Les statistiques en biologie expérimentale

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Les statistiques en biologie expérimentale"

Transcription

1 Les statistiques en biologie expérimentale

2

3

4 Qualités attendues d une méthode de quantification : Le résultat numérique de la mesure permet d estimer avec précision la grandeur mesurée (ex. : il lui est proportionnel).

5 Qualités attendues d une méthode de quantification : Le résultat numérique de la mesure permet d estimer avec précision la grandeur mesurée (ex. : il lui est proportionnel). La mesure est reproductible.

6 Erreurs de mesure (imprécision du pipetage,...).

7 Erreurs de mesure (imprécision du pipetage,...). Différences intrinsèques (de cellule à cellule, d individu à individu,...) qui ne sont pas dues au phénomène étudié.

8 Erreurs de mesure (imprécision du pipetage,...). Différences intrinsèques (de cellule à cellule, d individu à individu,...) qui ne sont pas dues au phénomène étudié.

9 Toujours indiquer ce que représentent les barres d erreur!

10 Toujours indiquer ce que représentent les barres d erreur! Écart-type (standard deviation) : racine carrée de la moyenne des carrés des écarts à la moyenne ; erreur-type (standard error (of the mean)) : écart-type des moyennes mesurées sur différents échantillons de la population ; plage des valeurs mesurées ; intervalle de confiance ;... (au choix de l auteur).

11

12 La p-value : probabilité que les moyennes des deux populations échantillonnées soient égales.

13 La p-value : probabilité que les moyennes des deux populations échantillonnées soient égales. Nombre d observations jeu de données Intervalle

14 La p-value : probabilité que les moyennes des deux populations échantillonnées soient égales. Nombre d observations jeu de données Intervalle Nombre d observations jeu de données Intervalle

15 La p-value : probabilité que les moyennes des deux populations échantillonnées soient égales. Nombre d observations jeu de données Intervalle Nombre d observations jeu de données Intervalle Nombre d observations jeu de données 1 jeu de données Intervalle

16 Nombre d observations jeu de données 1 jeu de données Intervalle p 0, 74

17 Nombre d observations jeu de données 1 jeu de données 2 Nombre d observations jeu de données 1 jeu de données Intervalle p 0, Intervalle p 6,

18 Nombre d observations jeu de données 1 jeu de données 2 Nombre d observations jeu de données 1 jeu de données Intervalle p 0, Intervalle p 6, La valeur de p n est pas déductible de la différence entre les moyennes mesurées (elle dépend également du nombre d observations et de la forme des ).

19 Nombre d observations jeu de données 1 jeu de données 2 Nombre d observations jeu de données 1 jeu de données Intervalle p 0, Intervalle p 6, Conditions d application :

20 Nombre d observations jeu de données 1 jeu de données 2 Nombre d observations jeu de données 1 jeu de données Intervalle p 0, Intervalle p 6, Conditions d application : Aucun des deux jeux de données ne s écarte vraiment d une loi normale ;

21 Nombre d observations jeu de données 1 jeu de données 2 Nombre d observations jeu de données 1 jeu de données Intervalle p 0, Intervalle p 6, Conditions d application : Aucun des deux jeux de données ne s écarte vraiment d une loi normale ; (dans la version initiale) les variances des deux jeux de données doivent être similaires ;

22 Nombre d observations jeu de données 1 jeu de données 2 Nombre d observations jeu de données 1 jeu de données Intervalle p 0, Intervalle p 6, Conditions d application : Aucun des deux jeux de données ne s écarte vraiment d une loi normale ; (dans la version initiale) les variances des deux jeux de données doivent être similaires ; plus il y a d observations, plus le test sera précis.

23 Quelques variantes du :

24 Quelques variantes du : Hétérogénéité des variances (Welch s ) : moins puissant que le original (Student s ), mais plus robuste aux différences de variance.

25 Quelques variantes du : Hétérogénéité des variances (Welch s ) : moins puissant que le original (Student s ), mais plus robuste aux différences de variance. Données appariées.

26 Quelques variantes du : Hétérogénéité des variances (Welch s ) : moins puissant que le original (Student s ), mais plus robuste aux différences de variance. Données appariées.

27 Quelques variantes du : Hétérogénéité des variances (Welch s ) : moins puissant que le original (Student s ), mais plus robuste aux différences de variance. Données appariées. p 0.35

28 Quelques variantes du : Hétérogénéité des variances (Welch s ) : moins puissant que le original (Student s ), mais plus robuste aux différences de variance. Données appariées. p 0.35 p 0.01

29 Quelques variantes du : Hétérogénéité des variances (Welch s ) : moins puissant que le original (Student s ), mais plus robuste aux différences de variance. Données appariées. One-tailed (tester si les valeurs d une série sont supérieures à celles de l autre) two-tailed (tester si les valeurs sont différentes ; c est le cas le plus général).

30 Quelques variantes du : Hétérogénéité des variances (Welch s ) : moins puissant que le original (Student s ), mais plus robuste aux différences de variance. Données appariées. One-tailed (tester si les valeurs d une série sont supérieures à celles de l autre) two-tailed (tester si les valeurs sont différentes ; c est le cas le plus général). N utiliser le one-tailed qu avec une extrême précaution : il divise les p values par deux (fraude scientifique s il est utilisé à mauvais escient).

31 Une alternative au

32 Une alternative au Lorsqu au moins un des deux jeux de données ne suit pas une loi normale : utiliser le test de Wilcoxon.

33 Une alternative au Lorsqu au moins un des deux jeux de données ne suit pas une loi normale : utiliser le test de Wilcoxon. Il utilise les rangs des valeurs, pas les valeurs elles-mêmes plus robuste aux déviations à la normalité.

34 Les deux séries de valeurs suivent-elles une loi normale? (test de Shapiro-Wilk, voire test de Kolmogorov-Smirnov) oui Les variances sont-elles homogènes? (test de Levene) non test de Wilcoxon oui à variances homogènes non à variances hétérogènes (puis : les données sont-elles appariées? one-tailed ou two-tailed?)

