3. COMPARAISON DE PLUS DE DEUX GROUPES

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "3. COMPARAISON DE PLUS DE DEUX GROUPES"

Transcription

1 3. COMPARAISON DE PLUS DE DEUX GROUPES

2 La comparaison de moyennes de plus de deux échantillons se fait généralement par une analyse de variance (ANOVA) L analyse de variance suppose l homogénéité des variances et la normalité des données Sinon : problème de Behrens-Fisher (test simultané de 2 hypothèses nulles) Si ces conditions ne peuvent être atteintes par des transformations, il faut utiliser d autres méthodes Les tests d homogénéité des variances (THV) requièrent la normalité des données

3 THV : Test de Bartlett Données normalement distribuées H 0 H 1 : toutes les variances sont égales : au moins une des variances est différente Test d une variable auxiliaire (statistique-test) B qui suit une loi du χ 2 sous H 0 (test unilatéral)

4 avec En divisant B par C, on obtient une statistique B suivant une loi du χ 2 à (k - 1) ddl : test

5 Analyse de variance (ANOVA) k groupes indépendants d observations Comparaison des moyennes (par l intermédiaire des variances totale, intergroupe et intragroupe) H 0 H 1 : Les moyennes des k groupes sont égales : Au moins une des moyennes est différente (l ANOVA ne dit pas lesquelles)

6 On ne peut pas remplacer une ANOVA par une série de tests t : inflation de l erreur de Type I (problème des tests multiples) Les groupes sont définis par un ou plusieurs critère(s) de classification ou facteur, contrôlé ou aléatoire Conditions d application Variable quantitative Normalité ( équivalents NP : Test de Kruskal-Wallis, Friedman,...) Homoscédasticité Indépendance des observations n 5 observations/groupe

7 Le cas échéant, pour savoir à quelle(s) moyenne(s) est due le rejet de H 0 : tests a posteriori Test LSD (Least Significant Difference, Fisher) Test HSD (Honestly Significant Difference, Tukey) Test SNK (Student, Newmann, Keuls) Test de Scheffé Test de Dunnet (pour comparer groupe témoin aux autres) Diffèrent entre eux et du test t par leur définition de l erreur de Type I Souvent réalisés dans la foulée par les logiciels

8 Différentes formes d ANOVA X X X X X X X X X X X X X X X X X X X X X X X X X X X X ANOVA à 1 facteur A X X X X B X X X X C X X X X ANOVA à 2 facteurs croisés A B X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X ANOVA à 2 facteurs croisés avec répétitions A B C D E F X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X ANOVA hiérarchique

9 ANOVA à > 2 facteurs et/ou avec plusieurs variables Avec > 2 facteurs : ANOVA multifactorielle Implique de nombreuses possibilités d interactions entre les facteurs. A définir a priori Mêmes principes que ANOVA factorielle Avec plusieurs variables : analyse de variance multivariable ou MANOVA Généralisation de l ANOVA univariable Les variables doivent être pas ou peu corrélées

10 ANOVA à 1 facteur 1 variable k groupes (k > 2), définis par 1 critère Exemple variable = croissance d une plante critère = différentes intensités lumineuses Facteur contrôlé ( expérimental ) ou aléatoire ( naturel )

11 Sources de variation : décomposition de la variance totale Dispersion totale SCT : SC par rapport à la moyenne générale Dispersion intragroupe SCE, due aux erreurs : somme des SC pour chaque groupe par rapport à sa propre moyenne Dispersion intergroupe SCI : SC des moyennes des groupes par rapport à la moyenne générale (pondération : SC multipliés par le nombre d éléments par groupe)

12 Représentation graphique Cas où H0 est vraie : pas de différence entre les groupes SCE 2 SCE 1 SCE 3 X X X SCT X SCI SCE = SCE + SCE + SCE On peut montrer que SCT = SCE + SCI Cas où H1 est vraie : il y a une différence entre les groupes SCE 2 SCE 1 X SCE 3 X X SCT X SCI

13 Pour calculer les variances (= carrés moyens), il faut diviser les SCE par les nombres de ddl correspondants SCT : n - 1 ddl, donc S2 T = SCT/(n - 1) Variance totale SCE : (n 1-1) + (n 2-1) (n k - 1) = n - k ddl, donc S 2 E = SCE/(n - k) Variance due aux erreurs = variance résiduelle : variabilité naturelle, toujours là SCI : k - 1 ddl, donc S2 I = SCI/(k - 1) Variance intergroupe = variance factorielle : effet éventuel du facteur

14 Si H 0 est vraie (pas d effet du facteur) : S2 E et S2 I sont deux estimations indépendantes de la fluctuation aléatoire σ 2 (S 2 T en est également une) Sous H, chaque groupe est un échantillon d une 0 population, sa variance est donc une estimation de σ 2. La moyenne pondérée des variances de tous les groupes en est une estimation encore meilleure : S 2 E Sous H, les moyennes de chaque groupe estiment la 0 moyenne de la population, µ, et la variance calculée à partir de la dispersion des moyennes est une estimation de σ 2 : S 2 I

15 Si H 0 n est pas vraie (il y a un effet du facteur) S2 E reste une estimation de σ2 (d où l importance de l homogénéité des variances!) S2 I n est plus une estimation de σ2, mais elle est nécessairement plus grande car la distribution d échantillonnage des moyennes (différentes si H 0 n est pas vraie) est plus large que celle de µ

16 Test Donc sous H 0, S2 I /S2 E 1 On teste ce rapport avec une statistique F à (k - 1) et (n - k) ddl Test unilatéral L ANOVA ne dit pas quelle moyenne est différente

17 Formules SCE = x 2 - (Ti 2 /ni) SCI = (Ti 2 /ni) - T 2 /n avec T = x = somme de toutes les valeurs Ti = x = somme des valeurs de chaque groupe i ni = effectif de chaque groupe n = effectif total

18 Test de Kruskal-Wallis Equivalent non paramétrique de l ANOVA à 1 facteur Efficacité (/ANOVA) = 0,95 Distribution non Normale Variances inégales Petits groupes Variable semi-quantitative Généralisation du test U

19 Principe Les valeurs sont toutes mélangées et placées en rang Pour chaque groupe, on somme les rangs : R j Pour les k groupes, on obtient k valeurs de R j Statistique-test H c = 12/(n(n+1))Σ(R j 2 /nj ) - 3(n + 1) Sous H 0 la statistique-test suit une loi du χ2 à (k - 1) ddl

20 Il existe une correction pour les ex-aequo (plusieurs données égales donc de même rang) Utilisation d une statistique corrigée H corr = H c /C avec C = 1 - (Σ(ex l 3 - ex l )/(n 3 - n)) où ex l est le nombre d individus ex-aequo pour la valeur l la somme se fait sur le nombre de groupes d ex-aequo

21 ANOVA à 2 facteurs croisés Groupes identifiés par 2 critères de classification indépendants, à r et s niveaux Dans ce cas, on considère une seule observation par combinaison de niveaux On peut tester l effet de chaque facteur, car chacun comprend des répétitions B A r 1 X X X X... X X X X s X X X X

