Compilation. Algorithmes d'analyse syntaxique

Dimension: px
Commencer à balayer dès la page:

Download "Compilation. Algorithmes d'analyse syntaxique"

Transcription

1 Compilation Algorithmes d'analyse syntaxique

2 Préliminaires Si A est un non-terminal et γ une suite de terminaux et de non-terminaux, on note : A γ si en partant de A on peut arriver à γ par dérivations successives (y compris aucune donc A A).

3 Préliminaires Non-terminaux : E Terminaux : '+' 'n' 'id' E ::= E '+' E 'id' 'n' E E '+' E 'id' '+' E 'id' '+' E '+' E 'id' '+' E '+' 'n' E E E 'id' '+' E '+' E E 'id' '+' E '+' 'n' 'id' '+' E 'id' '+' E '+' 'n'

4 Algorithmes d'analyse syntaxique Il existe deux principaux types algorithmes d'analyse syntaxique : prédictifs ou descendants ou LL Left-to-right Leftmost ascendants ou LR Left-to-right Rightmost

5 Algorithmes d'analyse syntaxique Ces deux algorithmes nécessitent de calculer, à partir de la grammaire algébrique : l'ensemble Annulable (nullable) la fonction Premier (first) la fonction Suivant (follow)

6 Annulable, premier et suivant Les algorithmes pour calculer ces trois objets ont tous le même déroulement : On dispose de propriétés caractéristiques sur ces objets On applique les propriétés pour obtenir des équations ensemblistes entre ces objets On résoud le système d'équations ensemblistes

7 Annulable, premier et suivant Dans les propriétés qui suivent : On apprend quelque chose sur X [à l'aide de Y] [quand les Z i sont annulables]

8 L'ensemble Annulable L'ensemble Annulable contient l'ensemble des non terminaux annulables, c'est-à-dire ceux qui peuvent se dériver en ε, éventuellement en appliquant plusieurs productions : X Annulable si X ε

9 L'ensemble Annulable Non-terminaux : S X Y Terminaux : 'a' 'c' 'd' Productions : S ::= X Y S 'd' Y ::= 'c' ε X ::= Y 'a' Annulable = {X,Y}

10 Propriétés de Annulable Propriétés : 1)Si X ::= ε est une productions, alors X est annulable 2)Si X ::= Z 1 Z 2 Z k est une production, et que tous les nonterminaux Z i sont annulables, alors X est annulable. Remarques : S'il n'y a aucune production de type X ::= ε, aucun nonterminal n'est annulable Seules les production dont le membre droit est ε ou ne contient que des non-terminaux sont à considérer Les productions qui donnent des informations sur X sont celles dont le membre gauche est X

11 Calcul de Annulable On commence par déclarer annulable les non-terminaux X pour lesquels il y a une production X ::= ε À l'aide des productions dont le membre droit ne contient que des non-terminaux, ajouter à l'ensemble Annulable les non-terminaux rendus annulables par la propriété 2) Remarques Une fois que l'on sait un non-terminal annulable, on n'a plus besoin de considérer les productions associées

12 Exemple Non-terminaux : S X Y Terminaux : 'a' 'c' 'd' Productions : S ::= X Y S 'd' Y ::= 'c' ε X ::= Y 'a' 1)Y est annulable avec Y ::= ε 2)Les productions potentiellement utiles sont X ::= Y et S ::= X Y S 3)X est annulable avec X ::= Y 4)On n'apprend plus rien donc seuls X et Y sont annulables

13 La fonction Premier La fonction Premier associe à un non-terminal l'ensemble des terminaux qui peuvent apparaître en premier une fois appliquées une ou plusieurs dérivations à partir de ce non-terminal : a Premier(X) si X aγ γ est une suite de terminaux et non-terminaux, éventuellement vide

14 La fonction Premier Non-terminaux : S E T F Terminaux : '+' '-' ' ' '*' '(' ')' 'id' 'n' '$' Productions : S ::= E '$' E ::= E '+' T '-' T T T ::= T ' ' F '*' F F F ::= 'id' 'n' '(' E ')' Premier(E) = {'(','id','n','*','-'} Premier(T) = {'(','id','n','*'} Premier(F) = {'(','id','n'}

15 Propriétés de Premier Propriétés : 1)Si X ::= 'a' γ est une production alors 'a' Premier(X) 2)Si X ::= Y γ est une production alors Premier(X) contient tous les terminaux de Premier(Y) 3)Si X ::= Z 1 Z 2 Z k 'a' γ est une production et que les Z i sont annulables alors 'a' Premier(X) (et Premier(X) contient tous les terminaux des Premier(Z i )) 4)Si X ::= Z 1 Z 2 Z k Y γ est une production et que les Z i sont annulables alors Premier(X) contient tous les terminaux de Premier(Y) (et des Premier(Z i ))

16 Propriétés de Premier Remarques 1)Les productions qui donnent des informations sur X sont celles dont le membre gauche est X 2)La production E ::= E γ enseigne que Premier(E) contient Premier(E), ce que l'on savait déjà, mais attention si E est annulable

17 Calcul de Premier Calculer l'ensemble Annulable Pour chaque non-terminal E, appliquer les propriétés aux productions dont le membre gauche est E pour trouver Premier(E) en fonction des autres ensembles Premier on abrégera Premier(X) en P(X) Résoudre les équations ensemblistes pour trouver ces ensembles en remplaçant les ensembles connus dans les équations si cela ne suffit pas, réfléchir!