35 Rejeter l hypothèse nulle si p 0, 05 accepter de la rejeter accidentellement 5 % du temps

36 Rejeter l hypothèse nulle si p 0, 05 accepter de la rejeter accidentellement 5 % du temps... ce qui se produira donc quelques dizaines de fois sur chaque microarray!

37 Rejeter l hypothèse nulle si p 0, 05 accepter de la rejeter accidentellement 5 % du temps... ce qui se produira donc quelques dizaines de fois sur chaque microarray! Correction de Bonferroni : diviser le seuil de p value par le nombre d testées (ex. : test de 100 : utiliser un seuil de 0,0005 au lieu de 0,05). Justifiée par la théorie.

38 Rejeter l hypothèse nulle si p 0, 05 accepter de la rejeter accidentellement 5 % du temps... ce qui se produira donc quelques dizaines de fois sur chaque microarray! Correction de Bonferroni : diviser le seuil de p value par le nombre d testées (ex. : test de 100 : utiliser un seuil de 0,0005 au lieu de 0,05). Justifiée par la théorie. La correction de Bonferroni est trop stringente lorsque le nombre d devient très grand (quelques milliers).

39 Rejeter l hypothèse nulle si p 0, 05 accepter de la rejeter accidentellement 5 % du temps... ce qui se produira donc quelques dizaines de fois sur chaque microarray! Correction de Bonferroni : diviser le seuil de p value par le nombre d testées (ex. : test de 100 : utiliser un seuil de 0,0005 au lieu de 0,05). Justifiée par la théorie. La correction de Bonferroni est trop stringente lorsque le nombre d devient très grand (quelques milliers). Ajustement itératif du seuil : méthode de la FDR (false discovery rate).

40

41 Condition 1 Condition 2 Cellules en G Cellules en phase S Cellules en G Cellules en mitose 50 60

42 Condition 1 Condition 2 Cellules en G Cellules en phase S Cellules en G Cellules en mitose Le test du χ 2 de Pearson (ici : p 0, 081). Il tient compte des effectifs (pas seulement des proportions).

43 Condition 1 Condition 2 Cellules en G Cellules en phase S Cellules en G Cellules en mitose Le test du χ 2 de Pearson (ici : p 0, 081). Il tient compte des effectifs (pas seulement des proportions). Limitation : les effectifs doivent être suffisants (traditionnellement : 5 dans chaque catégorie).

44 Condition 1 Condition 2 Cellules en G Cellules en phase S Cellules en G Cellules en mitose Le test du χ 2 de Pearson (ici : p 0, 081). Il tient compte des effectifs (pas seulement des proportions). Limitation : les effectifs doivent être suffisants (traditionnellement : 5 dans chaque catégorie). Le test exact de Fisher : calculs plus longs, mais résultat plus précis pour les petits effectifs (ici : p 0, 081 également).

45

46

47 tiré de : an-imperial-palimpsest-on-polands-electoral-map/

Cours (7) de statistiques à distance, élaboré par Zarrouk Fayçal, ISSEP Ksar-Said, 2011-2012 LES STATISTIQUES INFERENTIELLES

Cours (7) de statistiques à distance, élaboré par Zarrouk Fayçal, ISSEP Ksar-Said, 2011-2012 LES STATISTIQUES INFERENTIELLES LES STATISTIQUES INFERENTIELLES (test de Student) L inférence statistique est la partie des statistiques qui, contrairement à la statistique descriptive, ne se contente pas de décrire des observations,

Plus en détail

TABLE DES MATIERES. C Exercices complémentaires 42

TABLE DES MATIERES. C Exercices complémentaires 42 TABLE DES MATIERES Chapitre I : Echantillonnage A - Rappels de cours 1. Lois de probabilités de base rencontrées en statistique 1 1.1 Définitions et caractérisations 1 1.2 Les propriétés de convergence

Plus en détail

distribution quelconque Signe 1 échantillon non Wilcoxon gaussienne distribution symétrique Student gaussienne position

distribution quelconque Signe 1 échantillon non Wilcoxon gaussienne distribution symétrique Student gaussienne position Arbre de NESI distribution quelconque Signe 1 échantillon distribution symétrique non gaussienne Wilcoxon gaussienne Student position appariés 1 échantillon sur la différence avec référence=0 2 échantillons

Plus en détail

Chapitre 3 : Principe des tests statistiques d hypothèse. José LABARERE

Chapitre 3 : Principe des tests statistiques d hypothèse. José LABARERE UE4 : Biostatistiques Chapitre 3 : Principe des tests statistiques d hypothèse José LABARERE Année universitaire 2010/2011 Université Joseph Fourier de Grenoble - Tous droits réservés. Plan I. Introduction

Plus en détail

Biostatistiques : Petits effectifs

Biostatistiques : Petits effectifs Biostatistiques : Petits effectifs Master Recherche Biologie et Santé P. Devos DRCI CHRU de Lille EA2694 patrick.devos@univ-lille2.fr Plan Données Générales : Définition des statistiques Principe de l

Plus en détail

La problématique des tests. Cours V. 7 mars 2008. Comment quantifier la performance d un test? Hypothèses simples et composites

La problématique des tests. Cours V. 7 mars 2008. Comment quantifier la performance d un test? Hypothèses simples et composites La problématique des tests Cours V 7 mars 8 Test d hypothèses [Section 6.1] Soit un modèle statistique P θ ; θ Θ} et des hypothèses H : θ Θ H 1 : θ Θ 1 = Θ \ Θ Un test (pur) est une statistique à valeur

Plus en détail

TABLE DES MATIÈRES. Bruxelles, De Boeck, 2011, 736 p.

