Correction du devoir de vacances Les suites dans plusieurs situations

Documents pareils
f n (x) = x n e x. T k

Corrigé du baccalauréat S Pondichéry 13 avril 2011

Guide de correction TD 6

Garantie des Accidents de la Vie - Protection Juridique des Risques liés à Internet

DOSSIER DE CANDIDATURE POUR UNE LOCATION

CSMA e Colloque National en Calcul des Structures Mai 2013

Impôts PLUS ou moins-values

Commun à tous les candidats

A. RENSEIGNEMENTS GÉNÉRAUX. (Adresse civique) 3. Veuillez remplir l'annexe relative aux Sociétés en commandites assurées à la partie E.

au Point Info Famille

Juin

Calculs de probabilités avec la loi normale

7. Droit fiscal. Calendrier Actualité fiscale 7.2 Contrôle et contentieux fiscal 7.3 Détermination du résultat fiscal.

Exemple de Plan d Assurance Qualité Projet PAQP simplifié

Programme GénieArts Î.-P.-É GénieArts

Le guide du parraina

Réseau des bibliothèques du Pays de Pamiers Guide du Numérique

Découverte Sociale et Patrimoniale

Les nouvelles orientations politiques du budget 2015 du Gouvernement prévoient

O, i, ) ln x. (ln x)2

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer

Vu la loi n portant code des assurances prom ulguée par le dahir n du 25 rejeb 1423 (3 octobre 2002), telle qu'elle a été complétée ;

Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures)

TVA et Systèmes d Information. Retour d expérience d entreprise. A3F - 26 mars 2015 Hélène Percie du Sert COFELY INEO

Florence Jusot, Myriam Khlat, Thierry Rochereau, Catherine Sermet*

Développements limités. Notion de développement limité

La fonction exponentielle

Cours Fonctions de deux variables

C est signé mars 2015 Mutuelle soumise au livre II du Code de la Mutualité - SIREN N DOC 007 B-06-18/02/2015

Chapitre 2 Le problème de l unicité des solutions

Chap 4. La fonction exponentielle Terminale S. Lemme : Si est une fonction dérivable sur R telle que : = et 0! = 1 alors ne s annule pas sur R.

dysfonctionnement dans la continuité du réseau piétonnier DIAGNOSTIC

Fonctions de deux variables. Mai 2011

Séries numériques. Chap. 02 : cours complet.

t 100. = 8 ; le pourcentage de réduction est : 8 % 1 t Le pourcentage d'évolution (appelé aussi taux d'évolution) est le nombre :

Limites finies en un point

Etude de fonctions: procédure et exemple

Le traitement des expulsions locatives

Exponentielle exercices corrigés

Corrigé du baccalauréat S Pondichéry 12 avril 2007

Comment utiliser une banque en France. c 2014 Fabian M. Suchanek

Le nouveau projet Israélo-Palestinien : Terreau pour une culture de paix

Continuité et dérivabilité d une fonction

MAISON DE LA RATP 54, quai de la Râpée -189, rue de Bercy Paris. M Gare de Lyon. M Gare de Lyon

UNE AVENTVRE DE AGILE & CMMI POTION MAGIQUE OU GRAND FOSSÉ? AGILE TOVLOVSE 2011 I.VI VERSION

e x o s CORRIGÉ Chapitre 7. La conduite du diagnostic 1. Bilan fonctionnel par grandes masses Bilan fonctionnel de la société Bastin

Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre

3 Approximation de solutions d équations

LE SURENDETTEMENT. a s s e c o. leo lagrange UNION NATIONALE DES ASSOCIATIONS FAMILIALES. union féminine civique et sociale

Optimisation des fonctions de plusieurs variables

J adopte le geste naturel

Continuité en un point

PRECISION - REJET DE PERTURBATIONS T.D. G.E.I.I.

avec des nombres entiers

EXERCICE 4 (7 points ) (Commun à tous les candidats)

Résolution d équations non linéaires

Demande de retraite de réversion

Exo7. Matrice d une application linéaire. Corrections d Arnaud Bodin.