18 Exemple Non-terminaux : S E T F Terminaux : '+' '-' ' ' '*' '(' ')' 'id' 'n' '$' Productions : S ::= E '$' E ::= E '+' T '-' T T T ::= T ' ' F '*' F F F ::= 'id' 'n' '(' E ')' Premier(S) : P(E) Premier(E) : '-',P(T) Premier(T) : '*',P(F) Premier(F) : 'id','n','(' Premier(T) : '*','id','n','(' Premier(E) : '-','*','id','n','(' Premier(S) : '-','*','id','n','('

19 Exemple Non-terminaux : S X Y Terminaux : 'a' 'c' 'd' Productions : S ::= X Y S 'd' Y ::= 'c' ε X ::= Y 'a' Annulable = {X,Y} Premier(S) : P(X),P(Y),'d' Premier(Y) : 'c' Premier(X) : P(Y),'a' Premier(X) : 'c','a' Premier(S) : 'c','a','d'

20 Exemple Non-terminaux : S Y Terminaux : 'c' 'd' Productions : S ::= Y 'd' ε Y ::= S 'c' ε Annulable = {S,Y} Premier(S) : P(Y),'d' Premier(Y) : P(S),'c' En réfléchissant : Premier(S)={'c','d'} Premier(Y)={'c','d'}

21 La fonction Suivant La fonction Suivant associe à un non-terminal, les terminaux qui peuvent apparaître après ce non-terminal dans une suite de dérivations issues du start : b Suivant(X) si S γxbδ γ et δ sont des suites de non-terminaux et de terminaux, éventuellement vides

22 La fonction Suivant Non-terminaux : S E T F Terminaux : '+' '-' ' ' ' ' '(' ')' 'id' 'n' '$' Productions : S ::= E '$' E ::= E '+' T E '-' T T T ::= T ' ' F T ' ' F F F ::= 'n' 'id' '(' E ')' Suivant(E)={+,-,),$} Suivant(T)={,,+,-,),$} Suivant(F)={,,+,-,),$}

23 Propriétés de Suivant Propriétés : 1)Si A ::= γ X 'a' δ alors 'a' est dans Suivant(X) 2)Si A ::= γ X Y δ alors Premier(Y) est dans Suivant(X) 3)Si Y ::= γ X alors Suivant(X) contient Suivant(Y) 4)Si A ::= γ X Z 1 Z 2 Z n 'a' δ et que tous les Z i sont annulables alors 'a' est dans Suivant(X) (ainsi que les Premier(Z i )) 5)Si A ::= γ X Z 1 Z 2 Z n Y δ et que tous les Z i sont annulables alors Premier(Y) est dans Suivant(X) (ainsi que les Premier(Z i )) 6)Si Y ::= γ X Z 1 Z 2 Z n et que tous les Z i sont annulables alors Suivant(X) contient Suivant(Y) (ainsi que les Premier(Z i ))

24 Propriétés de Suivant Remarques 1)Les productions qui donnent des informations sur X sont celles dont le membre droit contient X, pour chaque occurrence de X 2)La production E ::= γ E enseigne que Suivant(E) contient Suivant(E), ce que l'on savait déjà

25 Calcul de Suivant Calculer Annulable et Premier Pour chaque non-terminal E, appliquer les propriétés à chaque occurrence de E dans les membres droits des productions on abrégera Suivant(X) en S(X) : regarder ce qui suit : si c'est un terminal 'x', ajouter 'x' à Suivant(E) si c'est un non-terminal Y, ajouter P(Y) à Suivant(E) si Y est annulable, reprendre à partir de ce qui suit Y là si rien ne suit, ajouter S(A) à Suivant(E), où A est le membre gauche de la production Résoudre les inéquations ensemblistes.

26 Exemple Non-terminaux : S E T F Terminaux : '+' '-' ' ' ' ' '(' ')' 'id' 'n' '$' Productions : S ::= E '$' E ::= E '+' T E '-' T T T ::= T ' ' F T ' ' F F F ::= 'n' 'id' '(' E ')' Suivant(E) : '$','+','-',')' Suivant(T) : S(E),' ',' ' Suivant(F) : S(T) Suivant(T)='+','-',')','$',' ',' ' Suivant(F)='+','-',')','$',' ',' '

27 Exemple Non-terminaux : S X Y Terminaux : 'a' 'c' 'd' Productions : S ::= X Y S 'd' Y ::= 'c' ε X ::= Y 'a' Annulable = {X,Y} Premier(Y) : 'c' Premier(X) : 'c','a' Premier(S) : 'c','a','d' Suivant(S) : vide Suivant(Y) : P(S),S(S),S(X) Suivant(X) : P(Y),P(S),S(S) Suivant(X) : 'c','a','d' Suivant(Y) : 'c','a','d'

28 Exemple Non-terminaux : S E O F Terminaux : '+' '-' 'n' '(' ')' Productions : S ::= E '$' E ::= E O E F O ::= '+' '-' ε F ::= 'n' '(' E ')' Annulable={O} Premier(O)={+,-} Premier(E)={n,(} Suivant(S) : vide Suivant(E) : P(O),P(E),')' Suivant(O) : P(E) Suivant(F) : S(E) Suivant(O) : 'id','n','(' Suivant(E) : '+','-','n','(',')' Suivant(F) : '+','-','n','(',')'

29 Exercice Non-terminaux : S E E2 T T2 F Terminaux : '$' '+' '-' ' ' ' ' '(' ')' 'id' 'n' Productions : S ::= E '$' E ::= T E2 E2 ::= '+' T E2 '-' T E2 ε T ::= F T2 T2 ::= ' ' F T2 ' ' F T2 ε F ::= 'n' 'id' '('E')' Annulable Premier Suivant S P(E) E P(T) ) $ E2 oui + - S(E) T P(F) P(E2),S(E2),S(E) T2 oui S(T) F ( id n P(T2),S(T2),S(T)

30 Exercice Non-terminaux : S E E2 T T2 F Terminaux : '$' '+' '-' ' ' ' ' '(' ')' 'id' 'n' Productions : S ::= E '$' E ::= T E2 E2 ::= '+' T E2 '-' T E2 ε T ::= F T2 T2 ::= ' ' F T2 ' ' F T2 ε F ::= 'n' 'id' '('E')' Annulable Premier Suivant S ( id n E ( id n ) $ E2 oui + - ) $ T ( id n ) + - $ T2 oui ) + - $ F ( id n ) + - $

31 Extensions On peut étendre Premier et Annulable (pas Suivant) aux suite de terminaux et non-terminaux : γ est annulable si elle ne contient que des non terminaux annulables Premier('a'γ) = { a } Si Z est annulable, Premier(Zγ) = P(Z) + Premier(γ) Si A n'est pas annulable, Premier(Aγ) = P(A)

