Interrogations orales en PT - PT * au Lycée Raspail, Paris Énoncés

Documents pareils
I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES

Cours d Analyse. Fonctions de plusieurs variables

I. Polynômes de Tchebychev

Chapitre 7 : Intégration sur un intervalle quelconque

Image d un intervalle par une fonction continue

Développements limités, équivalents et calculs de limites

Chapitre 2 Le problème de l unicité des solutions

Mathématiques I Section Architecture, EPFL

Première partie. Préliminaires : noyaux itérés. MPSI B 6 juin 2015

Continuité et dérivabilité d une fonction

3 Approximation de solutions d équations

Fonctions de plusieurs variables

F411 - Courbes Paramétrées, Polaires

8.1 Généralités sur les fonctions de plusieurs variables réelles. f : R 2 R (x, y) 1 x 2 y 2

Différentiabilité ; Fonctions de plusieurs variables réelles

Comparaison de fonctions Développements limités. Chapitre 10

Continuité d une fonction de plusieurs variables

Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques.

Développements limités. Notion de développement limité

Commun à tous les candidats

Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre

Fonctions de plusieurs variables et applications pour l ingénieur

Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé

Amphi 3: Espaces complets - Applications linéaires continues

Fonctions de plusieurs variables et changements de variables

Continuité en un point

Calcul intégral élémentaire en plusieurs variables

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer

INTRODUCTION. 1 k 2. k=1

Résolution d équations non linéaires

FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4)

Problème 1 : applications du plan affine

NOMBRES COMPLEXES. Exercice 1 :

Planche n o 22. Fonctions de plusieurs variables. Corrigé

Calcul fonctionnel holomorphe dans les algèbres de Banach

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable

Fonctions de plusieurs variables

C f tracée ci- contre est la représentation graphique d une

Exercice 1 Trouver l équation du plan tangent pour chaque surface ci-dessous, au point (x 0,y 0,z 0 ) donné :

Cours d Analyse 3 Fonctions de plusieurs variables

Exo7. Matrice d une application linéaire. Corrections d Arnaud Bodin.

CCP PSI Mathématiques 1 : un corrigé

Capes Première épreuve

Théorème du point fixe - Théorème de l inversion locale

NOTATIONS PRÉLIMINAIRES

Fonctions de plusieurs variables. Sébastien Tordeux

Limites finies en un point

Fonctions de plusieurs variables : dérivés partielles, diérentielle. Fonctions composées. Fonctions de classe C 1. Exemples

Chapitre 2. Matrices

De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que

EXERCICE 4 (7 points ) (Commun à tous les candidats)

Angles orientés et fonctions circulaires ( En première S )

Méthodes de quadrature. Polytech Paris-UPMC. - p. 1/48

Exercices - Polynômes : corrigé. Opérations sur les polynômes

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

Cours d analyse numérique SMI-S4

Fonctions de deux variables. Mai 2011

Programme de la classe de première année MPSI

Equations différentielles linéaires à coefficients constants

Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en Énoncé.

Chapitre VI Fonctions de plusieurs variables

Cours d Analyse I et II

Dérivées d ordres supérieurs. Application à l étude d extrema.

Équations non linéaires

MATHÉMATIQUES EN PREMIER CYCLE PRÉSENTATION DU PROGRAMME

Optimisation des fonctions de plusieurs variables

Intégration et probabilités TD1 Espaces mesurés Corrigé

Chapitre 6. Fonction réelle d une variable réelle

Chapitre 4: Dérivée d'une fonction et règles de calcul

Correction de l examen de la première session

Chapitre 0 Introduction à la cinématique

Notes du cours MTH1101 Calcul I Partie II: fonctions de plusieurs variables

Partie 1 - Séquence 3 Original d une fonction

Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes.

Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications

Chapitre 11. Séries de Fourier. Nous supposons connues les formules donnant les coefficients de Fourier d une fonction 2 - périodique :

Items étudiés dans le CHAPITRE N5. 7 et 9 p 129 D14 Déterminer par le calcul l'antécédent d'un nombre par une fonction linéaire

Programmes des classes préparatoires aux Grandes Ecoles

aux différences est appelé équation aux différences d ordre n en forme normale.

