Cours et Exercices de Mécanique :



Documents pareils
10 leçon 2. Leçon n 2 : Contact entre deux solides. Frottement de glissement. Exemples. (PC ou 1 er CU)

Chapitre 0 Introduction à la cinématique

Chafa Azzedine - Faculté de Physique U.S.T.H.B 1

Problèmes sur le chapitre 5

Continuité et dérivabilité d une fonction

LES LOIS PHYSIQUES APPLIQUÉES AUX DEUX-ROUES : 1. LA FORCE DE GUIDAGE

Erratum de MÉCANIQUE, 6ème édition. Introduction Page xxi (milieu de page) G = 6, m 3 kg 1 s 2

M6 MOMENT CINÉTIQUE D UN POINT MATÉRIEL

Cours de Mécanique du point matériel

Michel Henry Nicolas Delorme

Oscillations libres des systèmes à deux degrés de liberté

STATIQUE GRAPHIQUE ET STATIQUE ANALYTIQUE

OM 1 Outils mathématiques : fonction de plusieurs variables

Chap 8 - TEMPS & RELATIVITE RESTREINTE

Initiation à la Mécanique des Fluides. Mr. Zoubir HAMIDI

Repérage d un point - Vitesse et

Les correcteurs accorderont une importance particulière à la rigueur des raisonnements et aux représentations graphiques demandées.

Chapitre 1 Cinématique du point matériel

Chapitre 2 Les ondes progressives périodiques

Exprimer ce coefficient de proportionnalité sous forme de pourcentage : 3,5 %

DYNAMIQUE DE FORMATION DES ÉTOILES

Concours EPITA 2009 Epreuve de Sciences Industrielles pour l ingénieur La suspension anti-plongée de la motocyclette BMW K1200S

Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures)

Premier principe de la thermodynamique - conservation de l énergie

I - Quelques propriétés des étoiles à neutrons

DÉRIVÉES. I Nombre dérivé - Tangente. Exercice 01 (voir réponses et correction) ( voir animation )

Chapitre 3. Quelques fonctions usuelles. 1 Fonctions logarithme et exponentielle. 1.1 La fonction logarithme

Chapitre 1 Régime transitoire dans les systèmes physiques

1 Définition. 2 Systèmes matériels et solides. 3 Les actions mécaniques. Le système matériel : Il peut être un ensemble.un sous-ensemble..

La fonction exponentielle

1 Mise en application

Items étudiés dans le CHAPITRE N5. 7 et 9 p 129 D14 Déterminer par le calcul l'antécédent d'un nombre par une fonction linéaire

Q6 : Comment calcule t-on l intensité sonore à partir du niveau d intensité?

Calcul intégral élémentaire en plusieurs variables

MATIE RE DU COURS DE PHYSIQUE

Mesure de la dépense énergétique

Voyez la réponse à cette question dans ce chapitre.

Chapitre 6. Fonction réelle d une variable réelle

DISQUE DUR. Figure 1 Disque dur ouvert

TD de Physique n o 1 : Mécanique du point

Mécanique. 1 Forces. 1.1 Rappel. 1.2 Mesurer des forces. 3BC - AL Mécanique 1

Dimensionnement d une roue autonome pour une implantation sur un fauteuil roulant

TP 7 : oscillateur de torsion

TS Physique Satellite à la recherche de sa planète Exercice résolu

Cours d électricité. Circuits électriques en courant constant. Mathieu Bardoux. 1 re année

I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES

Chapitre 5. Le ressort. F ext. F ressort

Chapitre 5 : Le travail d une force :

Les calculatrices sont autorisées

Planche n o 22. Fonctions de plusieurs variables. Corrigé

Développements limités, équivalents et calculs de limites

Chapitre 2 : Caractéristiques du mouvement d un solide

1 Problème 1 : L avion solaire autonome (durée 1h)

CHAPITRE. Le mouvement en une dimension CORRIGÉ DES EXERCICES

Cours d Analyse. Fonctions de plusieurs variables

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable

Comparaison de fonctions Développements limités. Chapitre 10

DM n o 8 TS Physique 10 (satellites) + Chimie 12 (catalyse) Exercice 1 Lancement d un satellite météorologique

LE PROCESSUS ( la machine) la fonction f. ( On lit : «fonction f qui à x associe f (x)» )

Exercice 1. Exercice n 1 : Déséquilibre mécanique

Plan du cours : électricité 1

La charge électrique C6. La charge électrique

document proposé sur le site «Sciences Physiques en BTS» : BTS AVA 2015

Trépier avec règle, ressort à boudin, chronomètre, 5 masses de 50 g.

F411 - Courbes Paramétrées, Polaires

Module d Electricité. 2 ème partie : Electrostatique. Fabrice Sincère (version 3.0.1)

Mesures et incertitudes

TSTI 2D CH X : Exemples de lois à densité 1

Corrigé Exercice 1 : BRIDE HYDRAULIQUE AVEC HYPOTHÈSE PROBLÈME PLAN.

