Université de Nice SL2M 2009-10 Algèbre 2 Matrices symétriques réelles. 4. Calcul matriciel 4.1. Application bilinéaire symétrique associée à une matrice symétrique. On considère une matrice symétrique A dans M n (R). On appelle B la base canonique (e 1,..., e n ) de R n. (1) À une telle matrice est associée une application linéaire f de Rn dans R n. Si x est un vecteur de R n, on note X la matrice colonne de ses coordonnées dans la base canonique B. Le produit de matrices AX est une matrice colonne qui est la matrice dans la base canonique B d un vecteur y de R n. Ce vecteur est l image de x par f. (2) À une telle matrice est associée une application bilinéaire symétrique de Rn R n dans R. On considère deux vecteurs x et y de R n de matrices respectives X et Y dans la base B. Le produit de matrices t Y A X est une matrice 1 1, c est-à-dire un réel. Remarquons que ce réel est le produit scalaire y f( x). On notera φ l application φ : R n R n R On note que, puisque A est symétrique, ( x, y) y f( x). t Y A X = t X t A Y = t XA Y. On a donc φ( x, y) = φ( y, x), soit encore y f( x) = f( y) x. Espace vectoriel euclidien E x y f : E E y = f( x) x y = y x y f( x) = f( x) y Dans la base B X Y A matrice carrée n n Y = AX t Y X = t XY t Y A X = t (AX)Y = t X t A Y 5. Formes bilinéaires symétriques Dans cette section on étudie les applications bilinéaires symétriques φ : E E R ( u, v) φ( u, v). où E est un espace vectoriel sur R. Comme l espace d arrivée est R on appelle une telle application forme bilinéaire symétrique. 5.1. Lemme. On considère une application bilinéaire φ comme ci-dessus qui est de plus positive, c est-à-dire v E φ( v, v) 0. L ensemble des vecteurs v de E tels que φ( v, v) = 0 est un sous-espace vectoriel de E. C est aussi le sous-ensemble { v E w E φ( v, w) = 0}
8 Démonstration. On considère un vecteur v tel que φ( v, v) = 0, un vecteur w de E et un scalaire réel λ. On calcule φ( v + λ w, v + λ w), positif ou nul par hypothèse, en utilisant la bilinéarité : 0 φ( v + λ w, v + λ w) = φ( v, v) + λ 2 φ( w, w) + 2λφ( v, w) = λ 2 φ( w, w) + 2λφ( v, w). On en déduit que la fonction λ λ 2 φ( w, w) + 2λφ( v, w) ne prend aucune valeur négative, ce qui n est possible que lorsque φ( v, w) = 0. On vérifie ensuite que l ensemble { v E w E φ( v, w) = 0} est un sous-espace vectoriel de E. C est une conséquence de la linéarité de φ par rapport à son premier argument. Remarque. En particulier, une forme bilinéaire positive φ est un produit scalaire si et seulement si l une des deux propriétés suivantes est satisfaite (1) l ensemble { v E φ( v, v) = 0} est réduit au vecteur nul. (2) le sous-espace vectoriel { v E w E φ( v, w) = 0} est réduit au vecteur nul. 5.2. Théorème. On considère un entier naturel n, un espace vectoriel euclidien E de dimension finie n et une forme bilinéaire symétrique φ sur E. Il existe une base orthonormée ( v 1,..., v n ) de vecteurs de E, et une famille de réels (λ 1,..., λ n ) telles que (1) Pour i de 1 à n, φ( v i, v i ) = λ i. (2) Pour i et j de 1 à n, i j, φ( v i, v j ) = 0. (3) Si v = n i=1 α i v i et w = n i=1 β i w i, alors En particulier, φ( v, w) = φ( v, v) = n λ i α i β i. i=1 n λ i (α i ) 2. L assertion (3) est équivalente aux deux premières, compte tenu de la bilinéarité de φ. i=1 Démonstration. La démonstration se fait par récurrence sur l entier n. Pour n = 0 il n y a rien à faire (une famille à 0 éléments est vide). On considère alors un entier n > 0, une forme bilinéaire symétrique φ sur un espace euclidien E de dimension n et on fait l hypothèse que le théorème est vrai pour toute forme bilinéaire symétrique sur un espace de dimension strictement inférieure à n. À l aide de φ, on construit une application h : R n R x h( x) := φ( x, x). La sphère unité de R n est un ensemble fermé et borné de R n, donc compact. La fonction h est continue parce que polynomiale. Un théorème important d analyse affirme que toute fonction continue sur un compact est bornée et atteint ses bornes sur ce compact. La fonction h est donc bornée sur la sphère unité et il existe un vecteur v 0 de norme 1, tel que tout vecteur v de norme 1 a une image h(v) majorée par h(v 0 ). On désigne h(v 0 ) par λ 0.
