivemet mesurable. Preuve. 1. Regardoc le premier processus, l étude du secod est similaire. Soit B E, où E tribu sur E, o a {(s, ω) [0, t] Ω : X t (ω) B} = Doc X est progressivemet mesurable. i=0 [t i, t i+1 [ [0, t] {ω Ω : h i (ω) B} i=0 B([0, t]) F t. 2. O approche le processus X par Xt = X k2 sur t [k2, (k+1)2 [, k {0,..., 2 1}. Le processus X est progressivemet mesurable et comme X est càg, t 0, p.s. Xt X t. Doc X est progressif. + Propositio 2.5 Soit X u processus adapté et cotiu à droite (càd) alors X est progressif. Preuve. O défiit Xt = X (k+1)2 sur t [k2, (k+1)2 [. Le processus X est (F t+2 ) t 0 - progressif et comme X est càd t 0, p.s. Xt X t. + O fixe t 0 et o défiit maiteat X s = Xs I s<t 2 + X t I s=t. Ce processus est mesurable par rapport à B([0, t]) F t. Par ailleurs, quad +, Xs X s pour s t. Doc la restrictio de X à [0, t] est mesurable par rapport à B([0, t]) F t, i.e. X est progressif. Propositio 2.6 Soit X u processus progressif et T u (F t ) t 0 -temps d arrêt. Alors X T I {T < } est F T -mesurable. Preuve. Supposos T fii. O fixe t 0, X [0,t] est B([0, t]) F t -mesurable et T I {T t} est F t -mesurable. Par compositio, X T I {T t} est F t -mesurable. Doc X T est F T -mesurable. Propriété 2.7 Les lois fiis dimesioelles caractériset la loi d u processus. 3 Martigales e temps cotiu Soit (Ω, F, (F t ) t 0, IP) u espace probabilisé filtré. 3.1 Défiitio et exemples Défiitio 3.1 Soit M u processus adapté avec t 0, M t L 1. O dit que - M est ue (F t ) t 0 -sousmartigale si M t E[X t+s F t ] pour tout t, s 0. - M est ue (F t ) t 0 -surmartigale si M t E[M t+s F t ] pour tout t, s 0. - M est ue (F t ) t 0 -martigale si M t = E[M t+s F t ] pour tout t, s 0.
7 Le mouvemet Browie e tat que processus de Markov 33 Exemple 3.2 Exemple importat de Martigale. Soit Z L 1 ue variable aléatoire. Alors M = (M t, t 0) avec M t = E[Z F t ] est ue martigale. Exemple 3.3 Soir B u mouvemet browie et (F B t ) t 0 sa filtratio aturelle. 1. B est ue (F B t ) t 0 -martigale. 2. (B 2 t t, t 0) est ue (F B t ) t 0 -martigale. 3. (exp(ab t a2 2 t), t 0) est ue (F B t ) t 0 -martigale, pour a IR. Elle est appelée martigale expoetielle associée au Browie. Exemple 3.4 Si X est u processus à accroissemet idépedats avec X t L 1 pour tout t 0 et (F t ) t 0 sa filtratio aturelle. Alors (X t E[X t ], t 0) est ue (Ft X ) t 0 -martigale. Remarque 3.5 Soit M et N deux martigales idépedates telles que t 0 M t, N t L 2. O ote (F t ) t 0 la filtratio aturelle de (M, N). Alors MN = (M t N t, t 0) est ue (F t ) t 0 -martigale. Si o a juste M t et N t idépedates pour tout t 0, le résultat est faux e gééral. Preuve. Par Cauchy-Schwartz, o a bie t 0 M t N t L 1. Soiet t, s 0 et Y F t telle que Y = Y 1 Y 2 avec Y 1 σ(m s, s t) et Y 2 σ(n s, s t). Alors E[M t+s N t+s Y ] = E[M t+s Y 1 ]E[N t+s Y 2 ] par idépedace = E[M t Y 1 ]E[N t Y 2 ] car M etn martigales = E[M t N t Y ] par idépedace. Soit E = {Y L (F t ) : E[M t+s N t+s Y ] = E[M t N t Y ]}. C est u espace vectoriel qui cotiet les costates et stable par covergece mootoe. Les variables de la forme Y 1 Y 2 avec Y 1 σ(m s, s t) et Y 2 σ(n s, s t) egedret L (F t ), d où le résultat. 3.2 Premières propriétés Soit D u esemble déombrable dese de IR +. Par exemple, l esemble des dyadiques D = D avec D = {k2, k IN}. Propositio 3.6 Iégalité Maximale Soit M ue (F t ) t 0 -martigale. Alors pour tout C > 0 P ( sup s [0,t] D Si de plus M a des trajectoires càd, M s C) 1 C sup E[ M s ]. 0 s t P ( sup M s C) 1 s [0,t] C sup E[ M s ]. 0 s t Preuve. O utilise l iégalité Maximale pour des martigales discrètes. O a P ( sup M s C) 1 s [0,t] D C sup s [0,t] D E[ M s ] 1 C sup E[ M s ] 0 s t O obtiet le résultat par covergece mootoe quad +. Par ailleurs, lorsque M est càd sup s [0,t] D M s = sup s [0,t] M s.