TABLE DES MATIÈRES. Bruxelles, De Boeck, 2011, 736 p. STATISTIQUE THÉORIQUE ET APPLIQUÉE Tome 2 Inférence statistique à une et à deux dimensions Pierre Dagnelie TABLE DES MATIÈRES Bruxelles, De Boeck, 2011, 736 p. ISBN 978-2-8041-6336-5 De Boeck Services,

Plus en détail

Principe d un test statistique

Principe d un test statistique Biostatistiques Principe d un test statistique Professeur Jean-Luc BOSSON PCEM2 - Année universitaire 2012/2013 Faculté de Médecine de Grenoble (UJF) - Tous droits réservés. Objectifs pédagogiques Comprendre

Plus en détail

COMPARAISON DE LOGICIELS TESTANT L INDEPENDANCE DE VARIABLES BINAIRES

COMPARAISON DE LOGICIELS TESTANT L INDEPENDANCE DE VARIABLES BINAIRES J. sci. pharm. biol., Vol.9, n - 00, pp. 9-0 EDUCI 00 9 VALLEE POLNEAU S.* DIAINE C. COMPARAISON DE LOGICIELS TESTANT L INDEPENDANCE DE VARIABLES BINAIRES Notre étude visait à comparer les résultats obtenus

Plus en détail

Statistiques. Rappels de cours et travaux dirigés. Master 1 Biologie et technologie du végétal. Année 2010-2011

Statistiques. Rappels de cours et travaux dirigés. Master 1 Biologie et technologie du végétal. Année 2010-2011 Master 1 Biologie et technologie du végétal Année 010-011 Statistiques Rappels de cours et travaux dirigés (Seul ce document sera autorisé en examen) auteur : Jean-Marc Labatte jean-marc.labatte@univ-angers.fr

Plus en détail

Lire ; Compter ; Tester... avec R

Lire ; Compter ; Tester... avec R Lire ; Compter ; Tester... avec R Préparation des données / Analyse univariée / Analyse bivariée Christophe Genolini 2 Table des matières 1 Rappels théoriques 5 1.1 Vocabulaire....................................

Plus en détail

UFR de Sciences Economiques Année 2008-2009 TESTS PARAMÉTRIQUES

UFR de Sciences Economiques Année 2008-2009 TESTS PARAMÉTRIQUES Université Paris 13 Cours de Statistiques et Econométrie I UFR de Sciences Economiques Année 2008-2009 Licence de Sciences Economiques L3 Premier semestre TESTS PARAMÉTRIQUES Remarque: les exercices 2,

Plus en détail

Chapitre 6 Test de comparaison de pourcentages χ². José LABARERE

Chapitre 6 Test de comparaison de pourcentages χ². José LABARERE UE4 : Biostatistiques Chapitre 6 Test de comparaison de pourcentages χ² José LABARERE Année universitaire 2010/2011 Université Joseph Fourier de Grenoble - Tous droits réservés. Plan I. Nature des variables

Plus en détail

Analyse de la variance Comparaison de plusieurs moyennes

Analyse de la variance Comparaison de plusieurs moyennes Analyse de la variance Comparaison de plusieurs moyennes Biostatistique Pr. Nicolas MEYER Laboratoire de Biostatistique et Informatique Médicale Fac. de Médecine de Strasbourg Mars 2011 Plan 1 Introduction

Plus en détail

Tests paramétriques de comparaison de 2 moyennes Exercices commentés José LABARERE

Tests paramétriques de comparaison de 2 moyennes Exercices commentés José LABARERE Chapitre 5 UE4 : Biostatistiques Tests paramétriques de comparaison de 2 moyennes Exercices commentés José LABARERE Année universitaire 2010/2011 Université Joseph Fourier de Grenoble - Tous droits réservés.

Plus en détail

Le risque Idiosyncrasique

Le risque Idiosyncrasique Le risque Idiosyncrasique -Pierre CADESTIN -Magali DRIGHES -Raphael MINATO -Mathieu SELLES 1 Introduction Risque idiosyncrasique : risque non pris en compte dans le risque de marché (indépendant des phénomènes

Plus en détail

Introduction aux Statistiques et à l utilisation du logiciel R

Introduction aux Statistiques et à l utilisation du logiciel R Introduction aux Statistiques et à l utilisation du logiciel R Christophe Lalanne Christophe Pallier 1 Introduction 2 Comparaisons de deux moyennes 2.1 Objet de l étude On a mesuré le temps de sommeil

Plus en détail

Tests de comparaison de moyennes. Dr Sahar BAYAT MASTER 1 année 2009-2010 UE «Introduction à la biostatistique»

Tests de comparaison de moyennes. Dr Sahar BAYAT MASTER 1 année 2009-2010 UE «Introduction à la biostatistique» Tests de comparaison de moyennes Dr Sahar BAYAT MASTER 1 année 2009-2010 UE «Introduction à la biostatistique» Test de Z ou de l écart réduit Le test de Z : comparer des paramètres en testant leurs différences

Plus en détail

Chapitre 7. Statistique des échantillons gaussiens. 7.1 Projection de vecteurs gaussiens

Chapitre 7. Statistique des échantillons gaussiens. 7.1 Projection de vecteurs gaussiens Chapitre 7 Statistique des échantillons gaussiens Le théorème central limite met en évidence le rôle majeur tenu par la loi gaussienne en modélisation stochastique. De ce fait, les modèles statistiques

Plus en détail

Introduction à la statistique non paramétrique

Introduction à la statistique non paramétrique Introduction à la statistique non paramétrique Catherine MATIAS CNRS, Laboratoire Statistique & Génome, Évry http://stat.genopole.cnrs.fr/ cmatias Atelier SFDS 27/28 septembre 2012 Partie 2 : Tests non

Plus en détail

ACTUARIAT 1, ACT 2121, AUTOMNE 2013 #16

ACTUARIAT 1, ACT 2121, AUTOMNE 2013 #16 ACTUARIAT 1, ACT 2121, AUTOMNE 201 #16 ARTHUR CHARPENTIER 1 Dans une petite compagnie d assurance le nombre N de réclamations durant une année suit une loi de Poisson de moyenne λ = 100. On estime que

Plus en détail

Exercices M1 SES 2014-2015 Ana Fermin (http:// fermin.perso.math.cnrs.fr/ ) 14 Avril 2015

Exercices M1 SES 2014-2015 Ana Fermin (http:// fermin.perso.math.cnrs.fr/ ) 14 Avril 2015 Exercices M1 SES 214-215 Ana Fermin (http:// fermin.perso.math.cnrs.fr/ ) 14 Avril 215 Les exemples numériques présentés dans ce document d exercices ont été traités sur le logiciel R, téléchargeable par

Plus en détail

STATISTIQUES. UE Modélisation pour la biologie

STATISTIQUES. UE Modélisation pour la biologie STATISTIQUES UE Modélisation pour la biologie 2011 Cadre Général n individus: 1, 2,..., n Y variable à expliquer : Y = (y 1, y 2,..., y n ), y i R Modèle: Y = Xθ + ε X matrice du plan d expériences θ paramètres

Plus en détail

Didacticiel - Études de cas. Description de quelques fonctions du logiciel PSPP, comparaison des résultats avec ceux de Tanagra, R et OpenStat.