32 Exemple Non-terminaux : S E O F Terminaux : '+' '-' 'n' '(' ')' Productions : Premier(OE) : '+','-','n','(' S ::= E '$' E ::= E O E F O ::= '+' '-' ε F ::= 'n' '(' E ')'

33 Notion de lookahead Lors de l analyse du code, on lira un certain nombre de lexèmes (en général un) à l avance, par rapport à ce que l on a déjà analysé Ces lexèmes constituent le lookahead Les algorithmes agissent en fonction des valeurs de ces lookahead

34 Grammaire augmentée Pour effectuer le parsing, il faut spécifier aux algorithmes quand arrive la fin du fichier : on ajoute un terminal spécial (en général '$') qui sera envoyé par le lexer un fois la fin du fichier atteinte en plus des actions usuelles, ce terminal est utilisé par les algorithmes pour savoir quand le parsing est terminé Pour cela, on augmente les grammaires : On ajoute un nouveau start, et un nouvel terminal '$' On ajoute la production nouveaustart ::= ancienstart '$'

35 Exemple Non-terminaux : S X Y Start : S Terminaux : 'a' 'c' 'd' Productions : S ::= X Y S 'd' Y ::= 'c' ε X ::= Y 'a' Non-terminaux : R S X Y Start : R Terminaux : 'a' 'c' 'd' '$' Productions : R ::= S '$' S ::= X Y S 'd' Y ::= 'c' ε X ::= Y 'a'

Chap 4: Analyse syntaxique. Prof. M.D. RAHMANI Compilation SMI- S5 2013/14 1

Chap 4: Analyse syntaxique. Prof. M.D. RAHMANI Compilation SMI- S5 2013/14 1 Chap 4: Analyse syntaxique 1 III- L'analyse syntaxique: 1- Le rôle d'un analyseur syntaxique 2- Grammaires non contextuelles 3- Ecriture d'une grammaire 4- Les méthodes d'analyse 5- L'analyse LL(1) 6-

Plus en détail

Théorie des langages. compilation. Elise Bonzon http://web.mi.parisdescartes.fr/ bonzon/ elise.bonzon@parisdescartes.fr 1 / 59

Théorie des langages. compilation. Elise Bonzon http://web.mi.parisdescartes.fr/ bonzon/ elise.bonzon@parisdescartes.fr 1 / 59 et compilation Elise Bonzon http://web.mi.parisdescartes.fr/ bonzon/ elise.bonzon@parisdescartes.fr 1 / 59 et compilation et compilation Structure d un compilateur Analyse lexicale Analyse syntaxique Analyse

Plus en détail

t 100. = 8 ; le pourcentage de réduction est : 8 % 1 t Le pourcentage d'évolution (appelé aussi taux d'évolution) est le nombre :

t 100. = 8 ; le pourcentage de réduction est : 8 % 1 t Le pourcentage d'évolution (appelé aussi taux d'évolution) est le nombre : Terminale STSS 2 012 2 013 Pourcentages Synthèse 1) Définition : Calculer t % d'un nombre, c'est multiplier ce nombre par t 100. 2) Exemples de calcul : a) Calcul d un pourcentage : Un article coûtant

Plus en détail

Exercices : VAR discrètes

Exercices : VAR discrètes Exercices : VAR discrètes Exercice 1: Une urne contient 2 boules blanches et 4 boules noires. On tire les boules une à une sans les remettre jusqu à ce qu il ne reste que des boules d une seule couleur

Plus en détail

BAZIN Danil et PRIEZ Jean-Baptiste. LEX & YACC : Calculatrice Évoluée

BAZIN Danil et PRIEZ Jean-Baptiste. LEX & YACC : Calculatrice Évoluée BAZIN Danil et PRIEZ Jean-Baptiste LEX & YACC : Calculatrice Évoluée Table des matières 1 Introduction 3 2 Description 4 3 La grammaire utilisée 6 4 Lexèmes et FLEX 8 5 Analyse syntaxique et YACC 8 5.1

Plus en détail

Théorie des Langages

Théorie des Langages Théorie des Langages Analyse syntaxique descendante Claude Moulin Université de Technologie de Compiègne Printemps 2010 Sommaire 1 Principe 2 Premiers 3 Suivants 4 Analyse 5 Grammaire LL(1) Exemple : Grammaire

Plus en détail

Première STMG1 2014-2015 progression. - 1. Séquence : Proportion d une sous population dans une population.

Première STMG1 2014-2015 progression. - 1. Séquence : Proportion d une sous population dans une population. Première STMG1 2014-2015 progression. - 1 Table des matières Fil rouge. 3 Axes du programme. 3 Séquence : Proportion d une sous population dans une population. 3 Information chiffrée : connaître et exploiter

Plus en détail

Devoir Surveillé n 5 BTS 2009 groupement B

Devoir Surveillé n 5 BTS 2009 groupement B EXERCICE 1 (12 points) Devoir Surveillé n 5 BTS 2009 groupement B Les trois parties de cet exercice peuvent être traitées de façon indépendante. A. Résolution d une équation différentielle On considère

Plus en détail

Les formations de remise à niveau(!) l'entrée des licences scientifiques. Patrick Frétigné CIIU

Les formations de remise à niveau(!) l'entrée des licences scientifiques. Patrick Frétigné CIIU Les formations de remise à niveau(!) pour les bacheliers «non-s» à l'entrée des licences scientifiques. Patrick Frétigné CIIU Cinq exemples Nantes Clermont Ferrand Lorraine Rennes 1 Rouen Nantes REUSCIT

Plus en détail

CH.8 Décidabilité. Propriétés des langages récursifs : Fermés par complémentation, union et intersection. oui. non. oui M 1. non. oui M 2.