8 34 Propositio 3.7 Iégalité de Doob Soit M ue (F t ) t 0 -martigale (ou sousmartigale positive), p, q > 1 tels que 1 = 1 p + 1 q. Alors Si de plus M a des trajectoires càd, sup M s p q sup M s p. s [0,t] D s [0,t] sup M s p q sup M s p. s [0,t] s [0,t] Théorème 3.8 Régularisatio de surmartigales Soit (Ω, F, (F t ) t 0, IP) u espace probabilisé filtré, avec (F t ) t 0 satisfaisat aux coditios habituelles (i.e. complète et cotiue à droite). Soit M ue (F t ) t 0 -surmartigale telle que t E[M t ] soit càd. Alors il existe ue versio M de M telle que i) p.s. t M t est cotiue à droite avec des limites à gauche (càdlàg) ii) M est ue (F t ) t 0 -surmartigale. Remarque Si M est ue martigale alors so espérace est costate, doc cotiue. 2. Si M est ue sousmartigale, alors M est ue surmartigale! Preuve. O cosidère u esemble déombrable dese D de [0, + [. O va motrer le lemme suivat Lemme 3.10 Soit (Ω, F, (F t ) t 0, IP) u espace probabilisé filtré et M ue (F t ) t 0 -surmartigale. Alors avec probabilité 1 o a i) t 0 M t + = s lim M s existe, aisi que M t = lim M s, t,s D s t,s D ii) t 0 M t E[M t + F t ], avec égalité dès que la foctio s E[M s ] est cotiue à droite (ce qui est le cas des martigales car l espérace est costate). E particulier, o a M t + L 1. iii) (M t +, t 0) est ue (F t +) t 0 surmartigale. E effet, pour prouver le théorème à partir du lemme, il suffit juste de défiir M t = lim M s. s t,s D C est bie ue versio de M, car si l espérace est càd, o a M t = E[ M t F t ] et comme la filtratio est càd F t + = F t, Mt est doc F t -mesurable. De plus, M est ue (Ft ) t 0 surmartigale càdlàg. Preuve du Lemme. i) Existece de limites à gauche et à droite D après l iégalité maximale, pour N IN o a sup s [0,N] D M s <. Soiet a, b Q et m M a,b (t) le ombre de motées de M le log de D de a à b avat l istat t. E utilisat le résultat sur les surmartigales à temps discrèt, o obtiet E[m M a,b(t)] 1 b a sup E[ M s a ]. 0 s t E particulier, m M a,b (t) < p.s. E utilisat la même démostratio que celle du Théorème 1.15, o obtiet que p.s. M admet des limites à gauche et à droite e tout t 0 le log de D. ii) Motros que t 0 M t E[M t + F t ]. Soit t 0 fixé et (t ) ue suite décroissate de D qui coverge vers t. O a M t M t + p.s. O ote G p = F t p et N p = M t p pour p 0. Alors N est ue (G p ) p 0 -surmartigale sur IN. Doc elle coverge das L 1 d après le Corollaire Doc M t M t + das L 1, d où X t + L 1 et comme 0 M t E[M t F t ] et par passage à la limite M t E[M t + F t ] p.s. O a égalité si l espérace est cotiue à droite, car alors E[M t ] = lim E[M t ] = lim E[E[M t F t ]] = E[M t +]. + +
9 Le mouvemet Browie e tat que processus de Markov 35 iii) (M t +, t 0) est ue (F t +) t 0 surmartigale. Comme M t est F t -mesurable, M t + est F t +-mesurable. Soit t, s 0, il existe (u ) suite de décroissate de D covergeat vers t + s. Soit 0 < ε < s fixé. Alors E[M (t+s) + F t+ε ] = lim + E[M u F t+ε ] M t+ε O choisir alors (ε ) 0 décroissate vers 0 telle que t+ε D. E utilisat ecore le Corollaire 1.17 à N p = E[M (t+s) + F t+ε p ] pour p 0, o a lim E[M (t+s) + F t+ε ] = E[M (t+s) + F t+ε ] = E[M (t+s) + F t +] p.s. et das L Comme M t+ε M t + p.s., le résultat est prouvé. 3.3 Covergece des martigales cotiues Théorème 3.11 Soit M ue (F t ) t 0 -sous martigale cotiue à droite, avec. sup t 0 E[M + t ] <. Alors M t coverge p.s. quad t +. O ote M sa limite. O a de plus M L 1. Remarque 3.12 E gééral la covergece a pas lieu das L 1. Preuve. Pour tout a < b le ombre de motée de a à b le log des dyadiques est fii p.s. car E[m M a,b(t)] 1 b a sup E[(M s a) ]. O fait tedre t + et doc E[m M a,b ( )] <. La suite de la preuve est la même que das le cas discret. s t Défiitio 3.13 O dit qu u processus X est uiformémet itégrable si lim sup E[ X t I a + Xt >a] = 0. O dit qu ue martigale M est fermée s il existe ue v.a. Z L 1 telle que t 0 t 0 M t = E[Z F t ] p.s.. Théorème 3.14 Soir M ue martigale càd. Il y a équivalece etre les propriétés suivates : 1. M est ue martigale fermée, 2. M est uiformémet itégrable, 3. il existe M L 1 telle que lim t + M t = M p.s. et das L 1. O a alors que p.s. M t = E[M F t ]. Preuve. Même preuve que das le cas discret. 3.4 Théorème d arrêt Théorème 3.15 Soit M ue (F t ) t 0 -martigale (sur ou sous) càd fermée. O ote M sa limite. Soit T u (F t ) t 0 -temps d arrêt. O pose M T = M sur {T = }. Alors E[M F T ] = M T p.s. (resp et ) et le processus arrêté M T = (M T t, t 0) est ecore ue martigale uiformémet itégrable de valeur termiale M T. E particulier, E[M T ] = E[M 0 ] = E[M ].
10 36 Preuve. Évidet. i) T détermiiste. ii) T temps d arrêt simple. O ote t 0, t 1,... les valeurs prises par T. O a M T = M t sur {T = t }. Par ailleurs, M T est F T -mesurable car M est càd, d où progressivemet mesurable. Soit Λ F T. Par Fubii, o a E[M I Λ ] = E[M I Λ I T =t ] = E[M t I Λ I T =t ] = E[M T I Λ ] Doc E[M F T ] = M T. ii) Cas gééral. Il existe ue suite décroissate de t.a. simples T qui coverge p.s. vers T. O a E[M F T ] = M T, d où E[M F T ] = E[M T F T ] (e effet F T F T ). Par ailleurs, M T coverge vers M T, car les trajectoires sot càd. Motros que cette covergece a lieu das L 1. Notos pour p 0 G p = F T p. O a G p G p+1. Notos N p = M T p. Alors N est ue (G p ) p 0 -martigale idexée par IN (car la suite de t.a. est décroissate). Elle coverge doc das L 1 d après le Corollaire Par coséquet, M T coverge vers M T das L 1 et doc E[M F T ] = M T. Remarque 3.16 Sous les hypothèses du théorème, o a E[M T F t ] = M t T. Remarque Le théorème s applique aux (sur ou sous) martigales càd borées. 2. Si T est boré, il suffit de supposer la martigale M càd. (E effet, si T 1, M t = E[M 1 F t ] doc fermée sur l itervalle de temps [0, 1].) Attetio : Le théorème e s applique que lorsque la martigale est fermée ou le temps d arrêt boré. E effet si B est u mouvemet browie (c est bie ue martigale), e posat T a = if{t 0 : B t = a}, o a B Ta = a et E[B 0 ] = 0 a = E[B Ta ] pour a > 0. Corollaire 3.18 Si M est ue (sur ou sous) martigale càd fermée et T, S deux temps d arrêt avec S T, alors M T L 1 et E[M T F S ] = M S (resp et ). Si T et S sot deux t.a. borés il suffit de supposer M martigale càd. 4 Processus de Poisso Le processus de Poisso est utilisé par exemple pour modéliser les files d attete comme les arrivées des appels téléphoiques à u cetral. Défiitio 4.1 soit λ > 0 et (S ) 1 ue suite de v.a. idépedates de loi expoetielle E(λ). O pose T = S S. O défiit alors le processus de comptage N = (N t, t 0) à valeurs das IN { } N t = 1 I {T t}. Ce processus est appelé processus de Poisso d itesité λ. Défiitio 4.2 O défiit (Ft N ) t 0 la filtratio aturelle complétée du processus de Poisso.
