Chap. 5 : Les intérêts (Les calculs financiers)
|
|
|
- Flore Mathieu
- il y a 10 ans
- Total affichages :
Transcription
1 Chap. 5 : Les itérêts (Les calculs fiaciers) Das u cotrat de prêt, le prêteur met à la dispositio de l empruteur, à u taux d itérêt doé, ue somme d arget (le capital) qu il devra rembourser à ue certaie date (l échéace). Pour le prêteur, les itérêts correspodet à la Pour l empruteur, les itérêts représetet le du prêt (ou du placemet). de l emprut. Les itérêts sot proportioels au capital prêté et à la durée du prêt. O distigue les itérêts simples et les itérêts composés. I- Les itérêts simples A) Défiitio et calcul des itérêts simples Les itérêts simples sot calculés pour chaque période sur le capital iitial (i.e. capital empruté à l origie) et e produiset pas eux-mêmes d itérêts. 1) Formule géérale des itérêts simples (I) Avec : I = C i C : Capital iitial (empruté / prêté ou placé) i : Taux d itérêt par période (exprimé e pourcetage) : durée de l emprut ou du placemet (ombre de périodes) Le taux i et la durée doivet être exprimés das la même uité de temps (si représete u ombre de mois, i doit être u taux mesuel ; si représete u ombre d aées, i doit être u taux auel ; ). Toutefois, les taux d itérêt (i) état gééralemet des taux auels, la formule deviet : I = C i 12 avec exprimé e mois I = C i 360 avec exprimé e jours 1 / 8
2 Exemple : Calcul des itérêts pour u placemet (ou u emprut) de d ue durée de 90 jours au taux auel de 5 %. I =... 2) La otio de valeur acquise (ou valeur future) La valeur acquise par u capital (C) est égale au capital (C) augmeté des itérêts (I) : aleur acquise = C + I = C + (C i ) = C [1 + (i )] (Itérêts simples) Exemple (suite) : aleur acquise =... B) L utilisatio des itérêts simples Les itérêts simples sot gééralemet utilisés pour des opératios fiacières à court terme i.e. pour des placemets ou des crédits d ue durée iférieure à 1 a, otammet : - Escompte des effets de commerce ; - Découverts des comptes courats bacaires ; - Affacturage. Covetio de calcul e Frace : I = C i 360 Les baques retieet au déomiateur 360 jours (aée commerciale) mais la durée du crédit () est calculée e ombre de jours exact (évetuellemet majoré de jours de baque). Les itérêts peuvet être : - Précomptés i.e. payés d avace e début de période (terme à échoir) et doc déduits du motat empruté. C est le cas de l escompte. - Postcomptés i.e. payés e fi de période à l échéace (terme échu) et doc rajoutés au motat remboursé. C est le cas du découvert. Exemple : Le 15/3/N, remise à l escompte d ue LCR. Nomial : ; Echéace : 30/4/N Taux d escompte : 12 % Durée du crédit :... Escompte :... aleur ette (hors commissios) :... 2 / 8
3 II- Les itérêts composés A) Défiitio et calcul des itérêts composés Les itérêts composés sot calculés pour chaque période sur le capital iitial majoré des itérêts des périodes précédetes : les itérêts sot capitalisés (ajoutés au capital) et produiset eux-mêmes des itérêts. E règle géérale, la capitalisatio des itérêts est auelle (les itérêts sot icorporés au capital à la fi de chaque aée). Cotrairemet aux itérêts simples, les itérêts composés de chaque période e sot pas costats. Exemple : C = i = 5 % par a = 4 as Périodes Capital e début de période (base) Itérêts simples Itérêts de la période Capital e début de période (base) Itérêts composés Itérêts de la période aleur acquise ou valeur future (F) et total des itérêts (I) : - Itérêts simples : F = C + I = C + (C i ) = C [1 + (i )] =... I = C i (ou = F C) = % 4 =... - Itérêts composés : F = C + I = C (1 + i) =... I = F C =... Gééralisatio (itérêts composés) : Périodes Capital e début de aleur acquise par le Itérêts de la période période capital e fi de période 1 C C i C (1 + i) 2 C (1 + i) C (1 + i) i C (1 + i) 2 3 C (1 + i) 2 C (1 + i) 2 i C (1 + i) 3 C (1 + i) -1 C (1 + i) -1 i C (1 + i) Le taux i et la durée doivet être exprimés das la même uité de temps (si est u ombre d aées, i doit être u taux auel ; si est u ombre de mois, i doit être u taux mesuel ) 3 / 8
4 B) L utilisatio des itérêts composés Les itérêts composés sot utilisés pour les opératios fiacières à moye et log terme i.e. pour les placemets et les empruts d ue durée supérieure à 1 a. III- La capitalisatio et l actualisatio A) La capitalisatio La capitalisatio est l opératio (fiacière) qui cosiste à détermier la valeur acquise ou valeur future d u capital 0 placé pedat périodes à u taux d itérêt i (les itérêts état e pricipe composés). La valeur acquise (ou future) état égale au capital augmeté des itérêts dispoibles e fi de période Durée du placemet = Le taux i et la durée doivet être exprimés das la même uité de temps. Les sommes 0 et sot dites équivaletes au taux de i % par période (disposer de 0 aujourd hui est équivalet à disposer de das périodes du fait de la possibilité de placer 0 pour obteir das périodes). Exemple 1 : ersemet uique aleur acquise ( ) par u capital de ( 0 ) placé à itérêts composés au taux de 6 % (i) par a pedat 4 as () : =... Exemple 2 : ersemets successifs (costats de début de période) aleur acquise par u versemet de au début de chaque aée placé à itérêts composés au taux de 6 % par a pedat 4 as / 8
