Matrices symétriques réelles.

Documents pareils
Exo7. Matrice d une application linéaire. Corrections d Arnaud Bodin.

Fonctions de plusieurs variables

Introduction à l étude des Corps Finis

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer

Formes quadratiques. 1 Formes quadratiques et formes polaires associées. Imen BHOURI. 1.1 Définitions

I. Polynômes de Tchebychev

Exercices - Polynômes : corrigé. Opérations sur les polynômes

Limites finies en un point

Première partie. Préliminaires : noyaux itérés. MPSI B 6 juin 2015

1 Complément sur la projection du nuage des individus

Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre

Capes Première épreuve

Le produit semi-direct

Un K-espace vectoriel est un ensemble non vide E muni : d une loi de composition interne, c est-à-dire d une application de E E dans E : E E E

I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES

Cours de mathématiques

Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications

3 Approximation de solutions d équations

Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes.

Exercices Corrigés Premières notions sur les espaces vectoriels

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable

L ANALYSE EN COMPOSANTES PRINCIPALES (A.C.P.) Pierre-Louis GONZALEZ

Structures algébriques

Cours3. Applications continues et homéomorphismes. 1 Rappel sur les images réciproques

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

Programmes des classes préparatoires aux Grandes Ecoles

Programmation linéaire et Optimisation. Didier Smets

1 radian. De même, la longueur d un arc de cercle de rayon R et dont l angle au centre a pour mesure α radians est α R. R AB =R.

CCP PSI Mathématiques 1 : un corrigé

Calcul intégral élémentaire en plusieurs variables

Cours d analyse numérique SMI-S4

Simulation de variables aléatoires

Université Paris-Dauphine DUMI2E 1ère année, Applications

Plan du cours : électricité 1

Théorème du point fixe - Théorème de l inversion locale

De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que

FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4)

Optimisation Discrète

Problème 1 : applications du plan affine

Programmation linéaire

Calcul fonctionnel holomorphe dans les algèbres de Banach

Planche n o 22. Fonctions de plusieurs variables. Corrigé

Résolution de systèmes linéaires par des méthodes directes

[ édité le 30 avril 2015 Enoncés 1

Fonctions de deux variables. Mai 2011

Calcul différentiel sur R n Première partie

Programme de la classe de première année MPSI

Exo7. Limites de fonctions. 1 Théorie. 2 Calculs

Image d un intervalle par une fonction continue

Optimisation, traitement d image et éclipse de Soleil

NOMBRES COMPLEXES. Exercice 1 :

Fonctions de plusieurs variables. Sébastien Tordeux

Optimisation des fonctions de plusieurs variables

Continuité d une fonction de plusieurs variables


Correction du Baccalauréat S Amérique du Nord mai 2007

La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1

Chapitre. Chapitre 12. Fonctions de plusieurs variables. 1. Fonctions à valeurs réelles. 1.1 Définition. 1.2 Calcul de dérivées partielles

Continuité et dérivabilité d une fonction

Logique. Plan du chapitre

Contexte. Pour cela, elles doivent être très compliquées, c est-à-dire elles doivent être très différentes des fonctions simples,

NOTATIONS PRÉLIMINAIRES

Chapitre 2. Matrices

Comparaison de fonctions Développements limités. Chapitre 10

Approximations variationelles des EDP Notes du Cours de M2

Rappels et compléments, première partie : Nombres complexes et applications à la géométrie

ENSAE - DAKAR BROCHURE D'INFORMATION SUR LE CONCOURS DE RECRUTEMENT D ÉLÈVES INGÉNIEURS STATISTICIENS ÉCONOMISTES (I S E) Option Mathématiques CAPESA

Souad EL Bernoussi. Groupe d Analyse Numérique et Optimisation Rabat http ://

Théorie et codage de l information

Extrait du poly de Stage de Grésillon 1, août 2010

STATIQUE GRAPHIQUE ET STATIQUE ANALYTIQUE

Une introduction aux codes correcteurs quantiques

DOCM Solutions officielles = n 2 10.

Fonctions de plusieurs variables

Une forme générale de la conjecture abc

Sites web éducatifs et ressources en mathématiques

Chapitre VI - Méthodes de factorisation

Fonctions de plusieurs variables : dérivés partielles, diérentielle. Fonctions composées. Fonctions de classe C 1. Exemples

Chapitre 0 Introduction à la cinématique

Feuille TD n 1 Exercices d algorithmique éléments de correction

Exo7. Calculs de déterminants. Fiche corrigée par Arnaud Bodin. Exercice 1 Calculer les déterminants des matrices suivantes : Exercice 2.