11 Le mouvemet Browie e tat que processus de Markov 37 Remarque 4.3 O peut aussi écrire le processus sous la forme N t = sup{ 0 : T t}. Iversemet, o remarque que T est u (F N t ) t 0 -temps d arrêt, T = if{t 0 : N t = }. Si t > s, o a N t N s = 1 I {s<t t}. Théorème 4.4 U processus X à accroisssemets idépedats et statioaires (PAIS) càd vérifie la propriété de Markov forte. Preuve. Voir Chapitre 2, Théorème Défiitio 4.5 équivalete du Processus de Poisso. U processus de Poisso N = (N t, t 0) d itesité λ est u processus de comptage càd tel que i) N(0) = 0 ii) N est u processus à accroisssemets idépedats et statioaires. iii) pour tout t 0, N(t) suit la loi de Poisso P(λt). Preuve. Soit N u processus de Poisso au ses de la Défiitio 4.1. O a bie N(0) = 0. Soiet 0 t 1 < t 2 <... < t, alors N(t + s) N(t) = 1 I {t<t t+s}. Comme {N t = k} = {S S k t < S S k+1 } si k 1,..., k IN, e posat K i = k k i o a alors IP(N t1 = k 1, N t2 N t1 = k 2,..., N t N t 1 = k ) = IP(N t1 = k 1, N t2 = k 2 + k 1,..., N t = K ) = IP(S S K1 t 1 < S S K1+1, S S K2 t 2 < = S S K2+1,..., S S K t < S S K+1)... λ K+1 e P K+1 i=1 s i I {S1+...+S Ki t i<s S Ki +1}ds 1... ds K+1 IR+ i=1 O coclut après quelques calculs horribles...(voir par exemple [2]) Vérifios maiteat que N(t) P(λt). Comme T suit la loi Gamma(, λ), pour 1 IP(N t = ) = IP(T t) IP(T +1 t) t ( ) λ = e λs ( 1)! s 1 λ+1 s ds! 0 λt (λt) = e! Pour = 0, IP(N t = ) = IP(S 1 > t) = e λt. Soit N u processus de Poisso au ses de la Défiitio 4.5. U tel processus vérifie la propriété de Markov forte. Posos T = if{t 0 : N t = }. Pour tout 0, T < p.s. car pour tout t 0 N(t) suit la loi de PoissoP(λt). O défiit S 1 = T 1 et S +1 = T +1 T.
12 38 Motros que S 1 suit la loi expoetielle : IP(S 1 > t + s) = IP(N t+s = 0) = IP(N t = 0, N t+s = 0) = IP(N t = 0) IP(N t+s N t = 0) = IP(N t = 0) IP(N s = 0) IP(S 1 > t + s) = IP(S 1 > t) IP(S 1 > s) cqfd. Comme T est u (Ft N ) t 0 -temps d arrêt, les variables S i = T i T i 1 sot FT N -mesurable, pour i. Motros que S +1 est idépedate de FT N et à même loi que S 1. O remarque que T +1 = if{t T : N t = + 1} Loi = T + if{t 0 : Ñ t = 1} où Ñ est u processus de Poisso idépedat de FT N, N état u PAIS. Par coséquet IP(S +1 > t FT N ) = IP(T +1 T > t FT N ) = IP(S 1 > t) Coséquece 4.6 Soit N u processus de Poisso. N est u PAIS càd qui vérifie la propriété de Markov forte : Soit T u (Ft N ) t 0 -temps d arrêt fii p.s.. O ote N le processus défiit pour s 0 par N s = N T +s N T. Alors le processus N est idépedat de FT N et a même loi que N. Théorème 4.7 soit N u processus de Poisso d itesité λ. Alors les processus suivats sot des martigales : i) Ñ = (N t λt, t 0), ii) ((N t λt) 2 λt, t 0). Ñ est appelé processus de Poisso compesé. Preuve. O utilise le fait que N u est PAIS (voir les exemples de martigale liés au Browie). Remarque 4.8 O peut voir le processus de Poisso comme ue mesure aléatoire sur (IR, B(IR)) : la mesure de l itervalle [s, t] est N(]s, t]) = N t N s. Remarque 4.9 Le mouvemet browie et le processus de Poisso fot partie d ue classe plus grade de processus : les processus de Lévy (processus càd à accroissemets idépedats et statioaires).
13 Bibliographie [1] Jea-Fraçois Le Gall. Itroductio au mouvemet browie. Gazette des Mathématicies, 40, [2] Domiique Foata et Aimé Fuchs. Processus stochastiques. Duod, [3] Daiel Revuz et Marc Yor. Cotiuous martigales ad browia motio. Spriger, [4] Claude Dellacherie et Paul-Adré Meyer. Probabilités et potetiels. Herma, [5] Ioais Karatzas et Steve E. Shreve. Spriger, [6] Hui-Hsiug Kuo. Itroductio to stochastic itegratio. Spriger, [7] Edward Nelso. Dyamical theories of Browia motio. http :// / elso/books/bmotio.pdf. [8] Philip Protter. Stochastic itegratio ad differetial equatios. Spriger,
14 40
Chapitre 3 : Fonctions d une variable réelle (1)
Uiversités Paris 6 et Paris 7 M1 MEEF Aalyse (UE 3) 2013-2014 Chapitre 3 : Foctios d ue variable réelle (1) 1 Lagage topologique das R Défiitio 1 Soit a u poit de R. U esemble V R est u voisiage de a s
1 Mesure et intégrale
1 Mesure et itégrale 1.1 Tribu boréliee et foctios mesurables Soit =[a, b] u itervalle (le cas où b = ou a = est pas exclu) et F ue famille de sous-esembles de. OditqueF est ue tribu sur si les coditios
Etude de la fonction ζ de Riemann
Etude de la foctio ζ de Riema ) Défiitio Pour x réel doé, la série de terme gééral,, coverge si et seulemet si x >. x La foctio zeta de Riema est la foctio défiie sur ], [ par : ( x > ), = x. Remarque.