22 Exemple On veut connaître l effet de la température (4 températures différentes) et de la profondeur (5 profondeurs) sur la productivité du phytoplancton. On prélève pour cela un échantillon d eau par profondeur dans 4 masses d eau de températures différentes Variable : productivité (µg chl a/mg) Facteur A : température Facteur B : profondeur

23 Test de 2 hypothèses nulles Les moyennes sont identiques selon le facteur A H 0 : µ1. = µ2. = µ3. = µr. Les moyennes sont identiques selon le facteur B H 0 : µ.1 = µ.2 = µ.3 = µ.s Hypothèses contraires correspondantes : au moins une des moyennes est différente des autres

24 Sources de variation Dispersion totale SCT : SCE par rapport à la moyenne générale Dispersion selon le facteur A : SCEA = SCE des moyennes des groupes de A par rapport à la moyenne générale Dispersion selon le facteur B : SCEB = SCE des moyennes des groupes de B par rapport à la moyenne générale Dispersion résiduelle SCEE : dispersion totale SCET moins celle due aux facteurs A et B

25 Pour calculer les variances, il faut diviser les SCE par les nombres de ddl correspondants SCEA : (r - 1) donc S2 A SCEB : (s - 1) donc S2 B = SCEA/(r - 1) = SCEB/(s - 1) SCEE : (r - 1)(s - 1) donc S2 E = SCEE/(r - 1)(s - 1) Tests H 0A : F = S2 A /S2 E H 0B : F = S2 B /S2 E avec (r - 1) et (r - 1)(s - 1) ddl avec (s - 1) et (r - 1)(s - 1) ddl

26 Formules avec T = somme de toutes les valeurs Ti ou j = somme des valeurs des lignes ou des colonnes SCEE = SCET - (SCEA + SCEB)

27 Test de Friedman Appelé aussi Méthode de Friedman pour blocs randomisés Equivalent non-paramétrique de l ANOVA à 2 facteurs sans répétitions Pas de présupposé sur la distribution Pour variables quantitatives ou semi-quantitatives Moins puissant que l ANOVA Deux hypothèses nulles : moyennes égales selon chaque facteur

28 Principe Le test doit être conduit deux fois : une fois pour chaque facteur A et B, à a et b niveaux (ex. pour A) Placer les valeurs selon le facteur A en rangs dans les niveaux (qui jouent le rôle de blocs) du facteur B Sommer les rangs selon les niveaux : (Σ b Rij) Calculer X 2 = ((12/(ab(a + 1))Σ a (Σ b Rij) 2 ) - 3b(a + 1) Cette valeur suit une loi du χ 2 à (a - 1) ddl sous H0 Idem pour B

29 ANOVA à 2 facteurs avec répétitions A Permet de tester en plus l interaction entre les 2 facteurs Interaction : influence du niveau d un facteur sur l effet de l autre facteur sur la variable dépendante B 1... s r t t t t t t t t t t t t

30 Exemple On cherche à évaluer les effets de la dose d un médicament et de l âge sur le rythme cardiaque de patients. On veut en outre savoir si l effet éventuel du médicament diffère selon l âge. Variable : rythme cardiaque au repos Facteur A : dose de médicament Facteur B : catégorie d âge Effet différentiel selon l âge (ou l inverse) : interaction A X B

31 Effets des facteurs et de l interaction B : âge A : médicament Dose forte Dose faible Var : Rythme cardiaque Jeune Adulte Âgé Pas d effet Jeune Adulte Âgé Effet de B Jeune Adulte Âgé Effet de A Jeune Adulte Âgé Effet de A et B

32 A : médicament Dose forte Dose faible B : âge Var : Rhytme cardiaque Jeune Adulte Âgé Interaction + effet de A Jeune Adulte Âgé Interaction et pas d effet de A et B La présence d une interaction rend complexe l étude de l effet des facteurs individuels Dans ce cas, ceux-ci doivent être étudiés plus précisément, ou non considérés

33 Test de 3 hypothèses nulles Les moyennes sont identiques selon le facteur A H 0 : µ1. = µ2. = µ3. = µr. Les moyennes sont identiques selon le facteur B H 0 : µ.1 = µ.2 = µ.3 = µ.s Les facteurs A et B n interagissent pas sur la variable

34 Sources de variation Dispersion selon le facteur A : SCEA = SCE des moyennes des groupes de A par rapport à la moyenne générale Dispersion selon le facteur B : SCEB = SCE des moyennes des groupes de B par rapport à la moyenne générale Dispersion cellulaire SCEC : au sein des cases du tableau Dispersion due à l interaction SCEAB Dispersion résiduelle SCEE : dispersion totale SCET moins SCEC

35 Variances : division par les ddl SCEA : (r - 1) donc S2 A SCEB : (s - 1) donc S2 B = SCEA/(r - 1) = SCEB/(s - 1) SCEAB : (r - 1)(s - 1) donc S2 AB = SCEAB/ (r - 1)(s - 1) SCEE : rs(t - 1) donc S2 E = SCEE/rs(t - 1)

36 Tests H 0A : F = S2 A /S2 E H 0B : F = S2 B /S2 E avec (r - 1) et rs(t - 1) ddl avec (s - 1) et rs(t - 1) ddl H 0AB : F = S2 AB /S2 E avec (r - 1)(s - 1) et rs(t - 1) ddl

37 Formules SCEAB = SCEC - (SCEA + SCEB) SCEE = SCET - SCEC

38 Tableau d ANOVA Exemple pour deux facteurs à 3 et 2 niveaux, et 8 répétitions par niveau Source ddl Somme des carrés Carré moyen F Probabilité A 2 181,32 90,66 9,483 0,0004 B 1 16,64 16,64 1,74 0,194 A X B 2 23,93 11,96 1,251 0,297 Erreur ,52 9,56

39 Test de Scheirer-Ray-Hare Equivalent non-paramétrique de l ANOVA à deux facteurs avec répétitions Extension du test de Kruskal-Wallis (mêmes conditions) Parfois appelé test H Test de l effet de chaque facteur et de l interaction Facteur A, à a niveaux, facteur B à b niveaux, n répétitions par combinaison de niveaux

40 Principe Placer l ensemble des valeurs en rang Remplacer les valeurs originales par leurs rangs Effectuer une ANOVA factorielle sur ces rangs, on obtient pour chaque facteur les SCE Calculer le carré moyen CM = abn(abn + 1)/12 Pour chaque facteur et l interaction, calculer les statistiques H, telles que H = SCE/CM Sous H 0 les statistiques-test suivent une loi du χ2 à un nombre de ddl correspondant au SCE testé

41 ANOVA hiérarchique Extension de l ANOVA à 1 facteur Niveaux emboîtés (nested) = hiérarchisés Pas de correspondances entre les modalités des 1... a 1... b 1... b 1... b n n n n n n n n n facteurs

42 Exemple Prélèvement et mesure de la taille de plantes dans 12 localités réparties également dans 3 chaînes de montagnes Variable : taille (pouvant faire l objet de n répétitions par localité) Facteur A : chaîne (3 niveaux) Facteur SG = sous-groupe : localités (4 niveaux) Les facteurs sont emboîtés : la localité 1 de la chaîne 2 n a pas de rapport avec la localité 1 des deux autres chaînes