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours.

Continuité en un point

Exercices - Nombres complexes : corrigé. Formes algébriques et trigonométriques, module et argument

Quelques tests de primalité

Mesure d angles et trigonométrie

Fonctions de plusieurs variables et applications pour l ingénieur

Chapitre 7. Statistique des échantillons gaussiens. 7.1 Projection de vecteurs gaussiens

Seconde Généralités sur les fonctions Exercices. Notion de fonction.

Chapitre VI Fonctions de plusieurs variables

Analyse fonctionnelle Théorie des représentations du groupe quantique compact libre O(n) Teodor Banica Résumé - On trouve, pour chaque n 2, la classe

Dérivées d ordres supérieurs. Application à l étude d extrema.

Programmation linéaire

Probabilités sur un univers fini

Partie 1 - Séquence 3 Original d une fonction

= 1 si n = m& où n et m sont souvent des indices entiers, par exemple, n, m = 0, 1, 2, 3, 4... En fait,! n m

LE PRODUIT SCALAIRE ( En première S )

Fibonacci et les paquerettes

Intégration et probabilités TD1 Espaces mesurés Corrigé

Relation d ordre. Manipulation des relations d ordre. Lycée Pierre de Fermat 2012/2013 Feuille d exercices

Transcription:

Université de Nice SL2M 2009-10 Algèbre 2 Matrices symétriques réelles. 4. Calcul matriciel 4.1. Application bilinéaire symétrique associée à une matrice symétrique. On considère une matrice symétrique A dans M n (R). On appelle B la base canonique (e 1,..., e n ) de R n. (1) À une telle matrice est associée une application linéaire f de Rn dans R n. Si x est un vecteur de R n, on note X la matrice colonne de ses coordonnées dans la base canonique B. Le produit de matrices AX est une matrice colonne qui est la matrice dans la base canonique B d un vecteur y de R n. Ce vecteur est l image de x par f. (2) À une telle matrice est associée une application bilinéaire symétrique de Rn R n dans R. On considère deux vecteurs x et y de R n de matrices respectives X et Y dans la base B. Le produit de matrices t Y A X est une matrice 1 1, c est-à-dire un réel. Remarquons que ce réel est le produit scalaire y f( x). On notera φ l application φ : R n R n R On note que, puisque A est symétrique, ( x, y) y f( x). t Y A X = t X t A Y = t XA Y. On a donc φ( x, y) = φ( y, x), soit encore y f( x) = f( y) x. Espace vectoriel euclidien E x y f : E E y = f( x) x y = y x y f( x) = f( x) y Dans la base B X Y A matrice carrée n n Y = AX t Y X = t XY t Y A X = t (AX)Y = t X t A Y 5. Formes bilinéaires symétriques Dans cette section on étudie les applications bilinéaires symétriques φ : E E R ( u, v) φ( u, v). où E est un espace vectoriel sur R. Comme l espace d arrivée est R on appelle une telle application forme bilinéaire symétrique. 5.1. Lemme. On considère une application bilinéaire φ comme ci-dessus qui est de plus positive, c est-à-dire v E φ( v, v) 0. L ensemble des vecteurs v de E tels que φ( v, v) = 0 est un sous-espace vectoriel de E. C est aussi le sous-ensemble { v E w E φ( v, w) = 0}