Limites des Suites numériques
Chapitre 2 Limites des Suites umériques Termiale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Limite fiie ou ifiie d ue suite. Limites et comparaiso. Opératios sur les ites. Comportemet
. (b) Si (u n ) est une suite géométrique de raison q, q 1, on obtient : N N, S N = 1 qn+1. n+1 1 S N = 1 1
Premières propriétés des ombres réels 2 Suites umériques 3 Suites mootoes : à faire 4 Séries umériques 4. Notio de série. Défiitio 4.. Soit (u ) ue suite de ombres réels ou complexes. Pour N N, o ote S
Intégration et probabilités ENS Paris, 2012-2013. TD (20)13 Lois des grands nombres, théorème central limite. Corrigé :
Itégratio et probabilités EN Paris, 202-203 TD 203 Lois des grads ombres, théorème cetral limite. Corrigé Lois des grads ombres Exercice. Calculer e cet leços Détermier les limites suivates : x +... +
* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable
Exo7 Topologie Exercices de Jea-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-fracefr * très facile ** facile *** difficulté moyee **** difficile ***** très difficile I : Icotourable Exercice **
Suites et séries de fonctions
[http://mp.cpgedupuydelome.fr] édité le 3 avril 5 Eocés Suites et séries de foctios Propriétés de la limite d ue suite de foctios Eercice [ 868 ] [correctio] Etablir que la limite simple d ue suite de
[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1. Exercice 6 [ 02475 ] [correction] Si n est un entier 2, le rationnel H n =
[http://mp.cpgedupuydelome.fr] édité le 1 juillet 14 Eocés 1 Nombres réels Ratioels et irratioels Exercice 1 [ 9 ] [correctio] Motrer que la somme d u ombre ratioel et d u ombre irratioel est u ombre irratioel.
Séries réelles ou complexes
6 Séries réelles ou complexes Comme pour le chapitre 3, les suites cosidérées sot a priori complexes et les résultats classiques sur les foctios cotiues ou dérivables d ue variable réelle sot supposés
CHAPITRE 2 SÉRIES ENTIÈRES
CHAPITRE 2 SÉRIES ENTIÈRES 2. Séries etières Défiitio 2.. O appelle série etière toute série de foctios ( ) f dot le terme gééral est de la forme f ()=a, où (a ) désige ue suite réelle ou complee et R.
x +1 + ln. Donner la valeur exacte affichée par cet algorithme lorsque l utilisateur entre la valeur n =3.
EXERCICE 3 (6 poits ) (Commu à tous les cadidats) Il est possible de traiter la partie C sas avoir traité la partie B Partie A O désige par f la foctio défiie sur l itervalle [, + [ par Détermier la limite
Comportement d'une suite
Comportemet d'ue suite I) Approche de "ses de variatio et de ite d'ue suite" : 7 Soit la suite ( ) telle que = 5 ( + ) 2 Représetos graphiquemet la suite das u pla mui d' u repère. Il suffit de placer
STATISTIQUE : TESTS D HYPOTHESES
STATISTIQUE : TESTS D HYPOTHESES Préparatio à l Agrégatio Bordeaux Aée 203-204 Jea-Jacques Ruch Table des Matières Chapitre I. Gééralités sur les tests 5. Itroductio 5 2. Pricipe des tests 6 2.a. Méthodologie
Exercice I ( non spé ) 1/ u 1 = 3 4. 2 3 u 2 4 + 3 9. 19 4 2/ Soit P la propriété : u n + 4. > 0 pour n 1. P est vraie au rang 1 car u 1
Bac blac TS Correctio Exercice I ( Spé ) / émotros par récurrece que 5x y = pour tout etier aturel 5x y = 5 8 = La propriété est doc vraie au rag = Supposos que la propriété est vraie jusqu au rag, o a
* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable
Eo7 Séries etières Eercices de Jea-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-fracefr * très facile ** facile *** difficulté moyee **** difficile ***** très difficile I : Icotourable Eercice
14 Chapitre 14. Théorème du point fixe
Chapitre 14 Chapitre 14. Théorème du poit fixe Si l o examie de plus près les méthodes de Lagrage et de Newto, étudiées au chapitre précédet, elles revieet das leur pricipe à remplacer la résolutio de
Introduction : Mesures et espaces de probabilités
Itroductio : Mesures et espaces de probabilités Référeces : Poly cédric Berardi et Jea Michel Morel. J.-F. Le Gall, Itégratio, Probabilités et Processus Aléatoire J.-Y. Ouvrard, Probabilités 2, maîtrise-agrégatio,
Les Nombres Parfaits.
Les Nombres Parfaits. Agathe CAGE, Matthieu CABAUSSEL, David LABROUSSE (2 de Lycée MONTAIGNE BORDEAUX) et Alexadre DEVERT, Pierre Damie DESSARPS (TS Lycée SUD MEDOC LETAILLAN MEDOC) La première partie
Séquence 5. La fonction logarithme népérien. Sommaire
Séquece 5 La foctio logarithme épérie Objectifs de la séquece Itroduire ue ouvelle foctio : la foctio logarithme épérie. Coaître les propriétés de cette foctio : sa dérivée, ses variatios, sa courbe, sa
4 Approximation des fonctions
4 Approximatio des foctios Ue foctio f arbitraire défiie sur u itervalle I et à valeur das IR peut être représetée par so graphe, ou de maière équivalete par la doée de l esemble de ses valeurs f(t) pour
Convergences 2/2 - le théorème du point fixe - Page 1 sur 9
Au sommaire : Suites extraites Le théorème de Bolzao-Weierstrass La preuve du théorème de Bolzao-Weierstrass3 Foctio K-cotractate4 Le théorème du poit fixe5 La preuve du théorème du poit fixe6 Utilisatios
PROMENADE ALÉATOIRE : Chaînes de Markov et martingales
PROMENADE ALÉATOIRE : Chaîes de Markov et martigales Thierry Bodieau École Polytechique Paris Départemet de Mathématiques Appliquées [email protected] Novembre 2013 2 Table des matières
Processus géométrique généralisé et applications en fiabilité
Processus géométrique gééralisé et applicatios e fiabilité Lauret Bordes 1 & Sophie Mercier 2 1,2 Uiversité de Pau et des Pays de l Adour Laboratoire de Mathématiques et de leurs Applicatios - Pau UMR
Chaînes de Markov. Arthur Charpentier
Chaîes de Markov Arthur Charpetier École Natioale de la Statistique et d Aalyse de l Iformatio - otes de cours à usage exclusif des étudiats de l ENSAI - - e pas diffuser, e pas citer - Quelques motivatios.