43 Test de 2 hypothèses nulles 1. Les moyennes sont identiques selon le sousfacteur SG dans les niveaux du facteur A 2. Les moyennes sont identiques selon le facteur A Les hypothèses sont testées dans cet ordre

44 Tests Effet des sous-groupes H 0 SG : F SG = S 2 SG /S2 E avec a(b-1) et ab(n-1) ddl Effet du facteur proprement dit, tenant compte de l effet des sous-groupes H 0 A : F A = S 2 A /S2 SG avec (a-1) et a(b-1) ddl

45

46 ANOVA : modèles I, II et III (= modèle mixte) Fonction du caractère contrôlé (niveaux fixés par l'expérimentateur) ou aléatoire (niveaux choisis au hasard parmi une gamme de possibilité) des facteurs (= critères de classification) Ce qu'on a vu jusque là est l'anova de modèle I : 2 facteurs contrôlés ANOVA de modèle II : 2 facteurs aléatoires ANOVA de modèle III (ou mixte) : 1 facteur contrôlé et 1 facteur aléatoire

47 Pas toujours aisé de différencier un facteur fixe d'un facteur aléatoire : il faut savoir si on considère les niveaux comme un échantillon aléatoire d'un groupe plus vaste (exemple : quelques années sur une longue période) Modèle II rarement rencontré en biologie Tous les calculs des SCE. restent les mêmes, ce sont les calculs des F qui changent L'estimation de l'effet d'un facteur doit tenir compte du caractère aléatoire de l'autre facteur le cas échéant, par l'intermédiaire de l'effet de l'interaction

48 Modèle mixte (III) avec facteur A contrôlé et B aléatoire : H 0A : F = S2 A /S2 AB avec (r - 1) et (r - 1)(s - 1) ddl H 0B : F = S2 B /S2 E avec (s - 1) et rs(t - 1) ddl H 0AB : F = S2 AB /S2 E avec (r - 1)(s - 1) et rs(t - 1) ddl

49 Modèle II avec facteur A et B aléatoires : H 0A : F = S2 A /S2 AB H 0B : F = S2 B /S2 AB avec (r - 1) et (r - 1)(s - 1) ddl avec (s - 1) et (r - 1)(s - 1) ddl H 0AB : F = S2 AB /S2 E avec (r - 1)(s - 1) et rs(t - 1) ddl

50 Comparaison de > 2 groupes Données normales? Oui Non n i petit Test d homogénéité Succès Normaliser des variances Oui Echec n i > 145? Echec Homoscédasticité Hétéroscédasticité Non ANOVA Succès Homogénéiser les variances Echec Test non paramétrique (K-W, Friedman,...)

BIOSTATISTIQUES AVANCEES PLAN. Quelques références. Master Biologie Intégrative 1 ère année

BIOSTATISTIQUES AVANCEES PLAN. Quelques références. Master Biologie Intégrative 1 ère année Master Biologie Intégrative 1 ère année 1 BIOSTATISTIQUES AVANCEES Yves Desdevises! Observatoire Océanologique de Banyuls-sur-Mer (www.obs-banyuls.fr)! 04 68 88 73 13! desdevises@obs-banyuls.fr! http://desdevises.free.fr

Plus en détail

Analyse de la variance Comparaison de plusieurs moyennes

Analyse de la variance Comparaison de plusieurs moyennes Analyse de la variance Comparaison de plusieurs moyennes Biostatistique Pr. Nicolas MEYER Laboratoire de Biostatistique et Informatique Médicale Fac. de Médecine de Strasbourg Mars 2011 Plan 1 Introduction

Plus en détail

Biostatistiques Biologie- Vétérinaire FUNDP Eric Depiereux, Benoît DeHertogh, Grégoire Vincke

Biostatistiques Biologie- Vétérinaire FUNDP Eric Depiereux, Benoît DeHertogh, Grégoire Vincke www.fundp.ac.be/biostats Module 140 140 ANOVA A UN CRITERE DE CLASSIFICATION FIXE...2 140.1 UTILITE...2 140.2 COMPARAISON DE VARIANCES...2 140.2.1 Calcul de la variance...2 140.2.2 Distributions de référence...3

Plus en détail

Tests de comparaison de moyennes. Dr Sahar BAYAT MASTER 1 année 2009-2010 UE «Introduction à la biostatistique»

Tests de comparaison de moyennes. Dr Sahar BAYAT MASTER 1 année 2009-2010 UE «Introduction à la biostatistique» Tests de comparaison de moyennes Dr Sahar BAYAT MASTER 1 année 2009-2010 UE «Introduction à la biostatistique» Test de Z ou de l écart réduit Le test de Z : comparer des paramètres en testant leurs différences

Plus en détail

Analyses de Variance à un ou plusieurs facteurs Régressions Analyse de Covariance Modèles Linéaires Généralisés

Analyses de Variance à un ou plusieurs facteurs Régressions Analyse de Covariance Modèles Linéaires Généralisés Analyses de Variance à un ou plusieurs facteurs Régressions Analyse de Covariance Modèles Linéaires Généralisés Professeur Patrice Francour francour@unice.fr Une grande partie des illustrations viennent

Plus en détail

FORMULAIRE DE STATISTIQUES

FORMULAIRE DE STATISTIQUES FORMULAIRE DE STATISTIQUES I. STATISTIQUES DESCRIPTIVES Moyenne arithmétique Remarque: population: m xμ; échantillon: Mx 1 Somme des carrés des écarts "# FR MOYENNE(série) MOYENNE(série) NL GEMIDDELDE(série)

Plus en détail

Master 1 de Psychologie du Travail et des Organisations : Recueil et analyse des données - Corrigés des T.D. ( 2014/2015) -

Master 1 de Psychologie du Travail et des Organisations : Recueil et analyse des données - Corrigés des T.D. ( 2014/2015) - Dominique Ferrieux - Université Paul Valéry - Montpellier III Master de Psychologie du Travail et des Organisations : Recueil et analyse des données - Corrigés des T.D. ( /) - Deuxième partie : Plans :

Plus en détail

Cours 9 : Plans à plusieurs facteurs

Cours 9 : Plans à plusieurs facteurs Cours 9 : Plans à plusieurs facteurs Table des matières Section 1. Diviser pour regner, rassembler pour saisir... 3 Section 2. Définitions et notations... 3 2.1. Définitions... 3 2.2. Notations... 4 Section

Plus en détail

Cours (7) de statistiques à distance, élaboré par Zarrouk Fayçal, ISSEP Ksar-Said, 2011-2012 LES STATISTIQUES INFERENTIELLES

Cours (7) de statistiques à distance, élaboré par Zarrouk Fayçal, ISSEP Ksar-Said, 2011-2012 LES STATISTIQUES INFERENTIELLES LES STATISTIQUES INFERENTIELLES (test de Student) L inférence statistique est la partie des statistiques qui, contrairement à la statistique descriptive, ne se contente pas de décrire des observations,

Plus en détail

Biostatistiques : Petits effectifs

Biostatistiques : Petits effectifs Biostatistiques : Petits effectifs Master Recherche Biologie et Santé P. Devos DRCI CHRU de Lille EA2694 patrick.devos@univ-lille2.fr Plan Données Générales : Définition des statistiques Principe de l