La fonction exponentielle

Polynômes à plusieurs variables. Résultant

Calcul différentiel. Chapitre Différentiabilité

BACCALAURÉAT GÉNÉRAL SESSION 2012 OBLIGATOIRE MATHÉMATIQUES. Série S. Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE

Logique. Plan du chapitre

Mesure d angles et trigonométrie

Les travaux doivent être remis sous forme papier.

Structures algébriques

Représentation géométrique d un nombre complexe

Calcul Différentiel. I Fonctions différentiables 3

Développements limités

Cours de mathématiques

Quelques contrôle de Première S

Corrigé Problème. Partie I. I-A : Le sens direct et le cas n= 2

Intégrales doubles et triples - M

Suites numériques 4. 1 Autres recettes pour calculer les limites

Moments des variables aléatoires réelles

Exercices et corrigés Mathématique générale Version β

3. Conditionnement P (B)

Simulation de variables aléatoires

Dualité dans les espaces de Lebesgue et mesures de Radon finies

Transcription:

Interrogations orales en PT - PT * au Lycée Raspail, Paris Énoncés Vincent Jugé Année 2012-2013 1

1 Fonctions de R dans R n Courbes du plan définies par une représentation paramétrique Exercice 1.1. Énoncé et démonstration de la formule de Taylor avec reste intégral. Exercice 1.2. DL à l ordre 5 en 0 (i.e. en O(x 6 )) de cos(x) 2 et de sin(x) 2. Exercice 1.3. DL à l ordre 5 en 0 (i.e. en O(x 6 )) de cos(sin(x)). Exercice 1.4. Calcul de lim x 0 ( x cos(x) 1 sin(x) x ). Exercice 1.5. Calcul des éventuels demi-vecteurs tangents en t = 0 à la courbe paramétrique C = { x = cos(t) 3, y = sin(t) 3 π t π }. Exercice 1.6. Étude de la position de la courbe D = { x = t cos(t) 4, y = 1 + 2 sin(t) π 2 t π } 2 par rapport à sa tangente en t = 0. Exercice 1.7 (Cachan 2007). Soit F = {f C (R +, R) n 0, f (n) 0}. 1. Montrer que F est stable par addition, multiplication, dérivation, composition. 2. Montrer que, si f F vérifie f (0) > 0, alors lim + f = +. 3. Montrer que f F admet une fonction réciproque dans F, alors f (0) > f(0) = 0. 4. Soit g cette réciproque : calculer g et g. 5. En déduire l ensemble des fonctions de F qui admettent une réciproque dans F. Exercice 1.8. Soit f(x) = ( x ) t 0 0 cos(sin(u)) + sin(cos(u))du dt. Montrer qu il exite un réel M > 0 tel que x R, f(x) Mx 2. Exercice 1.9. Soit f : R R une fonction dérivable. Est-il vrai que : 1. Si f n est pas injective, alors il existe un réel x R tel que f (x) = 0? 2. S il existe un réel x R tel que f (x) = 0, alors f n est pas injective? 3. Et si l on suppose que f : R C? Exercice 1.10. Soit a, b, c, d, e C 1 1 (R, R) des fonctions telles que e =, a = e(a + 2b), 1+a 2 +b 2 +c 2 +d 2 b = e(2a + b), c = e(c + 2d), d = e(2c + d) et a(0) = 1, b(0) = 2, c(0) = 3, d(0) = 4. On admettra l existence de telles fonctions. Montrer que a(1)d(1) b(1)c(1) = 2. 2

Exercice 1.11 (Inégalité des accroissements finis sur C). Soit f : R C une fonction dérivable, et a, b, M trois réels tels que a < b. Montrer, à partir du théorème de Rolle, que si x ]a, b[, f (x) M, alors f(b) f(a) M b a. 3