FEUILLE D EXERCICES 17 - PROBABILITÉS SUR UN UNIVERS FINI
FEUILLE D EXERCICES 7 - PROBABILITÉS SUR UN UNIVERS FINI Exercice - Lacer de dés O lace deux dés à 6 faces équilibrés. Calculer la probabilité d obteir : u double ; ue somme des deux dés égale à 8 ; ue
STATISTIQUE AVANCÉE : MÉTHODES
STATISTIQUE AVANCÉE : MÉTHODES NON-PAAMÉTIQUES Ecole Cetrale de Paris Arak S. DALALYAN Table des matières 1 Itroductio 5 2 Modèle de desité 7 2.1 Estimatio par istogrammes............................
Exo7. Déterminants. = 4(b + c)(c + a)(a + b). c + a c + b 2c Correction. b + a 2b b + c. Exercice 2 ** X a b c a X c b b c X a c b a X
Exo7 Détermiats Exercices de Jea-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-fracefr * très facile ** facile *** difficulté moyee **** difficile ***** très difficile I : Icotourable T : pour
20. Algorithmique & Mathématiques
L'éditeur L'éditeur permet à l'utilisateur de saisir les liges de codes d'u programme ou de défiir des foctios. Remarque : O peut saisir directemet des istructios das la cosole Scilab, mais il est plus
Dénombrement. Introduction. 1 Cardinaux d'ensembles nis. ECE3 Lycée Carnot. 12 novembre 2010. 1.1 Quelques dénitions
Déombremet ECE3 Lycée Carot 12 ovembre 2010 Itroductio La combiatoire, sciece du déombremet, sert comme so om l'idique à compter. Il e s'agit bie etedu pas de reveir au stade du CP et d'appredre à compter
Deuxième partie : LES CONTRATS D ASSURANCE VIE CLASSIQUES
DEUXIEME PARTIE Deuième partie : LES CONTRATS D ASSURANCE VIE CLASSIQUES Chapitre. L assurace de capital différé Chapitre 2. Les opératios de retes Chapitre 3. Les assuraces décès Chapitre 4. Les assuraces
Cours de Statistiques inférentielles
Licece 2-S4 SI-MASS Aée 2015 Cours de Statistiques iféretielles Pierre DUSART 2 Chapitre 1 Lois statistiques 1.1 Itroductio Nous allos voir que si ue variable aléatoire suit ue certaie loi, alors ses réalisatios
Des résultats d irrationalité pour deux fonctions particulières
Collect. Math. 5, 00, 0 c 00 Uiversitat de Barceloa Des résultats d irratioalité pour deux foctios particulières Richard Choulet 7, Rue du 4 Août, 40 Aveay, Frace E-mail: [email protected] Received
Cours 5 : ESTIMATION PONCTUELLE
Cours 5 : ESTIMATION PONCTUELLE A- Gééralités B- Précisio d u estimateur C- Exhaustivité D- iformatio E-estimateur sas biais de variace miimale, estimateur efficace F- Quelques méthode s d estimatio A-
Exercices de mathématiques
MP MP* Thierry DugarDi Marc rezzouk Exercices de mathématiques Cetrale-Supélec, Mies-Pots, École Polytechique et ENS Coceptio et créatio de couverture : Atelier 3+ Duod, 205 5 rue Laromiguière, 75005 Paris
Groupe orthogonal d'un espace vectoriel euclidien de dimension 2, de dimension 3
1 Groupe orthogoal d'u espace vectoriel euclidie de dimesio, de dimesio Voir le chapitre 19 pour l'étude des espaces euclidies et des isométries. État doé u espace euclidie E de dimesio 1, o rappelle que
Statistique descriptive bidimensionnelle
1 Statistique descriptive bidimesioelle Statistique descriptive bidimesioelle Résumé Liaisos etre variables quatitatives (corrélatio et uages de poits), qualitatives (cotigece, mosaïque) et de types différets
Probabilités et statistique pour le CAPES
Probabilités et statistique pour le CAPES Béatrice de Tilière Frédérique Petit 2 3 jui 205. Uiversité Pierre et Marie Curie 2. Uiversité Pierre et Marie Curie 2 Table des matières Modélisatio de phéomèes
TRANSFERT DE CHARGE DANS UN RÉSEAU DE PROCESSEURS TOTALEMENT CONNECTÉS (*) par Maryse BÉGUIN ( 1 )
RAIRO Operatios Research RAIRO Oper. Res. 34 (2000) 99-129 TRANSFERT DE CHARGE DANS UN RÉSEAU DE PROCESSEURS TOTALEMENT CONNECTÉS (*) par Maryse BÉGUIN ( 1 ) Commuiqué par Berard LEMAIRE Résumé. L étude
II LES PROPRIETES DES ESTIMATEURS MCO 1. Rappel : M1 LA REGRESSION : HYPOTHESES ET TESTS Avril 2009
M LA REGRESSION : HYPOTHESES ET TESTS Avril 009 I LES HYPOTHESES DE LA MCO. Hypothèses sur la variable explicative a. est o stochastique. b. a des valeurs xes das les différets échatillos. c. Quad ted
UV SQ 20. Automne 2006. Responsable d Rémy Garandel ( m.-el. [email protected] ) page 1
UV SQ 0 Probabilités Statistiques UV SQ 0 Autome 006 Resposable d Rémy Garadel ( m.-el. [email protected] ) page SQ-0 Probabilités - Statistiques Bibliographie: Titre Auteur(s) Editios Localisatio Niveau
EXERCICES : DÉNOMBREMENT
Chapitre 7 ECE 1 - Grad Nouméa - 015 EXERCICES : DÉNOMBREMENT LISTES / ARRANGEMENTS Exercice 1 : Le code ativol Pour so vélo, Toto possède u ativol a code. Le code est ue successio de trois chiffres compris
Baccalauréat S Asie 19 juin 2014 Corrigé
Bcclurét S Asie 9 jui 24 Corrigé A. P. M. E. P. Exercice Commu à tous les cdidts 4 poits Questio - c. O peut élimier rpidemet les réposes. et d. cr les vecteurs directeurs des droites proposées e sot ps
Séries numériques. Chap. 02 : cours complet.