CH.8 Décidabilité. Propriétés des langages récursifs : Fermés par complémentation, union et intersection. oui. non. oui M 1. non. oui M 2. CH.8 Décidabilité 8.1 Les langages récursifs 8.2 La machine de Turing universelle 8.3 Des problèmes de langages indécidables 8.4 D'autres problèmes indécidables Automates ch8 1 8.1 Les langages récursifs

Plus en détail

Baccalauréat ES Antilles Guyane 12 septembre 2014 Corrigé

Baccalauréat ES Antilles Guyane 12 septembre 2014 Corrigé Baccalauréat ES Antilles Guyane 12 septembre 2014 Corrigé EXERCICE 1 5 points Commun à tous les candidats 1. Réponse c : ln(10)+2 ln ( 10e 2) = ln(10)+ln ( e 2) = ln(10)+2 2. Réponse b : n 13 0,7 n 0,01

Plus en détail

2. RAPPEL DES TECHNIQUES DE CALCUL DANS R

2. RAPPEL DES TECHNIQUES DE CALCUL DANS R 2. RAPPEL DES TECHNIQUES DE CALCUL DANS R Dans la mesure où les résultats de ce chapitre devraient normalement être bien connus, il n'est rappelé que les formules les plus intéressantes; les justications

Plus en détail

F. Opérations multidimensionnelles

F. Opérations multidimensionnelles F. Opérations multidimensionnelles Roll up (drill-up)/drill down (roll down) Roll up (drill-up) : résumer, agréger des données en montant dans une hiérachie ou en oubliant une dimension Drill down (roll

Plus en détail

Structures algébriques

Structures algébriques Structures algébriques 1. Lois de composition s Soit E un ensemble. Une loi de composition interne sur E est une application de E E dans E. Soient E et F deux ensembles. Une loi de composition externe

Plus en détail

Théorie des Langages

Théorie des Langages Théorie des Langages AntLR - Générateur d analyseurs Claude Moulin Université de Technologie de Compiègne Printemps 2015 Sommaire 1 Introduction 2 AntLR ANTLR : ANother Tool for Language Recognition URL

Plus en détail

Université Laval Faculté des sciences et de génie Département d'informatique et de génie logiciel IFT-3101. Travail pratique #2

Université Laval Faculté des sciences et de génie Département d'informatique et de génie logiciel IFT-3101. Travail pratique #2 Université Laval Faculté des sciences et de génie Département d'informatique et de génie logiciel IFT-3101 Danny Dubé Hiver 2014 Version : 11 avril Questions Travail pratique #2 Traduction orientée-syntaxe

Plus en détail

FONCTIONS. I Généralités sur les fonctions. Définitions. Remarque. Exercice 01. Remarque

FONCTIONS. I Généralités sur les fonctions. Définitions. Remarque. Exercice 01. Remarque FNCTINS I Généralités sur les fonctions Définitions Soit D une partie de l'ensemble IR. n définit une fonction f de D dans IR, en associant à chaque réel de D, un réel et un seul noté f() et que l'on appelle

Plus en détail

RÉSOLUTION DE SYSTÈMES À DEUX INCONNUES

RÉSOLUTION DE SYSTÈMES À DEUX INCONNUES RÉSOLUTION DE SYSTÈMES À DEUX INCONNUES Sommaire 1 Méthodes de résolution... 3 1.1. Méthode de Substitution... 3 1.2. Méthode des combinaisons linéaires... 6 La rubrique d'aide qui suit s'attardera aux

Plus en détail

Fonction inverse Fonctions homographiques

Fonction inverse Fonctions homographiques Fonction inverse Fonctions homographiques Année scolaire 203/204 Table des matières Fonction inverse 2. Définition Parité............................................ 2.2 Variations Courbe représentative...................................

Plus en détail

Guide utilisateur Openbravo POS

Guide utilisateur Openbravo POS Openbravo POS Date Version Auteur : 23/08/2010 : 1.1 : Céline MARTIN Sommaire 1 Écran d'accueil...3 1.1 Se connecter...3 1.2 Les différents rôles...4 1.2.1 Caissière...4 1.2.2 Chef de caisse...5 2 Ouverture

Plus en détail

UNIVERSITÉ DE MONTRÉAL MÉTHODES DE DIAGNOSTIC D ERREURS D ANALYSE SYNTAXIQUE

UNIVERSITÉ DE MONTRÉAL MÉTHODES DE DIAGNOSTIC D ERREURS D ANALYSE SYNTAXIQUE UNIVERSITÉ DE MONTRÉAL MÉTHODES DE DIAGNOSTIC D ERREURS D ANALYSE SYNTAXIQUE MATTHIEU OUELLETTE-VACHON DÉPARTEMENT DE GÉNIE INFORMATIQUE ET GÉNIE LOGICIEL ÉCOLE POLYTECHNIQUE DE MONTRÉAL MÉMOIRE PRÉSENTÉ

Plus en détail

Compilation. Introduction à la compilation. Termes Phases d'un compilateur Importance des grammaires Méthodes d'analyse. Termes. Termes.

Compilation. Introduction à la compilation. Termes Phases d'un compilateur Importance des grammaires Méthodes d'analyse. Termes. Termes. Compilation Enseignants : Stéphane Talbot Miguel Tomasena Volume horaire : 10.5 C / 12 TD / 12 TP langage source Traduction langage cible Contenu : Introduction à la compilation Analyse Lexicale Analyse

Plus en détail

Complément d information concernant la fiche de concordance

Complément d information concernant la fiche de concordance Sommaire SAMEDI 0 DÉCEMBRE 20 Vous trouverez dans ce dossier les documents correspondants à ce que nous allons travailler aujourd hui : La fiche de concordance pour le DAEU ; Page 2 Un rappel de cours

Plus en détail

Mathématiques assistées par ordinateur

Mathématiques assistées par ordinateur Mathématiques assistées par ordinateur Chapitre 4 : Racines des polynômes réels et complexes Michael Eisermann Mat249, DLST L2S4, Année 2008-2009 www-fourier.ujf-grenoble.fr/ eiserm/cours # mao Document

Plus en détail

De la composition de taux à l'espace vectoriel des taux

De la composition de taux à l'espace vectoriel des taux De la composition de taux à l'espace vectoriel des taux Marcel Délèze, Collège du Sud, 630 Bulle Dans la majorité des livres scolaires, les chapitres consacrés à l'utilisation des taux font intensément

