NOMBRES COMPLEXES ET TRIGONOMÉTRIE

Documents pareils
NOMBRES COMPLEXES. Exercice 1 :

Représentation géométrique d un nombre complexe

Rappels et compléments, première partie : Nombres complexes et applications à la géométrie

Exercices - Nombres complexes : corrigé. Formes algébriques et trigonométriques, module et argument

Nombres complexes. cours, exercices corrigés, programmation

Baccalauréat S Nombres complexes Index des exercices sur les complexes de septembre 1999 à juin 2012 Tapuscrit : DENIS VERGÈS

Mesure d angles et trigonométrie

4. NOMBRES COMPLEXES ET TRIGONOMÉTRIE

Angles orientés et fonctions circulaires ( En première S )

LE PRODUIT SCALAIRE ( En première S )

1S Modèles de rédaction Enoncés

Cours de mathématiques Première année. Exo7

Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé

Cours arithmétique et groupes. Licence première année, premier semestre

1 radian. De même, la longueur d un arc de cercle de rayon R et dont l angle au centre a pour mesure α radians est α R. R AB =R.

Correction du Baccalauréat S Amérique du Nord mai 2007

Exercices - Polynômes : corrigé. Opérations sur les polynômes

Géométrie dans l espace Produit scalaire et équations

Angles orientés et trigonométrie

Introduction. Mathématiques Quantiques Discrètes

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable

Pour l épreuve d algèbre, les calculatrices sont interdites.

I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES

Limites finies en un point

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours.

STATIQUE GRAPHIQUE ET STATIQUE ANALYTIQUE

I. Ensemble de définition d'une fonction

Planche n o 22. Fonctions de plusieurs variables. Corrigé

Dérivation : cours. Dérivation dans R

Calcul intégral élémentaire en plusieurs variables

CHAPITRE 10. Jacobien, changement de coordonnées.

I. Polynômes de Tchebychev

Correction du baccalauréat S Liban juin 2007

Quelques contrôle de Première S

Cours d Analyse. Fonctions de plusieurs variables

aux différences est appelé équation aux différences d ordre n en forme normale.

Chapitre 0 Introduction à la cinématique

Corrigé du baccalauréat S Asie 21 juin 2010

Fonctions Analytiques

Corrigé du baccalauréat S Pondichéry 12 avril 2007

Mathématiques Algèbre et géométrie

Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes.

Développements limités usuels en 0

Si deux droites sont parallèles à une même troisième. alors les deux droites sont parallèles entre elles. alors

TOUT CE QU IL FAUT SAVOIR POUR LE BREVET

Comment démontrer que deux droites sont perpendiculaires?

Séquence 10. Géométrie dans l espace. Sommaire

Cours d Analyse I et II

Seconde Généralités sur les fonctions Exercices. Notion de fonction.

De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que

Problème 1 : applications du plan affine

Equations cartésiennes d une droite

Chapitre 2. Matrices

Chapitre 3. Quelques fonctions usuelles. 1 Fonctions logarithme et exponentielle. 1.1 La fonction logarithme

AC AB. A B C x 1. x + 1. d où. Avec un calcul vu au lycée, on démontre que cette solution admet deux solutions dont une seule nous intéresse : x =

Fonctions de plusieurs variables

Fonctions homographiques

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer

Mais comment on fait pour...

Complément d information concernant la fiche de concordance

DÉRIVÉES. I Nombre dérivé - Tangente. Exercice 01 (voir réponses et correction) ( voir animation )

Chapitre 1 Cinématique du point matériel

Capes Première épreuve

Comparaison de fonctions Développements limités. Chapitre 10

Michel Henry Nicolas Delorme

a et b étant deux nombres relatifs donnés, une fonction affine est une fonction qui a un nombre x associe le nombre ax + b

Exprimer ce coefficient de proportionnalité sous forme de pourcentage : 3,5 %

8.1 Généralités sur les fonctions de plusieurs variables réelles. f : R 2 R (x, y) 1 x 2 y 2

Cours de Mécanique du point matériel

Chapitre 6. Fonction réelle d une variable réelle

Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en Énoncé.