5 Il faut capitaliser les quatre versemets et additioer les résultats obteus : =... =... NB : Formule directe pour obteir la somme des flux capitalisés (somme des termes d ue suite géométrique de raiso 1,06) : =... B) L actualisatio L actualisatio est l opératio qui cosiste à détermier la valeur actuelle ( 0 ) d ue somme future ( ) obteue par u placemet pedat périodes à u taux d itérêt i (les itérêts état composés). O recherche aisi la valeur 0 du capital qu il faut placer aujourd hui pedat périodes à u taux d itérêt i pour obteir la somme doée : c est l opératio iverse de la capitalisatio! Durée du placemet 0 = Le taux d itérêt i qui permet de calculer la valeur actuelle est appelé taux d actualisatio. NB : Seule la capitalisatio correspod à ue opératio fiacière réelle (u placemet sur u marché fiacier), l actualisatio est ue techique de calcul fiacier qui permet de comparer des sommes dispoibles à des périodes différetes. Exemple 1 : ersemet uique aleur actuelle ( 0 ) du capital qu il faut placer aujourd hui pedat 4 as à itérêts composés au taux de 5 % pour obteir (das 4 as) ue valeur acquise ( ) de : 0 =... Exemple 2 : ersemets successifs (costats de fi de période) U commerçat propose de payer u bie e 4 mesualités de payables e fi de mois. Avec u taux d actualisatio mesuel de 1 %, quel est le prix au comptat équivalet aux 4 mesualités? 5 / 8
6 Il faut actualiser les 4 versemets et additioer les résultats obteus : 0 =... =... NB : Formule directe pour obteir la somme des flux actualisés (somme des termes d ue suite géométrique de raiso 1,01-1 = 1 / 1,01) : 0 =... Pour le commerçat, il est équivalet d ecaisser immédiatemet ou d ecaisser 4 mesualités de 1 000, la valeur acquise e fi de période état la même das les deux cas : Au comptat : 4 =... A crédit : 4 =... C) Calcul du taux d itérêt ou de la durée d u placemet La formule de la valeur acquise permet de calculer le taux d itérêt i (lorsqu o coaît 0, et ) ou la durée du placemet (lorsqu o coaît 0, et i). 1) Calcul du taux d itérêt = 0 (1 + i) => (1 + i) = 0 => (1 + i) = 0 1 => i = Exemple : Calcul du taux d itérêt qui permet à u capital de placé à itérêts composés d obteir au bout de 5 as ue valeur acquise de ,10 : i =... 6 / 8
7 2) Calcul de la durée d u placemet = 0 (1 + i) => (1 + i) = => l(1 + i) = l 0 0 => l(1 + i) = l 0 => = l 0 l 1 ( + i) Exemple : Calcul de la durée du placemet à itérêts composés au taux de 6 % qui permet à u capital de d obteir ue valeur acquise de ,16 : =... I- Les taux d itérêt proportioels et les taux d itérêt équivalets U taux d itérêt peut être exprimé e taux auel, e taux semestriel, trimestriel, mesuel ou jouralier Il existe deux types de relatios etre ces taux périodiques : ils peuvet être, les us par rapport aux autres, proportioels ou équivalets. A) Les taux d itérêt proportioels Les taux périodiques sot proportioels lorsque, appliqués au même capital et sur la même durée globale, ils doet la même valeur acquise (ou le même itérêt) calculée à itérêts simples (les itérêts e sot pas capitalisés et doc e produiset pas d itérêts). E appelat : i a : Taux d itérêt auel i t : Taux d itérêt trimestriel i m : Taux d itérêt mesuel C : Capital placé : Durée du placemet e aées La relatio etre les taux proportioels est la suivate : aleur acquise = C + I = C + (C i a ) = C + (C i t 4 ) = C + (C i m 12 ) Soit, après simplificatio : i a = i t 4 = i m 12 Les taux sot proportioels quad leur rapport est égal au rapport des périodes auxquelles ils s appliquet. 7 / 8
8 Exemple : Les taux : i a = 12 % ; i t = ; i m = sot des taux proportioels. B) Les taux d itérêt équivalets Les taux périodiques sot équivalets lorsque, appliqués au même capital et sur la même durée globale, ils doet la même valeur acquise (ou le même itérêt) calculée à itérêts composés (les itérêts sot capitalisés et doc produiset des itérêts). La relatio etre les taux équivalets est la suivate : aleur acquise = C + I = C (1 + i a ) = C (1 + i t ) 4 = C (1 + i m ) 12 Soit, après simplificatio : Exemple : (1 + i a ) = (1 + i t ) 4 = (1 + i m ) 12 Les taux : i a = 12 % ; i t = ; i m = sot des taux équivalets. Exemple de sythèse : Taux mesuel (i m ) Taux trimestriel (i t ) Taux auel (i a ) i m = 1 % Taux proportioels i t = 3 % i a = 12 % i m = 1 % Taux équivalets i t = 3 % i a = 12 % Cf. Fiche coseil p.39 Cf. Exos «Outils mathématiques de gestio» p. 43 (Itérêts simples) et p. 44 (Itérêts composés) 8 / 8
Chap. 6 : Les principaux crédits de trésorerie et leur comptabilisation
Chap. 6 : Les pricipaux crédits de trésorerie et leur comptabilisatio Les etreprises ot souvet besoi de moyes de fiacemet à court terme : elles ot alors recours aux crédits bacaires (découverts bacaires
Chap. 6 : Les principaux crédits de trésorerie et leur comptabilisation
1 / 9 Chap. 6 : Les pricipaux crédits de trésorerie et leur comptabilisatio Le cycle d exploitatio des etreprises (achats stockage productio stockage vetes) peut etraîer des décalages de trésorerie plus
capital en fin d'année 1 C 0 + T C 0 = C 0 (1 + T) = C 0 r en posant r = 1 + T 2 C 0 r + C 0 r T = C 0 r (1 + T) = C 0 r 2 3 C 0 r 3...