Fonctions de plusieurs variables

L ANALYSE EN COMPOSANTES PRINCIPALES (A.C.P.) Pierre-Louis GONZALEZ

Angles orientés et trigonométrie

Chapitre 2 Le problème de l unicité des solutions

Test : principe fondamental de la dynamique et aspect énergétique

Cours IV Mise en orbite

FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4)

NOTICE DOUBLE DIPLÔME

LE PRODUIT SCALAIRE ( En première S )

Représentation géométrique d un nombre complexe

Limites finies en un point

Les moments de force. Ci-contre, un schéma du submersible MIR où l on voit les bras articulés pour la récolte d échantillons [ 1 ]

Correction du Baccalauréat S Amérique du Nord mai 2007

Sujet proposé par Yves M. LEROY. Cet examen se compose d un exercice et de deux problèmes. Ces trois parties sont indépendantes.

Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en Énoncé.

Précision d un résultat et calculs d incertitudes

LA PUISSANCE DES MOTEURS. Avez-vous déjà feuilleté le catalogue d un grand constructeur automobile?

Chapitre 5: Oscillations d un pendule élastique horizontal

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer

Dérivation : cours. Dérivation dans R

BACCALAURÉAT GÉNÉRAL SÉRIE SCIENTIFIQUE

CHAPITRE. Le mouvement en deux dimensions CORRIGÉ DES EXERCICES

Mesure d angles et trigonométrie

Interaction milieux dilués rayonnement Travaux dirigés n 2. Résonance magnétique : approche classique

MOTO ELECTRIQUE. CPGE / Sciences Industrielles pour l Ingénieur TD06_08 Moto électrique DIAGRAMME DES INTER-ACTEURS UTILISATEUR ENVIRONNEMENT HUMAIN

Fonction quadratique et trajectoire

TD 9 Problème à deux corps

1 radian. De même, la longueur d un arc de cercle de rayon R et dont l angle au centre a pour mesure α radians est α R. R AB =R.

Mécanique : Cinématique du point. Chapitre 1 : Position. Vitesse. Accélération

8.1 Généralités sur les fonctions de plusieurs variables réelles. f : R 2 R (x, y) 1 x 2 y 2

La Mesure du Temps. et Temps Solaire Moyen H m.

Transcription:

Cours et Eercices de Mécanique : Mécanique du Point Ingénieur CESI Préparation au tests de sélection Version 40-1 -

Programme de physique B Mécanique Chapitre 5 : Statique - Forces, moments de forces, - Equations à l équilibre - Notion de frottement Chapitre 6 : Cinématique - Vecteurs position, vitesse et accélération en coordonnées cartésiennes - Mouvements rectilignes uniforme et uniformément accéléré Chapitre 7 : Dynamique - Notion de référentiel galiléen - Relation fondamentale de la dynamique pour les systèmes en translation, dans un référentiel galiléen - Applications, notamment à la chute libre Chapitre 8 : Energétique - Travail, puissance, - Energie cinétique de translation, - Energie potentielle de pesanteur, - Energie mécanique - Théorème de l énergie cinétique Version 40 - -

Répartition des séances : Programme PFI Mars 005 Séance 1 Séance Séance 3 Séance 4 Séance 5 Séance 6 Séance 7 Séance 8 Séance 9 Séance 10 Thème 1 Thème Thème 3 Grandeurs et unités Statique - Grandeurs, unités - Équations au dimensions Cinématique - Mouvement rectiligne uniforme et uniformément accéléré Énergétique - Energie cinétique de translation - Travail et puissance, - Energie potentielle de pesanteur, - Energie mécanique - Théorème de l énergie cinétique Electricité - Notion de résistance, de condensateur, d inductance Dynamique - Systèmes en translation, - PFD, - Application à la chute libre Electrocinétique - Loi d Ohm - Règle du diviseur de potentiel - Lois de Kirchoff - Théorème de superposition - Electrocinétique - Théorème de Millman Régime transitoire Régime alternatif sinusoïdal Etude qualitative des circuits du 1 er et - Grandeurs alternatives du nd ordre en régime transitoire - Circuit RLC série! (RC, LR, LC, RLC) - Diagramme de Fresnel Régime alternatif sinusoïdal - Circuit en notation complee Test blanc Corrigé Approfondissements : partir des sujets demandés par les élèves Recueil d eercices La difficulté des eercices est indiquée par des carrés : Pas de carré Facile Moins facile Difficile Très difficile (pour aller plus loin) Version 40-3 -

