Théorèmes du Point Fixe et Applications aux Equations Diérentielles



Documents pareils
Fonctions de plusieurs variables : dérivés partielles, diérentielle. Fonctions composées. Fonctions de classe C 1. Exemples

3 Approximation de solutions d équations

Théorème du point fixe - Théorème de l inversion locale

Continuité d une fonction de plusieurs variables

Image d un intervalle par une fonction continue

Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer

Cours d Analyse. Fonctions de plusieurs variables

Différentiabilité ; Fonctions de plusieurs variables réelles

Amphi 3: Espaces complets - Applications linéaires continues

Intégration et probabilités TD1 Espaces mesurés Corrigé

FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4)

I. Polynômes de Tchebychev

Développements limités. Notion de développement limité

Dualité dans les espaces de Lebesgue et mesures de Radon finies

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

Chapitre 2 Le problème de l unicité des solutions

Limites finies en un point

Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications

Résolution d équations non linéaires

8.1 Généralités sur les fonctions de plusieurs variables réelles. f : R 2 R (x, y) 1 x 2 y 2

Chapitre VI Fonctions de plusieurs variables

Calcul différentiel. Chapitre Différentiabilité

NOTATIONS PRÉLIMINAIRES

Continuité en un point

Fonctions de plusieurs variables

Université Paris-Dauphine DUMI2E 1ère année, Applications

Cours3. Applications continues et homéomorphismes. 1 Rappel sur les images réciproques

Exercices - Polynômes : corrigé. Opérations sur les polynômes

Problème 1 : applications du plan affine

Structures algébriques

De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que

Calcul différentiel sur R n Première partie

Examen optimisation Centrale Marseille (2008) et SupGalilee (2008)

Capes Première épreuve

Axiomatique de N, construction de Z

Approximations variationelles des EDP Notes du Cours de M2

Fonctions de plusieurs variables

Continuité et dérivabilité d une fonction


Fonctions de plusieurs variables et changements de variables

Calcul fonctionnel holomorphe dans les algèbres de Banach

Planche n o 22. Fonctions de plusieurs variables. Corrigé

Calcul Différentiel. I Fonctions différentiables 3

CNAM UE MVA 210 Ph. Durand Algèbre et analyse tensorielle Cours 4: Calcul dierentiel 2

I. Ensemble de définition d'une fonction

Chp. 4. Minimisation d une fonction d une variable

3. Conditionnement P (B)

Moments des variables aléatoires réelles

Construction de l'intégrale de Lebesgue

OM 1 Outils mathématiques : fonction de plusieurs variables

Cours d Analyse 3 Fonctions de plusieurs variables

Groupe symétrique. Chapitre II. 1 Définitions et généralités

Première partie. Préliminaires : noyaux itérés. MPSI B 6 juin 2015

Équations non linéaires

n N = u N u N+1 1 u pour u 1. f ( uv 1) v N+1 v N v t

La fonction exponentielle

Calcul intégral élémentaire en plusieurs variables

Dérivation : cours. Dérivation dans R

Correction du Baccalauréat S Amérique du Nord mai 2007

CCP PSI Mathématiques 1 : un corrigé

Commun à tous les candidats

Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques.

Équations non linéaires

Fonctions holomorphes

Correction de l examen de la première session

Fonctions de plusieurs variables. Sébastien Tordeux

Intégrales doubles et triples - M

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable

La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1

Proposition. Si G est un groupe simple d ordre 60 alors G est isomorphe à A 5.

I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES

Raisonnement par récurrence Suites numériques

Retournement Temporel

C1 : Fonctions de plusieurs variables

Simulation de variables aléatoires

Méthodes de quadrature. Polytech Paris-UPMC. - p. 1/48

Produits d espaces mesurés

= 1 si n = m& où n et m sont souvent des indices entiers, par exemple, n, m = 0, 1, 2, 3, 4... En fait,! n m

Suites numériques 3. 1 Convergence et limite d une suite

Produit semi-direct. Table des matières. 1 Produit de sous-groupes 2. 2 Produit semi-direct de sous-groupes 3. 3 Produit semi-direct de groupes 4

Mais comment on fait pour...

Licence de Mathématiques 3

Cours Fonctions de deux variables

6 Equations du première ordre

Condition de stabilité d'un réseau de les d'attente à deux stations et N classes de clients 1

DÉRIVÉES. I Nombre dérivé - Tangente. Exercice 01 (voir réponses et correction) ( voir animation )

Programmation linéaire

Développements limités, équivalents et calculs de limites

Relation d ordre. Manipulation des relations d ordre. Lycée Pierre de Fermat 2012/2013 Feuille d exercices

Le produit semi-direct

Programmation linéaire et Optimisation. Didier Smets

Réalisabilité et extraction de programmes

MESURE ET INTÉGRATION EN UNE DIMENSION. Notes de cours

Compte rendu des TP matlab

Optimisation des fonctions de plusieurs variables

EXERCICE 4 (7 points ) (Commun à tous les candidats)

Dérivées d ordres supérieurs. Application à l étude d extrema.

Géométrie dans l espace Produit scalaire et équations

Notes du cours MTH1101 Calcul I Partie II: fonctions de plusieurs variables

Transcription:

Université de Nice-Sophia Antipolis Mémoire de Master 1 de Mathématiques Année 2006-2007 Théorèmes du Point Fixe et Applications aux Equations Diérentielles Auteurs : Clémence MINAZZO - Kelsey RIDER Responsable : Erwann AUBRY 1

Table des matières 1 Introduction 4 2 Le premier théorème du point xe 4 2.1 Un Théorème du Point Fixe Métrique......................... 4 2.2 Le Théorème de Cauchy-Lipschitz........................... 5 2.3 Exemple.......................................... 7 2.4 Le Théorème d'inversion Locale............................. 8 3 Le Deuxième Théorème du Point Fixe 10 3.1 Un Théorème du Point Fixe Topologique........................ 10 3.1.1 Rétractions.................................... 10 3.1.2 Le cas K = B f (0, 1)............................... 12 3.2 Le Théorème de Schauder................................ 13 3.3 Le Théorème de Cauchy-Arzela............................. 13 4 Annexes 15 4.1 Diérents outils utilisés................................. 15 4.2 Démonstration du Théorème 8............................. 15 4.3 Une autre démonstration du théorème de Brouwer en dimension 2......... 17 2