Applicatios des maths Algèbre fiacière 1. Itérêts composés O place u capital C 0 à u taux auel T a pedat aées. Quelle est la valeur fiale C de ce capital? aée capital e fi d'aée 1 C 0 + T C 0 = C 0 (1
2 ième partie : MATHÉMATIQUES FINANCIÈRES
2 ième partie : MATHÉMATIQUES FINANCIÈRES 1. Défiitios L'itérêt est l'idemité que doe au propriétaire d'ue somme d'arget celui qui e a joui pedat u certai temps. Divers élémets itervieet das le calcul
Deuxième partie : LES CONTRATS D ASSURANCE VIE CLASSIQUES
DEUXIEME PARTIE Deuième partie : LES CONTRATS D ASSURANCE VIE CLASSIQUES Chapitre. L assurace de capital différé Chapitre 2. Les opératios de retes Chapitre 3. Les assuraces décès Chapitre 4. Les assuraces
UNIVERSITE MONTESQUIEU BORDEAUX IV. Année universitaire 2006-2007. Semestre 2. Prévisions Financières. Travaux Dirigés - Séances n 4
UNVERSTE MONTESQUEU BORDEAUX V Licece 3 ère aée Ecoomie - Gestio Aée uiversitaire 2006-2007 Semestre 2 Prévisios Fiacières Travaux Dirigés - Séaces 4 «Les Critères Complémetaires des Choix d vestissemet»
Polynésie Septembre 2002 - Exercice On peut traiter la question 4 sans avoir traité les questions précédentes.
Polyésie Septembre 2 - Exercice O peut traiter la questio 4 sas avoir traité les questios précédetes Pour u achat immobilier, lorsqu ue persoe emprute ue somme de 50 000 euros, remboursable par mesualités
Examen final pour Conseiller financier / conseillère financière avec brevet fédéral. Recueil de formules. Auteur: Iwan Brot
Exame fial pour Coseiller fiacier / coseillère fiacière avec brevet fédéral Recueil de formules Auteur: Iwa Brot Ce recueil de formules sera mis à dispositio des cadidats, si écessaire. Etat au 1er mars
UNIVERSITÉ DE SFAX École Supérieure de Commerce
UNIVERSITÉ DE SFAX École Supérieure de Commerce Aée Uiversitaire 2003 / 2004 Auditoire : Troisième Aée Études Supérieures Commerciales & Scieces Comptables DÉCISIONS FINANCIÈRES Note de cours N 3 Première
Semestre : 4 Module : Méthodes Quantitatives III Elément : Mathématiques Financières Enseignant : Mme BENOMAR
Semestre : 4 Module : Méthodes Quattatves III Elémet : Mathématques Facères Esegat : Mme BENOMAR Elémets du cours Itérêts smples, précompte, escompte et compte courat Itérêts composés Autés Amortssemets
Augmentation de la demande du produit «P» Prévision d accroître la capacité de production (nécessité d investir) Investissement
Augmetatio de la demade du produit «P» Prévisio d accroître la capacité de productio (écessité d ivestir) Ivestissemet Etude de retabilité du produit «P» Jugemet de l opportuité et de la retabilité du
Les solutions mi-hypothécaires, mi-bancaires de Manuvie. Guide du conseiller
Les solutios mi-hypothécaires, mi-bacaires de Mauvie Guide du coseiller 1 2 Table des matières Itroductio... 5 La Baque Mauvie...5 Le compte Mauvie U...5 Le compte Sélect Baque Mauvie...5 1. Les solutios
La France, à l écoute des entreprises innovantes, propose le meilleur crédit d impôt recherche d Europe
1/5 Trois objectifs poursuivis par le gouveremet : > améliorer la compétitivité fiscale de la Frace > péreiser les activités de R&D > faire de la Frace u territoire attractif pour l iovatio Les icitatios
Limites des Suites numériques
Chapitre 2 Limites des Suites umériques Termiale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Limite fiie ou ifiie d ue suite. Limites et comparaiso. Opératios sur les ites. Comportemet
Compte Sélect Banque Manuvie Guide du débutant
GUIDE DU DÉBUTANT Compte Sélect Baque Mauvie Guide du débutat Besoi d aide? Preez quelques miutes pour lire attetivemet votre Guide du cliet. Le préset Guide du débutat vous facilitera l utilisatio de
Opérations bancaires avec l étranger *
Opératios bacaires avec l étrager * Coditios bacaires au 1 er juillet 2011 Etreprises et orgaismes d itérêt gééral Opératios à destiatio de l étrager Viremets émis vers l étrager : viremet e euros iférieur
[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1. Exercice 6 [ 02475 ] [correction] Si n est un entier 2, le rationnel H n =
[http://mp.cpgedupuydelome.fr] édité le 1 juillet 14 Eocés 1 Nombres réels Ratioels et irratioels Exercice 1 [ 9 ] [correctio] Motrer que la somme d u ombre ratioel et d u ombre irratioel est u ombre irratioel.