Séris méris Cha : cors comlt Séris d réls t d comlxs Défiitio : séri d réls o d comlxs Défiitio : séri corgt o dirgt Rmar : iflc ds rmirs trms d séri sr la corgc Théorèm : coditio écssair d corgc Théorèm
Dénombrement. Chapitre 1. 1.1 Enoncés des exercices
Chapitre 1 Déombremet 1.1 Eocés des exercices Exercice 1 L acie système d immatriculatio fraçais était le suivat : chaque plaque avait 4 chiffres, suivis de 2 lettres, puis des 2 uméros du départemet.
Université Pierre et Marie Curie. Biostatistique PACES - UE4 2013-2014
Uiversité Pierre et Marie Curie Biostatistique PACES - UE4 2013-2014 Resposables : F. Carrat et A. Mallet Auteurs : F. Carrat, A. Mallet, V. Morice Mise à jour : 21 octobre 2013 Relecture : V. Morice,
Statistique Numérique et Analyse des Données
Statistique Numérique et Aalyse des Doées Arak DALALYAN Septembre 2011 Table des matières 1 Élémets de statistique descriptive 9 1.1 Répartitio d ue série umérique uidimesioelle.............. 9 1.2 Statistiques
RESOLUTION DES FLOW SHOP STOCHASTIQUES PAR LES ORDRES STOCHASTIQUES. DERBALA Ali *)
RESOLUTION DES FLOW SHOP STOCHASTIQUES PAR LES ORDRES STOCHASTIQUES. DERBALA Ali *) *) Uiversité de Blida Faculté des scieces Départemet de Mathématiques. BP 270, Route de Soumaa. Blida, Algérie. Tel &
Chapitre 3 : Transistor bipolaire à jonction
Chapitre 3 : Trasistor bipolaire à joctio ELEN075 : Electroique Aalogique ELEN075 : Electroique Aalogique / Trasistor bipolaire U aperçu du chapitre 1. Itroductio 2. Trasistor p e mode actif ormal 3. Courats
Contribution à la théorie des entiers friables
UFR STMIA École Doctorale IAE + M Uiversité Heri Poicaré - Nacy I DFD Mathématiques THÈSE présetée pour l obtetio du titre de Docteur de l Uiversité Heri Poicaré, Nacy-I e Mathématiques par Bruo MARTIN
LES ÉCLIPSES. Éclipser signifie «cacher». Vus depuis la Terre, deux corps célestes peuvent être éclipsés : la Lune et le Soleil.
Qu appelle-t-o éclipse? Éclipser sigifie «cacher». Vus depuis la Terre, deu corps célestes peuvet être éclipsés : la Lue et le Soleil. LES ÉCLIPSES Pour qu il ait éclipse, les cetres de la Terre, de la
16.1 Convergence simple et convergence uniforme. une suite de fonctions de I dans R ou C.
16 Suites de foctios Suf précisio cotrire, I est u itervlle réel o réduit à u poit et les foctios cosidérées sot défiies sur I à vleurs réelles ou complexes. 16.1 Covergece simple et covergece uiforme
MESURE DE L'INFORMATION
MESURE DE L'INFORMATION Marc URO TABLE DES MATIÈRES INTRODUCTION... 3 INCERTITUDE D'UN ÉVÉNEMENT (OU SELF-INFORMATION)... 7 INFORMATION MUTUELLE DE DEUX ÉVÉNEMENTS... 9 ENTROPIE D'UNE VARIABLE ALÉATOIRE
capital en fin d'année 1 C 0 + T C 0 = C 0 (1 + T) = C 0 r en posant r = 1 + T 2 C 0 r + C 0 r T = C 0 r (1 + T) = C 0 r 2 3 C 0 r 3...
Applicatios des maths Algèbre fiacière 1. Itérêts composés O place u capital C 0 à u taux auel T a pedat aées. Quelle est la valeur fiale C de ce capital? aée capital e fi d'aée 1 C 0 + T C 0 = C 0 (1
DETERMINANTS. a b et a'
2003 - Gérard Lavau - http://perso.waadoo.fr/lavau/idex.htm Vous avez toute liberté pour télécharger, imprimer, photocopier ce cours et le diffuser gratuitemet. Toute diffusio à titre oéreux ou utilisatio
Chap. 6 : Les principaux crédits de trésorerie et leur comptabilisation
1 / 9 Chap. 6 : Les pricipaux crédits de trésorerie et leur comptabilisatio Le cycle d exploitatio des etreprises (achats stockage productio stockage vetes) peut etraîer des décalages de trésorerie plus
3. Conditionnement P (B)
Conditionnement 16 3. Conditionnement Dans cette section, nous allons rappeler un certain nombre de définitions et de propriétés liées au problème du conditionnement, c est à dire à la prise en compte
Chap. 6 : Les principaux crédits de trésorerie et leur comptabilisation
Chap. 6 : Les pricipaux crédits de trésorerie et leur comptabilisatio Les etreprises ot souvet besoi de moyes de fiacemet à court terme : elles ot alors recours aux crédits bacaires (découverts bacaires
Principes et Méthodes Statistiques
Esimag - 2ème aée 0 1 2 3 4 5 6 7 0 5 10 15 x y Pricipes et Méthodes Statistiques Notes de cours Olivier Gaudoi 2 Table des matières 1 Itroductio 7 1.1 Défiitio et domaies d applicatio de la statistique............
55 - EXEMPLES D UTILISATION DU TABLEUR.