Table des matières 1 RAPPELS DE NOTIONS FONDAMENTALES 7 11 GRANDEURS PHYSIQUES 7 1 UNITES 7 13 ÉQUATIONS AUX DIMENSIONS 8 14 NOMBRES SANS DIMENSIONS 8 15 PRODUIT SCALAIRE ET PRODUIT VECTORIEL 8 151 Détermination d un vecteur 8 15 Produit scalaire et norme d un vecteur 9 153 Produit vectoriel 9 MECANIQUE DU POINT MATERIEL 11 1 GENERALITES 11 11 Notion d évènement 11 1 Mesure du temps 11 13 Repère d espace 11 14 Temps d un repère Référentiel 11 CINEMATIQUE 11 1 Vecteurs position, vitesse et accélération d un point 11 3 DYNAMIQUE DU POINT 1 31 Masse 1 3 Quantité de mouvement 1 33 Principe de l inertie 1 331 Première loi de Newton : 1 33 Notions de Force 13 34 Principe fondamental de la dynamique du point 13 35 Principe des actions réciproques ou troisième loi de Newton 13 36 Cas Particulier de l équilibre Statique 14 37 Moment d une force 14 4 CAS PARTICULIER D UN SYSTEME EN EQUILIBRE STATIQUE 14 5 NOTIONS DE FROTTEMENT 14 51 Généralité 14 5 Coefficient de frottement 15 6 PUISSANCE ET ENERGIE EN REFERENTIEL GALILEEN 16 61 Puissance d une force dans un référentiel R 16 6 Travail d une force dans un référentiel R 16 63 Théorèmes de la puissance cinétique et de l énergie cinétique 16 631 Théorème de la puissance cinétique 16 63 Théorème de l énergie cinétique 17 64 Champs de forces conservatives 17 641 Particule dans un champ de pesanteur uniforme 17 64 Gradient d une fonction et différentielle totale eacte 17 643 Énergie potentielle 18 644 Énergie mécanique d un point matériel dans un référentiel R 18 7 RESUME MECANIQUE : 19 71 Vitesse et accélération : 19 7 Son accélération est : 19 73 Principe Fondamental de la dynamique : 19 74 Poids et Gravitation 19 75 Moment des forces 19 76 Théorème de l énergie cinétique Energie potentielle 19 3 ENONCES 0 31 RAPPEL DE NOTIONS FONDAMENTALES 0 311 Unité de G 0 31 Unité de la constante de raideur d un ressort 0 Version 40-4 -

313 Loi de Stefan 0 314 Unités dérivées 0 315 Produit scalaire et produit vectoriel 1 316 Aire d un triangle 1 317 Double produit vectoriel et scalaire 1 3 MECANIQUE DU POINT MATERIEL 31 Automobile accélérant 3 Représentation graphique du mouvement 33 Course de 100 m 34 La mouche 35 Attaque d une banque 36 Chute libre et rencontre 3 37 Vitesse constante sur route 3 38 Malle sur un parquet 3 39 Boule de bowling 3 310 Equations paramétriques 3 311 Le terrain de Volley 3 31 Accélération proportionnelle à la vitesse 3 313 Mouvement rectiligne uniformément accéléré 4 314 Equations horaires 4 315 Equation paramétrique Trajectoire 4 316 Plus vite que son ombre? 4 317 Cric 4 318 Questions 5 319 Palet glissant sans frottement 5 30 Echelle 5 31 Trajectoire d un javelot 6 3 Balistique: tir au pigeon 6 33 Glissement sans frottement sur un plan incliné 6 34 Freinage d un parachutiste 7 35 Serrage d écrou 7 36 Balance en équilibre 7 37 Clé plate 7 38 Le bâton plié sur le pivot 8 39 Poulies et traction 8 330 Calcul d énergie cinétique 8 331 Énergie potentielle du ressort 8 33 Attention au train 9 333 Energie nécessaire de poussée 9 334 Puissance de montée 9 335 Bateau à moteur 9 336 Ressort horizontal et vertical 9 337 Plan incliné et ressort 30 338 Groupement série et parallèle de deu ressorts 30 339 Rebond d une balle Un paradoe classique 30 4 SOLUTIONS 31 41 NOTIONS FONDAMENTALES 31 411 Unité de G 31 41 Unité de la constante de raideur d un ressort 31 413 Loi de Stefan 31 414 Unités dérivées 31 415 Produit scalaire et produit vectoriel 31 416 Aire d un triangle 3 417 Double produit vectoriel et scalaire 3 4 MECANIQUE DU POINT MATERIEL 33 41 Automobile accélérant 33 4 Représentation graphique du mouvement 33 43 Course de 100 m 34 44 La mouche 35 Version 40-5 -

45 Attaque d une banque 35 46 Chute libre et rencontre 35 47 Vitesse constante sur route 36 48 Malle sur un parquet 36 49 Boule de bowling 36 410 Equations paramétriques 36 411 Terrain de volley 36 41 Accélération proportionnelle à la vitesse 37 413 Mouvement rectiligne uniformément accéléré 37 414 Equations horaires 38 415 Equation paramétrique Trajectoire 38 416 Plus vite que son ombre? 38 417 Cric 38 418 Questions 38 419 Palet glissant sans frottement 40 40 Echelle 40 41 Trajectoire d un javelot 41 4 Balistique: tir au pigeon 44 43 Glissement sans frottement sur un plan incliné 44 44 Freinage d un parachutiste 45 45 Serrage d écrou 45 46 Balance en équilibre 46 47 Clé plate 46 48 Le bâton plié sur le pivot 46 49 Poulies et traction 47 430 Calcul d énergie cinétique 47 431 Énergie potentielle du ressort 47 43 Attention au train 48 433 Energie nécessaire de poussée 48 434 Puissance de montée 48 435 Bateau à moteur 48 436 Ressort horizontal et vertical 48 437 Plan incliné et ressort 50 438 Groupement série et parallèle de deu ressorts 50 439 Rebond d une balle Un paradoe classique 51 Version 40-6 -