SÉRIES STATISTIQUES À DEUX VARIABLES
1 ) POSITION DU PROBLÈME - VOCABULAIRE A ) DÉFINITION SÉRIES STATISTIQUES À DEUX VARIABLES O cosidère deux variables statistiques umériques x et y observées sur ue même populatio de idividus. O ote x 1
S-PENSION. Constituez-vous un capital retraite complémentaire pour demain tout en bénéficiant d avantages fiscaux dès aujourd hui.
S-PENSION Costituez-vous u capital retraite complémetaire pour demai tout e bééficiat d avatages fiscaux dès aujourd hui. Sommaire 1. Il est temps de predre l iitiative 4 2. Profitez dès aujourd hui des
Les nouveaux relevés de compte
Ifo CR Les ouveaux relevés de compte Les relevés de compte actuels du Crédit Agricole de Champage-Bourgoge sot issus de la migratio iformatique sur le GIE AMT e 2001 : petit format (mais A4 pour les Professioels),
Un accès direct à vos comptes 24h/24 VOTRE NUMÉRO CLIENT. www.bnpparibas.net. Centre de Relations Clients 0 820 820 001 (0,12 /min)
* selo coditios cotractuelles e vigueur. U accès direct à vos comptes 24h/24 VOTRE NUMÉRO CLIENT + VOTRE CODE SECRET * : www.bpparibas.et Cetre de Relatios Cliets 0 820 820 001 (0,12 /mi) Appli Mes Comptes
Séquence 5. La fonction logarithme népérien. Sommaire
Séquece 5 La foctio logarithme épérie Objectifs de la séquece Itroduire ue ouvelle foctio : la foctio logarithme épérie. Coaître les propriétés de cette foctio : sa dérivée, ses variatios, sa courbe, sa
20. Algorithmique & Mathématiques
L'éditeur L'éditeur permet à l'utilisateur de saisir les liges de codes d'u programme ou de défiir des foctios. Remarque : O peut saisir directemet des istructios das la cosole Scilab, mais il est plus
Faites prospérer vos affaires grâce aux solutions d épargne et de gestion des dettes
Faites prospérer vos affaires grâce aux solutios d éparge et de gestio des dettes Quelques excelletes raisos d offrir des produits bacaires et de fiducie à vos cliets Vous avez la compétece écessaire pour
LES ÉCLIPSES. Éclipser signifie «cacher». Vus depuis la Terre, deux corps célestes peuvent être éclipsés : la Lune et le Soleil.
Qu appelle-t-o éclipse? Éclipser sigifie «cacher». Vus depuis la Terre, deu corps célestes peuvet être éclipsés : la Lue et le Soleil. LES ÉCLIPSES Pour qu il ait éclipse, les cetres de la Terre, de la
. (b) Si (u n ) est une suite géométrique de raison q, q 1, on obtient : N N, S N = 1 qn+1. n+1 1 S N = 1 1
Premières propriétés des ombres réels 2 Suites umériques 3 Suites mootoes : à faire 4 Séries umériques 4. Notio de série. Défiitio 4.. Soit (u ) ue suite de ombres réels ou complexes. Pour N N, o ote S
Formation d un ester à partir d un acide et d un alcool
CHAPITRE 10 RÉACTINS D ESTÉRIFICATIN ET D HYDRLYSE 1 Formatio d u ester à partir d u acide et d u alcool 1. Nomeclature Acide : R C H Alcool : R H Groupe caractéristique ester : C Formule géérale d u ester
RECHERCHE DE CLIENTS simplifiée
RECHERCHE DE CLIENTS simplifiée Nous ous occupos d accroître votre clietèle avec le compte Avatage d etreprise Pour trouver des cliets potetiels grâce à u simple compte bacaire Vous cherchez des idées
La fibre optique arrive chez vous Devenez acteur de la révolution numérique
2 e éditio Edité par l Autorité de régulatio des commuicatios électroiques et des postes RÉPUBLIQUE FRANÇAISE DÉCEMBRE 2010 La fibre optique arrive chez vous Deveez acteur de la révolutio umérique Petit
3.1 Différences entre ESX 3.5 et ESXi 3.5 au niveau du réseau. Solution Cette section récapitule les différences entre les deux versions.
3 Réseau Le réseau costitue u aspect essetiel d u eviroemet virtuel ESX. Il est doc importat de compredre la techologie, y compris ses différets composats et leur coopératio. Das ce chapitre, ous étudios
Choisissez la bonne carte. Contribuez au respect de la nature avec les cartes Visa et MasterCard WWF. Sans frais supplémentaires.
Toutes les cartes de crédit e se ressemblet pas. Les cartes Visa et MasterCard WWF vous offret tous les avatages d ue carte de crédit classique. Vous disposez toujours et partout d ue réserve d arget das
Mobile Business. Communiquez efficacement avec vos relations commerciales 09/2012
Mobile Busiess Commuiquez efficacemet avec vos relatios commerciales 9040412 09/2012 U choix capital pour mes affaires Pour gérer efficacemet ses affaires, il y a pas de secret : il faut savoir predre
One Office Voice Pack Vos appels fixes et mobiles en un seul pack
Uique! Exteded Fleet Appels illimités vers les uméros Mobistar et les liges fixes! Oe Office Voice Pack Vos appels fixes et mobiles e u seul pack Commuiquez et travaillez e toute liberté Mobistar offre
for a living planet WWF ZOOM: votre carte de crédit personnalisée
for a livig plaet WWF ZOOM: votre carte de crédit persoalisée Le meilleur pour vous. Le meilleur pour l eviroemet. Ue carte de crédit du WWF. Vous faites u geste e faveur de la ature. Sas frais supplémetaires.