2 Continuité des fonctions de deux variables définies sur une partie de R 2 Courbes du plan définies par une équation polaire Révisions sur les coniques Exercice 2.1 (Suite de l exercice 1.5). Tracer la courbe paramétrique C = { x = cos(t) 3, y = sin(t) 3 π 4 t π 4 } et calculer ses éventuels demi-vecteurs tangents. Exercice 2.2 (Suite de l exercice 1.6). Tracer la courbe paramétrique D = { x = t cos(t) 4, y = 1 + 2 sin(t) π 2 t π 2 } et étudier sa position par rapport à sa tangente en t = 0. Exercice 2.3. Tracer la courbe paramétrique donnée par son équation polaire E = {r = cos(θ)} et donner une équation de sa tangente en θ = 0. Exercice 2.4. Donner les caractérisations d une ellipse 1. en fonction de ses deux foyers ; 2. en fonction d un de ses foyers et de sa droite directrice ; 3. avec une équation paramétrique. En déduire que deux ellipses distinctes ayant un foyer commun ont au plus deux points communs. Exercice 2.5. Donner une équation, en coordonnées polaires, représentant le carré dont les côtés sont A( 1, 1), B( 1, 1), C(1, 1) et D(1, 1). Exercice 2.6. Les parties suivantes de R 2 sont-elles fermées? ouvertes? 1. A = { (x, y) x 2 + y 2 1 } ; 2. B = { (x, y) x 2 + y 2 = 1 } ; 3. C = {(x, y) 0 x + y} ; 4. D = {(x, y) x = 0, 1 < y < 1} ; 5. E = {(x, y) 1 < x < 1, 1 < y < 1}. Exercice 2.7. Trouver un équivalent en 0 de exp ( sin(x) 2 2 ) cos(x). Exercice 2.8. Donner les caractérisations d une hyperbole 1. en fonction de ses deux foyers ; 2. en fonction d un de ses foyers et de sa droite directrice ; 3. avec une équation paramétrique. En déduire que l ensemble des nombres complexes z C tels que A(1), B(z), C(z 3 ) soient les sommets d un triangle rectangle en B forment une hyperbole. 4

3 Enveloppe d une famille de droites du plan Propriétés métriques des courbes planes paramétrées Développée et développantes d une courbe Exercice 3.1. Donner la définition de l abscisse curviligne s d une courbe F (t) C (R, R 2 ), de sa courbure γ, de son rayon de courbure R, et du repère de Frénet ( T, N) associé. Quelles relations y a-t-il entre F, s, γ, R et ( T, N)? Exercice 3.2. Donner la définition et les propriétés de la développée d une courbe. Exercice 3.3. Donner la définition et les propriétés des développantes d une courbe. Exercice 3.4. Soit F = (F 1, F 2 ) C 2 (R, R 2 ) une courbe telle que F 1 F 2 F 2 F 1 > 0.. Trouver les courbes dont l enveloppe est l enveloppe de F. Exercice 3.5. Soit C le graphe de la fonction cosh(x) sur l intervalle [ 1, 1]. Calculer la longueur de la courbe C. Exercice 3.6 (ENSAM 2010). 1. Quelle est la nature de la courbe C d équation y = 2x 2? 2. Donner une équation de sa développée D. 3. Calculer la longueur de D entre les deux points d intersection de C et D. 5

4 Intégrales des fonctions continues par morceaux sur un segment, à valeurs réelles et complexes Exercice 4.1. Trouver les primitives de f(x) = 5 k= 5 cos(kx). Exercice 4.2. Trouver les primitives de g(x) = 5 k= 5 xk. Exercice 4.3. Trouver les primitives de h(x) = sin(2x) + 3x. Exercice 4.4. Étudier la convergence et la limite éventuelle de la suite u n = n sin( n) k k=1 k. Exercice 4.5 (Inégalité de la moyenne sur C Reprise de l exercice 1.11). Soit f : [a, b] C une fonction continue par morceaux. Montrer que b a f(t) dt b a f(t) dt. Indication : On pourra considérer un réel θ tel que b a f(t) dt = b a f(t) dt e iθ, puis les fonctions g(t) = e iθ f(t) et h(t) = R(g(t)). Exercice 4.6 (Inégalité de Cauchy-Schwarz). Soit n un entier. Montrer que 2πn 0 sin(t) sin(t 2 ) dt 2πn. Exercice 4.7 (Cachan 2001). Soit I n = π sin((n+1/2)t) 0 sin(t/2) dt. Évaluer I n+1 I n et en déduire I n. Exercice 4.8. Soit f(x) = x 0 ( ) t 0 cos(u)3 du dt. Montrer que f(x) x2 2. 6