Didacticiel - Études de cas. Description de quelques fonctions du logiciel PSPP, comparaison des résultats avec ceux de Tanagra, R et OpenStat. 1 Objectif Description de quelques fonctions du logiciel PSPP, comparaison des résultats avec ceux de Tanagra, R et OpenStat. Tout le monde l aura compris, je passe énormément de temps à analyser les logiciels

Plus en détail

1 Définition de la non stationnarité

1 Définition de la non stationnarité Chapitre 2: La non stationnarité -Testsdedétection Quelques notes de cours (non exhaustives) 1 Définition de la non stationnarité La plupart des séries économiques sont non stationnaires, c est-à-direqueleprocessusquiles

Plus en détail

Analyses de Variance à un ou plusieurs facteurs Régressions Analyse de Covariance Modèles Linéaires Généralisés

Analyses de Variance à un ou plusieurs facteurs Régressions Analyse de Covariance Modèles Linéaires Généralisés Analyses de Variance à un ou plusieurs facteurs Régressions Analyse de Covariance Modèles Linéaires Généralisés Professeur Patrice Francour francour@unice.fr Une grande partie des illustrations viennent

Plus en détail

CONFERENCE PALISADE. Optimisation robuste d un plan d expériences par simulation Monte-Carlo Concepts de «Design Space» et de «Quality by Design»

CONFERENCE PALISADE. Optimisation robuste d un plan d expériences par simulation Monte-Carlo Concepts de «Design Space» et de «Quality by Design» CONFERENCE PALISADE Optimisation robuste d un plan d expériences par simulation Monte-Carlo Concepts de «Design Space» et de «Quality by Design» 1 SIGMA PLUS Logiciels, Formations et Etudes Statistiques

Plus en détail

LA NOTATION STATISTIQUE DES EMPRUNTEURS OU «SCORING»

LA NOTATION STATISTIQUE DES EMPRUNTEURS OU «SCORING» LA NOTATION STATISTIQUE DES EMPRUNTEURS OU «SCORING» Gilbert Saporta Professeur de Statistique Appliquée Conservatoire National des Arts et Métiers Dans leur quasi totalité, les banques et organismes financiers

Plus en détail

Introduction à l approche bootstrap

Introduction à l approche bootstrap Introduction à l approche bootstrap Irène Buvat U494 INSERM buvat@imedjussieufr 25 septembre 2000 Introduction à l approche bootstrap - Irène Buvat - 21/9/00-1 Plan du cours Qu est-ce que le bootstrap?

Plus en détail

t 100. = 8 ; le pourcentage de réduction est : 8 % 1 t Le pourcentage d'évolution (appelé aussi taux d'évolution) est le nombre :

t 100. = 8 ; le pourcentage de réduction est : 8 % 1 t Le pourcentage d'évolution (appelé aussi taux d'évolution) est le nombre : Terminale STSS 2 012 2 013 Pourcentages Synthèse 1) Définition : Calculer t % d'un nombre, c'est multiplier ce nombre par t 100. 2) Exemples de calcul : a) Calcul d un pourcentage : Un article coûtant

Plus en détail

ACTUARIAT 1, ACT 2121, AUTOMNE 2013 #12

ACTUARIAT 1, ACT 2121, AUTOMNE 2013 #12 ACTUARIAT 1, ACT 2121, AUTOMNE 2013 #12 ARTHUR CHARPENTIER 1 Une compagnie d assurance modélise le montant de la perte lors d un accident par la variable aléatoire continue X uniforme sur l intervalle

Plus en détail

Aide-mémoire de statistique appliquée à la biologie

Aide-mémoire de statistique appliquée à la biologie Maxime HERVÉ Aide-mémoire de statistique appliquée à la biologie Construire son étude et analyser les résultats à l aide du logiciel R Version 5(2) (2014) AVANT-PROPOS Les phénomènes biologiques ont cela

Plus en détail

Estimation et tests statistiques, TD 5. Solutions

Estimation et tests statistiques, TD 5. Solutions ISTIL, Tronc commun de première année Introduction aux méthodes probabilistes et statistiques, 2008 2009 Estimation et tests statistiques, TD 5. Solutions Exercice 1 Dans un centre avicole, des études

Plus en détail

Evaluation des modèles non-linéaires à effets mixtes

Evaluation des modèles non-linéaires à effets mixtes Evaluation des effets mixtes INSERM UMR738 GDR Statistiques et Santé, 20 octobre 2009 Pharmacométrie Définition modélisation des données obtenues lors d essais cliniques sur des médicaments développement

Plus en détail

L'évaluation par les pairs dans un MOOC. Quelle fiabilité et quelle légitimité? Rémi Bachelet Ecole Centrale de Lille 24 novembre 2014, Université

L'évaluation par les pairs dans un MOOC. Quelle fiabilité et quelle légitimité? Rémi Bachelet Ecole Centrale de Lille 24 novembre 2014, Université L'évaluation par les pairs dans un MOOC. Quelle fiabilité et quelle légitimité? Rémi Bachelet Ecole Centrale de Lille 24 novembre 2014, Université Paris-Est séminaire annuel IDEA Les diapos seront tweetées

Plus en détail

Un exemple de régression logistique sous

Un exemple de régression logistique sous Fiche TD avec le logiciel : tdr341 Un exemple de régression logistique sous A.B. Dufour & A. Viallefont Etude de l apparition ou non d une maladie cardiaque des coronaires 1 Présentation des données Les