Chapitre 3 : Fonctions d une variable réelle (1)
Uiversités Paris 6 et Paris 7 M1 MEEF Aalyse (UE 3) 2013-2014 Chapitre 3 : Foctios d ue variable réelle (1) 1 Lagage topologique das R Défiitio 1 Soit a u poit de R. U esemble V R est u voisiage de a s
STATISTIQUE : TESTS D HYPOTHESES
STATISTIQUE : TESTS D HYPOTHESES Préparatio à l Agrégatio Bordeaux Aée 203-204 Jea-Jacques Ruch Table des Matières Chapitre I. Gééralités sur les tests 5. Itroductio 5 2. Pricipe des tests 6 2.a. Méthodologie
TARIFS BANCAIRES. Opérations bancaires avec l étranger Extrait des conditions bancaires au 1 er juillet 2014. Opérations à destination de l étranger
Opératios bacaires avec l étrager Extrait des coditios bacaires au 1 er juillet Opératios à destiatio de l étrager Viremets émis vers l étrager : Frais d émissio de viremets e euros (3) vers l Espace écoomique
Dénombrement. Chapitre 1. 1.1 Enoncés des exercices
Chapitre 1 Déombremet 1.1 Eocés des exercices Exercice 1 L acie système d immatriculatio fraçais était le suivat : chaque plaque avait 4 chiffres, suivis de 2 lettres, puis des 2 uméros du départemet.
Séries réelles ou complexes
6 Séries réelles ou complexes Comme pour le chapitre 3, les suites cosidérées sot a priori complexes et les résultats classiques sur les foctios cotiues ou dérivables d ue variable réelle sot supposés
CHAPITRE 2 SÉRIES ENTIÈRES
CHAPITRE 2 SÉRIES ENTIÈRES 2. Séries etières Défiitio 2.. O appelle série etière toute série de foctios ( ) f dot le terme gééral est de la forme f ()=a, où (a ) désige ue suite réelle ou complee et R.
Module 3 : Inversion de matrices
Math Stat Module : Iversio de matrices M Module : Iversio de matrices Uité. Défiitio O e défiira l iverse d ue matrice que si est carrée. O appelle iverse de la matrice carrée toute matrice B telle que
L Objectif National des Dépenses d Assurance Maladie : d un outil global de régulation à une simple prévision des dépenses.
L Objectif Natioal des Dépeses d Assurace Maladie : d u outil global de régulatio à ue simple prévisio des dépeses. Isabelle Hirtzli To cite this versio: Isabelle Hirtzli. L Objectif Natioal des Dépeses
Mathématiques Financières : l essentiel Les 10 formules incontournables (Fin de période)
A-PDF OFFICE TO PDF DEMO: Purchase from www.a-pdf.com to remove the watermark Mathématques Facères : l essetel Les formules cotourables (F de érode) htt://www.ecogesam.ac-a-marselle.fr/esed/gesto/mathf/mathf.html#e5aels
14 Chapitre 14. Théorème du point fixe
Chapitre 14 Chapitre 14. Théorème du poit fixe Si l o examie de plus près les méthodes de Lagrage et de Newto, étudiées au chapitre précédet, elles revieet das leur pricipe à remplacer la résolutio de
Etude Spéciale SCORING : UN GRAND PAS EN AVANT POUR LE MICROCRÉDIT?
Etude Spéciale o. 7 Javier 2003 SCORING : UN GRAND PAS EN AVANT POUR LE MICROCRÉDIT? MARK SCHNEIDER Le CGAP vous ivite à lui faire part de vos commetaires, de vos rapports et de toute demade d evoid autres
Exo7. Déterminants. = 4(b + c)(c + a)(a + b). c + a c + b 2c Correction. b + a 2b b + c. Exercice 2 ** X a b c a X c b b c X a c b a X
Exo7 Détermiats Exercices de Jea-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-fracefr * très facile ** facile *** difficulté moyee **** difficile ***** très difficile I : Icotourable T : pour
Chapitre 3 : Transistor bipolaire à jonction
Chapitre 3 : Trasistor bipolaire à joctio ELEN075 : Electroique Aalogique ELEN075 : Electroique Aalogique / Trasistor bipolaire U aperçu du chapitre 1. Itroductio 2. Trasistor p e mode actif ormal 3. Courats
1 Mesure et intégrale
1 Mesure et itégrale 1.1 Tribu boréliee et foctios mesurables Soit =[a, b] u itervalle (le cas où b = ou a = est pas exclu) et F ue famille de sous-esembles de. OditqueF est ue tribu sur si les coditios
Renseignements et monitoring. Renseignements commerciaux et de solvabilité sur les entreprises et les particuliers.