Plus en détail

IBM SPSS Advanced Statistics 20

IBM SPSS Advanced Statistics 20 IBM SPSS Advanced Statistics 20 Remarque : Avant d utiliser ces informations et le produit qu elles concernent, lisez les informations générales sous Remarques sur p. 177. Cette version s applique à IBM

Plus en détail

STATISTIQUES. UE Modélisation pour la biologie

STATISTIQUES. UE Modélisation pour la biologie STATISTIQUES UE Modélisation pour la biologie 2011 Cadre Général n individus: 1, 2,..., n Y variable à expliquer : Y = (y 1, y 2,..., y n ), y i R Modèle: Y = Xθ + ε X matrice du plan d expériences θ paramètres

Plus en détail

TABLE DES MATIERES. C Exercices complémentaires 42

TABLE DES MATIERES. C Exercices complémentaires 42 TABLE DES MATIERES Chapitre I : Echantillonnage A - Rappels de cours 1. Lois de probabilités de base rencontrées en statistique 1 1.1 Définitions et caractérisations 1 1.2 Les propriétés de convergence

Plus en détail

GUIDE D AIDE STATISTIQUE A LA PREPARATION DE LA THESE

GUIDE D AIDE STATISTIQUE A LA PREPARATION DE LA THESE Département Universitaire de Recherche et d Enseignement en Médecine Générale GUIDE D AIDE STATISTIQUE A LA PREPARATION DE LA THESE Enseignants : Esther GUERY, Julien LE BRETON, Emilie FERRAT, Jacques

Plus en détail

Principe d un test statistique

Principe d un test statistique Biostatistiques Principe d un test statistique Professeur Jean-Luc BOSSON PCEM2 - Année universitaire 2012/2013 Faculté de Médecine de Grenoble (UJF) - Tous droits réservés. Objectifs pédagogiques Comprendre

Plus en détail

Analyse de variance à un facteur Tests d hypothèses Analyse de variance à deux facteurs. Analyse de la variance ANOVA

Analyse de variance à un facteur Tests d hypothèses Analyse de variance à deux facteurs. Analyse de la variance ANOVA Analyse de la variance ANOVA Terminologie Modèles statistiques Estimation des paramètres 1 Analyse de variance à un facteur Terminologie Modèles statistiques Estimation des paramètres 2 3 Exemple. Analyse

Plus en détail

Introduction aux Statistiques et à l utilisation du logiciel R

Introduction aux Statistiques et à l utilisation du logiciel R Introduction aux Statistiques et à l utilisation du logiciel R Christophe Lalanne Christophe Pallier 1 Introduction 2 Comparaisons de deux moyennes 2.1 Objet de l étude On a mesuré le temps de sommeil

Plus en détail

Analyse des données «Hamburgers» à l aide de SPSS (v2, janvier 2011) Auteur : André Berchtold

Analyse des données «Hamburgers» à l aide de SPSS (v2, janvier 2011) Auteur : André Berchtold Analyse des données «Hamburgers» à l aide de SPSS (v2, janvier 2011) Auteur : André Berchtold Le site web «The Fast Food Explorer» (www.fatcalories.com) propose des données relatives à la composition des

Plus en détail

TABLE DES MATIÈRES. PRINCIPES D EXPÉRIMENTATION Planification des expériences et analyse de leurs résultats. Pierre Dagnelie

TABLE DES MATIÈRES. PRINCIPES D EXPÉRIMENTATION Planification des expériences et analyse de leurs résultats. Pierre Dagnelie PRINCIPES D EXPÉRIMENTATION Planification des expériences et analyse de leurs résultats Pierre Dagnelie TABLE DES MATIÈRES 2012 Presses agronomiques de Gembloux pressesagro.gembloux@ulg.ac.be www.pressesagro.be

Plus en détail

Evaluation de la variabilité d'un système de mesure

Evaluation de la variabilité d'un système de mesure Evaluation de la variabilité d'un système de mesure Exemple 1: Diamètres des injecteurs de carburant Problème Un fabricant d'injecteurs de carburant installe un nouveau système de mesure numérique. Les

Plus en détail

Cours 11 : Homogénéité de la variance et transformations non linéaires

Cours 11 : Homogénéité de la variance et transformations non linéaires Cours 11 : Homogénéité de la variance et transformations non linéaires Table des matières Section 1. Régularité de la nature et effets linéaires... 2 Section 2. Homogénéité des variances... 2 Section 3.

Plus en détail

Probabilité et Statistique pour le DEA de Biosciences. Avner Bar-Hen

Probabilité et Statistique pour le DEA de Biosciences. Avner Bar-Hen Probabilité et Statistique pour le DEA de Biosciences Avner Bar-Hen Université Aix-Marseille III 2000 2001 Table des matières 1 Introduction 3 2 Introduction à l analyse statistique 5 1 Introduction.................................

Plus en détail

Résumé du cours [POLS1221] Analyse de données quantitatives

Résumé du cours [POLS1221] Analyse de données quantitatives Résumé du cours [POLS1221] Analyse de données quantitatives Year 2006-2007 1/58 PLAN DU COURS Les parties sont indépendantes, l ordre est indifférent! 1 Rappel variables et autre 2 Analyses uni -variées

Plus en détail

Ch.12 : Loi binomiale

Ch.12 : Loi binomiale 4 e - programme 2007 - mathématiques ch.12 - cours Page 1 sur 5 1 RÉPÉTITION D'EXPÉRIENCES INDÉPENDANTES Lancer plusieurs fois un dé et noter les résultats successifs. Ch.12 : Loi binomiale Prélever des

Plus en détail

Interprétation d une analyse de variance avec mesures répétées

Interprétation d une analyse de variance avec mesures répétées Approche quantitative Interprétation d une analyse de variance avec mesures répétées «Les faits sont têtus. Il est plus facile de s arranger avec les statistiques.» Mark Twain L objectif de ce document

Plus en détail

Bureau : 238 Tel : 04 76 82 58 90 Email : dominique.muller@upmf-grenoble.fr

Bureau : 238 Tel : 04 76 82 58 90 Email : dominique.muller@upmf-grenoble.fr Dominique Muller Laboratoire Inter-universitaire de Psychologie Bureau : 238 Tel : 04 76 82 58 90 Email : dominique.muller@upmf-grenoble.fr Supports de cours : webcom.upmf-grenoble.fr/lip/perso/dmuller/m2r/acm/

Plus en détail

TABLE DES MATIÈRES. Bruxelles, De Boeck, 2011, 736 p.