Items étudiés dans le CHAPITRE N5. 7 et 9 p 129 D14 Déterminer par le calcul l'antécédent d'un nombre par une fonction linéaire

Exo7. Limites de fonctions. 1 Théorie. 2 Calculs

Développements limités, équivalents et calculs de limites

Construction d un cercle tangent à deux cercles donnés.

Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures)

Développements limités. Notion de développement limité

Continuité et dérivabilité d une fonction

La fonction exponentielle

Annexe 1 Programmes des classes préparatoires aux Grandes Ecoles

Intégrales doubles et triples - M

Repérage d un point - Vitesse et

F411 - Courbes Paramétrées, Polaires

FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4)

COMPTE-RENDU «MATHS EN JEANS» LYCEE OZENNE Groupe 1 : Comment faire une carte juste de la Terre?

Activités numériques [13 Points]

La géométrie du triangle III IV - V Cercles remarquables - Lieux géométriques - Relations métriques

PROBLEME(12) Première partie : Peinture des murs et du plafond.

INTRODUCTION. 1 k 2. k=1

Chafa Azzedine - Faculté de Physique U.S.T.H.B 1

Manipulateurs Pleinement Parallèles

Dérivation CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES

Image d un intervalle par une fonction continue

Fonctions de plusieurs variables : dérivés partielles, diérentielle. Fonctions composées. Fonctions de classe C 1. Exemples

Q x2 = 1 2. est dans l ensemble plus grand des rationnels Q. Continuons ainsi, l équation x 2 = 1 2

Chapitre 2 Le problème de l unicité des solutions

Fonctions de plusieurs variables

BACCALAURÉAT GÉNÉRAL SESSION 2012 OBLIGATOIRE MATHÉMATIQUES. Série S. Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE

Cours de mathématiques

Calcul fonctionnel holomorphe dans les algèbres de Banach

Transcription:

CHAPITRE 2 NOMBRES COMPLEXES ET TRIGONOMÉTRIE 1 Rappels de trigonométrie tanα sinα π 2 M(α) π α cosα 0 3π 2 Figure 2.1 Sinus, cosinus, tangente Définition 2.1 La tangente d un nombre réel x, notée tan x, est définie pour tous les réels x sauf ceux de la forme π 2 + kπ, k Z par tan x = sin x cos x La cotangente d un nombre réel x, notée cotan(x), est définie pour tous les réels x sauf ceux de la forme kπ, k Z par cotan(x) = cos x sin x On a évidemment cotan(x) = 1 tan x pour tous les réels x sauf ceux de la forme k π 2, k Z. Lycée du Parc 851 1

Chapitre 2 Nombres complexes et trigonométrie sin x M π+ x sin x M x x cos x cos x x cos x sin x M M sin x Sinus et cosinus de x Sinus et cosinus deπ+ x M cos x sin x π x x M cos x cos x sin x x M x sin x M cos x Sinus et cosinus deπ x Sinus et cosinus deπ/2 x Figure 2.2 Angles associés 2 Forme algébrique d un nombre complexe Théorème 2.2 Tout nombre complexe z s écrit de manière unique z = a + ib avec a, b R. Remarques On parle de la forme algébrique de z. Attention, il n y a unicité que si l on force a et b à être réels : par exemple, 3 + i(1 + i) = 1 + i(1 i) = 2 + i. Proposition 2.3 Tout nombre complexe z 0 a un unique inverse, noté 1 z, tel que z 1 z = 1. Soient z, z C. On a zz = 0 (z = 0 ou z = 0). Exercice 2.1 1. Mettre sous forme algébrique (2 3i) 3. 2. Mettre sous forme algébrique 1 2+i. 3. Soient z C, z = a + ib avec a, b R. Exprimer 1 z en fonction de a et b. 4. Calculer i 19. Lycée du Parc 851 2