8 Démonstration. On considère un vecteur v tel que φ( v, v) = 0, un vecteur w de E et un scalaire réel λ. On calcule φ( v + λ w, v + λ w), positif ou nul par hypothèse, en utilisant la bilinéarité : 0 φ( v + λ w, v + λ w) = φ( v, v) + λ 2 φ( w, w) + 2λφ( v, w) = λ 2 φ( w, w) + 2λφ( v, w). On en déduit que la fonction λ λ 2 φ( w, w) + 2λφ( v, w) ne prend aucune valeur négative, ce qui n est possible que lorsque φ( v, w) = 0. On vérifie ensuite que l ensemble { v E w E φ( v, w) = 0} est un sous-espace vectoriel de E. C est une conséquence de la linéarité de φ par rapport à son premier argument. Remarque. En particulier, une forme bilinéaire positive φ est un produit scalaire si et seulement si l une des deux propriétés suivantes est satisfaite (1) l ensemble { v E φ( v, v) = 0} est réduit au vecteur nul. (2) le sous-espace vectoriel { v E w E φ( v, w) = 0} est réduit au vecteur nul. 5.2. Théorème. On considère un entier naturel n, un espace vectoriel euclidien E de dimension finie n et une forme bilinéaire symétrique φ sur E. Il existe une base orthonormée ( v 1,..., v n ) de vecteurs de E, et une famille de réels (λ 1,..., λ n ) telles que (1) Pour i de 1 à n, φ( v i, v i ) = λ i. (2) Pour i et j de 1 à n, i j, φ( v i, v j ) = 0. (3) Si v = n i=1 α i v i et w = n i=1 β i w i, alors En particulier, φ( v, w) = φ( v, v) = n λ i α i β i. i=1 n λ i (α i ) 2. L assertion (3) est équivalente aux deux premières, compte tenu de la bilinéarité de φ. i=1 Démonstration. La démonstration se fait par récurrence sur l entier n. Pour n = 0 il n y a rien à faire (une famille à 0 éléments est vide). On considère alors un entier n > 0, une forme bilinéaire symétrique φ sur un espace euclidien E de dimension n et on fait l hypothèse que le théorème est vrai pour toute forme bilinéaire symétrique sur un espace de dimension strictement inférieure à n. À l aide de φ, on construit une application h : R n R x h( x) := φ( x, x). La sphère unité de R n est un ensemble fermé et borné de R n, donc compact. La fonction h est continue parce que polynomiale. Un théorème important d analyse affirme que toute fonction continue sur un compact est bornée et atteint ses bornes sur ce compact. La fonction h est donc bornée sur la sphère unité et il existe un vecteur v 0 de norme 1, tel que tout vecteur v de norme 1 a une image h(v) majorée par h(v 0 ). On désigne h(v 0 ) par λ 0.

9 On considère alors l application ψ : R n R n R ( u, v) λ 0 u v φ( u, v). C est encore une forme bilinéaire symétrique parce que φ et le produit scalaire sont toutes deux des formes bilinéaires symétriques. D autre part, ψ est positive. En effet, si v est nul ψ(0, 0) = 0 et sinon ψ( v, v) = v 2 (λ 0 h( v v ) 0. puisque v est un vecteur de norme 1. v Le lemme 5.1 montre que (1) L ensemble des vecteurs v de E tels que h( v) = λ 0 v 2 est un sous-espace vectoriel F 0 de E, non reduit à 0 puisqu il contient v 0. (2) Un vecteur v est dans F 0 si et seulement si pour tout w de E, ψ(v, w) = 0. On a donc montré : v F 0 w E En particulier, si w est orthogonal à F 0, on voit que φ( w, v) = λ 0 w v v F 0 φ( w, v) = 0. Tout vecteur v de E se décompose de manière unique en v + v avec v F 0 et v F 0. On calcule φ( v, w) : φ( v, w) = φ( v + v, w + w ) = φ( v, w ) + φ( v, w ) + φ( v, w ) + φ( v, w ) = φ( v, w ) + φ( v, w ) = λ 0 v w + φ( v, w ). Il suffit donc de connaître la valeur de φ sur un couple de vecteurs de F0 pour connaître φ. Or F0 est un espace vectoriel euclidien de dimension strictement inférieure à n. On peut lui appliquer l hypothèse de récurrence : il existe une base orthonormée de F0 vérifiant les conclusions du théorème. En prenant une base orthormée de F 0 et en la concaténant avec celle obtenue pour F0, on obtient une base orthonormée de E vérifiant les conclusions du théorème. 5.2.1. Exemple. On considère la matrice symétrique ( 7 2 A := 2 4 On lui associe la forme bilinéaire symétrique φ : R 2 R 2 R ((u 1, u 2 ), (v 1, v 2 )) ( u 1 u 2 ) ( 7 2 2 4 L application h est alors h : R 2 R ). ) ( ) v1 = 7u v 1 v 1 + 4u 2 v 2 + 2u 1 v 2 + 2u 2 v 1. 2 (x 1, x 2 ) 7x 2 1 + 4x 2 2 + 4x 1 x 2.