TABLE DES MATIÈRES. Bruxelles, De Boeck, 2011, 736 p. STATISTIQUE THÉORIQUE ET APPLIQUÉE Tome 2 Inférence statistique à une et à deux dimensions Pierre Dagnelie TABLE DES MATIÈRES Bruxelles, De Boeck, 2011, 736 p. ISBN 978-2-8041-6336-5 De Boeck Services,

Plus en détail

Table des matières. PREMIÈRE PARTIE Étapes initiales des études marketing 7

Table des matières. PREMIÈRE PARTIE Étapes initiales des études marketing 7 Table des matières Préface Public 1 Structure de l ouvrage 1 Caractéristiques de l ouvrage 3 Contenu 3 Pédagogie 4 Remarques sur l adaptation française 4 Ressources numériques 5 Biographie 6 PREMIÈRE PARTIE

Plus en détail

Chapitre 3 : Principe des tests statistiques d hypothèse. José LABARERE

Chapitre 3 : Principe des tests statistiques d hypothèse. José LABARERE UE4 : Biostatistiques Chapitre 3 : Principe des tests statistiques d hypothèse José LABARERE Année universitaire 2010/2011 Université Joseph Fourier de Grenoble - Tous droits réservés. Plan I. Introduction

Plus en détail

UNION INTERNATIONALE POUR LA PROTECTION DES OBTENTIONS VÉGÉTALES

UNION INTERNATIONALE POUR LA PROTECTION DES OBTENTIONS VÉGÉTALES TGP/8/2 Draft 1 ORIGINAL: anglais DATE: 25 septembre 2014 UNION INTERNATIONALE POUR LA PROTECTION DES OBTENTIONS VÉGÉTALES Genève F PROJET Document connexe à l introduction générale à l examen de la distinction,

Plus en détail

Introduction à l analyse statistique et bioinformatique des puces à ADN

Introduction à l analyse statistique et bioinformatique des puces à ADN Formation INSERM 10 février 2004 Introduction à l analyse statistique et bioinformatique des puces à ADN Gaëlle Lelandais lelandais@biologie.ens.fr 1 Première Partie Analyse d une puce à ADN : Le recherche

Plus en détail

Estimation et tests statistiques, TD 5. Solutions

Estimation et tests statistiques, TD 5. Solutions ISTIL, Tronc commun de première année Introduction aux méthodes probabilistes et statistiques, 2008 2009 Estimation et tests statistiques, TD 5. Solutions Exercice 1 Dans un centre avicole, des études

Plus en détail

La classification automatique de données quantitatives

La classification automatique de données quantitatives La classification automatique de données quantitatives 1 Introduction Parmi les méthodes de statistique exploratoire multidimensionnelle, dont l objectif est d extraire d une masse de données des informations

Plus en détail

23. Interprétation clinique des mesures de l effet traitement

23. Interprétation clinique des mesures de l effet traitement 23. Interprétation clinique des mesures de l effet traitement 23.1. Critères de jugement binaires Plusieurs mesures (indices) sont utilisables pour quantifier l effet traitement lors de l utilisation d

Plus en détail

T de Student Khi-deux Corrélation

T de Student Khi-deux Corrélation Les tests d inférence statistiques permettent d estimer le risque d inférer un résultat d un échantillon à une population et de décider si on «prend le risque» (si 0.05 ou 5 %) Une différence de moyennes

Plus en détail

Item 169 : Évaluation thérapeutique et niveau de preuve

Item 169 : Évaluation thérapeutique et niveau de preuve Item 169 : Évaluation thérapeutique et niveau de preuve COFER, Collège Français des Enseignants en Rhumatologie Date de création du document 2010-2011 Table des matières ENC :...3 SPECIFIQUE :...3 I Différentes

Plus en détail

Exemples d application

Exemples d application Institut National Agronomique Paris - Grignon Exemples d application du modèle linéaire E Lebarbier, S Robin Département OMIP 12 février 2007 Table des matières 1 Introduction 4 11 Avertissement 4 12 Notations

Plus en détail

Analyse des données longitudinales

Analyse des données longitudinales Analyse des données longitudinales EA Sauleau SémStat 03/10/2006 Table des matières 1 Introduction 2 1.1 Généralités 2 1.2 La structure des données.. 3 1.3 Exemple.. 4 1.4 Des impasses.. 4 2 (M)ANOVA 4

Plus en détail

Introduction à l'analyse statistique des données

Introduction à l'analyse statistique des données INTRODUCTION À L'ANALYSE STATISTIQUE DES DONNÉES CONCEPTS DE BASE Un certain nombre de concepts, préalables indispensables à la compréhension des analyses présentées, sont définis ici. De même pour quelques

Plus en détail

Statistiques Appliquées à l Expérimentation en Sciences Humaines. Christophe Lalanne, Sébastien Georges, Christophe Pallier

Statistiques Appliquées à l Expérimentation en Sciences Humaines. Christophe Lalanne, Sébastien Georges, Christophe Pallier Statistiques Appliquées à l Expérimentation en Sciences Humaines Christophe Lalanne, Sébastien Georges, Christophe Pallier Table des matières 1 Méthodologie expérimentale et recueil des données 6 1.1 Introduction.......................................

Plus en détail

L'APPROCHE EXPERIMENTALE EN RECHERCHE: introduction aux statistiques.

L'APPROCHE EXPERIMENTALE EN RECHERCHE: introduction aux statistiques. L'APPROCHE EXPERIMENTALE EN RECHERCHE: introduction aux statistiques 1 BUTS DU COURS : se familiariser avec le vocabulaire statistique o variable dépendante, variable indépendante o statistique descriptive,

Plus en détail

Application sur le Dispositif en Blocs Complètement Randomisés

Application sur le Dispositif en Blocs Complètement Randomisés Roger Vumilia. KIZUNGU Directeur de l Expérimentation Agricole à l INERA Professeur Associé Faculté des Sciences Agronomiques Université de Kinshasa Utilisation des Logiciels de base dans la Recherche

Plus en détail

Introduction à l approche bootstrap

Introduction à l approche bootstrap Introduction à l approche bootstrap Irène Buvat U494 INSERM buvat@imedjussieufr 25 septembre 2000 Introduction à l approche bootstrap - Irène Buvat - 21/9/00-1 Plan du cours Qu est-ce que le bootstrap?

Plus en détail

Programme des épreuves des concours externes de recrutement des personnels techniques et administratifs de recherche et de formation

Programme des épreuves des concours externes de recrutement des personnels techniques et administratifs de recherche et de formation Programme des épreuves des concours externes de recrutement des personnels E1 RECRUTEMENT DES ASSISTANTS INGENIEURS DE RECHERCHE ET DE FORMATION...2 E1.1 Gestionnaire de base de données...2 E1.2 Développeur

Plus en détail

Points méthodologiques Adapter les méthodes statistiques aux Big Data

Points méthodologiques Adapter les méthodes statistiques aux Big Data Points méthodologiques Adapter les méthodes statistiques aux Big Data I. Répétition de tests et inflation du risque alpha II. Significativité ou taille de l effet? 2012-12-03 Biomédecine quantitative 36

Plus en détail

Pratique de l analyse de données SPSS appliqué à l enquête «Identités et Capital social en Wallonie»

Pratique de l analyse de données SPSS appliqué à l enquête «Identités et Capital social en Wallonie» Centre de recherche en démographie et sociétés UCL/IACCHOS/DEMO Pratique de l analyse de données SPSS appliqué à l enquête «Identités et Capital social en Wallonie» 1 2 3+ analyses univariées Type de variables

Plus en détail

Modélisation stochastique des données à partir d essais sur matériaux. Pr. Denys Breysse Université Bordeaux 1

Modélisation stochastique des données à partir d essais sur matériaux. Pr. Denys Breysse Université Bordeaux 1 Modélisation stochastique des données à partir d essais sur matériaux Pr. Denys Breysse Université Bordeaux 1 Hasard cause fictive de ce qui arrive sans raison apparente ou explicable (Petit Robert). Ce

Plus en détail

Tests paramétriques de comparaison de 2 moyennes Exercices commentés José LABARERE

Tests paramétriques de comparaison de 2 moyennes Exercices commentés José LABARERE Chapitre 5 UE4 : Biostatistiques Tests paramétriques de comparaison de 2 moyennes Exercices commentés José LABARERE Année universitaire 2010/2011 Université Joseph Fourier de Grenoble - Tous droits réservés.