Définition 2.4 Soit z = a + ib un nombre complexe sous forme algébrique (on a donc a, b R). On appelle : partie réelle de z le nombre réel R(z) = a ; partie imaginaire de z le nombre réel I(z) = b ; conjugué de z le nombre complexe z = a ib ; module de z le nombre réel positif ou nul z = a 2 + b 2. Remarques Un complexe z est réel ssi sa partie imaginaire est nulle. Un complexe z est réel ssi z = z : c est très souvent cette caractérisation qui est la plus utile. Un nombre complexe est dit imaginaire pur si sa partie réelle est nulle. On note parfois ir l ensemble des imaginaires purs : ir = {z C, R(z) = 0}. Proposition 2.5 Conjugaison Soient z, z 1,..., z n dans C et p Z. z 1 + + z n = z 1 + + z n z 1 z n = z 1 z n En particulier, z p = (z) p. z = z ( ) 1 Si z 0, = 1 z z Proposition 2.6 Module Soient z, z 1,..., z n dans C et p Z. z 1 z n = z 1 z n En particulier, z p = z p. Si z 0, alors 1 z = 1 z. z = 0 z = 0 z.z = z 2 n z i n z i inégalité triangulaire i=1 i=1 En particulier, z 1 + z 2 z 1 + z 2. Exemple 2.2 Une autre inégalité qu il est bon d avoir en tête et de savoir démontrer : z 1 z 2 z 1 + z 2. Proposition 2.7 Parties réelle et imaginaire Soient z, z 1,..., z n C. R(z) = 1 2 (z + z) I(z) = 1 2i (z z) R(z 1 + + z n ) = R(z 1 ) + + R(z n ) I(z 1 + + z n ) = I(z 1 ) + + I(z n ) R(z) z I(z) z Lycée du Parc 851 3

Si λ est réel, R(λz) = λr(z). Si λ est réel, I(λz) = λi(z). Remarque Attention, la partie réelle d un produit (ou d un quotient) n est pas égale au produit (ou au quotient) des parties réelles. De même pour la partie imaginaire. 3 Exponentielle complexe 3.1 Forme trigonométrique Définition 2.8 Soit z = a + ib, avec a et b dans R, un nombre complexe. On définit l exponentielle de z par exp(z) = exp(a + ib) = e a (cos b + i sin b) Remarques Cette définition étend la fonction exponentielle aux nombres complexes ; on notera souvent e z pour exp(z). Pour tout z C, on a exp(z) 0. On remarque que 1 = e 0, i = e i π 2, 1 = e iπ et i = e i π 2. Proposition 2.9 Soient z, z C et n Z. On a e z+z = e z e z (e z ) n = e nz en particulier, 1 e = e z z e z = e z Exercice 2.3 Calculer (1 + i) 2011. Remarque Ces propriétés étendent celles de l exponentielle réelle. Attention cependant à la deuxième : si l on oublie que n doit être entier, on écrit facilement des absurdités du type i = e i π 2 = e 2iπ 1 4 = ( e 2iπ) 1 4 = 1 1 4 = 1... Proposition 2.10 Soit θ R. On a e iθ = cos θ + i sin θ (cos θ + i sin θ) n = cos(nθ) + i sin(nθ) cos θ = eiθ +e iθ sin θ = eiθ e iθ 2i Moivre 2 Euler Euler Remarque Ces formules permettent de transformer une expression du type sin n x (ou cos n x) en une somme de termes de la forme n ( ak sin(kx) + b k cos(kx) ) : on dit qu on linéarise, ce qui est très utile par exemple pour calculer des primitives. L opération inverse n a pas de nom, mais sert également parfois. Lycée du Parc 851 4