9 On considère alors l application ψ : R n R n R ( u, v) λ 0 u v φ( u, v). C est encore une forme bilinéaire symétrique parce que φ et le produit scalaire sont toutes deux des formes bilinéaires symétriques. D autre part, ψ est positive. En effet, si v est nul ψ(0, 0) = 0 et sinon ψ( v, v) = v 2 (λ 0 h( v v ) 0. puisque v est un vecteur de norme 1. v Le lemme 5.1 montre que (1) L ensemble des vecteurs v de E tels que h( v) = λ 0 v 2 est un sous-espace vectoriel F 0 de E, non reduit à 0 puisqu il contient v 0. (2) Un vecteur v est dans F 0 si et seulement si pour tout w de E, ψ(v, w) = 0. On a donc montré : v F 0 w E En particulier, si w est orthogonal à F 0, on voit que φ( w, v) = λ 0 w v v F 0 φ( w, v) = 0. Tout vecteur v de E se décompose de manière unique en v + v avec v F 0 et v F 0. On calcule φ( v, w) : φ( v, w) = φ( v + v, w + w ) = φ( v, w ) + φ( v, w ) + φ( v, w ) + φ( v, w ) = φ( v, w ) + φ( v, w ) = λ 0 v w + φ( v, w ). Il suffit donc de connaître la valeur de φ sur un couple de vecteurs de F0 pour connaître φ. Or F0 est un espace vectoriel euclidien de dimension strictement inférieure à n. On peut lui appliquer l hypothèse de récurrence : il existe une base orthonormée de F0 vérifiant les conclusions du théorème. En prenant une base orthormée de F 0 et en la concaténant avec celle obtenue pour F0, on obtient une base orthonormée de E vérifiant les conclusions du théorème. 5.2.1. Exemple. On considère la matrice symétrique ( 7 2 A := 2 4 On lui associe la forme bilinéaire symétrique φ : R 2 R 2 R ((u 1, u 2 ), (v 1, v 2 )) ( u 1 u 2 ) ( 7 2 2 4 L application h est alors h : R 2 R ). ) ( ) v1 = 7u v 1 v 1 + 4u 2 v 2 + 2u 1 v 2 + 2u 2 v 1. 2 (x 1, x 2 ) 7x 2 1 + 4x 2 2 + 4x 1 x 2.