Développements limités, équivalents et calculs de limites

EPFL TP n 3 Essai oedomètrique. Moncef Radi Sehaqui Hamza - Nguyen Ha-Phong - Ilias Nafaï Weil Florian

Loi binomiale Lois normales

FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4)

La transformation et la mutation des immeubles de bureaux

Chapitre 4: Dérivée d'une fonction et règles de calcul

Chapitre 3. Quelques fonctions usuelles. 1 Fonctions logarithme et exponentielle. 1.1 La fonction logarithme

nous votre service clients orange.fr > espace client 3970*

Baccalauréat ES Pondichéry 7 avril 2014 Corrigé

Analyse des Systèmes Asservis

Équations non linéaires

Corrigé du baccalauréat S Asie 21 juin 2010

DEMANDE DE GARANTIE FINANCIÈRE ET PACK RCP

OM 1 Outils mathématiques : fonction de plusieurs variables

Erreur statique. Chapitre Définition

ces révolutions qui nous attendent Jeudi 23 octobre 2014 Bien assuré, on peut tout oser. programme

CENTRE FRANCO-ONTARIEN DE RESSOURCES PÉDAGOGIQUES

Le Songe d une nuit d été

Contexte. Pour cela, elles doivent être très compliquées, c est-à-dire elles doivent être très différentes des fonctions simples,

F411 - Courbes Paramétrées, Polaires

Probabilités sur un univers fini

Carl-Louis-Ferdinand von Lindemann ( )

Soit la fonction affine qui, pour représentant le nombre de mois écoulés, renvoie la somme économisée.

Matériau pour greffe MIS Corporation. Al Rights Reserved.

SSLS116 - Chargement membranaire d une plaque excentrée

Baccalauréat L spécialité, Métropole et Réunion, 19 juin 2009 Corrigé.

Bloc 1 : La stabilité, une question d équilibre

Cours d Analyse. Fonctions de plusieurs variables

TSTI 2D CH X : Exemples de lois à densité 1

I. Polynômes de Tchebychev

Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé

Devenez ingénieur en Génie Informatique et Statistique par la voie de l apprentissage

Fonctions de plusieurs variables

Sur certaines séries entières particulières

Introduction au pricing d option en finance

Probabilités sur un univers fini

Notes du cours MTH1101N Calcul I Partie II: fonctions de plusieurs variables

Les ressources du PC

Les devoirs en Première STMG

Nombre dérivé et tangente

Licence MASS (Re-)Mise à niveau en Probabilités. Feuilles de 1 à 7

Sommaire G-apps : Smart fun for your smartphone!

Transcription:

L.E.G.T.A. L Chsnoy TB2 21-211 D. Blottièr Mathématiqus Corrction du dvoir d vacancs Ls suits dans plusiurs situations Exrcic 1 : Un pas vrs ls fractals On considèr un carré F 1 d côté d longuur 1. Au miliu d chaqu côté, à l xtériur d F 1, on plac un carré d côté 1 3, dont on supprim l côté n contact avc la figur initial. On obtint ainsi un figur F 2. F 1 F2 On procèd d mêm avc F 2. On obtint ainsi un nouvll figur F 3. En réitérant l procédé, on construit ainsi un suit (F n ) d figurs. On not p n l périmètr d F n t A n l air d F n. 1. Tracr F 3. 2. Exprimr n fonction d n : (a) c n, l nombr d côtés d F n, (b) l n, la longuur d chaqu côté d F n, (c) p n. 3. La suit (p n ) convrg-t-ll? 4. Exprimr A n+1 n fonction d A n. 5. En déduir A n n fonction d n. 6. Montrr qu (A n ) convrg t calculr sa limit. 7. Qulls réflxions vous inspir c problèm? Corrction 1. Tracé d F 3. 1