Notations B(x 0, r) est la boule ouverte de centre x 0 et de rayon r B f (x 0, r) est la boule fermée centrée en x 0 et de rayon r K est l'intérieur de K A est l'adhérence de A S(x 0, r) est la sphère de centre x 0 et de rayon r C 0 (E, F ) est l'ensemble des fonctions continues de E dans F Cb 0 (E, F ) est l'ensemble des fonctions continues et bornées de E dans F 3

1 Introduction Dans ce rapport, on étudie les théorèmes du point xe de Picard et de Schauder, et quelques unes de leurs applications (aux équations diérentielles et au problème d'inversion locale). Etant donnés un ensemble E et une application f : E E, ces théorèmes donnent certaines conditions sous lesquelles f admet un point xe dans E. Ces théorèmes sont importants dans les mathématiques car il y a plusieurs applications, par exemple pour trouver les racines d'un polynôme, ou pour montrer l'existence des solutions numériques des équations diérentielles. Le Théorème du Point Fixe de Picard dit qu'une contraction d'un espace métrique complet a un point xe unique. Ce théorème donne un comportement régulier du point xe par rapport aux paramètres. De plus, il fournit un algorithme d'approximation du point xe comme limite d'une suite itérée. Mais d'une part, montrer que la fonction est contractante peut entraîner de laborieux calculs. D'autre part, les conditions sur la fonction et l'espace étudiés restreignent le nombre de cas auxquels on peut appliquer le théorème. Le Théorème du Point Fixe de Schauder est plus topologique et arme qu'une application continue sur un convexe compact admet un point xe, qui n'est pas nécessairement unique. Il n'est pas donc nécessaire d'établir des estimées sur la fonction, mais simplement sa continuité. Ceci nous donne la possibilité de traiter plus de cas qu'avec le Théorème de Picard (par exemple, l'identité). Par contre, ce théorème ne donne aucun des avantages du théorème précédent. On applique dans ce rapport ces théorèmes au Problème de Cauchy : étant données une condition initiale (x 0, ) et une équation diérentielle d dtx = f(x, t), existe-il une solution, et est-elle unique? Les réponses à ces questions sont données par le théorème de Cauchy-Lipschitz (si f est localement Lipschitzienne) et de Cauchy-Arzela (si f est seulement continue). On retrouve que ces comportements diérents résultent des diérences entre les théorèmes du point xe de Picard et de Schauder. Une autre application du Théorème de Picard dans ce rapport est la démonstration du Théorème d'inversion Locale. En eet, on montre qu'une certaine fonction est une bijection en utilisant le Théorème de Picard pour montrer l'existence (surjectivité) et l'unicité (injectivitié) d'un point xe. Dans ce cas, il était possible de construire une contraction ; par contre, on ne pourrait pas appliquer le Théorème de Schauder car on a besoin de l'unicité. 2 Le premier théorème du point xe 2.1 Un Théorème du Point Fixe Métrique Ce théorème donne l'existence et l'unicité d'un point xe pour une contraction sur un espace métrique complet. Théorème 1 (Picard). Soient (E, d) un espace métrique complet et ϕ : E E une application contractante, i.e. Lipschitzienne de rapport k < 1. Alors, ϕ admet un unique point xe a E. De plus, pout tout point initial x 0 E, la suite itérée (x p ) p N, avec x 0 E quelconque et x p+1 := ϕ(x p ) converge vers a. [1] Démonstration. On montre d'abord l'unicité d'un point xe, puis son existence. 1. Unicité : Supposons qu'il existe a, b E, a b, tels qu'on ait ϕ(a) = a et ϕ(b) = b. Alors on a d(ϕ(a), ϕ(b)) = d(a, b) et donc d(ϕ(a),ϕ(b)) d(a,b) = 1 > k ce qui contredit le fait que f soit k-lipschitzienne. 4

2. Existence : Soit x 0 un point initial quelconque et (x p ) la suite itérée associée. On a d(x p, x p+1 ) = d(ϕ(x p 1 ), ϕ(x p )) kd(x p 1, x p ). On va montrer par récurrence sur p que d(x p, x p+1 ) k p d(x 0, x 1 ) (P) : Initialisation : Evident pour p = 0. Généralisation : supposons que pour un certain entier p quelconque mais xé on ait la propriété (P). Alors d(x p+1, x p+2 ) = d(ϕ(x p ), ϕ(x p+1 )) kd(x p, x p+1 ) k k p d(x 0, x 1 ) k p+1 d(x 0, x 1 ) ce qui achève la récurrence. On a alors q > p : q 1 q 1 d(x p, x q ) d(x l, x l 1 ) l=p l=p k l d(x 0, x 1 ) De plus, pour tout p > q, q 1 l=p kl l=p kl = kp 1 k, d'où d(x p, x q ) kp 1 k d(x 0, x 1 ). On en déduit alors que (x p ) est une suite de Cauchy. Comme (E, d) est complet, la suite (x p ) converge vers un point limite a E. De plus on a ϕ(x p ) ϕ(a) quand p + car ϕ est continue et ϕ(x p ) = x p+1. Or x p+1 a quand p +, d'où par unicité de la limite on a ϕ(a) = a. Contre-exemples. Les exemples suivant montrent que chacune des hypothèses du théorème est réellement nécessaire. 1. X n'est pas stable par f : f(x) = x 2 + 1 sur X = [0, 1]. Or X est fermé dans R, et complet car R est complet. De plus, f (x) = x x 2 +1 < 1 sup x X f (x) < 1 f est contractante. Mais f n'a pas de point xe car f([0, 1]) = [1, 2], i.e. X n'est pas stable par f. 2. f n'est pas contractante : f(x) = x 2 + 1 sur X = [0, [. Or f : X X, et X est un fermé de R. R est complet donc X est complet. Mais sup x X f (x) = 1 donc f n'est pas contractante. 3. X n'est pas complet : f(x) = sin(x) 2 sur X =]0, Π 4 ]. Or f(]0, Π 4 ]) =]0, 2 4 ] ]0, Π 4 ], et sup x X f (x) = 1 2 n'est pas fermé dans R donc pas complet. 2.2 Le Théorème de Cauchy-Lipschitz < 1 ; donc, f est contractante. Mais X Ce théorème est une application du théorème 2.1. En eet, nous verrons qu'une façon de le démontrer est d'appliquer le théorème précédent avec E un ensemble de fonctions et ϕ une application bien choisie. Soient U un ouvert de R R m et f : U R m une application continue. On introduit le problème de Cauchy (C) suivant : Etant donné (, y 0 ) U, trouver une solution y : I R R m de l'équation diérentielle (E) y = f(t, y), (t, y) U telle que I et y( ) = y 0. Dénition 1. Soient T > 0 et r 0 > 0. On dit que C = [ T, + T ] B f (y 0, r 0 ) est un cylindre de sécurité pour (C) si toute solution y : I R m du problème de Cauchy y( ) = y 0 avec I [ T, + T ] reste contenue dans B f (y 0, r 0 ). 5