Plus en détail

Approche par groupe de gènes pour les données longitudinales d expression génique avec une application dans un essai vaccinal contre le VIH

Approche par groupe de gènes pour les données longitudinales d expression génique avec une application dans un essai vaccinal contre le VIH Approche par groupe de gènes pour les données longitudinales d expression génique avec une application dans un essai vaccinal contre le VIH Boris Hejblum 1,2,3 & Rodolphe Thiébaut 1,2,3 1 Inserm, U897

Plus en détail

Représentation d une distribution

Représentation d une distribution 5 Représentation d une distribution VARIABLE DISCRÈTE : FRÉQUENCES RELATIVES DES CLASSES Si dans un graphique représentant une distribution, on place en ordonnées le rapport des effectifs n i de chaque

Plus en détail

BIOSTATISTIQUES AVANCEES PLAN. Quelques références. Master Biologie Intégrative 1 ère année

BIOSTATISTIQUES AVANCEES PLAN. Quelques références. Master Biologie Intégrative 1 ère année Master Biologie Intégrative 1 ère année 1 BIOSTATISTIQUES AVANCEES Yves Desdevises! Observatoire Océanologique de Banyuls-sur-Mer (www.obs-banyuls.fr)! 04 68 88 73 13! desdevises@obs-banyuls.fr! http://desdevises.free.fr

Plus en détail

Lois de probabilité. Anita Burgun

Lois de probabilité. Anita Burgun Lois de probabilité Anita Burgun Problème posé Le problème posé en statistique: On s intéresse à une population On extrait un échantillon On se demande quelle sera la composition de l échantillon (pourcentage

Plus en détail

T de Student Khi-deux Corrélation

T de Student Khi-deux Corrélation Les tests d inférence statistiques permettent d estimer le risque d inférer un résultat d un échantillon à une population et de décider si on «prend le risque» (si 0.05 ou 5 %) Une différence de moyennes

Plus en détail

INF6304 Interfaces Intelligentes

INF6304 Interfaces Intelligentes INF6304 Interfaces Intelligentes filtres collaboratifs 1/42 INF6304 Interfaces Intelligentes Systèmes de recommandations, Approches filtres collaboratifs Michel C. Desmarais Génie informatique et génie

Plus en détail

Cours de Tests paramétriques

Cours de Tests paramétriques Cours de Tests paramétriques F. Muri-Majoube et P. Cénac 2006-2007 Licence Ce document est sous licence ALC TYPE 2. Le texte de cette licence est également consultable en ligne à l adresse http://www.librecours.org/cgi-bin/main?callback=licencetype2.

Plus en détail

Modèles et simulations informatiques des problèmes de coopération entre agents

Modèles et simulations informatiques des problèmes de coopération entre agents Modèles et simulations informatiques des problèmes de coopération entre agents Bruno Beaufils LIFL Axe CIM Équipe SMAC Laboratoire d'informatique Plan 1. Motivations 2. Dilemme itéré du prisonnier 3. Simulations

Plus en détail

Régression linéaire. Nicolas Turenne INRA nicolas.turenne@jouy.inra.fr

Régression linéaire. Nicolas Turenne INRA nicolas.turenne@jouy.inra.fr Régression linéaire Nicolas Turenne INRA nicolas.turenne@jouy.inra.fr 2005 Plan Régression linéaire simple Régression multiple Compréhension de la sortie de la régression Coefficient de détermination R

Plus en détail

Package TestsFaciles

Package TestsFaciles Package TestsFaciles March 26, 2007 Type Package Title Facilite le calcul d intervalles de confiance et de tests de comparaison avec prise en compte du plan d échantillonnage. Version 1.0 Date 2007-03-26

Plus en détail

4. Résultats et discussion

4. Résultats et discussion 17 4. Résultats et discussion La signification statistique des gains et des pertes bruts annualisés pondérés de superficie forestière et du changement net de superficie forestière a été testée pour les

Plus en détail

Analyse de variance à deux facteurs (plan inter-sujets à deux facteurs) TP9

Analyse de variance à deux facteurs (plan inter-sujets à deux facteurs) TP9 Analyse de variance à deux facteurs (plan inter-sujets à deux facteurs) TP9 L analyse de variance à un facteur permet de vérifier, moyennant certaines hypothèses, si un facteur (un critère de classification,

Plus en détail

Logiciel XLSTAT version 7.0. 40 rue Damrémont 75018 PARIS

Logiciel XLSTAT version 7.0. 40 rue Damrémont 75018 PARIS Logiciel XLSTAT version 7.0 Contact : Addinsoft 40 rue Damrémont 75018 PARIS 2005-2006 Plan Présentation générale du logiciel Statistiques descriptives Histogramme Discrétisation Tableau de contingence

Plus en détail

Examen de Logiciels Statistiques

Examen de Logiciels Statistiques G. Hunault Angers, mai 2011 Licence MEF Examen de Logiciels Statistiques On s intéresse ici au dossier EAEF01 qui contient un extrait des données du recensement américain. On trouvera ces données et leur

Plus en détail

Tests statistiques et régressions logistiques sous R, avec prise en compte des plans d échantillonnage complexes

Tests statistiques et régressions logistiques sous R, avec prise en compte des plans d échantillonnage complexes , avec prise en compte des plans d échantillonnage complexes par Joseph LARMARANGE version du 29 mars 2007 Ce cours a été développé pour une formation niveau M2 et Doctorat des étudiants du laboratoire

Plus en détail

Lecture critique d article. Bio statistiques. Dr MARC CUGGIA MCU-PH Laboratoire d informatique médicale EA-3888

Lecture critique d article. Bio statistiques. Dr MARC CUGGIA MCU-PH Laboratoire d informatique médicale EA-3888 Lecture critique d article Rappels Bio statistiques Dr MARC CUGGIA MCU-PH Laboratoire d informatique médicale EA-3888 Plan du cours Rappels fondamentaux Statistiques descriptives Notions de tests statistiques

Plus en détail

Le contenu en CO2 du kwh électrique : Avantages comparés du contenu marginal et du contenu par usages sur la base de l historique.