Reseigemets et moitorig. Reseigemets commerciaux et de solvabilité sur les etreprises et les particuliers. ENSEMBLE CONTRE LES PERTES. Reseigemets Creditreform. Pour plus de trasparece. Etreteir des rapports
TRANSFERT DE CHARGE DANS UN RÉSEAU DE PROCESSEURS TOTALEMENT CONNECTÉS (*) par Maryse BÉGUIN ( 1 )
RAIRO Operatios Research RAIRO Oper. Res. 34 (2000) 99-129 TRANSFERT DE CHARGE DANS UN RÉSEAU DE PROCESSEURS TOTALEMENT CONNECTÉS (*) par Maryse BÉGUIN ( 1 ) Commuiqué par Berard LEMAIRE Résumé. L étude
Statistique descriptive bidimensionnelle
1 Statistique descriptive bidimesioelle Statistique descriptive bidimesioelle Résumé Liaisos etre variables quatitatives (corrélatio et uages de poits), qualitatives (cotigece, mosaïque) et de types différets
Sommaire Chapitre 1 - L interface de Windows 7 9
Sommaire Chapitre 1 - L iterface de Widows 7 9 1.1. Utiliser le meu Démarrer et la barre des tâches de Widows 7...11 Démarrer et arrêter des programmes...15 Épigler u programme das la barre des tâches...18
L E M E N S U E L D E L A V O C A T. Regretter d avoir fini le tube d aspirine. Comparer les offres AGA. Trier le mauvais courrier commercial du bon
ISSN 1146 6766 N 228 JUILLETAOÛT 2014 ère 1 plaidoirie L E M E N S U E L D E L A V O C A T Regretter d avoir fii le tube d aspirie Trouver des somifères ère 1 GAV Achat de THE robe Selfie Comparer les
Exercices de révision
Exercices de révisio Exercice U ivesisseur souscri à l émissio d u bille de résorerie do les caracérisiques so les suivaes : - Nomial : 5 M - Taux facial : 3,2% - Durée de vie : 9 mois L ivesisseur doi
Comportement d'une suite
Comportemet d'ue suite I) Approche de "ses de variatio et de ite d'ue suite" : 7 Soit la suite ( ) telle que = 5 ( + ) 2 Représetos graphiquemet la suite das u pla mui d' u repère. Il suffit de placer
Le chef d entreprise développe les services funéraires de l entreprise, en
Le chef d etreprise développe les services fuéraires de l etreprise, e assurat lui-même tout ou partie des activités de vete et e ecadrat directemet le persoel techique et commercial et d exploitatio.
Le Sphinx. Enquêtes, Sondages. Analyse de données. Internet : http://www.lesphinxdeveloppement.fr/club/index.html
Equêtes, Sodages Aalyse de doées Le Sphix! Iteret : http://www.lesphixdeveloppemet.fr/club/idex.html Lagarde J. Aalyse statistique de doées, Duod. Réaliser vos equêtes Questioaire Traitemets et aalyses
FEUILLE D EXERCICES 17 - PROBABILITÉS SUR UN UNIVERS FINI
FEUILLE D EXERCICES 7 - PROBABILITÉS SUR UN UNIVERS FINI Exercice - Lacer de dés O lace deux dés à 6 faces équilibrés. Calculer la probabilité d obteir : u double ; ue somme des deux dés égale à 8 ; ue
Etude de la fonction ζ de Riemann
Etude de la foctio ζ de Riema ) Défiitio Pour x réel doé, la série de terme gééral,, coverge si et seulemet si x >. x La foctio zeta de Riema est la foctio défiie sur ], [ par : ( x > ), = x. Remarque.
Réseaux d ondelettes et réseaux de neurones pour la modélisation statique et dynamique de processus
Réseaux d odelettes et réseaux de euroes pour la modélisatio statique et dyamique de processus Yacie Oussar To cite this versio: Yacie Oussar. Réseaux d odelettes et réseaux de euroes pour la modélisatio
Consolidation. C r é e r un nouveau classeur. Créer un groupe de travail. Saisir des données dans un groupe
Cosolidatio La société THEOS, qui commercialise des vis, exerce so activité das trois villes : Paris, Nacy et Nice. Le directeur de la société souhaite cosolider les résultats de ses vetes par ville das
Dares Analyses. Plus d un tiers des CDI sont rompus avant un an
Dares Aalyses javier 2015 N 005 publicatio de la directio de l'aimatio de la recherche, des études et des statistiques Plus d u tiers des CDI sot rompus avat u a Le cotrat de travail à durée idétermiée
Règlement Général des opérations
Deutsche Bak Règlemet Gééral des opératios AVRIL 2015 Deutsche Bak AG est u établissemet de crédit de droit allemad, dot le siège social est établi 12, Tauusalage, 60325 Fracfort-sur-le-Mai, Allemage.
Création et développement d une fonction audit interne*
Créatio et développemet d ue foctio audit itere* Ue démarche e 10 étapes [ Sommaire] Dix étapes pour réussir... 7 Étapes 1 à 4 Défiitio du cadre d itervetio... 9 1 Idetifier les attetes des parties preates...
Dénombrement. Introduction. 1 Cardinaux d'ensembles nis. ECE3 Lycée Carnot. 12 novembre 2010. 1.1 Quelques dénitions
Déombremet ECE3 Lycée Carot 12 ovembre 2010 Itroductio La combiatoire, sciece du déombremet, sert comme so om l'idique à compter. Il e s'agit bie etedu pas de reveir au stade du CP et d'appredre à compter
x +1 + ln. Donner la valeur exacte affichée par cet algorithme lorsque l utilisateur entre la valeur n =3.