2. (a) Exprssion d c n, l nombr d côtés d F n, n fonction d n. Lorsqu l on pass d F n à F n+1, chacun ds côtés d F n donn liu à 5 côtés d la figur F n+1, comm on l voit sur l dssin ci-dssous. On a donc c n+1 = 5c n pour tout n N. La suit (c n ) st donc géométriqu,d raison 5. Son prmir trm étant c 1 = 4 (F 1 a 4 côtés), on a donc c n = 45 n 1 pour tout n N. (b) Exprssion d l n, la longuur d chaqu côté d F n, n fonction d n. D après l énoncé, la longuur d un côté d F n+1 vaut 1 3 d la longuur d un côté d F n. (On put vérifir ctt rlation sur la figur ci-dssus.) On a donc l n+1 = 1 3 l n pour tout n N. La suit (l n ) st donc géométriqu, d raison 1 3. Son prmir trm étant l 1 = 1 (un côté d F 1 a pour longuur 1), on a donc l n = (c) Exprssion d p n n fonction d n. ( ) n 1 1 pour tout n N. 3 Tous ls côtés d F n ont mêm longuur (l n ). On a donc On a donc périmètr d F n = (nombr d côtés d F n )(longuur d un côté d F n ). p n = c n l n = 45 n 1 3. Étud d la convrgnc d la suit (p n ). ( ) n 1 1 = 4 3 ( ) n 1 5 pour tout n N. 3 D après 2.(c), la suit (p n ) st géométriqu, d raison q = 5 3 > 1 t d prmir trm p 1 = 4 >. D après l cours, la suit (p n ) divrg t on a lim n + p n = +. 4. Exprssion d A n+1 n fonction d A n. D après la construction d la figur F n+1 à partir d la figur F n, on a : ( ) air d un carré d côté d longuur air d F n+1 = (air d F n )+(nombr d côtés d F n ) 1 3 d la longuur d un côté d F n On a donc ( ) 2 1 A n+1 = A n +c n 3 l n = A n + ( 45 ( n 1) ( ) ) n 1 2 1 1 3 = A n + 4 ( ) n 1 5 3 pour tout n N. 5. Exprssion d A n n fonction d n. D après 4., la suit (A n+1 A n ) st géométriqu, d raison 5 t d prmir trm A 2 A 1 = 4. D après l cours, on dispos donc d un formul pour la somm d ss N prmirs trms, pour tout N N : ( ) N 5 1 ( ) (A N+1 A N )+(A N A N 1 )+...+(A 3 A 2 )+(A 2 A 1 ) = (A 2 A 1 ) 1 5. 2

Dans l mmbr d gauch d ( ), ls trms A N t A N,..., A 2 t A 2 s annulnt t il n rst qu ( ) N 5 A N+1 A 1. L mmbr d droit d ( ) s simplifi pour donnr 1. Ainsi a-t-on c st-à-dir Comm A 1 = 1 = 2 A N+1 A 1 = 1 A N+1 = A 1 +1 ( ) 5, on a n fait A N+1 = 2 c qui s réécrit, n décalant l indic : A N = 2 6. Étud d la convrgnc d la suit (A n ) ( ) N 5 = 2 ( ) N 5 pour tout N N ( ) N 5 pour tout N N. ( ) N 5 pour tout N N, ( ) N 1 5 pour tout N N. ( (5 ) ) n 1 D après l cours sur ls suits géométriqus, la suit st convrgnt t sa limit st null, car sa raison st 5 t 1 < 5 < 1. On n déduit qu la suit (A n) convrg t qu lim n + A n = 2. 7. Réflxion sur c problèm. L périmètr d F n tnd vrs + t son air tnd vrs 2, quand n tnd vrs +. On put donc trouvr un figur d périmètr arbitrairmnt grand t dont l air st voisin d 2. Ainsi, c n st pas parc qu un figur a un grand périmètr qu son air st égalmnt grand. Exrcic 2 : Suits t économi L 1 r janvir 25, Sabrina t Joanna ont placé chacun 3 uros à la banqu. Sabrina a choisi un placmnt rapportant chaqu anné 5% d intérêts simpls (ls intérêts sont dits simpls lorsqu ils sont calculés chaqu anné à partir du placmnt initial). Joanna a choisi un placmnt à 4% d intérêts composés (ls intérêts sont dits composés lorsqu ils sont calculés chaqu anné à partir du capital d l anné précédnt). Pour tout n N, on not s n l capital d Sabrina l anné 25+n t j n l capital d Joanna l anné 25+n. On admt qu ni Sabrina ni Joanna n rtirnt d l argnt d la banqu. 1. Calculr ls 4 prmirs trms ds suits (s n ) t (j n ). 2. (a) Montrr qu (s n ) st un suit arithmétiqu t donnr sa raison. (b) En déduir l xprssion d s n uniqumnt n fonction d n. (c) Détrminr la limit d la suit (s n ). 3. (a) Montrr qu (j n ) st un suit géométriqu t donnr sa raison. (b) En déduir l xprssion d j n uniqumnt n fonction d n. (c) Détrminr la limit d la suit (j n ). 4. Rprésntr sur votr calculatric sur un mêm graphiqu ls 2 prmirs trms ds dux suits. Discutr à partir du graphiqu t suivant la valur d n du placmnt l plus intérssant. Corrction 3