55 - EXEMPLES D UTILISATION DU TABLEUR. CHANTAL MENINI 1. U pla possible Les exemples qui vot suivre sot des pistes possibles et e aucu cas ue présetatio exhaustive. De même je ai pas fait ue étude systématique
SÉRIES STATISTIQUES À DEUX VARIABLES
1 ) POSITION DU PROBLÈME - VOCABULAIRE A ) DÉFINITION SÉRIES STATISTIQUES À DEUX VARIABLES O cosidère deux variables statistiques umériques x et y observées sur ue même populatio de idividus. O ote x 1
Régulation analogique industrielle ESTF- G.Thermique
Chapitre 5 Stabilité, Rapidité, Précisio et Réglage Stabilité. Défiitio Coditio de stabilité. Critères de stabilité.. Critères algébriques.. Critère graphique ou de revers das le pla de Nyquist Rapidité
2 ième partie : MATHÉMATIQUES FINANCIÈRES
2 ième partie : MATHÉMATIQUES FINANCIÈRES 1. Défiitios L'itérêt est l'idemité que doe au propriétaire d'ue somme d'arget celui qui e a joui pedat u certai temps. Divers élémets itervieet das le calcul
c. Calcul pour une évolution d une proportion entre deux années non consécutives
Calcul des itervalles de cofiace our les EPCV 996-004 - Cas d u ourcetage ou d ue évolutio e oit das la oulatio totale des méages - Cas d u ourcetage ou d ue évolutio das ue sous oulatio das les méages
La tarification hospitalière : de l enveloppe globale à la concurrence par comparaison
ANNALES D ÉCONOMIE ET DE STATISTIQUE. N 58 2000 La tarificatio hospitalière : de l eveloppe globale à la cocurrece par comparaiso Michel MOUGEOT * RÉSUMÉ. Cet article cosidère différetes politiques de
Terminale S. Terminale S 1 F. Laroche
Termiale S Exercices. Rappels et exercices de base 3.. QCM (P. Egel) 3.. QCM, Atilles 005 4. 3. QCM, Liba 009, 3 poits 4. 4. QCM, C. étragers 007. 5. QCM, Frace 007 5 6. 6. QCM, N. Calédoie 007 7. 7. QCM
Solutions particulières d une équation différentielle...
Solutios particulières d ue équatio différetielle......du premier ordre à coefficiets costats O cherche ue solutio particulière de y + ay = f, où a est ue costate réelle et f ue foctio, appelée le secod
Le Sphinx. Enquêtes, Sondages. Analyse de données. Internet : http://www.lesphinxdeveloppement.fr/club/index.html
Equêtes, Sodages Aalyse de doées Le Sphix! Iteret : http://www.lesphixdeveloppemet.fr/club/idex.html Lagarde J. Aalyse statistique de doées, Duod. Réaliser vos equêtes Questioaire Traitemets et aalyses
Consolidation. C r é e r un nouveau classeur. Créer un groupe de travail. Saisir des données dans un groupe
Cosolidatio La société THEOS, qui commercialise des vis, exerce so activité das trois villes : Paris, Nacy et Nice. Le directeur de la société souhaite cosolider les résultats de ses vetes par ville das
POLITIQUE ECONOMIQUE ET DEVELOPPEMENT
POLTQU ONOMQU T DVLOPPMNT TRUTUR DU MAR NATONAL DU AF-AAO T PR AU PRODUTUR MALAN Beïla Beoit osultat PD N 06/008 ellule d Aalyse de Politiques coomiques du R Aée de pulicatio : Avril 009 Résumé e papier
UNIVERSITE MONTESQUIEU BORDEAUX IV. Année universitaire 2006-2007. Semestre 2. Prévisions Financières. Travaux Dirigés - Séances n 4
UNVERSTE MONTESQUEU BORDEAUX V Licece 3 ère aée Ecoomie - Gestio Aée uiversitaire 2006-2007 Semestre 2 Prévisios Fiacières Travaux Dirigés - Séaces 4 «Les Critères Complémetaires des Choix d vestissemet»
Chap. 5 : Les intérêts (Les calculs financiers)
Chap. 5 : Les itérêts (Les calculs fiaciers) Das u cotrat de prêt, le prêteur met à la dispositio de l empruteur, à u taux d itérêt doé, ue somme d arget (le capital) qu il devra rembourser à ue certaie
Polynésie Septembre 2002 - Exercice On peut traiter la question 4 sans avoir traité les questions précédentes.
Polyésie Septembre 2 - Exercice O peut traiter la questio 4 sas avoir traité les questios précédetes Pour u achat immobilier, lorsqu ue persoe emprute ue somme de 50 000 euros, remboursable par mesualités
Chapitre 2 SONDAGE ALEATOIRE SIMPLE OU A PROBABILITES EGALES. 2.1 DEFINITIONS 2.2 SONDAGE ALEATOIRE SIMPLE SANS REMISE (PESR) 2.2.
Chapitre 2 SONDAGE ALEATOIRE SIMPLE OU A PROBABILITES EGALES PLAN DU CHAPITRE 2 2.1 DEFINITIONS 2.2 SONDAGE ALEATOIRE SIMPLE SANS REMISE (PESR) 2.2.1 Pla de sodage 2.2.2 Probabilités d iclusio 2.3 SONDAGE
Télé OPTIK. Plus spectaculaire que jamais.