EXERCICE 3 (6 poits ) (Commu à tous les cadidats) Il est possible de traiter la partie C sas avoir traité la partie B Partie A O désige par f la foctio défiie sur l itervalle [, + [ par Détermier la limite
Divorce et séparation
Coup d oeil sur Divorce et séparatio Être attetif aux besois de votre efat Divorce et séparatio «Les premiers mois suivat u divorce ou ue séparatio sot très stressats. Votre patiece, votre cohérece et
Working Paper RETAIL RÉGIONAL RESPONSABLE
«BANQUE DE DÉTAIL DE MASSE» : COMMENT LES CAISSES D ÉPARGNE EN AFRIQUE, ASIE ET AMÉRIQUE LATINE PEUVENT FOURNIR DES SERVICES ADAPTÉS AUX BESOINS DES POPULATIONS DÉFAVORISÉES Travailler avec les caisses
Les algorithmes de tri
CONSERVATOIRE NATIONAL DES ARTS ET METIERS PARIS MEMOIRE POUR L'EXAMEN PROBATOIRE e INFORMATIQUE par Nicolas HERVE Les algorithmes de tri Souteu le mai JURY PRESIDENTE : Mme COSTA Sommaire Itroductio....
Lorsque la sécurisation des paiements par carte bancaire sur Internet conduit à une concurrence entre les banques et les opérateurs de réseau
Lorsque la sécurisatio des paiemets par carte bacaire sur Iteret coduit à ue cocurrece etre les baques et les opérateurs de réseau David Bouie Das cet article, ous ous iterrogeos sur l issue de la cocurrece
n 1 LES GRANDS THÈMES DE L ITB > 2009 Les intérêts simples et les intérêts composés ( ) C T D ( en mois)
LES GRANDS THÈMES DE L ITB Les iérês simples e les iérês composés RAPPELS THÉORIQUES Les iérês simples : l'iérê «I» es focio de la durée «D» (jour, quizaie, mois, rimesre, semesre, aée) de l'opéraio (placeme
Exercice I ( non spé ) 1/ u 1 = 3 4. 2 3 u 2 4 + 3 9. 19 4 2/ Soit P la propriété : u n + 4. > 0 pour n 1. P est vraie au rang 1 car u 1
Bac blac TS Correctio Exercice I ( Spé ) / émotros par récurrece que 5x y = pour tout etier aturel 5x y = 5 8 = La propriété est doc vraie au rag = Supposos que la propriété est vraie jusqu au rag, o a
Statistiques appliquées à la gestion Cours d analyse de donnés Master 1
Aalyse des doées Statistiques appliquées à la gestio Cours d aalyse de doés Master F. SEYTE : Maître de coféreces HDR e scieces écoomiques Uiversité de Motpellier I M. TERRAZA : Professeur de scieces écoomiques
MUTUELLE D&O MUTUELLE D&O. Copilote de votre santé. AGECFA-Voyageurs CARCEPT CARCEPT-Prévoyance CRC CRIS CRPB-AFB
MUTUELLE D&O MUTUELLE D&O Copilote de votre saté AGECFA-Voyageurs CARCEPT CARCEPT-Prévoyace CRC CRIS CRPB-AFB DOMISSIMO-Assuraces DOMISSIMO-Services FONGECFA-Trasport IPRIAC MUTUELLE D&O OREPA-Prévoyace
AIDE-MÉMOIRE SUR L ACHAT D UNE MAISON Guide pratique pour le nouvel arrivant
AIDE-MÉMOIRE SUR L ACHAT D UNE MAISON Guide pratiue pour le ouvel arrivat AU CŒUR DE L HABITATION Microsite pour les ouveaux arrivats La plupart des ouveaux arrivats au Caada se touret vers l Iteret pour
BARÈMES. i n d i c a t i f s. Œuvres préexistantes Œuvres de commande
BARÈMES i d i c a t i f s 2010 Œuvres préexistates Œuvres de commade droit d auteur pour les œuvres préexistates DROIT D AUTEUR POUR LES ŒUVRES PRÉEXISTANTES UNION DES PHOTOGRAPHES PROFESSIONNELS 2 121
Ouverture à la concurrence du transport ferroviaire de voyageurs
Ouverture à la cocurrece du trasport ferroviaire de voyageurs COMPLÉMENTS Claude Abraham Présidet Thomas Revial Fraçois Vielliard Rapporteurs Domiique Auverlot Christie Rayard Coordiateurs Octobre 2011
Code d éthique et de conduite professionnelle
Code d éthique et de coduite professioelle 2015 RELX Group Code d éthique et de coduite professioelle 2 Table des matières Notre egagemet e faveur de l itégrité U message de otre Présidet-Directeur Gééral
Chapitre 2 SONDAGE ALEATOIRE SIMPLE OU A PROBABILITES EGALES. 2.1 DEFINITIONS 2.2 SONDAGE ALEATOIRE SIMPLE SANS REMISE (PESR) 2.2.
Chapitre 2 SONDAGE ALEATOIRE SIMPLE OU A PROBABILITES EGALES PLAN DU CHAPITRE 2 2.1 DEFINITIONS 2.2 SONDAGE ALEATOIRE SIMPLE SANS REMISE (PESR) 2.2.1 Pla de sodage 2.2.2 Probabilités d iclusio 2.3 SONDAGE
Comment les Canadiens classent-ils leur système de soins de santé?