Dénition 2. f est localement Lipschitzienne par rapport à la variable y sur U si (r 0, y 0 ) U, il existe un voisinage V de (r 0, y 0 ) dans U et une constante k = k(v ) telle que (t, y 1 ), (t, y 2 ) V, on ait f(t, y 1 ) f(t, y 2 ) k y 1 y 2. Théorème 2 (Cauchy-Lipschitz). Si f : U R m est continue et localement Lipschitzienne par rapport à y sur U, alors pour tout cylindre de sécurité C = [ T, +T ] B f (y 0, r 0 ), le problème de Cauchy admet une unique solution y : [ T, + T ] U. De plus, si on pose Φ(y)(t) = y 0 + f(u, y(u))du, il existe p N tel que la suite itérée Φ p (z) converge uniformément vers la solution exacte. [1] Démonstration. On commence par construire un cylindre de sécurité pour (C). Soit V un voisinage de (, y 0 ) sur lequel f est k-lipschitzienne par rapport à y, et soient T 0 > 0 et C 0 = [ T 0, + T 0 ] B(y 0, r 0 ) V un cylindre. C 0 est un fermé borné de R m+1 donc compact, et on en déduit alors que f est bornée sur C 0. Soit M = sup (t,y) C0 f(t, y(t)). On pose T = min(t 0, r0 M ). On va montrer que C = [ T, + T ] B f (y 0, r 0 ) est un cylindre de sécurité pour (C). Soit y : I [ T 0, + T 0 ] R m avec y( ) = y 0 et y = f(t, y) t I. Supposons qu'il existe τ [, + T [ tel que y(τ) n'appartient pas à B f (y 0, r 0 ). De plus, supposons que J = {t [, t o + T [ : y(t) / B f (y 0, r 0 )} soit non vide. On pose τ = inf J. Alors t [, τ[ on a y(t) B f (y 0, r 0 ), et de plus d(y 0, y(τ)) = r 0. Comme (t, y(t)) C 0, t [, τ] et y = f(t, y) on a, par le Théorème des Accroisements Finis, r 0 = y 0 y(τ) = y( ) y(τ) τ sup t [,τ] y (t) < M T r 0. Donc par passage à la limite (B f (y 0, r 0 ) étant fermé) on a y(t) B f (y 0, r 0 ) t [, +T ] I. De même on montre que y(t) B f (y 0, r 0 ) t [ T, ] I et donc y(t) B f (y 0, r 0 ) t I. Dans la suite on travaille avec ce cylindre de sécurité. On remarque que par construction on a sup C f = M et f est k-lipschitzienne par rapport à y sur C. On note F = C 0 ([ T, + T ], B(y 0, r 0 )) muni de la distance d =.. y F on associe Φ(y) dénie par : Φ(y)(t) = y 0 + f(u, y(u))du On montre d'abord l'équivalence suivante : y est solution de (E) y est un point xe de Φ : ( ) Supposons que y est un point xe de Φ. Alors y F on a Φ(y) = y d'où y(t) = y 0 + f(u, y(u))du. Or f est continue sur U donc y est continue sur U. De plus, y est dérivable sur [T 0 t, T 0 + t] et sa dérivée égale f(t, y(t)), i.e. y (t) = f(t, y(t)). On a aussi y( ) = y 0 + f(u, y(u))du = y 0. Donc f est solution du problème de Cauchy (C). ( ) Supposons maintenant que y est solution de (E). On a alors y (t) = f(t, y(t)) et y( ) = y 0. On peut intégrer y par rapport à u car y (u) = f(u, y(u)) et u f(u, y(u)) est continue sur un segment et donc intégrable sur ce même segment. Alors on obtient : y (u)du = f(u, y(u))du = [y(u)] u=t u= = y(t) y( ) = y(t) y 0 Donc, on a bien y(t) = y 0 + f(u, y(u))du = Φ(y)(t) et donc y est point xe de Φ. 6

On veut appliquer le théorème du point xe à Φ p (pour p bien choisi). 1. On montre d'abord que Φ est une application de F dans F. Pour cela on montre que Φ(y)(t) B f (y 0, r 0 ) t [ T, + T ]. Soit y F. On remarque que si t [ T, + T ], Φ(y)(t) y 0 = f(u, y(u))du f(u, y(u)) du M du M t M T r 0 Donc t [ T, +T ], Φ(y)(t) B f (y 0, r 0 ) d'où Φ(y) F et on a évidemment la stabilité de F par Φ p. 2. On montre maintenant que Φ p est contractante. Soient y, z F. On note y p = Φ p (y) et z p = Φ p (z), p N. Par récurrence sur p on montre qu'on a : y p (t) z p (t) k p t p d(y, z) p! (HR) Initialisation : C'est évident dans le cas p = 0. Généralisation : Supposons que pour un certain entier p quelconque mais xé on ait (HR). Alors y p+1 (t) z p+1 (t) k y p (u) z p (u) du k.k p u p d(y, z)du (par (HR)) p! kp+1 d(y, z) p! = kp+1 d(y, z) p! u p du [ u t0 p+1 ] u=t p+1 t t0 p+1 = k d(y, z) p + 1 u= (p + 1)! ce qui achève la récurrence. Comme t T, on a d(y p, z p (t)) k p T p p! d(y, z), donc Φ est lipschitzienne de rapport k p T p p!. Et il existe un p N tel que k p T p p! < 1 (car lim p + k p T p p! = 0). Donc, pour q p, Φ q est contractante. 3. Le théorème 12 nous donne la complétude de F. On déduit du théorème 2.1 que Φ q admet un unique point xe y. De plus Φ q (Φ(y)) = Φ(Φ q (y)) = Φ(y) donc Φ(y) est un point xe de Φ q, et par unicité du point xe de Φ q on a Φ(y) = y. Comme les points xes de Φ sont des points xes de Φ q on en déduit que y est l'unique point xe de Φ. Finalement, y est l'unique solution de (E). 2.3 Exemple y = 3 y 2/3 sur U = R R. 7