1 Rappels de notions fondamentales 11 Grandeurs physiques Une grandeur dite scalaire est caractérisée par un nombre («intensité») et une unité Eemple : La pression s eprime en Pascal (Pa) Une grandeur vectorielle est caractérisée par un vecteur et une unité Un vecteur est lui-même caractérisé par un sens et une norme AB = AB u avec norme de u, u = 1 et AB distance entre les points A et B u B 1 Unités Le système international est basé sur 7 grandeurs fondamentales A Grandeurs Unité Symbole Longueur mètre m Masse kilogramme kg Temps seconde s Courant électrique (intensité) ampère A Température thermodynamique kelvin K Quantité de matière mole mol Intensité lumineuse candela cd Chaque unité reçoit des mesures de référence les plus précises possibles, ce qui implique une évolution avec les précisions disponibles de l époque Par eemple : 1 m : longueur parcouru par la lumière dans le vide pendant 1/99 79 458 s (auparavant, il s agissait d une barre de platine iridié à la température de 0 C Pavillon de Breteuil) 1 kg : masse du prototype international Pavillon de Breteuil 1 s : durée de 9 19 631 770 périodes du rayonnement correspondant à la transition de niveau hyperfins de base du Cs 133 La définition précédente (en gros 1/31 556 95,9747 de l année 1900) posait des problèmes pour répéter la mesure 1 A : courant qui, maintenu dans conducteurs de longueur infinie et de section négligeable, placés à 1 m de distance dans le vide, produisent une force de 10-7 N par mètre linéaire 1 K : fraction (1/73,16) de la température thermodynamique du point triple de l eau (liquide + solide + vapeur) définie sur le diagramme P = f (t) 1 mol : quantité d entités élémentaires identique à celle contenue dans 0,01 kg de C1 Version 40-7 -

1 cd : intensité lumineuse dans une direction donnée pour une source émettant un rayonnement monochromatique à la fréquence de 54010 1 Hz avec une intensité de radiation de 1/688 Wsr -1 13 Équations au dimensions Les équations au dimensions permettent de vérifier la cohérence d une formule ou de trouver l unité d une grandeur Eemple : le principe fondamental de la dynamique dit que le lien entre la force appliquée et l accélération subie est : F = m a On sait, par ailleurs que la force s eprime en Newton et que l accélération s eprime en ms - On peut en déduire immédiatement l unité du Newton : [F] = [M] [L] [T] - => 1 N = 1 kgms - 14 Nombres sans dimensions À deu dimensions, on définit le radian comme suit : On a : l = R α La longueur de l arc de cercle est égale au rayon multiplié par l angle en radian Si α = π, on retrouve la formule de la circonférence du cercle : L = π R α R l À trois dimensions, on procède de la même manière en définissant le stéradian : On a : S = R ω Dans le cas de la sphère, on a ω = 4π L angle solide sous lequel on R voit tout l espace est 4 π stéradian L aire d une sphère est donc : S = 4πR ω S 15 Produit scalaire et produit vectoriel 151 Détermination d un vecteur Soit deu points, A et B, dans un espace à trois dimensions orthonormé de repère (O, i, j,k ) Les coordonnées des points A et B dans ce repère sont : A( A,y A,z A),B( B,y B,z B) Version 40-8 -

k z A z B A B z u v B 0 y A y B j 0 u φ v y i A Le vecteur OA s écrit : OA = Ai + yaj + zak Le vecteur OB s écrit : OB = Bi + ybj + zbk Le vecteur AB se calcule aisément : AB = AO + OB = OA + OB = i + y y j + z z k ( ) ( ) ( ) B A B A B A 15 Produit scalaire et norme d un vecteur Soient u et v deu vecteurs dans un espace à 3 dimensions orthonormé de repère (O, i, j,k ) Le produit scalaire de u par v est : u v = u v cos( u, v ) = u v cos φ Le résultat est un scalaire Dans le repère, il est facile de montrer que : u v = u v + u y v y + u z v z Remarque : u v = v u La norme au carré d un vecteur, u, est donnée par le produit scalaire du vecteur par luimême : u = u u = u + u + u y z Remarque : lorsque l on effectue le produit scalaire de deu vecteur, géométriquement, cela revient à projeter un vecteur sur l ae définit par le second 153 Produit vectoriel Le produit vectoriel de u par v est : u v = u v sin( u, v ) e = u v sin φ e Le résultat est un vecteur perpendiculaire au deu autres vecteurs tel que ( u, v, u v ) forme un trièdre directe Dans le repère, le produit vectoriel s obtient en écrivant : Version 40-9 -