Plus en détail

Feuille 6 : Tests. Peut-on dire que l usine a respecté ses engagements? Faire un test d hypothèses pour y répondre.

Feuille 6 : Tests. Peut-on dire que l usine a respecté ses engagements? Faire un test d hypothèses pour y répondre. Université de Nantes Année 2013-2014 L3 Maths-Eco Feuille 6 : Tests Exercice 1 On cherche à connaître la température d ébullition µ, en degrés Celsius, d un certain liquide. On effectue 16 expériences

Plus en détail

Analyse des données individuelles groupées

Analyse des données individuelles groupées Analyse des données individuelles groupées Analyse des Temps de Réponse Le modèle mixte linéaire (L2M) Y ij, j-ième observation continue de l individu i (i = 1,, N ; j =1,, n) et le vecteur des réponses

Plus en détail

Master Biologie cellulaire et physiopathologie UE initiation à la communication scientifique. biologie

Master Biologie cellulaire et physiopathologie UE initiation à la communication scientifique. biologie Master Biologie cellulaire et physiopathologie UE initiation à la communication scientifique Quelques notions de base de statistiques appliquées à la Etienne Roux biologie Laboratoire de Physiologie Cellulaire

Plus en détail

PROBABILITÉS STATISTIQUES

PROBABILITÉS STATISTIQUES PROBABILITÉS ET STATISTIQUES Probabilités et Statistiques PAES 0-03 L FOUCA Sommaire Chapitre Statistique descriptive 4 La statistique et les statistiques 4 Généralités sur les distributions statistiques

Plus en détail

4. Résultats et discussion

4. Résultats et discussion 17 4. Résultats et discussion La signification statistique des gains et des pertes bruts annualisés pondérés de superficie forestière et du changement net de superficie forestière a été testée pour les

Plus en détail

Évaluations aléatoires : Comment tirer au sort?

Évaluations aléatoires : Comment tirer au sort? Évaluations aléatoires : Comment tirer au sort? William Parienté Université Catholique de Louvain J-PAL Europe povertyactionlab.org Plan de la semaine 1. Pourquoi évaluer? 2. Comment mesurer l impact?

Plus en détail

Chapitre 9 ANALYSE MULTIDIMENSIONNELLE

Chapitre 9 ANALYSE MULTIDIMENSIONNELLE Statistique appliquée à la gestion et au marketing http://foucart.thierry.free.fr/statpc Chapitre 9 ANALYSE MULTIDIMENSIONNELLE L analyse des données multidimensionnelles regroupe un ensemble de méthodes

Plus en détail

Analyse de données et méthodes numériques

Analyse de données et méthodes numériques Analyse de données et méthodes numériques Analyse de données: Que faire avec un résultat? Comment le décrire? Comment l analyser? Quels sont les «modèles» mathématiques associés? Analyse de données et

Plus en détail

Comparaison de populations

Comparaison de populations Ricco Rakotomalala Comparaison de populations Tests paramétriques Version 1.2 Université Lumière Lyon 2 Page: 1 job: Comp_Pop_Tests_Parametriques macro: svmono.cls date/time: 11-Jun-2013/6:32 Page: 2 job:

Plus en détail

TABLE DES MATIÈRES. 1. Concepts de base et ANOVA. 3. 2. L approche processus et l analyse statistique.. 8 3. STATISTICA.. 12

TABLE DES MATIÈRES. 1. Concepts de base et ANOVA. 3. 2. L approche processus et l analyse statistique.. 8 3. STATISTICA.. 12 2 TABLE DES MATIÈRES 1. Concepts de base et ANOVA. 3 2. L approche processus et l analyse statistique.. 8 3. STATISTICA.. 12 4. Modèles linéaires statistiques.... 15 5. ANOVA avec un facteur 20 6. Analyse

Plus en détail

Outils Statistiques du Data Mining

Outils Statistiques du Data Mining Outils Statistiques du Data Mining Pr Roch Giorgi roch.giorgi@univ-amu.fr SESSTIM, Faculté de Médecine, Aix-Marseille Université, Marseille, France http://sesstim-orspaca.org http://optim-sesstim.univ-amu.fr

Plus en détail

Analyse discriminante

Analyse discriminante Analyse discriminante Christine Decaestecker & Marco Saerens ULB & UCL LINF2275 1 Analyse Discriminante Particularités: 2 formes/utilisations complémentaires: méthode factorielle: description "géométrique"

Plus en détail

Cours IFT6266, Exemple d application: Data-Mining

Cours IFT6266, Exemple d application: Data-Mining Cours IFT6266, Exemple d application: Data-Mining Voici un exemple du processus d application des algorithmes d apprentissage statistique dans un contexte d affaire, qu on appelle aussi data-mining. 1.

Plus en détail

Exemples d application

Exemples d application AgroParisTech Exemples d application du modèle linéaire E Lebarbier, S Robin Table des matières 1 Introduction 4 11 Avertissement 4 12 Notations 4 2 Régression linéaire simple 7 21 Présentation 7 211 Objectif

Plus en détail

Quelques analyses simples avec R en écologie des communautés

Quelques analyses simples avec R en écologie des communautés Jérôme Mathieu janvier 2007 Quelques analyses simples avec R en écologie des communautés 1 Visualisation des données... 2 Aperçu rapide d'un tableau de données... 3 Visualiser les corrélations entre des

Plus en détail

Chapitre 6 Test de comparaison de pourcentages χ². José LABARERE

Chapitre 6 Test de comparaison de pourcentages χ². José LABARERE UE4 : Biostatistiques Chapitre 6 Test de comparaison de pourcentages χ² José LABARERE Année universitaire 2010/2011 Université Joseph Fourier de Grenoble - Tous droits réservés. Plan I. Nature des variables

Plus en détail

Aide-mémoire de statistique appliquée à la biologie

Aide-mémoire de statistique appliquée à la biologie Maxime HERVÉ Aide-mémoire de statistique appliquée à la biologie Construire son étude et analyser les résultats à l aide du logiciel R Version 5(2) (2014) AVANT-PROPOS Les phénomènes biologiques ont cela

Plus en détail

Activité Intitulé de l'activité Volume horaire

Activité Intitulé de l'activité Volume horaire Informations de l'unité d'enseignement Implantation IPL Cursus de Intitulé Bachelier en biologie médicale Introduction à la Statistique B1110 Cycle 1 Bloc 1 Quadrimestre 2 Pondération 1 Nombre de crédits

Plus en détail

IBM SPSS Advanced Statistics

IBM SPSS Advanced Statistics IBM SPSS Statistics 19 IBM SPSS Advanced Statistics Une analyse plus précise des relations complexes Avantages commerciaux Allez au-delà de l'analyse de base Créez des modèles flexibles grâce aux multiples