Exercice 2.4 Pour x R, exprimer : 1. cos(3x) et sin(3x) en fonction de cos x et sin x ; 2. sin 3 x en fonction de sin(3x) et de sin x. Exercice 2.5 Pour n N et x R, calculer n n cos(kx) et sin(kx). Théorème 2.11 Forme trigonométrique d un complexe Tout nombre complexe z peut s écrire sous la forme ρe iθ avec ρ 0 et θ R. Si θ, θ R et si ρ > 0 et ρ > 0, alors ρ = ρ ρe iθ = ρ e iθ et θ = θ + 2kπ, avec k Z Remarques On note usuellement θ θ [2π] ou θ θ mod 2π pour k Z, θ = θ + 2kπ. De même, θ = θ mod π signifie k Z, θ = θ + kπ. La condition ρ R + assure l unicité de ρ, qui est égal à z. Définition 2.12 Si z = ρe iθ, avec ρ 0, on dit que θ est un argument de z. On note alors arg(z) θ[2π] ou arg(z) θ mod 2π. Remarques 0 n a pas d argument. Parmi tous les arguments d un complexe z 0, un et un seul appartient à l intervalle ] π, π]. Cet argument est dit argument principal de z. Proposition 2.13 Argument Soient z, z C et n Z. arg(zz ) arg(z) + arg(z ) mod 2π arg(z n ) n arg(z) mod 2π arg ( 1 z ) arg(z) mod 2π arg ( z z ) arg(z) arg(z ) mod 2π Remarque Ces propriétés sont une simple traduction de celles déjà vues pour l exponentielle complexe. 3.2 Plan complexe Le plan muni d un repère orthonormé (O, u, v ) s identifie de manière naturelle à l ensemble C : à un point M(x, y) on fait correspondre le complexe z = x + iy appelé affixe de M, et réciproquement. Cette identification peut aussi se faire avec la forme trigonométrique de z en travaillant en coordonnées polaires : à un complexe Lycée du Parc 851 5

non nul z = ρe iθ correspond le point du plan de coordonnées polaires (ρ, θ) (et donc de coordonnées cartésiennes (ρ cos θ, ρ sin θ)). Il est bon d avoir en tête une représentation géométrique d un certain nombre de définitions et propriétés sur les complexes. Dans ce qui suit, on a, comme souvent, effacé la distinction entre complexe z et point d affixe z. R correspond à l axe des abscisses. L ensemble ir des imaginaires purs correspond à l axe des ordonnées. La partie réelle d un complexe z est son projeté orthogonal sur l axe des abscisses. La partie imaginaire d un complexe z n est pas son projeté orthogonal sur l axe des ordonnées. z z est la distance entre z et z. En particulier, z est la distance entre z et l origine. Si a C et r R +, l ensemble {z C, z a = r} est le cercle de rayon r et de centre a. Soient z et z deux complexes non nuls. arg(z ) arg(z)[2π] ssi z [Oz). Soient z et z deux complexes non nuls. arg(z ) arg(z)[π] ssi z (Oz). z est le symétrique de z par rapport à l origine. z est le symétrique de z par rapport à l axe des abscisses. Si r R +, la transformation z rz est une homothétie de rapport r et de centre O. Si θ R, la transformation z ze iθ est une rotation d angle θ et de centre O. Exercice 2.6 1. On considère deux complexes non nuls z 1 = ρ 1 e iθ 1 et z 2 = ρ 2 e iθ 2. Donner une condition nécessaire et suffisante sur θ 1 et θ 2 pour que z 1 + z 2 = z 1 + z 2. Comment cette condition s interprète-t-elle géométriquement? 2. Même question en passant cette fois par la forme algébrique de z 1 et z 2. Un complexe peut aussi être vu naturellement comme un vecteur du plan. z correspondra au vecteur OM, où M est le point d affixe z. Réciproquement, à un vecteur AB de coordonnées (x, y), on fera correspondre le complexe z AB = x + iy dit affixe vectorielle de AB. Dans les propriétés suivantes, on a noté za l affixe d un point A. z AB = z B z A AB = z AB = AB = zb z A ( ) AB, z CD = arg CD (pour A B et C D) z AB z AB est colinéaire à CD ssi AB R (pour A B et C D). z CD z AB est orthogonal à CD ssi AB est imaginaire pur (pour A B et C D). z CD 3.3 Complexes de module 1 Définition 2.14 On note U l ensemble des nombres complexes de module 1. U = {z C, z = 1}. Proposition 2.15 U = {e iθ, θ R} = {cos θ + i sin θ, θ R} = {a + ib tels que a, b R et a 2 + b 2 = 1} Lycée du Parc 851 6