5 Intégrales généralisées ou impropres Exercice 5.1. Étudier la convergence et la somme de l intégrale I = 1 0 ln(x) dx. Exercice 5.2. Étudier la convergence et la somme de l intégrale J = + 0 exp( ax) dx pour a réel. Exercice 5.3. Étudier la convergence et la somme des intégrales K 0 = 1 0 xα dx et K 1 = + 1 x α dx pour α réel. Exercice 5.4 (Cauchy-Schwarz). Soit f, g : R R deux fonctions positives, continues par morceaux, telles que I f = + f(x)2 dx et I g = + g(x)2 dx convergent. Montrer que l intégrale I f,g = + f(x)g(x) dx converge et vérifie I2 f,g I f I g. Exercice 5.5. Étudier la convergence des intégrales M = + 0 ) 2 dx. + 0 ( sin(x) cos(x 3 ) x ( ) 2 sin(x) x dx et N = 7

6 Fonctions intégrables sur un intervalle quelconque Espaces vectoriels Applications linéaires Exercice 6.1. Caractériser les bases d un espace vectoriel E de dimension n < +. Exercice 6.2. Soit E = K n un espace vectoriel et F une famille de vecteurs de E. Montrer que F est libre si et seulement si c est la base d un sous-espace vectoriel de E. Exercice 6.3. Énoncer et démontrer le théorème du rang en dimension finie. Exercice 6.4 (Formule de Grassman). Énoncer et démontrer la relation entre les dimensions de la somme de deux espaces vectoriels et de leur intersection. Exercice 6.5. La fonction f(x) = sin(x) 2 cos ( 1 x) est-elle intégrable sur R? Exercice 6.6. Siot n un entier naturel non nul. Étudier la convergence et la somme de l intégrale I n = + 0 exp ( x 1/n) dx. Exercice 6.7. Étudier la convergence de l intégrale J = + sin(x) 2 0 x dx. 8

7 Applications linéaires Matrices Valeurs propres et vecteurs propres Exercice 7.1. Soit B et B deux bases d un espace vectoriel E. Donner la matrice M tel que, pour tout X E, Mmat B (X) = M B (X). Exercice 7.2. 1 0 1 Calculer l inverse de N = 0 1 1. 1 2 0 Exercice 7.3. Définir les sous-espaces propres, les vecteurs propres et les valeurs propres d un endomorphisme d espace vectoriel. Exercice 7.4. Caractériser les homothéties, les symétries et les projections en fonction de leurs valeurs propres et de leurs sous-espaces propres. Exercice 7.5. Montrer que la relation définie sur M n (K) telle que M N si et seulement si M et N sont semblables est une relation d équivalence (i.e. une relation réflexive, symétrique et transitive). Exercice 7.6. Soit v 1,..., v k des vecteurs propres d une matrice M M n (R) associés aux valeurs propres réelles λ 1 < < λ k. Montrer que la famille (v 1,..., v k ) est libre. Exercice 7.7. Trouver les valeurs propres et les espaces propres de l opérateur dérivation sur l espace vectoriel R[X]. Qu en est-il si on se situe dans l espace vectoriel C (R, C)? 9