On veut déterminer l'ensemble des solutions maximales. On a f(t, y) = 3 y 2/3 donc f est continue sur R 2 et diérentiable sur R (R \ {0}). De plus on a f y = signe(y) 2 y 1/3, pour y 0. La dérivée f y est donc continue sur R R. La fonction f est localement Lipschitzienne en y sur {y > 0} et {y < 0}, mais elle ne l'est pas au voisinage des points (, 0) R {0}. Soit (y, ]A, B[) une solution dans U = R R. Alors y 0, donc y est croissante. On note a := inf{t ]A, B[: y(t) = 0}, b = sup{t ]A, B[: y(t) = 0}. Si a A, on a y(a) = 0 et y(t) < 0 pour t < a. Donc, sur l'intervalle ]A, a[, l'équation diérentielle est équivalente à 1 3 y (+y) 2/3 = 1, d'où y 1/3 (t) y 1/3 (a) = t a, et alors y(t) = (t a) 3. De même y(t) = (t b) 3 pour t > b si b B. On en déduit que si y 0 < 0 alors pour tout b [ y 1/3 0, +infty[, la fonction y b : R R t (t + y 1/3 0 ) 3 si t y 1/3 0 0 si y 1/3 0 t b (t b) 3 si t b est une solution (nécessairement maximale) de l'équation y = 3 y 2/3 et on obtient ainsi toutes les solutions maximales du problème de Cauchy associées à (, y 0 ) (pour y 0 < 0). De même, si y 0 > 0 alors les solutions maximales du problème de Cauchy associées à (, y 0 ) sont les fonctions de la forme : y b : R R t pour tout a ], y 1/3 0 ]. (t a) 3 si t a 0 si a t y 1/3 0 (t + y 1/3 0 ) 3 si t y 1/3 0 Si y 0 = 0 alors les solutions maximales associées à (, 0) sont de la forme : pour tout a ], ] et tout b [, + [. y b : R R (t a) 3 si t a t 0 si a t b (t b) 3 si t b On constate sur cet exemple que la condition Lipschitzienne suf f est nécessaire pour avoir l'unicité locale dans le théorème de Cauchy-Lipschitz. Dans cet exemple on a pas l'unicité globale des solutions du problème de Cauchy. Ceci est dû au fait qu'en y 0, f n'est plus Lipschitzienne mais seulement continue. On verra en section 3.3 que si f est C 0, alors on peut toujours démontrer l'existence locale de solutions au problème de Cauchy. 2.4 Le Théorème d'inversion Locale Ici encore ce théorème est une application du théorème 2.1 qu'on appliquera à une certaine fonction dans une partie de la démonstration. Dénition 3. Soient E, F deux espaces de Banach, U E ouvert, a U, f : U F une application. On dit que f est diérentiable en a s'il existe ϕ L c (E, F ) (i.e. ϕ est linéaire et continue) telle que f(a + h) = f(a) + ϕ(h) + o( h ) lorsque h 0 8

Si ϕ existe, elle est unique et est appellée la diérentielle de f en a et est notée df a. Si f est diérentiable en tout point de U, on dit que f est diérentiable sur U. Alors l'application df : U L c (E, F ) : a df a est appellée l'application diérentielle de f. Si df est continue, on dit que f est de classe C 1 (U). Théorème 3 (Inversion Locale). Soient : E, F deux espaces de Banach U E ouvert f : U F une application de classe C 1 a U tel que df a soit continu et inversible (et donc df a 1 est continue) Alors, il existe un voisinage ouvert V de a et un voisinage ouvert W de f(a) tels que : 1. la restriction f V de f à V est une bijection de V sur W 2. l'application inverse g : W V est continue 3. g est de classe C 1 et x W, dg f(x) = df 1 x [3] Démonstration. On munit L c (E, F ) de la norme u = sup x =1 u(x). Quitte à remplacer f par la fonction x df x 1 [f(a + x) f(a)], on peut se ramener au cas où a = 0, f(a) = 0, et df 0 = df a = Id E (et donc E = F ). Comme f est de classe C 1, il existe r > 0 tel que B(0, r) U et df x df 0 = df x Id E 1 2 pour tout x B(0, r). On désigne u := Id E df x, donc df x = Id E u avec u 1 2. Alors, df x est un isomorphisme bicontinu qui, d'après la proposition 1 (en Annexes), vérie df x 1 = + n=0 un, et donc + + df x 1 u n 1 2 n = lim 2 n+1 1 n + 2 n = 2 n=0 n=0 1. On va montrer que la restriction de f à un voisinage ouvert de 0 dans B(0, r) est une bijection sur B(0, r 2 ). Soit y B(0, r 2 ). On considère la fonction h : B f (0, r) E x y + x f(x) Il est clair que h est de classe C 1 ; de plus, x B(0, r), d'après le Théorème des Accroisements Finis, dh x = Id E df x 1 2. Donc, x, x B f (0, r), h(x) h(x ) 1 2 x x (1) En particulier, pour x = 0, on a x f(x) = h(x) h(0) 1 2 x, donc x B(0, r), h(x) y + x f(x) y + 1 2 x < r 2 + r 2 = r Ainsi, h est une fonction de B f (0, r) dans B(0, r) B(0, 1). Comme de plus h est 1 2 - Lipschitzienne d'après (1), d'après le théorème 2.1,!x B f (0, r) tel que h(x) = x, c'est-àdire tel que f(x) = y. Comme x = h(x) et que h est à valeurs dans B(0, r), on en déduit que x B(0, r). Alors, pour tout y B(0, r 2 ),! x B(0, r) tel que f(x) = y. On dénit V := f 1 (B(0, r 2 )) B(0, r). V est un voisinage de 0 car f(0) = 0 et f est continue sur B(0, r). En notant W := B(0, r 2 ), on a alors f V : V W est une bijection. 2. On note g : W V l'application inverse. On utilise de nouveau h, cette fois-ci avec y = 0, et donc x U, x = h(x) + f(x). Alors, x, x B(0, r), x x h(x) h(x ) + f(x) f(x ) 1 2 x x + f(x) f(x ) 9