Remarques La représentation naturelle d un complexe de module 1 (à utiliser dans 99% des cas) est e iθ, θ R. Dans le plan complexe, U correspond au cercle unité (aussi appelé cercle trigonométrique). Exercice 2.7 Soit z C. Montrer que z = 1 z = 1 z. Théorème 2.16 Racines de l unité Pour tout n N, l équation z n = 1 a exactement n solutions dans C, appelées racines n-èmes de l unité. On a {z C, z n = 1} = { } e 2ikπ n, k 1, n Remarques Les racines deuxièmes de l unité sont 1 et 1, les racines quatrièmes 1, 1, i et i. Les racines troisièmes de l unité sont e 2iπ 3, e 2iπ 3 et 1. On note souvent j pour e 2iπ 3 et ces racines s écrivent alors j, j 2 et 1(= j 3 ). 3.4 Formules de trigonométrie Proposition 2.17 Pour tous a, b R, on a : cos 2 a + sin 2 a = 1 cos(a + b) = cos a cos b sin a sin b sin(a + b) = sin a cos b + sin b cos a cos(2a) = cos 2 a sin 2 a = 1 2 sin 2 = 2 cos 2 a 1 sin(2a) = 2 sin a cos a cos a + cos b = 2 cos ( ) ( ) a+b 2 cos a b 2 sin a + sin b = 2 sin ( ) ( ) a+b 2 cos a b 2 1 + tan 2 1 a =, quand ces expressions ont un sens. cos 2 a tan a + tan b tan(a + b) =, quand ces expressions ont un sens. 1 tan a tan b Remarque Il faut savoir que ces formules existent et, au choix, être capable de les retrouver rapidement ou les connaître par cœur. Lycée du Parc 851 7

4 Complexes et équations 4.1 Équations du second degré à coefficients réels Soient a, b, c R avec a 0. On considère l équation (E) d inconnue z C : (E) : az 2 + bz + c = 0 On pose = b 2 4ac ( est donc un réel que l on appelle discriminant de (E)). Théorème 2.18 Si > 0, l équation (E) admet deux solutions réelles distinctes b 2a et b + 2a Si = 0, l équation (E) admet une unique solution réelle (dite double) Si < 0, l équation (E) admet deux racines complexes non réelles distinctes b 2a b i 2a et b + i 2a Remarque Si < 0, les deux solutions complexes de (E) sont conjuguées. Proposition 2.19 Somme et produit des racines d un trinôme Soient z 1 et z 2 les deux solutions (éventuellement confondues) de (E). On a z 1 + z 2 = b a et z 1 z 2 = c a 4.2 Équations du type z n = a Si a est un complexe non nul, l équation z n = a possède exactement n racines distinctes dans C. Une méthode possible pour les déterminer est exposée dans l exemple suivant. Exemple 2.8 Résolvons dans C l équation (E) : z 4 = 2 + 2i 3, d inconnue z. On commence par mettre le membre de droite sous forme trigonométrique. On a 2+2i 3 = 4 + 12 = 4, on cherche donc θ R tel que cos θ +i sin θ = 1 2 +i 3 2. D après les valeurs remarquables de sin et cos, on peut prendre θ = 2π 3, on a donc 2 + 2i 3 = 4e 2iπ 3. On cherche z sous forme trigonométrique z = ρe iα. Comme les solutions sont clairement non nulles, on a (E) ( ρe iα) 4 2iπ = 4e 3 ρ 4 = 4 (1) 4α 2π 3 [2π] (2) Comme ρ est forcément un réel positif, la seule solution de (1) est ρ = 4 4 = 2. Lycée du Parc 851 8