Remarque : u v = - v u u v u v u v u v= u v = u v u v y z z y y y z z u v u v u v z z y y On pourra vérifier ou démontrer que : a ( b c) = b( a c) c( a b) cab», relation dite : «back Version 40-10 -

Mécanique du point matériel 1 Généralités 11 Notion d évènement Les phénomènes physiques peuvent être considérés comme des ensembles d évènements, de phénomènes élémentaires caractérisés en associant à l espace ambiant et au temps deu espaces métriques, l un à 3D et l autre à 1D 1 Mesure du temps La mesure du temps suppose une orientation du temps, du passé vers le futur Elle nécessite une origine et un moyen de mesure, soit une horloge 0 t 13 Repère d espace On appelle repère d espace R un ensemble de points dont les distances mutuels sont invariables au cours du temps On caractérise généralement un tel repère d espace par un point d espace O, choisi conventionnellement comme origine du repère, et une base orthonormée ( e,e,e y z ) On note alors R = (O, e, e, y ez ) ou plus brièvement R = Oyz 14 Temps d un repère Référentiel L ensemble d un repère d espace et d un repère de temps constitue un référentiel Cinématique La cinématique est l étude des mouvements des corps indépendamment des causes qui les produisent z 0 φ 1 Vecteurs position, vitesse et accélération d un point ρ A H y Le vecteur position lié au point A dans le référentiel R(O,,y,z) est : OA Par définition, la vitesse du point A par rapport à R est : doa v( A/R) = dt Son accélération est : dv( A / R) doa γ ( A/R) = = dt dt R R R Version 40-11 -

En coordonnées cartésiennes : OA = e + y ey + z ez où e,e,e y z sont les vecteurs de la base et sont normés à l unité On peut écrire : OA y z La vitesse s obtient en dérivant le vecteur position par rapport au temps La dérivée des vecteurs de la base dans le repère R est nulle puisqu ils sont constants On en déduit : v A/R ( ) y z et γ ( A/R) y z ; la notation avec un point signifie t 3 Dynamique du point La dynamique est l étude des mouvements des corps en relation avec les causes, appelées Forces, qui les produisent 31 Masse Epérience : il est plus difficile de communiquer une vitesse à un ballon de football qu à une balle de tennis La vitesse d un corps ne suffit pas à décrire son mouvement Il faut introduire une quantité caractérisant la «répugnance» du corps à toute modification de son mouvement, c est-à-dire son inertie Nous admettons qu il est possible d associer à un point matériel un scalaire positif, m, qui est sa masse La masse est supposée indépendante de l état du mouvement du point et du référentiel choisi 3 Quantité de mouvement La quantité de mouvement (parfois appelé Impulsion) pour un point matériel de masse m et de vitesse v par rapport à R est : p = mv 33 Principe de l inertie 331 Première loi de Newton : Enoncé historique : Tout corps persévère dans son état de repos ou de mouvement rectiligne uniforme, sauf si des forces «imprimées» le contraignent d en changer Enoncé actuel : Par rapport à tout référentiel privilégié R, qualifié de galiléen, tout point matériel A, éloigné de tout autre corps, a un mouvement rectiligne uniforme : v= cte La propriété ci-dessus constitue une définition des repères galiléens et le principe d inertie postule leur eistence Le caractère «privilégié» des référentiels galiléens apparaît dans le fait que les lois de la mécanique et notamment le Principe Fondamental ne sont valables que dans de tels référentiels Version 40-1 -

On introduit le référentiel de Copernic : Le référentiel de Copernic a, par définition son origine au barycentre du système solaire ; ses aes sont définis par les directions de trois étoiles très éloignées (dites «fies») Un repère galiléen est un repère en translation rectiligne et uniforme dans le repère de Copernic 33 Notions de Force Considérons un point dont le mouvement n est pas rectiligne uniforme dans un référentiel galiléen (son accélération est différente de 0) Pour epliquer un tel mouvement, on admet que le point n est pas isolé : il est soumis à une interaction L epérience montre que toutes les interactions peuvent être décrites par une grandeur vectorielle que nous appellerons Force 34 Principe fondamental de la dynamique du point Dans un référentiel galiléen, une modification de la vitesse d un point doit être attribuée à une cause : la force F agissant sur le point Encore faut-il tenir compte de l inertie du point sur lequel s eerce la force : Enoncé historique : Le changement de mouvement est proportionnel à la force imprimée et s effectue suivant la droite par laquelle cette force est imprimée Enoncé actuel : Par rapport à un référentiel galiléen R, le mouvement d un point matériel A de masse m soumis à plusieurs forces etérieures, dont la somme est F, satisfait la relation : soit si la masse m est constante : F et dp =, dt F et = m γ 35 Principe des actions réciproques ou troisième loi de Newton Soit deu points matériels M 1 et M en interaction Les forces d interaction F MM et F 1 MM sont 1 opposées et colinéaires à l ae (M 1 M ) Ce principe des actions réciproques, nommés principe de l action et de la réaction, se traduit par : F = F MM 1 MM1 Cas particulier des forces intérieures : La somme des forces intérieures appliquées à un point matériel ou un objet solide est nulle Dans le cas contraire, il s animerait d un mouvement ou se déformerait Version 40-13 -