Le contenu en CO2 du kwh électrique : Avantages comparés du contenu marginal et du contenu par usages sur la base de l historique. Final le 08/10/2007 Le contenu en CO2 du kwh électrique : Avantages comparés du contenu marginal et du contenu par usages sur la base de l historique. - NOTE DETAILLEE - 1- Le contexte Le calcul du contenu

Plus en détail

Comparaison de populations

Comparaison de populations Ricco Rakotomalala Comparaison de populations Tests paramétriques Version 1.2 Université Lumière Lyon 2 Page: 1 job: Comp_Pop_Tests_Parametriques macro: svmono.cls date/time: 11-Jun-2013/6:32 Page: 2 job:

Plus en détail

données en connaissance et en actions?

données en connaissance et en actions? 1 Partie 2 : Présentation de la plateforme SPSS Modeler : Comment transformer vos données en connaissance et en actions? SPSS Modeler : l atelier de data mining Large gamme de techniques d analyse (algorithmes)

Plus en détail

Arbres binaires de décision

Arbres binaires de décision 1 Arbres binaires de décision Résumé Arbres binaires de décision Méthodes de construction d arbres binaires de décision, modélisant une discrimination (classification trees) ou une régression (regression

Plus en détail

Déroulement d un projet en DATA MINING, préparation et analyse des données. Walid AYADI

Déroulement d un projet en DATA MINING, préparation et analyse des données. Walid AYADI 1 Déroulement d un projet en DATA MINING, préparation et analyse des données Walid AYADI 2 Les étapes d un projet Choix du sujet - Définition des objectifs Inventaire des données existantes Collecte, nettoyage

Plus en détail

CAPTEURS - CHAINES DE MESURES

CAPTEURS - CHAINES DE MESURES CAPTEURS - CHAINES DE MESURES Pierre BONNET Pierre Bonnet Master GSI - Capteurs Chaînes de Mesures 1 Plan du Cours Propriétés générales des capteurs Notion de mesure Notion de capteur: principes, classes,

Plus en détail

quelques Repères pour Doctorants

quelques Repères pour Doctorants Gilles HUNAULT 2005 quelques Repères en STATISTIQUES pour Doctorants Université d Angers c gilles.hunault@univ-angers.fr http ://www.info.univ-angers.fr/pub/gh/ 3 Le principe consistant à ne pouvoir affirmer

Plus en détail

LE RÔLE DE LA STATISTIQUE DANS UN PROCESSUS DE PRISE DE DÉCISION

LE RÔLE DE LA STATISTIQUE DANS UN PROCESSUS DE PRISE DE DÉCISION LE RÔLE DE LA STATISTIQUE DANS UN PROCESSUS DE PRISE DE DÉCISION Sylvie Gervais Service des enseignements généraux École de technologie supérieure (sylvie.gervais@etsmtl.ca) Le laboratoire des condensateurs

Plus en détail

CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE. Cinquième épreuve d admissibilité STATISTIQUE. (durée : cinq heures)

CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE. Cinquième épreuve d admissibilité STATISTIQUE. (durée : cinq heures) CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE Cinquième épreuve d admissibilité STATISTIQUE (durée : cinq heures) Une composition portant sur la statistique. SUJET Cette épreuve est composée d un

Plus en détail

K. Ammar, F. Bachoc, JM. Martinez. Séminaire ARISTOTE - 23 octobre 2014 - Palaiseau

K. Ammar, F. Bachoc, JM. Martinez. Séminaire ARISTOTE - 23 octobre 2014 - Palaiseau Apport des modèles de krigeage à la simulation numérique K Ammar, F Bachoc, JM Martinez CEA-Saclay, DEN, DM2S, F-91191 Gif-sur-Yvette, France Séminaire ARISTOTE - 23 octobre 2014 - Palaiseau Apport des

Plus en détail

Biostatistiques Biologie- Vétérinaire FUNDP Eric Depiereux, Benoît DeHertogh, Grégoire Vincke

Biostatistiques Biologie- Vétérinaire FUNDP Eric Depiereux, Benoît DeHertogh, Grégoire Vincke www.fundp.ac.be/biostats Module 140 140 ANOVA A UN CRITERE DE CLASSIFICATION FIXE...2 140.1 UTILITE...2 140.2 COMPARAISON DE VARIANCES...2 140.2.1 Calcul de la variance...2 140.2.2 Distributions de référence...3

Plus en détail

EVALUATION DE LA QUALITE DES SONDAGES EN LIGNE : CAS D UN SONDAGE D OPINION AU BURKINA FASO

EVALUATION DE LA QUALITE DES SONDAGES EN LIGNE : CAS D UN SONDAGE D OPINION AU BURKINA FASO EVALUATION DE LA QUALITE DES SONDAGES EN LIGNE : CAS D UN SONDAGE D OPINION AU BURKINA FASO Auteur Baguinébié Bazongo 1 Ingénieur Statisticien Economiste Chef de l Unité de recherche à l Institut national

Plus en détail

Apprentissage par renforcement (1a/3)

Apprentissage par renforcement (1a/3) Apprentissage par renforcement (1a/3) Bruno Bouzy 23 septembre 2014 Ce document est le chapitre «Apprentissage par renforcement» du cours d apprentissage automatique donné aux étudiants de Master MI, parcours

Plus en détail

Unity Real Time 2.0 Service Pack 2 update

Unity Real Time 2.0 Service Pack 2 update Unity Real Time 2.0 Service Pack 2 update Configuration des Objectifs Analytiques La nouvelle version permet, en un écran, de configurer un lot, un panel ou un instrument. Le menu est accessible au moyen

Plus en détail

Introduction à la Statistique Inférentielle

Introduction à la Statistique Inférentielle UNIVERSITE MOHAMMED V-AGDAL SCIENCES FACULTE DES DEPARTEMENT DE MATHEMATIQUES SMI semestre 4 : Probabilités - Statistique Introduction à la Statistique Inférentielle Prinemps 2013 0 INTRODUCTION La statistique