Novembre Les sois de saté au Caada, c est capital bulleti o 4 Commet les Caadies classet-ils leur système de sois de saté? Résultats du sodage iteratioal du Fods du Commowealth sur les politiques de saté
Logiciel de synchronisation de flotte de baladeurs MP3 / MP4 ou tablettes Androïd
easylab Le logiciel de gestio de fichiers pour baladeurs et tablettes Visualisatio simplifiée de la flotte Gestio des baladeurs par idividus / classes / groupes / activités Activatio des foctios par simple
Principes et Méthodes Statistiques
Esimag - 2ème aée 0 1 2 3 4 5 6 7 0 5 10 15 x y Pricipes et Méthodes Statistiques Notes de cours Olivier Gaudoi 2 Table des matières 1 Itroductio 7 1.1 Défiitio et domaies d applicatio de la statistique............
COURS DE MATHEMATIQUE FINANCIERE A COURT ET LONG TERME Promotion : Première année de graduat
P R O F E S REPUBLIQUE DEMOCRATIQUE DU CONGO ENSEIGNEMENT SUPEREIEUR ET UNIVERSITAIRE INSTITUT SUPERIEUR DE GESTION INFORMATIQUE DE GOMA /I.S.I.G-GOMA DEVELOPPEMENT ISIG M A T I O N COURS DE MATHEMATIQUE
Remboursé par l assurance maladie obligatoire 100% 100% 200%
Mutuelle Saté pompiers - pats Offre reservee SPASDIS prévi POMPIERS surcomplemetaire spasdis CUMUL maladie (1) Cosultatios, visites (gééralistes / spécialistes) 130% 70 % 200 % Pharmacie : médicamets remboursés
Guide des logiciels de l ordinateur HP Media Center
Guide des logiciels de l ordiateur HP Media Ceter Les garaties des produits et services HP sot exclusivemet présetées das les déclaratios expresses de garatie accompagat ces produits et services. Aucu
ISSN 1146-6766 N 209 juillet / août / septembre 2011. www.anaafa.fr L E M E N S U E L D E L A V O C A T. N 209 juillet / août / septembre 2011-1
ISSN 1146-6766 N 209 juillet / août / septembre 2011 www.aaafa.fr L E M E N S U E L D E L A V O C A T N 209 juillet / août / septembre 2011-1 VOTRE GARDE...ROBE! ASSOCIATION NATIONALE D'ASSISTANCE ADMINISTRATIVE
Le marché du café peut être segmenté en fonction de deux modes de production principaux : la torréfaction et la fabrication de café soluble.
II LE MARCHE DU CAFE 1 L attractivité La segmetatio selo le mode de productio Le marché du café peut être segmeté e foctio de deux modes de productio pricipaux : la torréfactio et la fabricatio de café
PREPARER SA RETRAITE
PREPARER SA RETRAITE Combie éparger pour compléter sa retraite? Pour répodre à cette questio, la première étape cosiste à imagier so trai après 65 as. Des postes de dépeses aurot disparu (otammet ceux
Simulations interactives de convertisseurs en électronique de puissance
Simulatios iteractives de covertisseurs e électroique de puissace Jea-Jacques HUSELSTEIN, Philippe ENII Laboratoire d'électrotechique de Motpellier (LEM) - Uiversité Motpellier II, 079, Place Eugèe Bataillo,
c. Calcul pour une évolution d une proportion entre deux années non consécutives
Calcul des itervalles de cofiace our les EPCV 996-004 - Cas d u ourcetage ou d ue évolutio e oit das la oulatio totale des méages - Cas d u ourcetage ou d ue évolutio das ue sous oulatio das les méages
La gestion commerciale dans QuadraENTREPRISE. > Edition personnalisée des pièces
QuadraFACT La gestio commerciale das QuadraENTREPRISE Simplicité et souplesse > Echaiemet de la saisie du devis à la facture > Evoi d'u clic, de toutes les pièces, (devis, commade, bl, facture) par email
LE WMS EXPERT DE LA SUPPLY CHAIN DE DÉTAIL
LE WMS EXET DE LA SULY HAIN DE DÉTAIL QUELS SNT LES ENJEUX DE LA SULY HAIN? garatir la promesse cliet es derières aées, la distributio coaît ue véritable mutatio avec l évolutio des modes de cosommatio.
EXERCICES : DÉNOMBREMENT
Chapitre 7 ECE 1 - Grad Nouméa - 015 EXERCICES : DÉNOMBREMENT LISTES / ARRANGEMENTS Exercice 1 : Le code ativol Pour so vélo, Toto possède u ativol a code. Le code est ue successio de trois chiffres compris
* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable
Eo7 Séries etières Eercices de Jea-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-fracefr * très facile ** facile *** difficulté moyee **** difficile ***** très difficile I : Icotourable Eercice
Gérer les applications
Gérer les applicatios E parcourat les rayos du Widows Phoe Store, vous serez e mesure de compléter les services de base de votre smartphoe à travers plus de 10 000 applicatios. Gratuites ou payates, ces
Neolane Leads. Neolane v6.0
Neolae Leads Neolae v6.0 Ce documet, aisi que le logiciel qu'il décrit, est fouri das le cadre d'u accord de licece et e peut être utilisé ou copié que das les coditios prévues par cet accord. Cette publicatio
Télé OPTIK. Plus spectaculaire que jamais.
Télé OPTIK Plus spectaculaire que jamais. Vivez toute la puissace de la télévisio sur IP grâce au réseau OPTIK 1 de TELUS et découvrez-e l extraordiaire potetiel. Télé OPTIK MC vous doe la parfaite maîtrise
Solutions particulières d une équation différentielle...
Solutios particulières d ue équatio différetielle......du premier ordre à coefficiets costats O cherche ue solutio particulière de y + ay = f, où a est ue costate réelle et f ue foctio, appelée le secod