36 Cas Particulier de l équilibre Statique Lorsqu un système est à l équilibre, la somme des forces et nulle et donc l accélération est nulle F = 0 37 Moment d une force Par définition, le moment en un point O de la force F appliquée en un point M est : et M M F/O F M = OM F F/O Si la force est colinéaire à OM, le moment est nul Si les points M et O sont confondus, le moment est nul L unité du moment d une force est : Nm O 4 Cas particulier d un système en équilibre statique On se limite au cas particulier où le solide considéré est à l équilibre Dans ce cas, d après le paragraphe sur le principe fondamental de la dynamique, la somme des forces est nulle Par ailleurs, le solide étant à l équilibre statique ou en mouvement de translation uniforme, la somme des moments des forces appliquées au même point A est nulle aussi M = 0 F/A Cela se traduit par : F= 0 5 Notions de frottement 51 Généralité Les forces de frottements s opposent au déplacement relatif de deu surfaces en contact Ces forces sont parallèles au surfaces Le frottement statique intervient entre surfaces immobiles l une par rapport à l autre Lorsqu une force croissante est appliquée à un objet reposant sur une surface, par eemple, la force de frottement statique croît d abord en même temps qu elle pour s opposer au mouvement Une certaine force limite est atteinte que la force de frottement statique ne peut dépasser et compenser, l objet se met alors en mouvement Une fois que l objet est en mouvement, la force de frottement de glissement (ou dynamique) demeure constante et prend une valeur ordinairement quelque peu inférieure au maimum atteint par la force de frottement statique Version 40-14 -

5 Coefficient de frottement Les forces de frottement entre deu surfaces dépendent de la nature de ces surfaces et de la force normale qu elles eercent l une sur l autre La nature de ces forces se traduit par un coefficient de frottement µ dont la valeur dépend des matériau en contact L epression de la norme de la force de frottement s écrit : F f = µ N Force de frottement = coefficient de frottement force normale On distingue le coefficient de frottement statique µ s qui représente la valeur maimale Le coefficient de frottement de glissement µ est toujours inférieur à µ s Valeurs typiques : Bois sur le bois : µ s = 0,5 ; µ = 0,3 Version 40-15 -

6 Puissance et énergie en référentiel galiléen 61 Puissance d une force dans un référentiel R Soit un point matériel de masse m, se trouvant au point M du référentiel R avec la vitesse v( M) /R Ce point matériel subissant une force F, la puissance P( F ) de cette force est : /R P F ( ) = Fv( M) /R /R L unité de puissance est le Watt, 1 W = 1 kg m s -3 6 Travail d une force dans un référentiel R Le travail élémentaire dw ( F ) /R durée infinitésimale dt : de la force F appliquée à un point matériel M est, pour la dw F = P F dt = Fv M dt = FdOM ( ) ( ) ( ) /R /R /R, avec O un point fie du référentiel R L unité du travail est le Joule, 1 J = 1 kg m s - 63 Théorèmes de la puissance cinétique et de l énergie cinétique 631 Théorème de la puissance cinétique Soit F la force appliquée à un point matériel M, de masse m et animé d une vitesse v( M) /R En multipliant scalairement les deu membres de la relation fondamentale de la dynamique, on obtient : 1 d mv ( ) ( M )/R dv M /R dec Fv ( M) = mv ( M ) = =, /R /R dt dt dt 1 La quantité Ec = mv est par définition l énergie cinétique de la particule dans le référentiel R Elle a la même dimension que le travail et s eprime en joule Ainsi : Dans un référentiel Galiléen, la puissance de la force appliquée à un point matériel est égale à la dérivée par rapport au temps de son énergie cinétique dec P( F) = /R dt Version 40-16 -

63 Théorème de l énergie cinétique P F dt = de On peut réécrire l epression précédente comme suit : ( ) c /R D où : dw ( F) = P( F) dt = dec dec = dw ( F) /R /R /R Considérons le déplacement du point M d une position M 1 au temps t 1 à une position M au temps t le long d une courbe, alors : t M W = P F dt = FdM = E t E t ( ) c( ) c( 1) /R t1 M1 La variation d énergie cinétique d un point matériel entre deu instants est égale au travail de la force totale qui lui est appliquée On peut écrire : W =Δ E Cette formule est à retenir absolument c 64 Champs de forces conservatives Introduction par l eemple : 641 Particule dans un champ de pesanteur uniforme Soit une particule de masse m dans un champ de pesanteur caractérisé par travail élémentaire du poids P = mgez sur l intervalle dz est : dw = mge e dz = mg dz = d mgz, P z z ( ) g = g e Le Le travail du poids entre les points M 1 (z 1 ) et M (z ) est : W = mg dz = mg( z z ) z P 1 z z g M m e mg z Le travail du poids est indépendant du chemin suivit entre les point M 1 (z 1 ) et M (z ) 1 z 64 Gradient d une fonction et différentielle totale eacte Soit φ(,y,z) une fonction scalaire des coordonnées cartésiennes, y et z d un point de l espace, et soient e, e y, e z des vecteurs unitaires de base sur les aes O, Oy et Oz On appelle gradient de la fonction φ(,y,z) le vecteur : φ φ φ grad φ= e + ey + e z y z Version 40-17 -