10 Le cercle unité est l ensemble des vecteurs de norme 1, autrement dit l ensemble des vecteurs (cos θ, sin θ) pour θ réel. Pour trouver le maximum de h sur le cercle, on étudie la fonction R R θ h(cos θ, sin θ) = 7 cos 2 θ + 4 sin 2 θ + 4 sin θ cos θ = 4 + 3 2 cos 2θ + 3 + 2 sin 2θ. 2 La dérivée vaut 3 sin 2θ + 4 cos 2θ et s annule si et seulement si tan 2θ = 4 soit encore tan θ = 1 3 2 ou tan θ = 2. On vérifie que la deuxième valeur correspond à un maximum pour h. Le vecteur u = ( 2 1, ) 5 5 est de norme 1 et rend la fonction h maximum. On trouve φ( u, u) = h( u) = 8. Le vecteur v = ( 1, 2 ) 5 5 est de norme 1 et rend la fonction h minimum. On trouve φ( v, v) = h( v) = 3. La famille ( u, v) est orthonormée et on a φ( u, v) = 0. On vérifie également les relations : f( u) = 8 u et f( v) = 3 v. 5.2.2. Exemple. On considère dans R n, muni de son produit scalaire usuel, une famille de vecteurs ( w 1,..., w d ) et on veut résoudre le problème suivant : Quelle est la droite vectorielle qui est la plus proche de la famille ( w 1,..., w d )? On quantifie la question de la manière suivante : Trouver une droite vectorielle de R n telle que la somme suivante soit minimale Σ( ) := w i pr ( w i ) 2. La différence w i pr ( w i ) est orthogonale à par définition de la projection orthogonale. Le théorème de Pythagore montre alors la relation : Σ( ) := w j 2 pr ( w j ) 2. Considérons un vecteur unitaire u qui dirige. La somme Σ s écrit : Σ( ) := w j 2 w j u 2 La somme Σ( ) est une différence de deux termes. Le premier terme est indépendant de et ne dépend que de la famille de vecteurs. Le deuxième d w j u 2 est une forme quadratique associée à la forme bilinéaire symétrique φ( u, v) = w j u w j v Dans les notations du théorème, il s agit de trouver le maximum de la fonction h( u) = φ( u, u) lorsque u est de norme 1 pour en déduire le minimum de Σ( ). C est donc exactement le problème étudié dans la preuve du théorème.
Cet exemple est très utilisé en statistiques (analyse de données) ou en mécanique (axes principaux de rotation d un solide). 6. Réduction des matrices symétriques réelles On considère un entier n et une matrice symétrique réelle A. On considère la forme bilinéaire symétrique φ associée (voir 4.1). On veut calculer une base orthonormée ( v 1,..., v n ) et la famille de réels (λ 1,..., λ n ) dont le théorème 5.2 affirme l existence. Ces deux familles ont les propriétés suivantes (1) Pour i de 1 à n, v i f( v i ) = φ( v i, v i ) = λ i. (2) Pour i et j de 1 à n, i j, v j f( v i ) = φ( v i, v j ) = 0. Considérons le vecteur f( v i ) : on connait son produit scalaire avec tous les vecteurs de la base orthonormée ( v 1,..., v n ). Il vaut donc λ i v i, autrement dit : v i est un vecteur non nul du noyau de f λ i Id. 6.1. Définition. On appelle valeur propre de f un réel λ tel que le noyau ker(f λid) n est pas réduit au vecteur nul. Un vecteur non nul de ker(f λid) est appelé vecteur propre associé à la valeur propre λ. Lorsque λ est une valeur propre de f, le sous-espace vectoriel ker(f λid) est le sous-espace propre de f associé à la valeur propre λ. Il s agit donc de calculer les valeurs propres et les vecteurs propres de f à partir de la matrice A de f. On désigne par I n la matrice identité n n. 6.2. Théorème. On considère un réel λ et une application linéaire f : R n R n de matrice A dans la base B. Les propriétés suivantes sont équivalentes (1) Le noyau ker(f λid) n est pas réduit au vecteur nul (λ est valeur propre de f). (2) Le rang de la matrice A λi n est strictement inférieur à n. (3) det(a λi n ) = 0. La preuve est une application directe des propriétés du rang et du déterminant. 6.2.1. Exemple. On reprend l exemple 5.2.1. On considère la matrice symétrique ( ) 7 2 A :=. 2 4 et le déterminant det(a λi 2 ) qui vaut λ 2 11λ + 24. Les valeurs propres sont les racines de ce polynôme du second degré, 8 et 3. Les vecteurs propres associés à la valeur propre 8 sont éléments du noyau de f 8Id, c est-à-dire les solutions du système linéaire sans second membre de matrice A 8I 2 v 1 + 2v 2 = 0 2v 1 4v 2 = 0. Les deux équations sont proportionnelles et le système est de rang 1 (est-ce surprenant?). L ensemble des solutions est une droite vectorielle dirigée par le vecteur (2, 1). Un vecteur directeur de norme 1 est u := (2/ 5, 1/ 5). On opère de même pour la valeur propre 3 pour trouver un vecteur propre de norme 1 associé v := (1/ 5, 2/ 5). On constate que la famille ( u, v) est orthonormée. 11