Plus en détail

PROGRAMME (Susceptible de modifications)

PROGRAMME (Susceptible de modifications) Page 1 sur 8 PROGRAMME (Susceptible de modifications) Partie 1 : Méthodes des revues systématiques Mercredi 29 mai 2013 Introduction, présentation du cours et des participants Rappel des principes et des

Plus en détail

Chapitre 2/ La fonction de consommation et la fonction d épargne

Chapitre 2/ La fonction de consommation et la fonction d épargne hapitre 2/ La fonction de consommation et la fonction d épargne I : La fonction de consommation keynésienne II : Validations et limites de la fonction de consommation keynésienne III : Le choix de consommation

Plus en détail

Docteur José LABARERE

Docteur José LABARERE UE7 - Santé Société Humanité Risques sanitaires Chapitre 3 : Epidémiologie étiologique Docteur José LABARERE Année universitaire 2010/2011 Université Joseph Fourier de Grenoble - Tous droits réservés.

Plus en détail

23. Interprétation clinique des mesures de l effet traitement

23. Interprétation clinique des mesures de l effet traitement 23. Interprétation clinique des mesures de l effet traitement 23.1. Critères de jugement binaires Plusieurs mesures (indices) sont utilisables pour quantifier l effet traitement lors de l utilisation d

Plus en détail

Nesrine NEDJAM. Revue de presse marketing semaine 49. «Le M-Marketing»

Nesrine NEDJAM. Revue de presse marketing semaine 49. «Le M-Marketing» Nabil BEN DJEDDOU Nesrine NEDJAM M2C-début de semaine Revue de presse marketing semaine 49 «Le M-Marketing» Dans la rue, dans un supermarché, dans un train, en voiture ou même à la plage, le téléphone

Plus en détail

Probabilité et Statistique pour le DEA de Biosciences. Avner Bar-Hen

Probabilité et Statistique pour le DEA de Biosciences. Avner Bar-Hen Probabilité et Statistique pour le DEA de Biosciences Avner Bar-Hen Université Aix-Marseille III 2000 2001 Table des matières 1 Introduction 3 2 Introduction à l analyse statistique 5 1 Introduction.................................

Plus en détail

Équivalence et Non-infériorité

Équivalence et Non-infériorité Équivalence et Non-infériorité Éléments d Introduction Lionel RIOU FRANÇA INSERM U669 Mars 2009 Essais cliniques de supériorité Exemple d Introduction Données tirées de Brinkhaus B et al. Arch Intern Med.

Plus en détail

Données longitudinales et modèles de survie

Données longitudinales et modèles de survie ANALYSE DU Données longitudinales et modèles de survie 5. Modèles de régression en temps discret André Berchtold Département des sciences économiques, Université de Genève Cours de Master ANALYSE DU Plan

Plus en détail

FORMULAIRE DE STATISTIQUES

FORMULAIRE DE STATISTIQUES FORMULAIRE DE STATISTIQUES I. STATISTIQUES DESCRIPTIVES Moyenne arithmétique Remarque: population: m xμ; échantillon: Mx 1 Somme des carrés des écarts "# FR MOYENNE(série) MOYENNE(série) NL GEMIDDELDE(série)

Plus en détail

Travail de projet sur VBA

Travail de projet sur VBA Travail de projet sur VBA Calcul du Ratio de Sharpe Page 1 sur 25 Table des matières : 1. Introduction 3 2. Démarche générale 3 2.1 Récolte de données 3 2.2 Calculs de rendements 4 2.3 Calculs de volatilités

Plus en détail

Utiliser Access ou Excel pour gérer vos données

Utiliser Access ou Excel pour gérer vos données Page 1 of 5 Microsoft Office Access Utiliser Access ou Excel pour gérer vos données S'applique à : Microsoft Office Access 2007 Masquer tout Les programmes de feuilles de calcul automatisées, tels que

Plus en détail

Statistique Descriptive Élémentaire

Statistique Descriptive Élémentaire Publications de l Institut de Mathématiques de Toulouse Statistique Descriptive Élémentaire (version de mai 2010) Alain Baccini Institut de Mathématiques de Toulouse UMR CNRS 5219 Université Paul Sabatier

Plus en détail

Glossaire de termes relatifs à l assurance de la qualité et aux bonnes pratiques de laboratoire

Glossaire de termes relatifs à l assurance de la qualité et aux bonnes pratiques de laboratoire Glossaire de termes relatifs à l assurance de la qualité et aux bonnes pratiques de laboratoire Notre engagement: la qualité et l amélioration continue Photos Couverture: en haut à gauche; istockphoto.com/yegor

Plus en détail

DETERMINATION DE L INCERTITUDE DE MESURE POUR LES ANALYSES CHIMIQUES QUANTITATIVES

DETERMINATION DE L INCERTITUDE DE MESURE POUR LES ANALYSES CHIMIQUES QUANTITATIVES Agence fédérale pour la Sécurité de la Chaîne alimentaire Administration des Laboratoires Procédure DETERMINATION DE L INCERTITUDE DE MESURE POUR LES ANALYSES CHIMIQUES QUANTITATIVES Date de mise en application

Plus en détail

Application sur le Dispositif en Blocs Complètement Randomisés

Application sur le Dispositif en Blocs Complètement Randomisés Roger Vumilia. KIZUNGU Directeur de l Expérimentation Agricole à l INERA Professeur Associé Faculté des Sciences Agronomiques Université de Kinshasa Utilisation des Logiciels de base dans la Recherche

Plus en détail

1. Utilisation conforme à l usage prévu. 2. Propriétés. 3. Montage. Capteur de CO 2 AMUN 716 9 101

1. Utilisation conforme à l usage prévu. 2. Propriétés. 3. Montage. Capteur de CO 2 AMUN 716 9 101 310 164 01 Capteur de CO 2 AMUN 716 9 101 1. Utilisation conforme à l usage prévu Le capteur sert à la détection de dioxyde de carbone (CO 2 ) et de la température dans l espace d habitation. La teneur

Plus en détail

DIAPOSITIVE 2 Cette présentation est axée sur les mesures réglementaires, les rappels et les rapports d écarts des produits.