1. Calcul ds 4 prmirs trms ds suits (s n ) t (j n ). D après l énoncé, on a, pour tout n N : ( ) s n+1 = s n +,53 = s n +15 t j n+1 = j n +,4j n. s = 3 j = 3 s 1 = s +15 = 315 j 1 = j +,4j = 312 s 2 = s 1 +15 = 33 j 2 = j 1 +,4j 1 = 3244,8 s 3 = s 2 +15 = 345 j 2 = j 2 +,4j 2 = 3374,52 2. (a) Pruv d l assrtion : (s n ) st un suit arithmétiqu. D après ( ), s n+1 s n = 15 pour tout n N. Ainsi la suit (s n ) st-ll arithmétiqu d raison 15. (b) Exprssion d s n n fonction d n. (s n ) st un suit arithmétiqu, d raison 15 t d prmir trm s = 3. D après l cours, on a donc : s n = 3+15n pour tout n N. (c) Étud d la convrgnc d (s n). D 2.(b), on déduit qu lim n + s n = +. 3. (a) Pruv d l assrtion : (j n ) st un suit géométriqu. D après ( ), j n+1 = 1,4 j n pour tout n N. Ainsi la suit (j n ) st-ll géométriqu d raison 1,4. (b) Exprssion d j n n fonction d n. (j n ) st un suit géométriqu, d raison 1,4 t d prmir trm j = 3. D après l cours, on a donc : j n = 3(1,4) n pour tout n N. (c) Étud d la convrgnc d (j n). D après 3.(a), la suit (j n ) st géométriqu, d raison q = 1,4 > 1. Son prmir trm st j = 3 >. D après l cours, la suit (j n ) divrg t on a lim n + j n = +. 4. Rprésntation ds 2 prmirs trms ds dux suits t discussion sur l placmnt l plus intérssant n fonction d n. Sur l graphiqu ci-après, on a rprésnté ls 2 prmirs trms ds suits (s n ) (marqués d un ) t (j n ) (marqués d un ). L placmnt choisi par Sabrina st plus avantagux si l nombr d annés n st compris ntr 1 t 11 ans, clui choisi par Joanna st plus intérssant pour un duré d placmnt supériur. (Ls points corrspondant à s 12 t j 12 sont quasimnt confondus sur l graphiqu, mais s 12 = 48 < 483,6656= j 12.) 4

7 65 6 55 5 45 4 35 3 1 2 3 4 5 6 7 8 1 11 12 13 14 15 16 17 18 1 2 Exrcic 3 : Suits t intégrals On considèr la suit (u n ) défini pour tout n N par 1. Calculr u 1 t u 2. u n = n 1 x 2 dx. (a) Après un rapid étud d la fonction x x 2 tracr la courb d ctt fonction. (b) Donnr un intrprétation géométriqu d u 1, d u 2 puis d u n pour un n N qulconqu. 2. Calculr u n t donnr l résultat uniqumnt n fonction d n. 3. Montrr qu (u n ) st un suit géométriqu t donnr sa raison t son prmir trm. 4. On not S n la somm ds n prmirs trms d la suit (u n ). (a) Grâcàun formuldu courssurls suitsgéométriqus,calculrs n tdonnrl résultatuniqumnt n fonction d n. (b) Montrr qu S n = Donnr un intrprétation géométriqu d S n. x 2 dx (c) CalculrS n grâcàla qustion précédnt.vérifirqu l résultattrouvést l mêmqu à la qustion 4.a. (d) Détrminr la limit d S n quand n tnd vrs +. Proposr un intrprétation géométriqu d votr résultat. 5