12 6.3. Théorème. On considère une matrice symétrique A et l application linéaire associée f : R n R n. Deux vecteurs propres u et v de f, associés à des valeurs propres différentes λ et µ sont orthogonaux. Démonstration. On considère le produit scalaire u f( v). Comme v est un vecteur propre associé à la valeur propre µ on a u f( v) = u µ v = µ u v. Comme A est symétrique on a aussi u f( v) = f( u) v et comme u est un vecteur propre associé à la valeur propre λ on a f( u) v = λ u v = λ u v. Au final, on obtient (λ µ) u v = 0 qui implique u v = 0 puisque λ µ. 6.4. Théorème (Matrices orthogonales). On considère un entier n et une matrice P de M n (R). Les propriétés suivantes sont équivalentes : 1. t P P = I n (on dit que P est orthogonale). 2. La famille des vecteurs colonnes de P est orthonormée. 3. P t P = I n 4. La famille des vecteurs lignes de P est orthonormée. On considère l application linéaire g qui a pour matrice P dans la base canonique B de R n. Les propriétés suivantes sont équivalentes aux 4 précédentes : 5. Pour toute b.o.n. ( v 1,..., v n ) de R n, la famille des images (g( v 1 ),..., g( v n )) est orthonormée. 6. Il existe une b.o.n. ( v 1,..., v n ) de R n telle que la famille des images (g( v 1 ),..., g( v n )) est orthonormée. Démonstration. L équivalence entre les 2 premières propriétés est une conséquence des règles de calcul d un produit de matrices. Il en est de même pour l équivalence entre les propriétés 3 et 4. La propriété 5 implique clairement la 6. La propriété 2 signifie que 6 est vraie pour la base B. La propriété 3 signifie que t P est aussi orthogonale. Remarquons d abord qu une matrice orthogonale P est inversible. Notons ( v 1,..., v n ) la famille de ses vecteurs colonnes. C est une b.o.n. Désignons par R la matrice des coordonnées dans la base ( v 1,..., v n ) des vecteurs ( e 1,..., e n ) de la base canonique. On a P R = RP = I n (le vérifier). On en conclut que t P = R et que P t P = I n (propriété 3). Les 4 premières propriétés sont équivalentes. Montrons que la propriété 1 implique la propriété 5. On considère une famille orthonormée ( v 1,..., v n ) de vecteurs de R n. On désigne par Q la matrice des vecteurs ( v 1,..., v n ) dans la base B. Elle est donc orthogonale. La matrice produit P Q est la matrice des coordonnées de la famille (g( v 1 ),..., g( v n )). Calculons t (P Q)P Q = t Q t P P Q = t QQ = I n ce qui prouve que P Q est orthogonale, donc que la famille (g( v 1 ),..., g( v n )) est orthonormée. Montrons ensuite que la propriété 6 implique la propriété 1. Si la propriété 6 est vraie il existe une matrice orthogonale Q telle que P Q est orthogonale. On a alors I n = P Q t (P Q) = P Q t Q t P = P t P. Remarque La multiplication des matrices induit sur l ensemble des matrices n n orthogonales une structure de groupe. On note ce groupe O(n, R).
6.5. Théorème. On considère un entier n et une matrice symétrique réelle A de M n (R). Il existe une matrice orthogonale P telle que la matrice t P AP est diagonale. Démonstration. On considère une b.o.n ( v 1,..., v n ) obtenue à partir du théorème 5.2 et la matrice P des coordonnées des vecteurs ( v 1,..., v n ) dans la base canonique B. Désignons par V i la matrice colonne des coordonnées de v i dans B. Comme f( v i ) = λ i v i, on a AV i = λ i V i. Mais V i est aussi la i-ème colonne de P. En résumé AP = P D où D est la matrice diagonale Diag(λ 1,..., λ n ). On conclut en utilisant le fait que P 1 = t P. 13