Donc, x x 2 f(x) f(x ). On en déduit que y, y W, g(y) g(y ) 2 f(g(y)) f(g(y )) = 2 y y (2) g est donc Lipschitzienne et par conséquent continue. 3. On xe x V et on pose y = f(x) W. Il existe r > 0 tel que B(y, r ) W, et pour tout w B(0, r ), on pose v = g(y + w) g(y). Donc, d'après (2), v 2 w, et (w) = g(y + w) g(y) df x 1 (w) = v df x 1 [ ] f(x + v) f(x) = df x 1 [ f(x + v) f(x) dfx (v) ]. Comme df x 1 2, on obtient (w) 2 f(x + v) f(x) df x (v) = 2 v ε(v) avec lim v 0 ε(v) = 0. Donc, (w) 4 w ε (g(y + w) g(y)) = 4 w ε (w). Comme g est continue, lim w 0 ε (w) = 0. Alors, (w) = o( w ). Donc, g est diérentiable en y et dg y = df x 1. Enn, comme df x 1 est continue (car f est de classe C 1 et que L GL(E) L 1 GL(E) est continue), la fonction dg : y dg y est continue. Ainsi, g est de classe C 1. 3 Le Deuxième Théorème du Point Fixe 3.1 Un Théorème du Point Fixe Topologique Les résultats de cette section sont issus du livre [4]. Ce théorème donne l'existence d'un point xe (mais pas nécessairement l'unicité) pour une fonction continue sur une boule fermé dans un espace de dimension nie. Théorème 4. Soit K une partie non vide, compacte et convexe de R n et f : K K une fonction continue. Il existe x K tel que f(x) = x. Remarque Les parties convexes et compactes de R sont les segments. Le théorème de Brouwer prend donc dans le cas n = 1 la forme particulière suivante : Théorème 5. Si f : [a, b] [a, b] est continue, alors il existe x [a, b] tel que f(x) = x. Démonstration. Si f est continue de [a, b] dans lui-même, la fonction g : x f(x) x est continue, prend en a la valeur f(a) a 0 et en b la valeur f(b) b 0. Alors par le théorème des valeurs intermédiaires, la fonction g s'annule en un point x 0, qui est un point xe de f. An de démontrer le théorème 4, on va d'abord le réduire dans le cas où K = B f (0, 1). 3.1.1 Rétractions Dénition 4. On appelle rétraction de l'espace topologique E sur un fermé F de E toute fonction continue de E dans F qui est l'identité sur F. Théorème 6. Soit K un compact convexe dans un espace de Hilbert E. Alors, il existe une retraction 1-Lipschitzienne π K : E K. 10

Démonstration. Soit x E. Par compacité de K, il existe a K tel que x a = inf k K x k. Si b K est tel que x b = inf k K x k = x a, alors a b, x a+b 2 = 0 et donc x a+b 2 2 + x a 2 = a b 2 2. Or a b 2 K par convexité de K et donc a b 2 2 x a 2 x a+b 2 2 0. Donc, a = b. Comme pour tout x E, il existe un unique a x K tel que x a x = inf k K x k, alors π K (x) = a x dénit une application π K : E K qui est l'identité sur K. Pour montrer que π K est continue, remarquons d'abord que pour tout k K et tout t [0, 1], on a (1 t)π K (x) + tk K et donc x π K (x) 2 + 2t x π K (x), k π K (x) + t 2 k π K (x) 2 = x π K (x) t(k π K (x)) 2 π K (x) x 2. Donc, x π K (x), b+π K (x) 0 pout tout k K. Donc (u 1, u 2 ) E 2, on a : u 1 u 2 2 = (u 1 π K (u 1 )) + (π K (u 1 ) π K (u 2 )) + (π K (u 2 ) u 2 ) 2 = π K (u 1 ) π K (u 2 ) 2 + 2 π K (u 1 ) π K (u 2 ), u 1 π K (u 1 ) + π K (u 2 ) u 2 + u 1 π K (u 1 ) + π K (u 2 ) u 2 2 π K (u 1 ) π K (u 2 ) 2 Soit K un compact convexe de R n. Quitte à remplacer K par λk et f par x λk λf( x λ ) λk on peut supposer que K B f (0, 1). Donc, π K est une rétraction de B f (0, 1) sur K. Soit F : K K une fonction continue. Alors F := F π K : B f (0, 1) B f (0, 1) est continue. Si le théorème de Brouwer (voir ci-dessous) est démontré pour B f (0, 1), alors il existe x B f (0, 1) tel que x = F (x) = F (π K (x)). Comme F est à valeurs dans K, on a x K et donc π K (x) = x, ce qui implique que x est un point xe de F sur K. On peut donc se ramener au cas où K = B f (0, 1). Dans ce cas le théorème de Brouwer est équivalent au théorème suivant : Théorème 7. Il n'existe pas de rétraction B f (0, 1) sur S(0, 1). Démonstration. ( ) Si une telle rétraction F existe alors F : B f (0, 1) B f (0, 1) n'a pas de point xe. En eet, s'il existe x B f (0, 1) tel que F (x) = x, alors x S(0, 1) et donc x = F (x) = x, ce qui est impossible. ( ) Si f : B f (0, 1) B f (0, 1) est continue et n' a pas de point xe, alors F : B f (0, 1) S(0, 1) x x + t x (x f(x)) où t x est le seul t > 0 tel que x t(x f(x)) 2 = 1 = x 2 + 2t x, x f(x) + t 2 x f(x) 2. On trouve t x = x,x f(x) + x,x f(x) 2 + x f(x) 2 (1 x 2 ) x f(x), donc F est continue. De plus, si x 2 S(0, 1), alors x = 1, donc t x = x,x f(x) + x,x f(x) x f(x). Or x, x f(x) = x 2 x, f(x) 2 1 x f(x) 0, d'où t x = 0 et x S(0, 1), F (x) = x. Contre-exemples. De la même façon que pour le théorème 2.1 nous allons voir que chaque hypothèse du théorème a également son importance ici. 1. Partie K convexe et { compacte de R, f : K K sans point xe : 0 si x = 1 K = [0, 2] ; f(x) = 1 sinon 2. Partie ε convexe non compacte de R et f : ε ε continue sans point xe : ε = [0, 2[ ; f(x) = x 2 + 1 11