Plus en détail

Lois de probabilité à densité Loi normale

Lois de probabilité à densité Loi normale DERNIÈRE IMPRESSIN LE 31 mars 2015 à 14:11 Lois de probabilité à densité Loi normale Table des matières 1 Lois à densité 2 1.1 Introduction................................ 2 1.2 Densité de probabilité

Plus en détail

Probabilités et Statistiques. Feuille 2 : variables aléatoires discrètes

Probabilités et Statistiques. Feuille 2 : variables aléatoires discrètes IUT HSE Probabilités et Statistiques Feuille : variables aléatoires discrètes 1 Exercices Dénombrements Exercice 1. On souhaite ranger sur une étagère 4 livres de mathématiques (distincts), 6 livres de

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours Exo7 Continuité (étude globale). Diverses fonctions Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france.fr * très facile ** facile *** difficulté moyenne **** difficile *****

Plus en détail

Techniques de DM pour la GRC dans les banques Page 11

Techniques de DM pour la GRC dans les banques Page 11 Techniques de DM pour la GRC dans les banques Page 11 II.1 Introduction Les techniques de data mining sont utilisé de façon augmentaté dans le domaine économique. Tels que la prédiction de certains indicateurs

Plus en détail

Fonctions de plusieurs variables

Fonctions de plusieurs variables Module : Analyse 03 Chapitre 00 : Fonctions de plusieurs variables Généralités et Rappels des notions topologiques dans : Qu est- ce que?: Mathématiquement, n étant un entier non nul, on définit comme

Plus en détail

Jusqu'à présent. Au programme. Cardinalité Ensembles nis Ensembles dénombrables. Relations Opérations Relations. Conclusions. Nous avons déjà abordé

Jusqu'à présent. Au programme. Cardinalité Ensembles nis Ensembles dénombrables. Relations Opérations Relations. Conclusions. Nous avons déjà abordé Jusqu'à présent Nous avons déjà abordé Vers l'inni David Teller 23/01/2007 Les ensembles Le regroupement de valeurs caractérisées par des critères. Informatique Types. Physique Unités. Logique Domaines.

Plus en détail

chapitre 4 Nombres de Catalan

chapitre 4 Nombres de Catalan chapitre 4 Nombres de Catalan I Dénitions Dénition 1 La suite de Catalan (C n ) n est la suite dénie par C 0 = 1 et, pour tout n N, C n+1 = C k C n k. Exemple 2 On trouve rapidement C 0 = 1, C 1 = 1, C

Plus en détail

Table des matières. Listings. 1 Tests Algorithmique et Matlab. Travaux pratiques - E.D.O. Travail individuel et personnel. Sup'Galilée Année 2014-2015

Table des matières. Listings. 1 Tests Algorithmique et Matlab. Travaux pratiques - E.D.O. Travail individuel et personnel. Sup'Galilée Année 2014-2015 Energétique I Méthodes Numériques II Sup'Galilée Année -5 Travaux pratiques - E.D.O. Groupes B à B6 Travail individuel et personnel Table des matières Tests Algorithmique et Matlab Résolution numérique

Plus en détail

Exercice 3 (5 points) A(x) = 1-e -0039' -0 156e- 0,039x A '() -'-,..--,-,--,------:-- X = (l_e-0,039x)2

Exercice 3 (5 points) A(x) = 1-e -0039' -0 156e- 0,039x A '() -'-,..--,-,--,------:-- X = (l_e-0,039x)2 Les parties A et B sont indépendantes. Partie A Exercice 3 (5 points) Commun à tous les candidats On considère la fonction A définie sur l'intervalle [1 ; + 00 [ par A(x) = 1-e -0039' ' x 1. Calculer la

Plus en détail

Modèle de prise de décision éthique

Modèle de prise de décision éthique Chez General Dynamics, nous faisons face à des décisions relatives à l'éthique professionnelle presque tous les jours. ombre de ces décisions sont simples et demandent peu de réflexion. ous faisons naturellementce

Plus en détail

Apprentissage de langages formels : théorie et pratique Stage de fin de licence

Apprentissage de langages formels : théorie et pratique Stage de fin de licence Apprentissage de langages formels : théorie et pratique Stage de fin de licence Jean-Marie Madiot sous la direction de Rémi Eyraud Juin, juillet 2009 LIF de Marseille, équipe BDAA CMI Remerciements Je

Plus en détail

1. Introduction... 2. 2. Création d'une macro autonome... 2. 3. Exécuter la macro pas à pas... 5. 4. Modifier une macro... 5

1. Introduction... 2. 2. Création d'une macro autonome... 2. 3. Exécuter la macro pas à pas... 5. 4. Modifier une macro... 5 1. Introduction... 2 2. Création d'une macro autonome... 2 3. Exécuter la macro pas à pas... 5 4. Modifier une macro... 5 5. Création d'une macro associée à un formulaire... 6 6. Exécuter des actions en

Plus en détail

BACCALAUREAT GENERAL

BACCALAUREAT GENERAL ACCALAUREAT GENERAL Session 2009 MATHÉMATIQUES - Série ES - Enseignement de Spécialité Liban EXERCICE 1 1) 2) C 3) C 4) A Explication 1. Chacun des logarithmes existe si et seulement si x > 4 et x > 2

Plus en détail

x n = x x n 1 Exercice 3 Le but de cet exercice est de modéliser les suites définies par récurrence de la façon suivante :

x n = x x n 1 Exercice 3 Le but de cet exercice est de modéliser les suites définies par récurrence de la façon suivante : Ocaml - Exercices Exercice Définir en Ocaml les fonctions suivantes:. f : x sin x + cos x. g : x x 3x+ x x 5 3. Fonction h calculant la moyenne géométrique de deux float positifs ( xy) Exercice Ecrire

Plus en détail

La fonction exponentielle

La fonction exponentielle DERNIÈRE IMPRESSION LE 2 novembre 204 à :07 La fonction exponentielle Table des matières La fonction exponentielle 2. Définition et théorèmes.......................... 2.2 Approche graphique de la fonction

Plus en détail

LE PROBLEME DU PLUS COURT CHEMIN

LE PROBLEME DU PLUS COURT CHEMIN LE PROBLEME DU PLUS COURT CHEMIN Dans cette leçon nous définissons le modèle de plus court chemin, présentons des exemples d'application et proposons un algorithme de résolution dans le cas où les longueurs