Plus en détail

Méthodologie des essais cliniques de phase III

Méthodologie des essais cliniques de phase III Méthodologie des essais cliniques de phase III Dr Patrick Rossignol p.rossignol@chu-nancy.fr Centre d Investigation Clinique & consultation multidisciplinaire d HTA du CHU de Nancy & INSERM 961 Phases

Plus en détail

Logiciel XLSTAT version 7.0. 40 rue Damrémont 75018 PARIS

Logiciel XLSTAT version 7.0. 40 rue Damrémont 75018 PARIS Logiciel XLSTAT version 7.0 Contact : Addinsoft 40 rue Damrémont 75018 PARIS 2005-2006 Plan Présentation générale du logiciel Statistiques descriptives Histogramme Discrétisation Tableau de contingence

Plus en détail

une décision dans un monde aléatoire : modèles inférentiels

une décision dans un monde aléatoire : modèles inférentiels Lecture 9. Comment prendre une décision dans un monde aléatoire : modèles inférentiels Prof. Kizungu Vumilia Roger UNIKIN (FACAGRO-BIOLOGIE), UNILU (FACAGRO), UEA (FACAGRO), UCB (FACAGRO), ISS, ISTA (ENVIRONNEMENT),

Plus en détail

Mesures de Risque Multipériodes Cohérentes Appliquées au Compte à Terme

Mesures de Risque Multipériodes Cohérentes Appliquées au Compte à Terme TFE Ingénieur Civil Mathématiques Appliquées 24 juin 2010 Mesures de Risque Multipériodes Cohérentes Appliquées au Compte à Terme Auteur Christophe Pochet Promoteur Pierre Devolder Comment garantir la

Plus en détail

La problématique des tests. Cours V. 7 mars 2008. Comment quantifier la performance d un test? Hypothèses simples et composites

La problématique des tests. Cours V. 7 mars 2008. Comment quantifier la performance d un test? Hypothèses simples et composites La problématique des tests Cours V 7 mars 8 Test d hypothèses [Section 6.1] Soit un modèle statistique P θ ; θ Θ} et des hypothèses H : θ Θ H 1 : θ Θ 1 = Θ \ Θ Un test (pur) est une statistique à valeur

Plus en détail

INTRODUCTIONS DES DIFFÉRENTS CHAPITRES

INTRODUCTIONS DES DIFFÉRENTS CHAPITRES STATISTIQUE THÉORIQUE ET APPLIQUÉE Tome 2 Inférence statistique à une et à deux dimensions Pierre Dagnelie INTRODUCTIONS DES DIFFÉRENTS CHAPITRES Bruxelles, De Boeck, 2011, 736 p. ISBN 978-2-8041-6336-5

Plus en détail

Clustering. Christine Decaestecker, ULB Marco Saerens, UCL. LINF2275 Clustering 1

Clustering. Christine Decaestecker, ULB Marco Saerens, UCL. LINF2275 Clustering 1 Clustering Christine Decaestecker, ULB Marco Saerens, UCL LINF75 Clustering 1 Classification non-supervisée (automatique) Méthodes de regroupement ("Clustering") Objectif : Sur base - soit d'un tableau

Plus en détail

Les échanges bilatéraux entre les nations : Une approche linéaire mixte des modèles gravitationnels* Kamel Ghaddab 1

Les échanges bilatéraux entre les nations : Une approche linéaire mixte des modèles gravitationnels* Kamel Ghaddab 1 Les échanges bilatéraux entre les nations : Une approche linéaire mixte des modèles gravitationnels* Kamel Ghaddab 1 Ahmed Silem 2 Introduction Dans le cadre de la détermination empirique de la composition

Plus en détail

CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE. Cinquième épreuve d admissibilité STATISTIQUE. (durée : cinq heures)

CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE. Cinquième épreuve d admissibilité STATISTIQUE. (durée : cinq heures) CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE Cinquième épreuve d admissibilité STATISTIQUE (durée : cinq heures) Une composition portant sur la statistique. SUJET Cette épreuve est composée d un

Plus en détail

Eléments de statistique Introduction - Analyse de données exploratoire

Eléments de statistique Introduction - Analyse de données exploratoire Eléments de statistique Introduction - Louis Wehenkel Département d Electricité, Electronique et Informatique - Université de Liège B24/II.93 - L.Wehenkel@ulg.ac.be MATH0487-2 : 3BacIng, 3BacInf - 16/9/2014

Plus en détail

Théorie des sondages : cours 5

Théorie des sondages : cours 5 Théorie des sondages : cours 5 Camelia Goga IMB, Université de Bourgogne e-mail : camelia.goga@u-bourgogne.fr Master Besançon-2010 Chapitre 5 : Techniques de redressement 1. poststratification 2. l estimateur

Plus en détail

2010 Minitab, Inc. Tous droits réservés. Version 16.1.0 Minitab, le logo Minitab, Quality Companion by Minitab et Quality Trainer by Minitab sont des

2010 Minitab, Inc. Tous droits réservés. Version 16.1.0 Minitab, le logo Minitab, Quality Companion by Minitab et Quality Trainer by Minitab sont des 2010 Minitab, Inc. Tous droits réservés. Version 16.1.0 Minitab, le logo Minitab, Quality Companion by Minitab et Quality Trainer by Minitab sont des marques déposées de Minitab, Inc. aux Etats-Unis et

Plus en détail

Enquête sur les besoins de formation en statistiques

Enquête sur les besoins de formation en statistiques Aix Marseille Université Observatoire de la Vie Etudiante ove@univ-provence.fr Aix Marseille Université - Observatoire de la Vie Etudiante A l'attention du responsable de l'enquête Enquête sur les besoins

Plus en détail

metarnaseq: un package pour la méta-analyse de données RNA-seq

metarnaseq: un package pour la méta-analyse de données RNA-seq metarnaseq: un package pour la méta-analyse de données RNA-seq Guillemette Marot, Florence Jaffrézic, Andrea Rau 28/06/13 Overview 1 Introduction 2 Analyse statistique d une seule étude 3 Méta-analyse

Plus en détail

Le Sphinx Millenium Modes opératoires d'analyse de données Traitements et analyses avec Le Sphinx Plus²

Le Sphinx Millenium Modes opératoires d'analyse de données Traitements et analyses avec Le Sphinx Plus² Le Sphinx Millenium Modes opératoires d'analyse de données Traitements et analyses avec Le Sphinx Plus² Le Sphinx Développement Parc Altaïs 74650 CHAVANOD Tél : 33 / 4.50.69.82.98. Fax : 33 / 4.50.69.82.78.

Plus en détail

ANALYSE BIVARIÉE DE VARIABLES QUALITATIVES LE TEST DU Chi2

ANALYSE BIVARIÉE DE VARIABLES QUALITATIVES LE TEST DU Chi2 ANALYSE BIVARIÉE DE VARIABLES QUALITATIVES LE TEST DU Chi2 Dominique LAFFLY Maître de Conférences, Université de Pau Laboratoire Société Environnement Territoire UMR 5603 du CNRS et Université de Pau Domaine

Plus en détail

La segmentation à l aide de EG-SAS. A.Bouhia Analyste principal à la Banque Nationale du Canada. Chargé de cours à l UQAM

La segmentation à l aide de EG-SAS. A.Bouhia Analyste principal à la Banque Nationale du Canada. Chargé de cours à l UQAM La segmentation à l aide de EG-SAS A.Bouhia Analyste principal à la Banque Nationale du Canada. Chargé de cours à l UQAM Définition de la segmentation - Au lieu de considérer une population dans son ensemble,

Plus en détail

Première STMG1 2014-2015 progression. - 1. Séquence : Proportion d une sous population dans une population.