Considérons un déplacement infinitésimal MM ' = dom du point M Nous pouvons écrire : dom = d e + dy ey + dz e z Effectuons le produit scalaire de grad φ par dom : φ φ φ grad φ dom = d + dy + dz = d φ y z Nous reconnaissons la différentielle totale eacte de φ(,y,z) 643 Énergie potentielle Dans certains cas (e : champ de forces newtonien de gravitation, électrique, etc), le travail total effectué par la force f lorsque la particule se déplace de M 1 à M est indépendant du trajet suivi, donc indépendant de la courbe (C) qui relie M 1 et M Dans ce cas, on dit que la force f est conservative, ou encore que la force f dérive d une énergie potentielle E p définie par : ou Ep = f dr f = grad E La fonction scalaire E p (,y,z) est appelée potentiel du champ f ou énergie potentielle du point dans le champ Si l on calcule le travail de la force sur un déplacement infinitésimal dom, on a : dw = f dom = grad Ep dom = dep = dw On en déduit : f p et donc : f dw = de f ( ) ( ) W = E M E M p 1 p p Remarque : Si M 1 et M sont confondus, le travail de la force est nul Eemple : On a démontré que le travail du poids est indépendant du chemin suivit Cela signifie que le poids dérive d une énergie potentielle P = grade dw P = PdOM = grade dom = de = mg dz ( ) P P P /R D où l epression de l énergie potentielle associée au poids : E P = mgz + cte 644 Énergie mécanique d un point matériel dans un référentiel R Le théorème de l énergie cinétique s écrit, sous forme différentielle : dw = -de c Si le champ de force dérive d un potentiel alors : Version 40-18 -

f = grad E, on a donc : dw = f dom = de, qui donne : ( c p) p d E + E = 0, par intégration : E + E = E c p m La quantité somme de l énergie cinétique et de l énergie potentielle est l énergie mécanique du système D après la relation encadrée : Lorsqu un point matériel se déplace dans un champ de force dérivant d un potentiel, son énergie mécanique reste constante au cours du mouvement p 7 Résumé Mécanique : 71 Vitesse et accélération : Soit un point A mobile dans R(O,,y,z), sa vitesse est : v( A/R) 7 Son accélération est : dv( A / R) doa γ ( A/R) = = dt dt R 73 Principe Fondamental de la dynamique : p = mv dp, F = = m γ si la masse est constante et dt P = mg mm 1 F > = G e d 1 1 74 Poids et Gravitation 75 Moment des forces M = 0 F M = OM F F/O A l équilibre : F= 0 R doa = dt 76 Théorème de l énergie cinétique Energie potentielle Δ Ec = WF et avec dw ( F) = FdOM /R Travail du poids : W P = mgh avec h la hauteur algébrique Théorème de l énergie mécanique : E m = E c + E p R Version 40-19 -

3 Enoncés 31 Rappel de notions fondamentales 311 Unité de G L accélération de la pesanteur à la surface de la Terre est donnée par l epression : g = G Mt / R t G est l accélération de la pesanteur G est la constante de gravitation universelle, Mt, la masse de la Terre, R t, le rayon de la Terre Quelle est l unité de G? 31 Unité de la constante de raideur d un ressort La force de rappel d un ressort lorsque l on s écarte de la position d équilibre est donnée par l epression suivante : F = - k L ou L est la l allongement dudit ressort Quelle est l unité de k, constante d élasticité du ressort dans le système MKSA? 313 Loi de Stefan Un corps noir émet un rayonnement qui obéit à la loi de Stefan Cette loi donne la puissance émise P en fonction de la surface S de la température T du corps et de la constante de Stefan σ : P = σ S T 4 En déduire l unité de la constante 314 Unités dérivées Connaissant les 7 grandeurs internationales : Grandeurs Unité Symbole Longueur mètre m Masse kilogramme kg Temps seconde s Courant électrique (intensité) ampère A Température thermodynamique kelvin K Quantité de matière mole mol Intensité lumineuse candela cd Déterminer les unités des grandeurs suivantes : Version 40-0 -

Grandeurs Unité Symbole Force Newton N : Pression Pascal Pa : Energie Joule J : Puissance Watt W : Charge électrique Coulomb C : Résistance électrique Ohm Ω : Diff de potentiel Volt V : Densité Champ Magnétique Tesla T : Fréquence Hertz Hz : 315 Produit scalaire et produit vectoriel Soient deu vecteurs de coordonnées u (,3,1) et v (1,-1,1) Calculer le produit scalaire des deu vecteurs En déduire l angle entre les deu vecteurs Conclusion Calculer le produit vectoriel u v Si v (8,1,4), calculer le produit vectoriel u v En déduire l angle entre les deu vecteurs Conclusion 316 Aire d un triangle Soit un triangle formé par trois points A, B et C Montrer que l aire du triangle est égale à la moitié de la norme du produit vectoriel de deu vecteurs issus du même point 317 Double produit vectoriel et scalaire a b c = b a c c a b a b c = b c a = c a b Vérifier sur un eemple de votre choi que : ( ) ( ) ( ) De la même manière, vérifier que : ( ) ( ) ( ) Version 40-1 -