L équation (2) s écrit k Z, 4α = 2iπ 3 + 2kπ, ce qui équivaut à k Z, α = π 6 + k π 2. Cette équation a quatre solutions dans [0, 2π[ qui sont π 6, 2π 3, 7π 6 et 5π 3. Les autres solutions dans R sont toutes égales à l une de ces solutions modulo 2π et ne donnent donc pas de nouvelles solutions pour (E). Finalement, l ensemble des solutions de (E) est donc { 2e iπ 6, 2e 2iπ 3, 2e 7iπ 6, } 2e 5iπ 3. Remarque Si, pour une raison quelconque, on peut facilement déterminer une solution particulière z 0 de l équation (E) : z n = a, on peut facilement trouver les autres en résolvant l équation (qui est alors équivalente à (E)) ( ) z n z 0 = 1. Nous verrons un exemple en travaux dirigés (exercice 2.15). Lycée du Parc 851 9

Travaux dirigés Exercice 2.9 1. Soit θ un réel. Résoudre les équations d inconnue réelle x suivantes : cos(x) = cos(θ), sin(x) = sin(θ) et tan(x) = tan(θ). 2. Soit n N. Résoudre dans ]0, π[ l équation cos(nx) = 0. 3. Résoudre dans R les équations et inéquations suivantes : 2 cos(2x + π 3 ) = 3; sin(x) 1 2 ; cos(2x) 0; tan(x) 1; tan(x + π 4 ) > 1; 2 cos 2 (x) + 3 cos x + 1 = 0; sin 2 x + 3 cos x 1 < 0; cos(2x) 3 sin(2x) = 1; sin 2 (2x + π 6 ) = cos2 (x + π 3 ). Exercice 2.10 Mettre les nombres complexes suivants sous forme algébrique : z 1 = (5 3i) 3 z 2 = 4 3i 4 + 3i z 3 = 1 (4 i)(3 + 2i) z 4 = (3 + i)(2 3i) 5 + 2i Exercice 2.11 Soit θ [0, 2π[. Déterminer le module et un argument des nombres complexes suivants : z 1 = 1 + e iθ z 2 = 1 e iθ z 3 = 1 eiθ 1 + e iθ z 4 = (1 + i) 3 z 5 = 1 4i 1 + 5i z 6 = 1 + 4i 1 5i z 7 = (1 + i)2. 1 i Exercice 2.12 Montrer que : Interpréter géométriquement le résultat. Exercice 2.13 Exercice 2.14 (z, z ) C 2, z + z 2 + z z 2 = 2( z 2 + z 2 ). 1. Linéariser les expressions suivantes : cos 6 x; cos 2 x sin 4 x; sin 5 x; cos 3 (2x) sin 3 x; cos(2x) cos 3 x. 2. Soit α un réel. a. Calculer cos(5α) et sin(5α) en fonction de cos(α) et sin(α). b. En déduire la valeur de cos π 10. Calculer pour tout entier naturel n et pour tous réels a et b les sommes suivantes. n ( ) n 1. k sin(ka) k Identité du parallélogramme Lycée du Parc 851 10

2. n ( ) n ( 1) k cos(ka + b) k Exercice 2.15 Déterminer les nombres complexes z tels que : Exercice 2.16 1. z 2 3z + 4 = 0 2. z 4 + z 2 6 = 0 3. z 2 = z 4. z z + z + z = 4 5. z 4 i = 0 6. z 3 = (2 + i) 3 7. z = z 6 + 5i 8. z + i = 2 9. z(2 z + 1) = 1 10. z+4i 5z 3 R 11. R ( z 1 z+1) = 0 Soit n N. On pose u = exp ( 2iπ n Exercice 2.17 ). Montrer que z C, n ( ) z + u k n = n(z n + 1) k=1 Soient a, b et c trois nombres complexes de module 1 tels que a + b + c = 1. Le but est de montrer que l un au moins des trois nombres vaut 1. 1. Montrer que 1 a + 1 b + 1 c = 1. Exercice 2.18 2. En déduire que ab + bc + ac = abc. 3. Montrer que (1 a)(1 b)(1 c) = 0 et conclure. On note E = {z C, I(z) > 0} et F = {z C, z < 1}. 1. Montrer que : z C, z E z i z+i F. 2. On définit alors l application : f : E F z z i z + i a. Montrer que tout nombre complexe Z de F admet un antécédent par f dans E. b. En déduire que f est bijective et déterminer f 1. 3. On pose E 1 = {z E; R(z) = 0} et E 2 = {z E; z = 1} et on munit le plan d un repère orthonormé direct. a. Déterminer l ensemble f (E 1 ) et le représenter graphiquement. b. Déterminer l ensemble f (E 2 ) et le représenter graphiquement. Lycée du Parc 851 11