Plus en détail

NOTATIONS PRÉLIMINAIRES

NOTATIONS PRÉLIMINAIRES Pour le Jeudi 14 Octobre 2010 NOTATIONS Soit V un espace vectoriel réel ; l'espace vectoriel des endomorphismes de l'espace vectoriel V est désigné par L(V ). Soit f un endomorphisme de l'espace vectoriel

Plus en détail

Chapitre 3 : Introduction aux probabilités

Chapitre 3 : Introduction aux probabilités IUT de Sceaux Département TC1 Mathématiques Chapitre 3 : Introduction aux probabilités 1. Évènements Les événements élémentaires sont les issues possibles d'une expérience aléatoire. Un événement est un

Plus en détail

212 année 2013/2014 DM de synthèse 2

212 année 2013/2014 DM de synthèse 2 22 année 20/204 DM de synthèse 2 Exercice Soit f la fonction représentée cicontre.. Donner l'ensemble de définition de la fonction f. 2. Donner l'image de 4 par f.. a. Donner un nombre qui n'a qu'un seul

Plus en détail

Pour l épreuve d algèbre, les calculatrices sont interdites.

Pour l épreuve d algèbre, les calculatrices sont interdites. Les pages qui suivent comportent, à titre d exemples, les questions d algèbre depuis juillet 003 jusqu à juillet 015, avec leurs solutions. Pour l épreuve d algèbre, les calculatrices sont interdites.

Plus en détail

Rapport d'analyse des besoins

Rapport d'analyse des besoins Projet ANR 2011 - BR4CP (Business Recommendation for Configurable products) Rapport d'analyse des besoins Janvier 2013 Rapport IRIT/RR--2013-17 FR Redacteur : 0. Lhomme Introduction...4 La configuration

Plus en détail

Pourquoi l apprentissage?

Pourquoi l apprentissage? Pourquoi l apprentissage? Les SE sont basés sur la possibilité d extraire la connaissance d un expert sous forme de règles. Dépend fortement de la capacité à extraire et formaliser ces connaissances. Apprentissage

Plus en détail

CHAPITRE VIII : Les circuits avec résistances ohmiques

CHAPITRE VIII : Les circuits avec résistances ohmiques CHAPITRE VIII : Les circuits avec résistances ohmiques VIII. 1 Ce chapitre porte sur les courants et les différences de potentiel dans les circuits. VIII.1 : Les résistances en série et en parallèle On

Plus en détail

A l'intention des collègues dont les élèves vont tester le sujet "prospectif" de bac ES.

A l'intention des collègues dont les élèves vont tester le sujet prospectif de bac ES. A l'intention des collègues dont les élèves vont tester le sujet "prospectif" de bac ES. Le sujet proposé s'inscrit dans le cadre du texte d'orientation ci-joint. L'exercice I est du type "compréhension

Plus en détail

Cours 1 : Qu est-ce que la programmation?

Cours 1 : Qu est-ce que la programmation? 1/65 Introduction à la programmation Cours 1 : Qu est-ce que la programmation? Yann Régis-Gianas yrg@pps.univ-paris-diderot.fr Université Paris Diderot Paris 7 2/65 1. Sortez un appareil qui peut se rendre

Plus en détail

Résolution d équations non linéaires

Résolution d équations non linéaires Analyse Numérique Résolution d équations non linéaires Said EL HAJJI et Touria GHEMIRES Université Mohammed V - Agdal. Faculté des Sciences Département de Mathématiques. Laboratoire de Mathématiques, Informatique

Plus en détail

Probabilités conditionnelles Exercices corrigés

Probabilités conditionnelles Exercices corrigés Terminale S Probabilités conditionnelles Exercices corrigés Exercice : (solution Une compagnie d assurance automobile fait un bilan des frais d intervention, parmi ses dossiers d accidents de la circulation.

Plus en détail

Cours d algèbre. Maths1 LMD Sciences et Techniques. Par M. Mechab

Cours d algèbre. Maths1 LMD Sciences et Techniques. Par M. Mechab Cours d algèbre Maths1 LMD Sciences et Techniques Par M. Mechab 2 Avant Propos Ceci est un avant projet d un manuel de la partie Algèbre du cours de Mathématiques de premières années LMD Sciences et techniques

Plus en détail

Chapitre 1 : Introduction aux bases de données

Chapitre 1 : Introduction aux bases de données Chapitre 1 : Introduction aux bases de données Les Bases de Données occupent aujourd'hui une place de plus en plus importante dans les systèmes informatiques. Les Systèmes de Gestion de Bases de Données

Plus en détail

INTRODUCTION. A- Modélisation et paramétrage : CHAPITRE I : MODÉLISATION. I. Paramétrage de la position d un solide : (S1) O O1 X

INTRODUCTION. A- Modélisation et paramétrage : CHAPITRE I : MODÉLISATION. I. Paramétrage de la position d un solide : (S1) O O1 X INTRODUCTION La conception d'un mécanisme en vue de sa réalisation industrielle comporte plusieurs étapes. Avant d'aboutir à la maquette numérique du produit définitif, il est nécessaire d'effectuer une

Plus en détail

Structures de données non linéaires

Structures de données non linéaires Structures de données non linéaires I. Graphes Définition Un graphe (simple) orienté G est un couple (S, A), où : S est un ensemble dont les éléments sont appelés les sommets. A est un ensemble de couples

Plus en détail

Simulation de variables aléatoires

Simulation de variables aléatoires Chapter 1 Simulation de variables aléatoires Références: [F] Fishman, A first course in Monte Carlo, chap 3. [B] Bouleau, Probabilités de l ingénieur, chap 4. [R] Rubinstein, Simulation and Monte Carlo

Plus en détail

La base e-journals utilisation au SCD, Université de Limoges

La base e-journals utilisation au SCD, Université de Limoges La base e-journals utilisation au SCD, Université de Limoges Conçue en mars 2002 par le SCD de Nancy 1 (Jean-Charles Houpier et Nicolas Morin), e- Journals est une base de données open source, construite