3. Partie K compacte non convexe { de R et f : K K continue sans point xe : x + K = [0, 1 2 ] [ 3 3 2, 2] ; f(x) = 2 si 0 x 1 2 1 3 2 si 2 x 2 3.1.2 Le cas K = B f (0, 1) On dit qu'un espace topologique a la propriété du point xe si toute fonction continue f : E E possède un point xe. Nous allons prouver que la boule B f (0, 1) a la propriété du point xe en toute dimension n N. On note ici B n (resp. S n ) la boule unité fermée de R n (resp. la sphère unité de R n ). Notre preuve est basée sur l'études des champs de vecteurs sur S n : Dénition 5. On appelle champ de vecteurs sur la sphère S n 1 toute fonction continue V : S n 1 R n telle que, pour tout x, V (x) soit tangent en x à S n 1, c'est-à-dire orthogonal à x. Lemme 1. S'il existe une rétraction de B 2n sur S 2n 1, il existe un champ de vecteurs partout non nul sur S 2n. Démonstration. On suppose que ρ est la rétraction de B 2n sur S 2n 1 et on note π : R 2n+1 R 2n (x 1, x 2,..., x 2n+1 ) (x 1, x 2,..., x 2n ) qui envoie S 2n sur B 2n. Il existe un champ de vecteurs V : S 2n 1 S 2n 1 (partout non nul). En eet, si on pose : V (x 1, x 2,..., x 2n ) = (x 2, x 1, x 4, x 3,..., x 2n, x 2n 1 ) on a que V est continue, V (x) 2 = x 2 = 1 et V (x), x = 0. La fonction f : y V ρ π(y) est alors continue sur S 2n à valeurs dans S 2n 1 S 2n. Si, pour un y S 2n, f(y) = ±y, alors y S 2n 1 donc π(y) = y, et ρ π(y) = ρ(y) = y, d'où f(y) = V (y) = ±y, ce qui contredit le fait que V (y), y = 0, et on en déduit alors que y S 2n, f(y) / {y, y}. f étant une fonction continue de S 2n dans S 2n, la foncion V dénie par est continue et vérie, y S 2n, V (y) = f(y) f(y), y y V (y), y = f(y), y f(y), y y 2 = 0 Donc V est bien un champ de vecteurs sur S 2n. Et il est partout non nul car si on avait V (x) = 0, f(x) serait colinéaire à x et appartiendrait à S 2n, i.e. f(x) = ±x, ce qui est impossible. Le théorème suivant, dont la preuve se trouve en annexe, achève la preuve du théorème de Brouwer en dimension paire d'après les théorèmes 1 et 7. Théorème 8. Sur la sphère S 2n tout champ de vecteurs s'annule en au moins un point. Théorème 9 (Brouwer). La boule B n a la propriété du point xe pour tout n N. Démonstration. Comme ce théorème est déjà démontré pour n pair, il ne reste plus qu'à montrer que si B n+1 a la propriété du point xe, alors B n l'a aussi. Soient la fonction f : B n B n continue et π la projection dénie par π : (x 1, x 2,..., x n+1 ) (x 1, x 2,..., x n ). On a alors π(b n+1 ) = B n, et de plus f π est continue de B n+1 dans B n B n+1. Donc, il existe y B n+1 tel que (f π)(y) = y. Alors y B n donc π(y) = y. On en déduit que y est un point xe de f sur B n. 12

3.2 Le Théorème de Schauder Ce théorème prolonge le résultat du théorème de Brouwer pour montrer l'existence d'un point xe pour une fonction continue sur un convexe compact dans un espace de Banach. Théorème 10 (Schauder). Soient E un espace de Banach et K E convexe et compact. Alors toute application continue f : K K possède un point xe. Démonstration. Soit f : K K une application continue. Comme K est compact, f est uniformément continue ; donc, si on xe ε > 0, il existe δ > 0 tel que, pour tout x, y K, on ait f(x) f(y) ε, dès que x y δ. De plus, il existe un ensemble ni des points {x 1,..., x p } K tel que les boules ouvertes de rayon δ centrées aux x i recouvrent K ; i.e. K 1 j p B(x j, δ). Si on désigne L := V ect(f(x j )) 1 j p, alors L est de dimension nie, et K := K L est compact convexe de dimension nie. Pour 1 j p, on dénit la fonction continue ψ j : E R par { 0 si x xj δ ψ j (x) = 1 x xj δ sinon et on voit que ψ j est strictement positive sur B(x j, δ) et nulle dehors. On a donc, pour tout x K, p j=1 ψ j(x) > 0, et donc on peut dénir sur K les fonctions continues positives ϕ j par ψ j (x) ϕ j (x) = p k=1 ψ k(x) pour lesquelles on a p j=1 ϕ j(x) = 1, pour tout x K. On pose alors, pour x K, g(x) := p j=1 ϕ j(x)f(x j ). g est continue (car elle est la somme des fonctions continues), et prend ses valeurs dans K (car g(x) est un barycentre des f(x j )). Donc, si on prend la restriction g K : K K, par le théorème 9, g possède un point xe y K. De plus, f(y) y = f(y) g(y) = = p ϕ j (y)f(y) j=1 p ϕ j (y)f(x j ) j=1 p ϕ j (y)(f(y) f(x j )) j=1 Or si ϕ j (y) 0 alors y x j < δ, et donc f(y) f(x j ) < ε. Donc, on a, pour tout j, ϕ j (y)(f(y) f(x j )) εϕ j (y), et donc f(y) y p ϕ j (y)(f(y) f(x j )) j=1 p εϕ j (y) = ε Donc, pour tout entier m, on peut trouver un point y m K tel que f(y m ) y m < 2 m. Et puisque K est compact, de la suite (y m ) m Z on peut extraire une sous-suite (y mk ) qui converge vers un point y K. Alors f étant continue, la suite (f(y mk )) converge vers f(y ), et on conclut que f(y ) = y, i.e. y est un point xe de f sur K. 3.3 Le Théorème de Cauchy-Arzela On reprend maintenant le problème de Cauchy pour l'équation y = F (t, y(t)), mais ici on ne sait pas si F est Lipschitzienne. Le théorème de Schauder nous donnera l'existence d'une solution, mais pas nécessairement l'unicité qu'on avait en section 2.2. j=1 13