Corrction 1. Calcul d u 1 t u 2. La fonction x 2 x 2 défini sur R st un primitiv d la fonction x x 2 défini sur R. Ainsi a-t-on : u 1 = 1 x 2 dx = [ 2 x 2] 1 = 2(1 1 2 ) t u2 = 2 1 x 2 dx = [ 2 x 2] 2 1 = 2( 1 2 1 ). On put rmarqur qu 1 2 = 1 t qu 1 = 1. Ls résultats précédnts puvnt donc s réécrir : u 1 = 2 (1 1 ) 1 t u 2 = 2( 1 ). (a) Étud d la fonction f défini sur R par f(x) = x 2 t rprésntation graphiqu d f. La fonction f st dérivabl sur R, comm composé d dux fonctions dérivabls sur R (x x 2 t x x ). En appliquant l théorèm donnant la dérivé d un composé, on obtint f (x) = 1 2 x 2 pour tout x R. L xponntill n prnant qu ds valurs strictmnt positivs, on n déduit qu f (x) < pour tout x R. Par suit, la fonction f st strictmnt décroissant sur R. La limit d f n + st. En fft : lim x x + 2 = lim x x = composition = d limits lim x + x 2 =. La courb rprésntativ d f dans l plan rpéré admt donc un asymptot horizontal d équation y = n +. La limit d f n st +. En fft : lim x x 2 = + lim x + x = + composition = d limits lim x x 2 = +. 2 Courb rprésntativ d f 1 u 1 u2 1 2 3 4 5 6 7 8 (b) Intrprétation géométriqu d u 1, d u 2 puis d u n pour un n N qulconqu. L xponntill n prnant qu ds valurs strictmnt positivs, on n déduit qu f(x) > pour tout x R. D après l intrprétation géométriqu d un intégral d fonction positiv, vu n cours, on a donc : u 1 st l air d la portion d plan délimité par ls trois droits d équations y =, x =, x = 1 t la courb rprésntativ d f, 6

u 2 st l air d la portion d plan délimité par ls trois droits d équations y =, x = 1, x = 2 t la courb rprésntativ d f, t plus généralmnt, u n st l air d la portion d plan délimité par ls trois droits d équations y =, x = n 1, x = n t la courb rprésntativ d f, pour tout n N. 2. Calcul d u n. On utilis à nouvau la primitiv d f donné n 1. pour ffctur l calcul d u n. u n = n 1 x 2 dx = [ 2 x 2] n n 1 = 2( n 1 2 n 2) = 2( ( n 2 +1 2 ) n 2) = 2( n 2 1 2 n 2) = 2 n 2( 1 2 1) = 2( 1 2 1)( 1 2) n On put rmarqur qu 1 2 = t qu 1 2 = 1. On a donc aussi la form suivant pour u n : u n = 2 ( 1 ) ) n 1 (. 3. Pruv d l assrtion : (u n ) st un suit géométriqu. On vint d démontrr qu u n = 2( ( ) n 1 1), pour tout n N. La suit (u n ) st donc géométriqu, d raison 1. Son prmir trm st u 1 = 2( 1) 1 = 2 (1 1 ). 4. (a) Exprssion d S n n fonction d n, au moyn d un formul du cours sur ls suits géométriqus. S n = u 1 +u 2 +...+u n = 2 (1 1 ) 1 ( 1 1 1 ) n (formul du cours) (b) Pruv d S n = ( ) n ) 1 = 2 1 ( x 2 dx t intrprétation géométriqu. S n = u 1 +u 2 +...+u n = 1 2 x 2 dx+ x 2 dx+...+ 1 n 1 x 2 dx = x 2 dx (rlation d Chasls) S n st donc l air d la portion d plan délimité par ls trois droits d équation y =, x =, x = n t la courb rprésntativ d f (cf. 1.(b)). S n n 7

(c) Calcul d S n grâc à 4.(b). On utilis un nouvll fois la primitiv d f donné n 1. pour ffctur l calcul d S n. S n = x 2 dx = [ 2 x 2] n = 2(1 n 2 ) = 2(1 ( 1 2 ( ) n ) n ) 1 = 2 (d) Étud d la convrgnc d (S n) t intrprétation géométriqu. ( ) n ) 1 On sait qu S n = 2 1 ( pour tout n N. D après l cours sur ls suits géométriqus, la suit car sa raison st (car 1 2 = 1 ) ( ) n 1 st convrgnt t sa limit st null, 1 t 1 < 1 < 1. On n déduit qu (S n ) convrg t qu lim n + S n = 2. D après l intrprétation géométriqu d S n donné n 4.(b), la limit d S n, qui vaut 2, corrspond à l air A d la portion (infini) du plan délimité par ls dux droits d équation y =, x = t la courb rprésntativ d f. A Exrcic 4 : Suits t probabilités Alic début au ju d fléchtts. Ell ffctu ds lancrs succssifs d un fléchtt. On admt ls rnsignmnts suivants : a) Si ll attint la cibl à un lancr, alors la probabilité qu ll attign la cibl au lancr suivant st égal à 1 3. b) Si ll manqu la cibl à un lancr, la probabilité qu ll manqu la cibl au lancr suivant st égal à 4 5. c) Au prmir lancr, ll a autant d chanc d attindr la cibl qu d la manqur. Pour tout n N, on considèr ls événmnts suivants : A n : Alic a attint la cibl au n coup. B n : Alic a manqué la cibl au n coup. On not p n = p(a n ) la probabilité d l événmnt A n. 1. Drssr un arbr pour rprésntr ctt xpérinc aléatoir. Fair figurr ls rnsignmnts a), b) t c) dans ct arbr. 2. Complétr l arbr pour ls 3 prmirs lancrs. Expliqur votr démarch n utilisant ds formuls du cours. 3. Détrminr p 1 t p 2, n justifiant votr démarch grâc à ds formuls du cours. 4. Ls événmnts A 1 t A 2 sont-ils indépndants? 8