Plus en détail

Exo7. Probabilité conditionnelle. Exercices : Martine Quinio

Exo7. Probabilité conditionnelle. Exercices : Martine Quinio Exercices : Martine Quinio Exo7 Probabilité conditionnelle Exercice 1 Dans la salle des profs 60% sont des femmes ; une femme sur trois porte des lunettes et un homme sur deux porte des lunettes : quelle

Plus en détail

Programme et contenus 2010-2011. Licence d'informatique de Lille, parcours MIAGE, en alternance ou en formation continue 01-04-2011 (13:40)

Programme et contenus 2010-2011. Licence d'informatique de Lille, parcours MIAGE, en alternance ou en formation continue 01-04-2011 (13:40) Programme et contenus 2010-2011 L3 MIAGE FA/FC Licence d'informatique de Lille, parcours MIAGE, en alternance ou en formation continue 01-04-2011 (13:40) PROGRAMME ET CONTENUS 2010-2011 Séminaire de rentrée

Plus en détail

Problème : Calcul d'échéanciers de prêt bancaire (15 pt)

Problème : Calcul d'échéanciers de prêt bancaire (15 pt) Problème : Calcul d'échéanciers de prêt bancaire (15 pt) 1 Principe d'un prêt bancaire et dénitions Lorsque vous empruntez de l'argent dans une banque, cet argent (appelé capital) vous est loué. Chaque

Plus en détail

Le chiffre est le signe, le nombre est la valeur.

Le chiffre est le signe, le nombre est la valeur. Extrait de cours de maths de 6e Chapitre 1 : Les nombres et les opérations I) Chiffre et nombre 1.1 La numération décimale En mathématique, un chiffre est un signe utilisé pour l'écriture des nombres.

Plus en détail

Cours de compilation

Cours de compilation Cours de compilation 1 Introduction Un compilateur est un logiciel de traduction d un langage source vers un langage cible. D ordinaire le langage source est un langage de programmation évolué, comme C++

Plus en détail

Les relations de Plücker

Les relations de Plücker Université Claude Bernard LYON 1 Préparation à l'agrégation de Mathématiques Les relations de Plücker Michel CRETIN On montre que l'ensemble des sous-espaces vectoriels de dimension r de K n est la sous-variété

Plus en détail

Cours 1 : La compilation

Cours 1 : La compilation /38 Interprétation des programmes Cours 1 : La compilation Yann Régis-Gianas yrg@pps.univ-paris-diderot.fr PPS - Université Denis Diderot Paris 7 2/38 Qu est-ce que la compilation? Vous avez tous déjà

Plus en détail

DÉRIVÉES. I Nombre dérivé - Tangente. Exercice 01 (voir réponses et correction) ( voir animation )

DÉRIVÉES. I Nombre dérivé - Tangente. Exercice 01 (voir réponses et correction) ( voir animation ) DÉRIVÉES I Nombre dérivé - Tangente Eercice 0 ( voir animation ) On considère la fonction f définie par f() = - 2 + 6 pour [-4 ; 4]. ) Tracer la représentation graphique (C) de f dans un repère d'unité

Plus en détail

Concours de recrutement interne PLP 2009

Concours de recrutement interne PLP 2009 Concours de recrutement interne PLP 2009 Le sujet est constitué de quatre exercices indépendants. Le premier exercice, de nature pédagogique au niveau du baccalauréat professionnel, porte sur le flocon

Plus en détail

BANQUES DE DONNÉES PÉDAGOGIQUES

BANQUES DE DONNÉES PÉDAGOGIQUES 223 Daniel BURET, Jean-Claude BLANCHARD. HISTORIQUE L'EPI a entrepris en 1989 de créer des bases d'énoncés mathématiques destinées aux enseignants pour la production de documents et accompagnées d'un outil

Plus en détail

MICROINFORMATIQUE NOTE D APPLICATION 1 (REV. 2011) ARITHMETIQUE EN ASSEMBLEUR ET EN C

MICROINFORMATIQUE NOTE D APPLICATION 1 (REV. 2011) ARITHMETIQUE EN ASSEMBLEUR ET EN C Haute Ecole d Ingénierie et de Gestion Du Canton du Vaud MICROINFORMATIQUE NOTE D APPLICATION 1 (REV. 2011) ARITHMETIQUE EN ASSEMBLEUR ET EN C Programmation en mode simulation 1. DOCUMENTS DE RÉFÉRENCE...

Plus en détail

Calcul rapide des puissances

Calcul rapide des puissances Calcul rapide des puissances Par Mathtous Il s'agit de puissances à exposant entier naturel (avec la convention a 0 = 1, et a 1 = a). Si on applique la dénition pour calculer a n, on calcule de proche

Plus en détail

Interakting groupe Business & Decision

Interakting groupe Business & Decision Magento Référence Date de création 2 octobre 2009 Date de diffusion Magento_2009-12-16_MANUEL D'INSTALLATION ET INTERAKTING SLIDER_v3.2.doc Version 3.2 Magento ----- Manuel d'installation et d'utilisation

Plus en détail

Dérivation : Résumé de cours et méthodes

Dérivation : Résumé de cours et méthodes Dérivation : Résumé de cours et métodes Nombre dérivé - Fonction dérivée : DÉFINITION (a + ) (a) Etant donné est une onction déinie sur un intervalle I contenant le réel a, est dérivable en a si tend vers

Plus en détail

SINE QUA NON. Découverte et Prise en main du logiciel Utilisation de bases

SINE QUA NON. Découverte et Prise en main du logiciel Utilisation de bases SINE QUA NON Découverte et Prise en main du logiciel Utilisation de bases Sine qua non est un logiciel «traceur de courbes planes» mais il possède aussi bien d autres fonctionnalités que nous verrons tout

Plus en détail

Rappel. Analyse de Données Structurées - Cours 12. Un langage avec des déclaration locales. Exemple d'un programme

Rappel. Analyse de Données Structurées - Cours 12. Un langage avec des déclaration locales. Exemple d'un programme Rappel Ralf Treinen Université Paris Diderot UFR Informatique Laboratoire Preuves, Programmes et Systèmes treinen@pps.univ-paris-diderot.fr 6 mai 2015 Jusqu'à maintenant : un petit langage de programmation