Théorème 11 (Cauchy-Arzela). Soient : E un espace normé de dimension nie, U un ouvert de R E, F une fonction continue de U dans E, et (, x 0 ) un point de U Alors l'équation diérentielle x = F (t, x) a une solution au voisinage de (, x 0 ), i.e. il existe un nombre ρ > 0 et une fonction f : [ ρ, + ρ] E de classe C 1 avec f( ) = x 0, telle que pour tout t [ ρ, + ρ], 1. (t, f(t)) U 2. f (t) = F (t, f(t)) Démonstration. Soit M > F (, x 0 ). Quitte à remplacer U par l'ensemble ouvert {(t, x) U : F (t, x) < M}, on peut supposer que F est majorée en norme par M sur U. Il existe donc r > 0 et h > 0 tels que U [ h, + h] B f (x 0, r), et on choisit ρ = min(h, r M ) > 0. On considère l'ensemble K des fonctions M-Lipschitziennes de l'intervalle J = [ ρ, + ρ] dans E qui valent x 0 en, que l'on munit de la norme uniforme. Si f et g sont dans K et s [0, 1], alors sf + (1 s)g K, donc K est convexe. Si (f i ) i N est une suite de Cauchy de K pour la norme uniforme, alors d'après le théorème 12, il existe une fonction continue f : J E telle que f i converge uniformément vers f. On a alors f( ) = lim i + f i ( ) = x 0 et t, t J, f(t) f(t ) = lim i + f i (t) f i (t ) M t t, et donc f K. On en déduit que K est fermé pour la norme uniforme dans C 0 (J, E). De plus, pour tout t J et tout f K, on a f(t) x 0 = f(t) f( ) M t Mρ r ce qui montre que K(t) = {f(t) : f K} est contenu dans la boule B f (x 0, r), et donc K(t) est relativement compact. Et puisque K est uniformément équicontinu, il résulte du théorème 13 que K est compact. On peut alors dénir une application Φ : K C 1 (J, E), en posant Φ(f)(t) = x 0 + F (s, f(s))ds En eet, si f K, alors f(s) B f (x 0, r) pour tout s J, ce qui montre que la fonction s F (s, f(s)) est bien dénie et continue sur J, à valeurs dans E, et possède une primitive Φ(f) de classe C 1, valant x 0 en. Puisque la fonction g := Φ(f) vérie g (t) = F (t, f(t)), on a que g (t) M, c'est-à-dire que g est M-Lipschitzienne sur J. De plus, g( ) = x 0. Donc, Φ(K) K. Enn, comme F est uniformément continue sur le compact J B f (x 0, r), pour tout ε > 0 il existe δ > 0 tel que pour tout (s, x) et (s, x ) appartenant à J B f (x 0, r), on ait max( s s, x x ) < δ F (s, x) F (s, x ) < ε ρ. Alors, si f et f 1 appartiennent à K et si f f 1 < δ, on a s J, F (s, f(s)) F (s, f 1 (s)) < ε ρ. Donc, Φ(f)(t) Φ(f 1 )(t) = F (s, f(s)) F (s, f 1 (s))ds t sup F (s, f(s)) F (s, f 1 (s)) s J ρ ε ρ = ε pour tout t J. Ceci montre que Φ(f) Φ(f 1 ) ε, i.e. Φ : K K est une application continue. Donc, d'après le Théorème 10, il existe un point xe f K de Φ, c'est-à-dire que f est une solution au problème de Cauchy. 14

4 Annexes 4.1 Diérents outils utilisés Proposition 1. Soient E un espace de Banach, u L c (E) telle que u = sup x =1 u(x) < 1. Alors l'application (Id E u) est inversible, d'inverse + k=0 uk, ce qui est dans L c (E). [3] Démonstration. Comme u < 1 et u k u k, la série + k=0 uk converge absolument dans L c (E). Alors : ( + ) (Id E u) u k = k=0 d'où + k=0 uk est l'inverse de (Id E u). + k=0 + u k u k = u 0 = Id E Des démonstrations des deux théorèmes qui suivent se trouvent dans [5] (resp. p.82 et p.87). Théorème 12. Soit (X, d X ) et (Y, d Y ) deux espaces métriques avec Y complet. Alors l'ensemble C 0 b (X, Y ) est complet pour la distance uniforme d (f, g) = sup x X {d Y (f(x), g(x))}. Théorème 13 (Ascoli). Soient (X, d X ) un espace métrique compact et (Y, d Y ) un espace métrique. On se donne un sous ensemble F de C 0 (X, Y ) tel que : 1. x X, {f(x), f F } est compact dans Y 2. La famille F est équicontinue, i.e. ε > 0, δ > 0 tel que x, x X, f F on a d X (x, x ) δ d Y (f(x), f(x )) ε Alors F est compact dans C 0 (X, Y ) (muni de la distance uniforme). 4.2 Démonstration du Théorème 8 Supposons qu'il existe un champ de vecteurs V partout non nul sur S 2n. On va d'abord se ramener au cas où V est la restriction à S 2n d'une fonction de classe C 1 sur un voisinage de S 2n vériant V (x) = 1, x S 2n. La fonction continue strictement positive x V (x) atteint, sur le compact S 2n,, son minimum δ > 0. Le compact K = { x R 2n+1 : k=1 1 2 x 3 } 2 est un voisinage de S 2n dans R 2n+1. Toute fonction réelle continue de K peut être approchée uniformément sur K, à δ 2n près, par une fonction de classe C1 sur l'intérieur de K. ( En particulier, ) si x (V 1, V 2,..., V 2n+1 ) sont les fonctions coordonnées de V, alors les fonctions x V i, continues sur K, peuvent être approchées uniformément sur K, à δ 2n près, par des fonctions W i qui sont de classe C 1 sur K. Alors la fonction W : x (W 1 (x), W 2 (x),..., W 2n+1 (x)) est de classe C 1, et vérie W (x) V (x) 2 = ce qui montre que, λ R, 2n+1 j=1 W (x) + λx, V (x) = W (x), V (x) (W j (x) V j (x)) 2 2n + 1 4n 2 δ 2 < δ 2, = V (x) 2 V (x) W (x), V (x) δ 2 W (x) V (x) V (x) > 0, d'où W (x)+λx 0, donc W (x) = W (x) W (x), x x 0. Alors x de vecteurs à valeurs dans S 2n de classe C 1 sur K. x W (x) W (x) est un champ 15