Télé OPTIK Plus spectaculaire que jamais. Vivez toute la puissace de la télévisio sur IP grâce au réseau OPTIK 1 de TELUS et découvrez-e l extraordiaire potetiel. Télé OPTIK MC vous doe la parfaite maîtrise
Intégrales généralisées
3 Iégrles géérlisées Pour ce chpire, les focios cosidérées so priori défiies sur u iervlle réel I o rédui à u poi, à vleurs réelles ou complees e coiues pr morceu. L défiiio e les propriéés de l iégrle
4. Martingales à temps discret
Martingales à temps discret 25 4. Martingales à temps discret 4.1. Généralités. On fixe un espace de probabilités filtré (Ω, (F n ) n, F, IP ). On pose que F contient ses ensembles négligeables mais les
Formation d un ester à partir d un acide et d un alcool
CHAPITRE 10 RÉACTINS D ESTÉRIFICATIN ET D HYDRLYSE 1 Formatio d u ester à partir d u acide et d u alcool 1. Nomeclature Acide : R C H Alcool : R H Groupe caractéristique ester : C Formule géérale d u ester
PROBLEMES DIOPTIMISATION EN NOMBRES ENTIERS J. L. NICOLAS
PROBLEMES DIOPTIMISATION EN NOMBRES ENTIERS ET APPROXIMATIONS DIOPHANTIENNES J. L. NICOLAS Cet article expose sup 3 e quelques iter'f~reces etre les pr'obl~res dloptimisatio e hombres etiers et la th~or-ie
La France, à l écoute des entreprises innovantes, propose le meilleur crédit d impôt recherche d Europe
1/5 Trois objectifs poursuivis par le gouveremet : > améliorer la compétitivité fiscale de la Frace > péreiser les activités de R&D > faire de la Frace u territoire attractif pour l iovatio Les icitatios
Théorie de la Mesure et Intégration
Ecole Nationale de la Statistique et de l Administration Economique Théorie de la Mesure et Intégration Xavier MARY 2 Table des matières I Théorie de la mesure 11 1 Algèbres et tribus de parties d un ensemble
INTRODUCTION AUX MATRICES ALÉATOIRES. par. Djalil Chafaï
INTRODUCTION AUX MATRICES ALÉATOIRES par Djalil Chafaï Résumé. E cocevat les mathématiques comme u graphe, où chaque sommet est u domaie, la théorie des probabilités et l algèbre liéaire figuret parmi
Filtrage stochastique non linéaire par la théorie de représentation des martingales
Filtrage stochastique non linéaire par la théorie de représentation des martingales Adriana Climescu-Haulica Laboratoire de Modélisation et Calcul Institut d Informatique et Mathématiques Appliquées de
Modèles à Événements Discrets. Réseaux de Petri Stochastiques
Modèles à Événements Discrets Réseaux de Petri Stochastiques Table des matières 1 Chaînes de Markov Définition formelle Idée générale Discrete Time Markov Chains Continuous Time Markov Chains Propriétés
Calcul fonctionnel holomorphe dans les algèbres de Banach
Chapitre 7 Calcul fonctionnel holomorphe dans les algèbres de Banach L objet de ce chapitre est de définir un calcul fonctionnel holomorphe qui prolonge le calcul fonctionnel polynômial et qui respecte
Sommes de signaux : Décomposition de Fourier Spectre ondes stationnaires et résonance
Sommes de sigaux : Décompositio de Fourier Spectre odes statioaires et résoace Das le cours précédet, o a étudié la propagatio des odes moochromatiques mais celles-ci e peuvet pas porter d iformatio ;
Initiation à l analyse factorielle des correspondances
Fiche TD avec le logiciel : tdr620b Iitiatio à l aalyse factorielle des correspodaces A.B. Dufour & M. Royer & J.R. Lobry Das cette fiche, o étudie l Aalyse Factorielle des Correspodaces. Cette techique
Module 3 : Inversion de matrices
Math Stat Module : Iversio de matrices M Module : Iversio de matrices Uité. Défiitio O e défiira l iverse d ue matrice que si est carrée. O appelle iverse de la matrice carrée toute matrice B telle que
RESOLUTION PAR LA METHODE DE NORTON, MILLMAN ET KENNELY
LO 4 : SOLUTO P L MTHO OTO, MLLM T KLY SOLUTO P L MTHO OTO, MLLM T KLY MTHO OTO. toductio Le théoème de oto va ous pemette de éduie u cicuit complexe e gééateu de couat éel. e gééateu possède ue souce
Intégration et probabilités TD1 Espaces mesurés
Intégration et probabilités TD1 Espaces mesurés 2012-2013 1 Petites questions 1) Est-ce que l ensemble des ouverts de R est une tribu? 2) Si F et G sont deux tribus, est-ce que F G est toujours une tribu?
LE PRINCIPE DU RAISONNEMENT PAR RÉCURRENCE
LE PRINCIPE DU RAISONNEMENT PAR RÉCURRENCE. Exemple troductf (Les élèves qu coasset déà be le prcpe peuvet sauter ce paragraphe) Cosdéros la sute (u ), défe pour tout, par : u u u 0 0 Cette sute est défe
Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques.
14-3- 214 J.F.C. p. 1 I Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques. Exercice 1 Densité de probabilité. F { ln x si x ], 1] UN OVNI... On pose x R,
Les algorithmes de tri
CONSERVATOIRE NATIONAL DES ARTS ET METIERS PARIS MEMOIRE POUR L'EXAMEN PROBATOIRE e INFORMATIQUE par Nicolas HERVE Les algorithmes de tri Souteu le mai JURY PRESIDENTE : Mme COSTA Sommaire Itroductio....
Équation de Langevin avec petites perturbations browniennes ou
Équation de Langevin avec petites perturbations browniennes ou alpha-stables Richard Eon sous la direction de Mihai Gradinaru Institut de Recherche Mathématique de Rennes Journées de probabilités 215,
RÈGLES ORDINALES : UNE GÉNÉRALISATION DES RÈGLES D'ASSOCIATION
RÈGLES ORDIALES : UE GÉÉRALISATIO DES RÈGLES D'ASSOCIATIO SYLVIE GUILLAUME ALI KHECHAF 2 RÉSUMÉ: La plupart des mesures des règles cocere les variables biaires et écessite pour les autres types de variables
Calcul Stochastique pour la finance. Romuald ELIE
Calcul Stochastique pour la finance Romuald ELIE 2 Nota : Ces notes de cours sont librement inspirées de différentes manuels, polycopiés, notes de cours ou ouvrages. Citons en particulier ceux de Francis
Statistiques appliquées à la gestion Cours d analyse de donnés Master 1
Aalyse des doées Statistiques appliquées à la gestio Cours d aalyse de doés Master F. SEYTE : Maître de coféreces HDR e scieces écoomiques Uiversité de Motpellier I M. TERRAZA : Professeur de scieces écoomiques
Intégration et probabilités TD1 Espaces mesurés Corrigé
Intégration et probabilités TD1 Espaces mesurés Corrigé 2012-2013 1 Petites questions 1 Est-ce que l ensemble des ouverts de R est une tribu? Réponse : Non, car le complémentaire de ], 0[ n est pas ouvert.
Université Victor Segalen Bordeaux 2 Institut de Santé Publique, d Épidémiologie et de Développement (ISPED) Campus Numérique SEME
Uiversité Victor Segale Bordeaux Istitut de Saté Publique, d Épidémiologie et de Développemet (ISPED) Campus Numérique SEME MODULE Pricipaux outils e statistique Versio du 8 août 008 Écrit par : Relu par
Réseaux d ondelettes et réseaux de neurones pour la modélisation statique et dynamique de processus
Réseaux d odelettes et réseaux de euroes pour la modélisatio statique et dyamique de processus Yacie Oussar To cite this versio: Yacie Oussar. Réseaux d odelettes et réseaux de euroes pour la modélisatio