10 Le cercle unité est l ensemble des vecteurs de norme 1, autrement dit l ensemble des vecteurs (cos θ, sin θ) pour θ réel. Pour trouver le maximum de h sur le cercle, on étudie la fonction R R θ h(cos θ, sin θ) = 7 cos 2 θ + 4 sin 2 θ + 4 sin θ cos θ = 4 + 3 2 cos 2θ + 3 + 2 sin 2θ. 2 La dérivée vaut 3 sin 2θ + 4 cos 2θ et s annule si et seulement si tan 2θ = 4 soit encore tan θ = 1 3 2 ou tan θ = 2. On vérifie que la deuxième valeur correspond à un maximum pour h. Le vecteur u = ( 2 1, ) 5 5 est de norme 1 et rend la fonction h maximum. On trouve φ( u, u) = h( u) = 8. Le vecteur v = ( 1, 2 ) 5 5 est de norme 1 et rend la fonction h minimum. On trouve φ( v, v) = h( v) = 3. La famille ( u, v) est orthonormée et on a φ( u, v) = 0. On vérifie également les relations : f( u) = 8 u et f( v) = 3 v. 5.2.2. Exemple. On considère dans R n, muni de son produit scalaire usuel, une famille de vecteurs ( w 1,..., w d ) et on veut résoudre le problème suivant : Quelle est la droite vectorielle qui est la plus proche de la famille ( w 1,..., w d )? On quantifie la question de la manière suivante : Trouver une droite vectorielle de R n telle que la somme suivante soit minimale Σ( ) := w i pr ( w i ) 2. La différence w i pr ( w i ) est orthogonale à par définition de la projection orthogonale. Le théorème de Pythagore montre alors la relation : Σ( ) := w j 2 pr ( w j ) 2. Considérons un vecteur unitaire u qui dirige. La somme Σ s écrit : Σ( ) := w j 2 w j u 2 La somme Σ( ) est une différence de deux termes. Le premier terme est indépendant de et ne dépend que de la famille de vecteurs. Le deuxième d w j u 2 est une forme quadratique associée à la forme bilinéaire symétrique φ( u, v) = w j u w j v Dans les notations du théorème, il s agit de trouver le maximum de la fonction h( u) = φ( u, u) lorsque u est de norme 1 pour en déduire le minimum de Σ( ). C est donc exactement le problème étudié dans la preuve du théorème.

Cet exemple est très utilisé en statistiques (analyse de données) ou en mécanique (axes principaux de rotation d un solide). 6. Réduction des matrices symétriques réelles On considère un entier n et une matrice symétrique réelle A. On considère la forme bilinéaire symétrique φ associée (voir 4.1). On veut calculer une base orthonormée ( v 1,..., v n ) et la famille de réels (λ 1,..., λ n ) dont le théorème 5.2 affirme l existence. Ces deux familles ont les propriétés suivantes (1) Pour i de 1 à n, v i f( v i ) = φ( v i, v i ) = λ i. (2) Pour i et j de 1 à n, i j, v j f( v i ) = φ( v i, v j ) = 0. Considérons le vecteur f( v i ) : on connait son produit scalaire avec tous les vecteurs de la base orthonormée ( v 1,..., v n ). Il vaut donc λ i v i, autrement dit : v i est un vecteur non nul du noyau de f λ i Id. 6.1. Définition. On appelle valeur propre de f un réel λ tel que le noyau ker(f λid) n est pas réduit au vecteur nul. Un vecteur non nul de ker(f λid) est appelé vecteur propre associé à la valeur propre λ. Lorsque λ est une valeur propre de f, le sous-espace vectoriel ker(f λid) est le sous-espace propre de f associé à la valeur propre λ. Il s agit donc de calculer les valeurs propres et les vecteurs propres de f à partir de la matrice A de f. On désigne par I n la matrice identité n n. 6.2. Théorème. On considère un réel λ et une application linéaire f : R n R n de matrice A dans la base B. Les propriétés suivantes sont équivalentes (1) Le noyau ker(f λid) n est pas réduit au vecteur nul (λ est valeur propre de f). (2) Le rang de la matrice A λi n est strictement inférieur à n. (3) det(a λi n ) = 0. La preuve est une application directe des propriétés du rang et du déterminant. 6.2.1. Exemple. On reprend l exemple 5.2.1. On considère la matrice symétrique ( ) 7 2 A :=. 2 4 et le déterminant det(a λi 2 ) qui vaut λ 2 11λ + 24. Les valeurs propres sont les racines de ce polynôme du second degré, 8 et 3. Les vecteurs propres associés à la valeur propre 8 sont éléments du noyau de f 8Id, c est-à-dire les solutions du système linéaire sans second membre de matrice A 8I 2 v 1 + 2v 2 = 0 2v 1 4v 2 = 0. Les deux équations sont proportionnelles et le système est de rang 1 (est-ce surprenant?). L ensemble des solutions est une droite vectorielle dirigée par le vecteur (2, 1). Un vecteur directeur de norme 1 est u := (2/ 5, 1/ 5). On opère de même pour la valeur propre 3 pour trouver un vecteur propre de norme 1 associé v := (1/ 5, 2/ 5). On constate que la famille ( u, v) est orthonormée. 11