DIAPOSITIVE 2 Cette présentation est axée sur les mesures réglementaires, les rappels et les rapports d écarts des produits. Application des réglementations et qualité des produits DIAPOSITIVE 1 Cette présentation a trait à l application des réglementations et à la qualité des produits. Elle constitue une suite de la présentation

Plus en détail

Relation entre deux variables : estimation de la corrélation linéaire

Relation entre deux variables : estimation de la corrélation linéaire CHAPITRE 3 Relation entre deux variables : estimation de la corrélation linéaire Parmi les analyses statistiques descriptives, l une d entre elles est particulièrement utilisée pour mettre en évidence

Plus en détail

Statistique inférentielle TD 1 : Estimation

Statistique inférentielle TD 1 : Estimation POLYTECH LILLE Statistique inférentielle TD : Estimation Exercice : Maîtrise Statistique des Procédés Une entreprise de construction mécanique fabrique de pièces demoteurdevoiturepourungrandconstructeur

Plus en détail

L assurance de la qualité à votre service

L assurance de la qualité à votre service Atelier L assurance de la qualité à votre service Présentation de Jean-Marie Richard 24 et 25 novembre Sujets Qu est-ce que l assurance de la qualité? Initiation aux concepts de l assurance de la qualité.

Plus en détail

Analyse des durées de vie avec le logiciel R

Analyse des durées de vie avec le logiciel R Analyse des durées de vie avec le logiciel R Ségolen Geffray Des outils ainsi que des données pour l analyse des durées de vie sont disponibles dans les packages survival MASS Il est nécessaire de charger

Plus en détail

Un logiciel de statistiques complet

Un logiciel de statistiques complet PASW Statistics Base 18 Spécifications Un logiciel de statistiques complet Les organisations peuvent résoudre de nombreuses problématiques avec PASW Statistics*, la suite de produits analytiques d avant-garde

Plus en détail

Étude des flux d individus et des modalités de recrutement chez Formica rufa

Étude des flux d individus et des modalités de recrutement chez Formica rufa Étude des flux d individus et des modalités de recrutement chez Formica rufa Bruno Labelle Théophile Olivier Karl Lesiourd Charles Thevenin 07 Avril 2012 1 Sommaire Remerciements I) Introduction p3 Intérêt

Plus en détail

FORMATION CONTINUE SUR L UTILISATION D EXCEL DANS L ENSEIGNEMENT Expérience de l E.N.S de Tétouan (Maroc)

FORMATION CONTINUE SUR L UTILISATION D EXCEL DANS L ENSEIGNEMENT Expérience de l E.N.S de Tétouan (Maroc) 87 FORMATION CONTINUE SUR L UTILISATION D EXCEL DANS L ENSEIGNEMENT Expérience de l E.N.S de Tétouan (Maroc) Dans le cadre de la réforme pédagogique et de l intérêt que porte le Ministère de l Éducation

Plus en détail

La survie nette actuelle à long terme Qualités de sept méthodes d estimation

La survie nette actuelle à long terme Qualités de sept méthodes d estimation La survie nette actuelle à long terme Qualités de sept méthodes d estimation PAR Alireza MOGHADDAM TUTEUR : Guy HÉDELIN Laboratoire d Épidémiologie et de Santé publique, EA 80 Faculté de Médecine de Strasbourg

Plus en détail

TESTS D HYPOTHÈSE FONDÉS SUR LE χ². http://fr.wikipedia.org/wiki/eugénisme

TESTS D HYPOTHÈSE FONDÉS SUR LE χ². http://fr.wikipedia.org/wiki/eugénisme TESTS D HYPOTHÈSE FONDÉS SUR LE χ² http://fr.wikipedia.org/wiki/eugénisme Logo du Second International Congress of Eugenics 1921. «Comme un arbre, l eugénisme tire ses constituants de nombreuses sources

Plus en détail

Valeur verte des logements d après les bases Notariales BIEN et PERVAL Synthèse

Valeur verte des logements d après les bases Notariales BIEN et PERVAL Synthèse Valeur verte des logements d après les bases Notariales BIEN et PERVAL Synthèse La valeur verte correspond à l augmentation de valeur 1 engendrée par la meilleure performance énergétique et environnementale

Plus en détail

Un code-barre sur la tête?

Un code-barre sur la tête? Un code-barre sur la tête? Les nouvelles tendances des technologies d'identification, de la biométrie à l'internet des objets. Présentation au Groupement Industriel Fribourgeois, Décembre 08 Photo Steven

Plus en détail

VI. Tests non paramétriques sur un échantillon

VI. Tests non paramétriques sur un échantillon VI. Tests non paramétriques sur un échantillon Le modèle n est pas un modèle paramétrique «TESTS du CHI-DEUX» : VI.1. Test d ajustement à une loi donnée VI.. Test d indépendance de deux facteurs 96 Différentes

Plus en détail

1 Objectifs. Traitement statistique des données d enquête avec introduction à SPSS. Plan

1 Objectifs. Traitement statistique des données d enquête avec introduction à SPSS. Plan 1 Objectifs Traitement statistique des données d enquête avec introduction à SPSS Gilbert Ritschard Département d économétrie, Université de Genève gilbert.ritschard@themes.unige.ch Bamako, 7-11 octobre

Plus en détail

TP de Statistiques: Utilisation du logiciel R

TP de Statistiques: Utilisation du logiciel R TP de Statistiques: Utilisation du logiciel R Année 2006-2007 2 Table des matières Introduction i 1 Premiers pas avec R 1 1.1 R est une calculatrice............................................. 1 1.2 R

Plus en détail

Arrondissage des résultats de mesure. Nombre de chiffres significatifs

Arrondissage des résultats de mesure. Nombre de chiffres significatifs BUREAU NATIONAL DE MÉTROLOGIE COMMISSARIAT À L'ÉNERGIE ATOMIQUE LABORATOIRE NATIONAL HENRI BECQUEREL Note technique LNHB/04-13 Arrondissage des résultats de esure Nobre de chiffres significatifs M.M. Bé,

Plus en détail