On suppose maintenant que V est un champ de vecteurs de classe C 1 au voisinage de S 2n, à valeurs dans S 2n, et on considère, pour t R, les applications φ et Φ t, dénies sur K par ( ) x φ(x) = x V x Φ t (x) = x + tφ(x), qui sont de classe C 1. Puisque V est continue sur le compact S 2n, elle y est bornée, et le calcul de φ (x) montre que φ est bornée par un nombre M sur K. Alors, si M t < 1, on a, pour un x K, I Φ t(x) = t φ (x) M t < 1, donc Φ t(x) est inversible (d'après 1) et Φ t est ouverte. Donc U = Φ t ( K ) est un ouvert dans R 2n+1. De plus, V (x), x = 0 Φ t (x) 2 = x 2 + t 2 x 2 V ( ) x 2 = (1 + t 2 ) x 2. x On en conclut que, si 1 2 < r < 3 2, l'image par Φ t de la sphère S(r) de rayon r est une partie compacte, donc fermée de la sphère S(r 1 + t 2 ) de rayon r 1 + t 2. Mais c'est aussi la trace sur S(r 1 + t 2 ) de U, donc une partie ouverte de S(r 1 + t 2 ). Par connexité de S(r 1 + t 2 ) on a alors Φ t (S(r)) = S(r 1 + t 2 ), donc Φ t est surjective de K sur U := {x R 2n+1 1 : 2 1 + t2 < x < 2 3 1 + t2 }. Si on a Φ t (x) = Φ t (y), alors 1 + t2 x = Φ t (x) = Φ t (y) = 1 + t 2 y, donc x = y, et ( ) ( ) 0 = x + tφ(x) y tφ(y) x y t x x y V V. x x ( ) ( ) x Puisque (d'après le lemme 2) on a V x V y x π 2 M x y x, on obtient 1 π 2 M t = x y 0, ce qui entraine x = y si π 2 M t < 1. Pour t assez petit, la fonction Φ t est donc injective et est un C 1 -diéomorphisme de K sur U. Par homotéthie, le volume de U est alors le produit du volume de K par (1 + t 2 ) 2n+1 2. C'est aussi l'intégrale sur K du déterminant jacobien D t de Φ t ; et puisque la matrice jacobienne de Φ t en x est I + tj φ (x), D t (x) est alors un polynôme de degré au plus 2n + 1 en t : D t (x) = 2n+1 j=0 tj α j (x). On en conclut que vol(u) = (1 + t 2 ) 2n+1 2 vol( K ) = D t (c)dx = 2n+1 j=0 t j α j (x)dx, donc, au voisinage de 0, (1 + t 2 ) 2n+1 2 est égal à un polynôme P (t) de degré au plus 2n + 1. Puisque (1 + t 2 ) 2n+1 2 est pair, on devrait avoir P (t) pair donc de degré au plus 2n. P (t) 2 serait alors un polynôme de degré au plus 4n, égal à (1 + t 2 ) 2n+1. C'est une contradiction donc le champ de vecteurs V s'annule en au moins un point. [4] Lemme 2 (Accroissements nis). Soit m 1. Si φ est une application de classe C 1 dénie sur un voisinage de S m dans R m+1, à valeurs dans un espace de Banach E, et si φ (x) M, x S m, alors la fonction φ est π 2 -Lipschitzienne sur S m. 16

Démonstration. Soient x et y deux points distincts de S m. On peut trouver z S m qui forme avec x une base orthornormée d'un plan contenant y et tel que y, z 0. Il existe alors un v [0, π] tel que y = x cos v + z sin v. Et la fonction γ : s x cos s + z sin s prend ses valeurs dans S m. La fonction φ γ est de classe C 1, et on a On a donc (φ γ) (s) 2 φ (γ(s)) 2 γ (s) 2 M 2 x sin s + z cos s 2 = M 2. φ(x) φ(y) = φ γ(v) φ γ(0) v sup (φ γ) (s) Mv, et puisque x y 2 = (1 cos v) 2 + sin 2 v = 2 2 cos v = 4 sin 2 v 2, on a x y = 2 sin v 2 2 2 π v 2 = 2 π v. On en conclut que φ(x) φ(y) π 2 x y. [4] 4.3 Une autre démonstration du théorème de Brouwer en dimension 2 On donne ici une autre preuve du Théorème de Brouwer utilisant la notion de forme diérentielle et la formule de Green-Riemann. On se restreint à la dimension 2, mais ça marche aussi pour les dimensions supérieures (mais nécessite une formule de Green-Riemann plus compliquée). Dénition 6. Soit Ω un ouvert de R n. On appelle forme diérentielle de degré 1 sur Ω toute application α de Ω sur le dual (R n ) de R n. Soit F : B f (0, 1) S(0, 1) tel que F S(0,1) = id. On commence par supposer que F est C 1. On note F (x, y) = (F 1 (x, y); F 2 (x, y)) et on considère la forme diérentielle α :B f (0, 1) (R 2 ) (x, y) F 1 F2 y F 2 F1 y F 2 1 + F 2 2 dy + F 1 F2 x F 2 F1 x F 2 1 + F 2 2 dx = Qdy + P dx α est bien dénie sur B f (0, 1) car F 2 1 + F 2 2 = 1 0. On va appliquer le théorème 14 à α : Théorème 14 (Green-Riemann). Soit K R 2 un compact à bord C 1 et α = P dx + Qdy une forme diérentielle de degré 1, de classe C 1 sur un ouvert contenant K. Alors K est mesurable et [ ] Q P (P dx + Qdy) = (x, y) (x, y) dxdy. K + K x y (Ref. [2]) On cherche donc à calculer [ ] Q P B f (0,1) x (x, y) y (x, y) dxdy. Après de laborieux calculs on trouve Q x P y = 0, d'où α = 0. En revanche si on fait le changement de variable suivant : S(0,1) x = F 1 (x, y) et y = F 2 (x, y), on a, dx = F 1 x (x, y)dx + F 1 (x, y)dy y dy = F 2 x (x, y)dx + F 2 (x, y)dy y Et donc, 1 α(x, y) = F1 2 + F 2 2 [ ( F2 F 1 y dy + F ) ( 2 x dx F1 F 2 y dy + F )] 1 x dx 1 = x 2 + y 2 [x dy y dx ] 17

S(0,1) α = 1 0 1 2π x 2 + y 2 [x dy y dx 1 ] = 0 cos 2 θ + sin 2 θ [cos2 θdθ + sin 2 θdθ] = 2π 0 dθ = 2π (par le changement de variable x = cos θ et y = sin θ). On a alors une contradiction car 0 2π donc une telle fonction F n'existe pas. On en déduit donc que si f : B f (0, 1) B f (0, 1) est C 1 alors elle admet un point xe. Si f est seulement continue, alors il existe une suite de fonctions C 1, f n : B f (0, 1) B f (0, 1) qui converge uniformément vers f. On en déduit qu'il existe x n B f (0, 1) tel que f n (x n ) = x n, d'où f(x n ) x n = f(x n ) f n (x n ) f f n. Comme B f (0, 1) est compact, quitte à extraire un sous-suite, on peut supposer que x n tend vers un point x B f (0, 1) et on a f(x ) x f(x ) f(x n ) + f(x n ) x n + x x n n 0 d'où f(x ) = x. 18

Références [1] J-P. Demailly Analyse numérique et équations diérentielles ; collection Grenoble Sciences, presses universitaires de Grenoble, Grenoble (1996) [2] Berger et Gostiaux Géométrie diérentielle : variétés, courbes et surfaces ; presses universitaires de France, Paris (1987) [3] X. Gourdon Les maths en tête (analyse) ; ellipses, Paris (1994) [4] J. Saint Raymond Topologie, calcul diérentiel et variable complexe ; Calvage et Mounet, Paris (2007) [5] J. Dixmier Topologie générale collection Puf, presses universitaires de France, Paris (1981) 19