12 6.3. Théorème. On considère une matrice symétrique A et l application linéaire associée f : R n R n. Deux vecteurs propres u et v de f, associés à des valeurs propres différentes λ et µ sont orthogonaux. Démonstration. On considère le produit scalaire u f( v). Comme v est un vecteur propre associé à la valeur propre µ on a u f( v) = u µ v = µ u v. Comme A est symétrique on a aussi u f( v) = f( u) v et comme u est un vecteur propre associé à la valeur propre λ on a f( u) v = λ u v = λ u v. Au final, on obtient (λ µ) u v = 0 qui implique u v = 0 puisque λ µ. 6.4. Théorème (Matrices orthogonales). On considère un entier n et une matrice P de M n (R). Les propriétés suivantes sont équivalentes : 1. t P P = I n (on dit que P est orthogonale). 2. La famille des vecteurs colonnes de P est orthonormée. 3. P t P = I n 4. La famille des vecteurs lignes de P est orthonormée. On considère l application linéaire g qui a pour matrice P dans la base canonique B de R n. Les propriétés suivantes sont équivalentes aux 4 précédentes : 5. Pour toute b.o.n. ( v 1,..., v n ) de R n, la famille des images (g( v 1 ),..., g( v n )) est orthonormée. 6. Il existe une b.o.n. ( v 1,..., v n ) de R n telle que la famille des images (g( v 1 ),..., g( v n )) est orthonormée. Démonstration. L équivalence entre les 2 premières propriétés est une conséquence des règles de calcul d un produit de matrices. Il en est de même pour l équivalence entre les propriétés 3 et 4. La propriété 5 implique clairement la 6. La propriété 2 signifie que 6 est vraie pour la base B. La propriété 3 signifie que t P est aussi orthogonale. Remarquons d abord qu une matrice orthogonale P est inversible. Notons ( v 1,..., v n ) la famille de ses vecteurs colonnes. C est une b.o.n. Désignons par R la matrice des coordonnées dans la base ( v 1,..., v n ) des vecteurs ( e 1,..., e n ) de la base canonique. On a P R = RP = I n (le vérifier). On en conclut que t P = R et que P t P = I n (propriété 3). Les 4 premières propriétés sont équivalentes. Montrons que la propriété 1 implique la propriété 5. On considère une famille orthonormée ( v 1,..., v n ) de vecteurs de R n. On désigne par Q la matrice des vecteurs ( v 1,..., v n ) dans la base B. Elle est donc orthogonale. La matrice produit P Q est la matrice des coordonnées de la famille (g( v 1 ),..., g( v n )). Calculons t (P Q)P Q = t Q t P P Q = t QQ = I n ce qui prouve que P Q est orthogonale, donc que la famille (g( v 1 ),..., g( v n )) est orthonormée. Montrons ensuite que la propriété 6 implique la propriété 1. Si la propriété 6 est vraie il existe une matrice orthogonale Q telle que P Q est orthogonale. On a alors I n = P Q t (P Q) = P Q t Q t P = P t P. Remarque La multiplication des matrices induit sur l ensemble des matrices n n orthogonales une structure de groupe. On note ce groupe O(n, R).

6.5. Théorème. On considère un entier n et une matrice symétrique réelle A de M n (R). Il existe une matrice orthogonale P telle que la matrice t P AP est diagonale. Démonstration. On considère une b.o.n ( v 1,..., v n ) obtenue à partir du théorème 5.2 et la matrice P des coordonnées des vecteurs ( v 1,..., v n ) dans la base canonique B. Désignons par V i la matrice colonne des coordonnées de v i dans B. Comme f( v i ) = λ i v i, on a AV i = λ i V i. Mais V i est aussi la i-ème colonne de P. En résumé AP = P D où D est la matrice diagonale Diag(λ 1,..., λ n ). On conclut en utilisant le fait que P 1 = t P. 13