8 Déterminants Exercice 8.1. Les vecteurs u 1 = (1, 0, 1), u 2 = (0, 1, 1) et u 3 = (1, 2, 0) forment-ils une base de R 3? Exercice 8.2. Soit f, g deux endomorphismes d un espace vectoriel E de dimension finie. Exprimer det(f g) en fonction de det(f) et de det(g). Si f est inversible, exprimer également det(f 1 ) en fonction de det(f). Exercice 8.3. Soit A, B M n (K) deux matrices carrées. Exprimer det(ab) et det(a ) en fonction de det(a) et de det(b). Si A est inversible, exprimer également det(a 1 ) en fonction de det(a). Exercice 8.4. On admet qu il existe un réel λ tel que les matrices A = soient semblables. Calculer λ. ( 7 ) 3 10 4 et D = ( ) 1 0 0 λ Exercice 8.5. Soit A, B, C M n (K) trois matrices carrées, ainsi que D = Montrer que D est inversible si et seulement si A et C le sont. ( ) A B 0 C M 2n (K). Exercice 8.6. Soit M = [m i,j ] 1 i,j 3. Montrer que det(m) = ( 2 3 i=0 j=1 m j,i+j ) 3 j=1 m j,i+2j. 10

9 Trace des endomorphismes Réduction des endomorphismes Diagonalisation Exercice 9.1. Soit A et B deux matrices n n. Montrer que tr(ab) = tr(ba). Exercice 9.2. Soit A une matrice dont le polynôme caractéristique est X 2 7X. Montrer que A est diagonalisable et donner une matrice diagonale D semblable à A. Exercice 9.3. Soit A M n (C) une matrice dont le polynôme caractéristique est X n 1. Montrer que A est diagonalisable dans M n (C). Exercice 9.4. La matrice A = ( ) 0 1 est-elle diagonalisable? 0 0 Exercice 9.5 (Matrice compagnon). Soit P (X) = n 1 k=0 ( 1)n+1+k p k X k + X n un polynôme scindé à racines simples. Montrer 0 0 0... p 0 1 0 0... p 1 0 1 0... p 2 que la matrice A = 0 0 1... p 3 est diagonalisable........ 0 0 0... p n 1 Exercice 9.6 (Matrice à diagonale dominante). Soit A M n (K) une matrice telle que i {1, 2,..., n}, 2 A i,i > n j=1 A i,j. Montrer que A est inversible. Exercice 9.7 (Matrice stochastique). Soit A M n (K) une matrice telle que j {1, 2,..., n}, n i=1 A i,j = 1. Montrer que 1 est une valeur propre de A. Exercice 9.8. Soit A et B deux matrices n n. Montrer que, si A et B sont semblables, alors det(a) = det(b) et tr(a) = tr(b). Que dire de la réciproque? Exercice 9.9. Montrer que A = ( ) 7 3 et donner une matrice diagonale D semblable à A. 10 4 11

10 Applications de la réduction des endomorphismes Équations différentielles d ordre 1 à coefficients constants Exercice( 10.1. ) 1 3 Soit A =. Calculer A 0 2 2012. Exercice 10.2. Résoudre l équation différentielle suivante : f (t) = ( ) 3 0 f(t)+ 0 0 ( ) t, avec f(0) = 1 ( ) 1. 2 Exercice 10.3. Résoudre l équation différentielle suivante : f (t) 5f (t) + 4f(t) = 3 exp(t) sin(t), avec f(0) = f (0) = 0. Exercice 10.4. Soit A M n (C). Montrer que l ensemble des solutions de l équation f (t) = Af(t) est un espace vectoriel. Quelle est sa dimension? On prouvera le résultat en supposant successivement A diagonale ; diagonalisable ; trigonalisable. Exercice 10.5. Soit A M n (C) une matrice diagonalisable. Montrer que : si toute valeur propre λ de A est telle que Re(λ) < 0, alors les solutions de l équation différentielle f (t) = Af(t) vérifient toutes lim + f = 0 ; si A admet une valeur propre λ telle que Re(λ) > 0, alors il existe une solution f à l équation différentielle f (t) = Af(t) telle que lim + f = +. 12