5. En utilisant la formul ds probabilités totals, montrr qu, pour tout n 2, on a p n = 2 15 p n 1 + 1 5. 6. Pour n 1, on pos u n = p n 3 13. Montrr qu (u n) st un suit géométriqu, dont on précisra l prmir trm t la raison. 7. Détrminr u n puis p n n fonction d n. 8. Détrminr lim n + p n t intrprétr c résultat. Corrction 1. t 2. Arbr rprésntant l xpérinc aléatoir, dont ls trois prmirs lancrs. 1/2 1/2 A 1 B 1 1/3 2/3 1/5 4/5 A 2 B 2 A 2 B 2 1/3 2/3 1/5 4/5 1/3 2/3 1/5 4/5 A 3 B 3 A 3 B 3 A 3 B 3 A 3 B 3 A n B n 1/3.... A n B n 2/3 1/5 4/5 2/3 1/5 1/3 4/5 A n+1 B n+1 A n+1 B n+1 A n+1 B n+1 A n+1 B n+1 Pour placr crtains probabilités sur ls branchs d l arbr, on a appliqué la formul du cours P(A) = 1 P(A), où A st un événmnt t A l événmnt contrair. 3. Calcul d p 1 t p 2. On a p 1 = P(A 1 ) = 1 2 t p 2 = P(A 2 ) = P(A 1 )P(A 2 A 1 )+P(B 1 )P(A 2 B 1 ) = 1 2 1 3 + 1 2 1 5 = 4 15. (théorèm ds probabilités totals) 4. Étud d l indépndanc ds événmnts A 1 t A 2. On a P(A 1 A 2 ) = P(A 1 ) P(A 2 A 1 ) = 1 2 1 3 = 1 6. Or P(A 1) P(A 2 ) = 1 2 4 15 = 2 15 1 6. Ls événmnts A 1 t A 2 n sont donc pas indépndants. 5. Pruv d l assrtion : pour tout n 2, on a p n = 2 15 p n 1 + 1 5.

Soit n 2. On a p n = P(A n ) = P(A n 1 )P(A n A n 1 )+P(B n 1 )P(A n B n 1 ) (théorèm ds probabilités totals) = p n 1 1 3 +(1 p n 1) 1 (B n 1 = A n 1 t P(A n 1 ) = 1 P(A n 1 )) 5 = 2 15 p n 1 + 1 5. 6. Pruv d l assrtion : (u n ) st un suit géométriqu. Soit n 1. u n+1 = p n+1 3 13 = 2 15 p n + 1 5 3 13 = 2 15 p n 2 65 = 2 ( p n 3 ) = 2 15 13 15 u n. La suit (u n ) st donc gómétriqu, d raison 2 15. Son prmir trm st u 1 = p 1 3 13 = 7 26. 7. Exprssions d u n t p n n fonction d n. D après l cours t 6., on a u n = 7 ( ) n 1 2 26, pour tout n N. Ainsi a-t-on 15 p n = 3 13 +u n = 3 13 + 7 ( ) n 1 2 26 pour tout n N. 15 8. Calcul d lim n + p n t intrprétation du résultat. D après l cours sur ls suits géométriqus, la suit ( ( ) ) n 1 2 st convrgnt t sa limit st null, 15 car sa raison st 2 15 t 1 < 2 15 < 1. On n déduit qu la suit (p n) convrg t qu lim n + p n = 3 13. On n déduit qu après avoir lancé un grand nombr d fois, Alic touchra la cibl au lancr suivant avc un probabilité voisin d 3 13. 1