Première STMG1 2014-2015 progression. - 1. Séquence : Proportion d une sous population dans une population. Première STMG1 2014-2015 progression. - 1 Table des matières Fil rouge. 3 Axes du programme. 3 Séquence : Proportion d une sous population dans une population. 3 Information chiffrée : connaître et exploiter

Plus en détail

Exploitation et analyse des données appliquées aux techniques d enquête par sondage. Introduction.

Exploitation et analyse des données appliquées aux techniques d enquête par sondage. Introduction. Exploitation et analyse des données appliquées aux techniques d enquête par sondage. Introduction. Etudes et traitements statistiques des données : le cas illustratif de la démarche par sondage INTRODUCTION

Plus en détail

201-DUA-05 Probabilités et statistique

201-DUA-05 Probabilités et statistique 1. La longueur de tiges usinées est une variable de moyenne 47,0 cm et d écart-type 0,36 cm. (a) Si l on prélève un échantillon aléatoire de taille 51, alors quelle est la probabilité que la moyenne échantillonnale

Plus en détail

L3 Géographie UE Méthodologie. Statistiques COURS 1. Salle 125. Intervenants : Nadège. UMR Centre de Recherches de Climatologie (CRC)

L3 Géographie UE Méthodologie. Statistiques COURS 1. Salle 125. Intervenants : Nadège. UMR Centre de Recherches de Climatologie (CRC) L3 Géographie UE Méthodologie Statistiques COURS 1 Salle 125 Intervenants : Nadège Martiny & Julien Crétat UFR Sciences Humaines (Département de Géographie) UMR Centre de Recherches de Climatologie (CRC)

Plus en détail

GUIDE DU DATA MINER. Scoring - Modélisation. Data Management, Data Mining, Text Mining

GUIDE DU DATA MINER. Scoring - Modélisation. Data Management, Data Mining, Text Mining GUIDE DU DATA MINER Scoring - Modélisation Data Management, Data Mining, Text Mining 1 Guide du Data Miner Scoring - Modélisation Le logiciel décrit dans le manuel est diffusé dans le cadre d un accord

Plus en détail

Analyse de données. [Tapez le sous-titre du document] ANALYSE DE DONNEES 2011 2012. ANALYSE DE DONNEES Page 1 LICENCE 3 SCIENCES ECONOMIQUES

Analyse de données. [Tapez le sous-titre du document] ANALYSE DE DONNEES 2011 2012. ANALYSE DE DONNEES Page 1 LICENCE 3 SCIENCES ECONOMIQUES 2011 2012 ANALYSE DE DONNEES 2011 2012 LICENCE 3 SCIENCES ECONOMIQUES COURS DE M. THIERRY BLAYAC Analyse de données [Tapez le sous-titre du document] ANALYSE DE DONNEES Page 1 H34VEN Cours pour Licence

Plus en détail

Cours 7 : Exemples. I- Régression linéaire simple II- Analyse de variance à 1 facteur III- Tests statistiques

Cours 7 : Exemples. I- Régression linéaire simple II- Analyse de variance à 1 facteur III- Tests statistiques Cours 7 : Exemples I- Régression linéaire simple II- Analyse de variance à 1 facteur III- Tests statistiques Exemple 1 : On cherche à expliquer les variations de y par celles d une fonction linéaire de

Plus en détail

Fondements de Finance

Fondements de Finance Programme Grande Ecole Fondements de Finance Chapitre 7. : Risque, rentabilité et diversification Cours proposé par Fahmi Ben Abdelkader Version Etudiants Mars 2012 Préambule Fig. 10.1 (p.294) : Evolution

Plus en détail

Outils de recherche appliquée en sciences comptables. Plan du module. Unité d analyse. Population et échantillon. Unité d analyse et échantillonnage

Outils de recherche appliquée en sciences comptables. Plan du module. Unité d analyse. Population et échantillon. Unité d analyse et échantillonnage Outils de recherche appliquée en sciences comptables Mesure et qualité de la recherche François Brouard, DBA, CA président IPSO FACTO consultants inc. 2010, IPSO FACTO consultants inc. TOUS DROITS RÉSERVÉS.

Plus en détail

UNIVERSITE PARIS 1 PANTHEON SORBONNE LICENCE DE SCIENCES ECONOMIQUES. STATISTIQUE APPLIQUEE F. Gardes / P. Sevestre. Fiche N 7.

UNIVERSITE PARIS 1 PANTHEON SORBONNE LICENCE DE SCIENCES ECONOMIQUES. STATISTIQUE APPLIQUEE F. Gardes / P. Sevestre. Fiche N 7. UNIVERSITE PARIS 1 PANTHEON SORBONNE LICENCE DE SCIENCES ECONOMIQUES STATISTIQUE APPLIQUEE F. Gardes / P. Sevestre Fiche N 7 (avec corrigé) L objet de ce TD est de vous initier à la démarche et à quelques

Plus en détail

UNIVERSITÉ PARIS DESCARTES

UNIVERSITÉ PARIS DESCARTES UNIVERSITÉ PARIS DESCARTES MASTER Domaine DROIT, ÉCONOMIE, GESTION Mention MONNAIE,BANQUE, FINANCE, ASSURANCE Spécialité RISQUE, ASSURANCE, DÉCISION 2014 / 2015 Z.Trocellier Directeurs Pr Kouroche VAFAÏ

Plus en détail

Comment évaluer une banque?

Comment évaluer une banque? Comment évaluer une banque? L évaluation d une banque est basée sur les mêmes principes généraux que n importe quelle autre entreprise : une banque vaut les flux qu elle est susceptible de rapporter dans

Plus en détail

Statistique et analyse de données pour l assureur : des outils pour la gestion des risques et le marketing

Statistique et analyse de données pour l assureur : des outils pour la gestion des risques et le marketing Statistique et analyse de données pour l assureur : des outils pour la gestion des risques et le marketing Gilbert Saporta Chaire de Statistique Appliquée, CNAM ActuariaCnam, 31 mai 2012 1 L approche statistique

Plus en détail

Analyse d un d réseau d essaisd

Analyse d un d réseau d essaisd Analyse d un d réseau d essaisd «variétés» Exemple du réseau «variétés de blé tendre d hiver (BTH)» François PIRAUX Arvalis Institut du végétal Séminaire méta-analyse 13 juin 2013 1 Plan Définition et

Plus en détail

David SALVETAT. Frédéric LE ROY. Une étude empirique dans les industries de Haute Technologie en Europe. Juin 2007

David SALVETAT. Frédéric LE ROY. Une étude empirique dans les industries de Haute Technologie en Europe. Juin 2007 Coopétition et Intelligence Economique : Une étude empirique dans les industries de Haute Technologie en Europe Frédéric LE ROY Professeur U. Montpellier I ISEM - ERFI ESC Montpellier David SALVETAT Doctorant

Plus en détail