11 Suites numériques à valeurs réelles ou complexes Séries numériques Exercice 11.1. Étudier la convergence de la suite (u n ) telle que u 0 = 1 et u n+1 = sin(u n ). Exercice 11.2. Que dire de la convergence des suites adjacentes? Des suites monotones bornées? Exercice 11.3. Montrer que si n 0 u n est une série convergente, alors u n 0. Que dire de la réciproque? Exercice 11.4. Montrer que les deux énoncés suivants sont équivalents : 1. toute suite monotone bornée converge ; 2. toutes les suites adjacentes convergent, de même limite. Exercice 11.5. Soit (u n ), (v n ) et (w n ) trois suites telles que u 0 v 0 w 0 > 0 et u n+1 = un+vn+wn v n+1 = (u n v n w n ) 1 3 et wn+1 = 3 1 un + 1 vn + 1 wn 1. Montrer que (u n ), (v n ) et (w n ) sont bien définies. 2. Montrer que u n v n w n. 3. Montrer que (u n ) et (w n ) sont des suites adjacentes. 4. Montrer que (u n ), (v n ) et (w n ) convergent vers la même limite. Exercice 11.6 (ENSAM 2006). Soit f n (x) = exp( nx) nx. 1. Montrer que f n admet une unique racine u n dans ]0, 1[. 2. Montrer que u n décroit, et trouver sa limite. 3. Que dire de nu n?. 3, Exercice 11.7 (Ensemble de Mandelbrot). Soit c un nombre complexe, et (z n ) la suite telle que z 0 = 0 et z n+1 = z 2 n + c. Montrer que la suite z n est bornée si et seulement si elle est majorée (au sens large) par 2. Exercice 11.8 (Fractions continues d après Cachan 2006). Soit (s n ) une suite d entiers naturels non nuls et S l ensemble des suites (u n ) telles que u n+2 = s n u n+1 + u n et S 0 l ensemble des suites (u n ) S de limite nulle. Soit c un réel et (a n ), (b n ), (c n ) S telles que a 0 = b 1 = c 0 = 1, a 1 = b 0 = 0 et c 1 = x. 1. Quelle est la dimension de S? 2. Soit w n = a n b n+1 a n+1 b n : exprimer w n+1 en fonction de w n puis de n. 3. Montrer que b n +. 13

4. Soit d n = an b n, pour n 1. Observer d n+1 d n et en déduire que d n converge vers une limite δ. 5. On pose f n : x c n. Montrer que f n est une application affine croissante, dont on donnera une équation en fonction de (a n ) et (b n ). 6. Montrer que, si on prend x = δ, alors (c n ) S 0. 7. Quelle est la dimension de S 0? 14

12 Suites numériques à valeurs réelles ou complexes Séries numériques Exercice 12.1. La série ( ) n 1 sin ( 1) n n est-elle convergente? Absolument convergente? Exercice 12.2. Toute série absolument convergente est-elle convergente? Toute série convergente est-elle absolument convergente? Exercice 12.3. Soit (u n ) la suite telle que u n = 1 si n est le carré d un entier et u n = 0 sinon. La série n 0 u n est-elle convergente? Exercice 12.4. Soit K > 0 un réel et (u n ), (v n ) deux suites positives réelles telles que u n Kv n K 2 u n. Montrer que n 0 u n est convergente si et seulement si n 0 v n est convergente. Exercice 12.5 (ENSAM 2009). Soit n 0 a n et n 0 b n deux séries convergentes à termes positifs. Montrer que n 0 max{a n, b n } converge. Exercice 12.6 (Cachan 2010). Soit (u n ) et (v n ) deux suites telles que u 0 > v 0 > 0 et u n+1 = 1. Montrer que (u n ) et (v n ) sont bien définies. 2. Montrer que (u n ) et (v n ) convergent. 3. Montrer que lim u n > lim v n = 0. u2 n u n+v n, v n+1 = v2 n u n+v n. Exercice 12.7. Montrer qu il existe deux suites complexes (u n ) et (v n ) telles que u n v n, que n 0 u n soit convergente et que n 0 v n soit divergente. Est-il possible que, en outre, n 0 u n soit absolument convergente? Exercice 12.8. Montrer que n k=1 sin ( 1 k ) ln(n). 15