Exercice 2.19 Études On note j = e 2iπ 3, et l on considère un entier n 1 ainsi que les sommes Exercice 2.20 A = n 1. Calculer A, B et C. ( ) n k 2. Calculer j 3 et 1 + j + j 2. B = n ( ) n j k C = k n ( ) n j 2k S = k 0 3k n 3. Déterminer pour k N la valeur de 1 + j k + ( j 2 ) k. On distinguera suivant que k est de la forme 3m, 3m + 1 ou 3m + 2 avec m N. ( 4. En déduire que A + B + C = 3S, puis que S = 1 3 2 n + 2( 1) n cos ( )) 4nπ 3 (on pourra remarquer que j 2 = j). ( ) n 3k Inversion dans le plan complexe On rappelle que C désigne l ensemble des complexes non nuls et U l ensemble des complexes de module 1. On considère l application ϕ : C C z 1 z 1. Montrer que ϕ est une bijection et déterminer sa bijection réciproque. 2. Déterminer f (U). 3. On considère le cercle C de rayon 1 2 et de centre le (point d affixe) 1 2, ainsi que la droite d équation z + z = 2. a. Représenter graphiquement et C. b. Montrer que, pour tout z C, z C 2z z z z = 0 (on dit que C a pour équation 2z z z z = 0). c. Montrer que ϕ( ) C. Peut-on avoir l égalité? d. On note C = C \ {0} (C est donc le cercle C privé de l origine). Montrer que tout z C a un antécédent dans. On pensera à utiliser la bijection réciproque de ϕ. e. En déduire que ϕ( ) = C et ϕ(c ) =. Lycée du Parc 851 12

Exercices supplémentaires Exercice 2.21 Soient a, b, c R. On suppose que cos a + cos b + cos c = sin a + sin b + sin c = 0. Montrer que cos 2a + cos 2b + cos 2c = sin 2a + sin 2b + sin 2c = 0 Exercice 2.22 Soient u, v, z C tels que z = u + iv. z = 0 Montrer que z 2 = u 2 + v 2 ou u, v R Exercice 2.23 Exercice 2.24 1. Montrer que x ]0, π[ n N, n 1 2. En déduire les solutions dans ]0, π[ de Résoudre dans C l équation R ( z 1 z+1) = 0. Exercice 2.25 sin((2k + 1)x) = sin2 (nx) sin x. sin x + sin 3x sin 4x + sin 5x + sin 7x = 0 On souhaite résoudre dans C l équation 2z 2 (1 + 5i)z 2(1 i) = 0. 1. Déterminer δ C tel que δ 2 = 2(4 + 3i). Exercice 2.26 2. En déduire les solutions de l équation. Résoudre dans C : 1. z 5 = 1 + i 2. z 6 2z 3 + 2 = 0 Exercice 2.27 Montrer que : n 2, 2 cos π 2 2 n = + 2 +... 2 } {{ } n 1 symboles. Exercice 2.28 Soit z un complexe de module 1. Montrer que ( 1 + z 1 ) ou ( 1 + z 2 1 ). Lycée du Parc 851 13

Exercice 2.29 Soit z C. Montrer que z 2 1 < 8 z 2 < 5 Exercice 2.30 Soit θ R et z C. On suppose que z + 1 z = 2 cos θ. Montrer que n N, z n + 1 = 2 cos nθ zn Exercice 2.31 Exercice 2.32 1. Montrer que pour a, b ] π 2, π 2 [, on a tan a tan b = 2. En déduire pour n N et x ] π 2n, π 2n[ la valeur de n Résoudre l équation z 2 = 2 z + 3, d inconnue z C. sin(a b) cos a cos b 1 cos(kx) cos((k + 1)x) Lycée du Parc 851 14