3 Mécanique du point matériel 31 Automobile accélérant a) Quelle est l intensité de l accélération, supposée uniforme, d une automobile se déplaçant en ligne droite, dont la vitesse passe de l intensité v 1 = 0 km h -1 à l intensité v = 30 km h -1 en 1,5 s? b) À la même accélération, combien de temps faut-il pour que l intensité de la vitesse passe de v = 30 km h -1 à v 3 = 36 km h -1? 3 Représentation graphique du mouvement Un mobile au repos part de l origine avec une accélération de m/s² qu il garde pendant s Ensuite, il garde la vitesse acquise pendant 3 s Enfin, il est freiné jusqu à l arrêt avec une décélération de 1 m/s² Représenter graphiquement la position, la vitesse et l accélération en fonction du temps 33 Course de 100 m Au départ d une course de 100m, Pierre accélère pendant 18 s pour atteindre une vitesse de 95 m/s Un second athlète, Patrick, accélère durant s pour atteindre la vitesse de 96 m/s Ils conservent leur vitesse acquise durant le reste de la course Lequel de ces deu athlètes va gagner la course? Justifiez votre réponse en donnant le temps qui sépare les arrivées des deu athlètes (en secondes et centièmes de seconde) Quelle distance sépare les deu athlètes lorsque le premier passe la ligne d arrivée? 34 La mouche Un homme doit transporter des fruits en camionnette entre deu villes distantes de 90 km Il roule à vitesse constante égale à 90 kmh -1 Une mouche curieuse (ou plutôt une curieuse mouche) démarre au même moment et du même lieu et effectue sans arrêt l aller et retour entre la camionnette et la destination finale à la vitesse constante de 10 kmh -1 Quelle distance parcourt la mouche? 35 Attaque d une banque La voiture B des gangsters qui viennent de dévaliser la banque démarre en trombe Le scénariste voudrait qu elle entre en collision de plein fouet avec le véhicule A qui roule à la vitesse constante de 80 km/h dans la rue transversale éloignée de 30 m Lorsque le véhicule B démarre, le véhicule A se trouve à 80 m du carrefour Quelle doit être l accélération (supposée constante) du véhicule B? Quelle est la vitesse (eprimée en km/h) du véhicule B lors de la collision? Version 40 - -

36 Chute libre et rencontre Un corps tombe d une hauteur de 800 mètres Simultanément, un deuième corps est lancé à partir du sol vers le haut avec une vitesse initiale v0 = 00 m/s Après combien de temps et à quelle hauteur les deu corps se rencontrent-ils? 37 Vitesse constante sur route Quelle est la force nécessaire pour maintenir en mouvement à vitesse constante sur une route en béton horizontale une automobile pesant 1500 kg L accélération de pesanteur vaut : 10 ms - On admettra que l automobile roule trop lentement pour que la résistance de l air soit appréciable et on prendra µ = 0,04 comment coefficient de frottement 38 Malle sur un parquet Une force de 00 N est juste suffisante pour mettre en mouvement une malle en acier de 50 kg sur un parquet de bois Trouver le coefficient de frottement statique On place la malle sur un plan incliné, quelle doit être la valeur de l angle pour que la malle se mette en mouvement 39 Boule de bowling Une boule de bowling de vitesse initiale 3 ms -1 roule sur un parquet sur 50 m avant de s immobiliser Quel est le coefficient de frottement? 310 Equations paramétriques Par rapport à un repère orthonormé (O, i, j,k ), une particule M est soumise à l accélération constante γ= 9,8 k (SI) A l instant t = 0, elle se trouve au point O et a pour vitesse v0 = 4i (SI) 1) Déterminer les équations paramétriques du mouvement : (t), y(t), z(t) v t et calculer la vitesse à t = 0,5 s ) Donner en ms -1 l epression de ( ) M 311 Le terrain de Volley On connaît la position du ballon de volley à trois moments A l origine le ballon a une altitude de m A 10 m du lanceur le ballon a une altitude de 7 m et finalement il touche le sol à une distance de 185 m du joueur 1 Calculez les composantes verticale et horizontale de la vitesse initiale du ballon Calculez l angle avec lequel le ballon est lancé 3 Quel temps s écoulera entre le lancer et le contact avec le sol? 31 Accélération proportionnelle à la vitesse Un point effectue un mouvement rectiligne tel que, à chaque instant, son vecteur accélération est opposé à son vecteur vitesse et tel que le module de l accélération est double de celui de la vitesse A t = 0, la vitesse est v = 4u, où u est un vecteur unitaire de la trajectoire Calculer, l epression du vecteur vitesse en fonction du temps t Version 40-3 -