Plus en détail

TSTI 2D CH X : Exemples de lois à densité 1

TSTI 2D CH X : Exemples de lois à densité 1 TSTI 2D CH X : Exemples de lois à densité I Loi uniforme sur ab ; ) Introduction Dans cette activité, on s intéresse à la modélisation du tirage au hasard d un nombre réel de l intervalle [0 ;], chacun

Plus en détail

Raisonnement probabiliste

Raisonnement probabiliste Plan Raisonnement probabiliste IFT-17587 Concepts avancés pour systèmes intelligents Luc Lamontagne Réseaux bayésiens Inférence dans les réseaux bayésiens Inférence exacte Inférence approximative 1 2 Contexte

Plus en détail

M2 IAD UE MODE Notes de cours (3)

M2 IAD UE MODE Notes de cours (3) M2 IAD UE MODE Notes de cours (3) Jean-Yves Jaffray Patrice Perny 16 mars 2006 ATTITUDE PAR RAPPORT AU RISQUE 1 Attitude par rapport au risque Nousn avons pas encore fait d hypothèse sur la structure de

Plus en détail

Exercices de dénombrement

Exercices de dénombrement Exercices de dénombrement Exercice En turbo Pascal, un entier relatif (type integer) est codé sur 6 bits. Cela signifie que l'on réserve 6 cases mémoires contenant des "0" ou des "" pour écrire un entier.

Plus en détail

TD séance n 8 Utilisateurs et Groupes sous Unix et Windows

TD séance n 8 Utilisateurs et Groupes sous Unix et Windows 1 Gestion des utilisateurs Unix 1.1 Super-utilisateur Linux est un système multiutilisateurs (plusieurs utilisateurs peuvent travailler sur la même machine) et sécurisé. Chaque utilisateur, pour travailler,

Plus en détail

TROISI` EME PARTIE L ALG` EBRE

TROISI` EME PARTIE L ALG` EBRE TROISIÈME PARTIE L ALGÈBRE Chapitre 8 L algèbre babylonienne Sommaire 8.1 Présentation..................... 135 8.2 Résolution d équations du second degré..... 135 8.3 Bibliographie.....................

Plus en détail

LES OUTILS D ALIMENTATION DU REFERENTIEL DE DB-MAIN

LES OUTILS D ALIMENTATION DU REFERENTIEL DE DB-MAIN LES OUTILS D ALIMENTATION DU REFERENTIEL DE DB-MAIN Les contenues de ce document sont la propriété exclusive de la société REVER. Ils ne sont transmis qu à titre d information et ne peuvent en aucun cas

Plus en détail

Chapitre 4 : les stocks

Chapitre 4 : les stocks Chapitre 4 : les stocks Stocks et actifs Une entreprise achète généralement des biens pour les utiliser dans son processus de production, ce sont les matières premières et les fournitures, elle peut également

Plus en détail

Chapitre 11. Premières Notions sur les fonctions

Chapitre 11. Premières Notions sur les fonctions Chapitre 11 Premières Notions sur les fonctions 1. Exemples Exemple 1 La distance parcourue par une automobile en un temps donné varie en fonction de sa vitesse. Faire deux phrases utilisant les mots suivants.

Plus en détail

CH.6 Propriétés des langages non contextuels

CH.6 Propriétés des langages non contextuels CH.6 Propriétés des langages non contetuels 6.1 Le lemme de pompage 6.2 Les propriétés de fermeture 6.3 Les problèmes de décidabilité 6.4 Les langages non contetuels déterministes utomates ch6 1 6.1 Le

Plus en détail

Services RDS de Windows Server 2008 R2

Services RDS de Windows Server 2008 R2 296 Services RDS de Windows Server 2008 R2 Le service Termsrv (Termsrv.dll tourne à l'intérieur d'un processus svchost.exe) héberge un écouteur qui communique avec un pilote TDI (mode noyau) afin d'écouter

Plus en détail

Calculs de probabilités avec la loi normale

Calculs de probabilités avec la loi normale Calculs de probabilités avec la loi normale Olivier Torrès 20 janvier 2012 Rappels pour la licence EMO/IIES Ce document au format PDF est conçu pour être visualisé en mode présentation. Sélectionnez ce

Plus en détail

Représentation des Nombres

Représentation des Nombres Chapitre 5 Représentation des Nombres 5. Representation des entiers 5.. Principe des représentations en base b Base L entier écrit 344 correspond a 3 mille + 4 cent + dix + 4. Plus généralement a n a n...

Plus en détail

Transducteurs d arbres et (peut-être un peu) apprentissage

Transducteurs d arbres et (peut-être un peu) apprentissage Transducteurs d arbres et (peut-être un peu) apprentissage A. Lemay 2006 Taxonomie des transducteurs d arbres Syntax Directed translation (Irons 60) Attributed Tree Transducers (Knuth 68, Fülop 81) Rational

Plus en détail

MENTIONS OBLIGATOIRES EN VERTU DE LA LOI DE LA PROTECTION DU CONSOMMATEUR

MENTIONS OBLIGATOIRES EN VERTU DE LA LOI DE LA PROTECTION DU CONSOMMATEUR MENTIONS OBLIGATOIRES EN VERTU DE LA LOI DE LA PROTECTION DU CONSOMMATEUR COMPLÉMENT AU CHAPITRE 25 PAGE 199 Ce document contient le texte des mentions obligatoires exigées par la Loi de la protection

Plus en détail

Introduction à MATLAB R

Introduction à MATLAB R Introduction à MATLAB R Romain Tavenard 10 septembre 2009 MATLAB R est un environnement de calcul numérique propriétaire orienté vers le calcul matriciel. Il se compose d un langage de programmation, d

Plus en détail

Articles sur le thème "Sécurité" http://thegeekcorner.free.fr

Articles sur le thème Sécurité http://thegeekcorner.free.fr Articles sur le thème "Sécurité" Sommaire TUTORIEL Installation et configuration de Xplico sous Backtrack I-Pré-requis...p. II-Installation et configuration...p. a) Installation de Xplico... p. b) Configuration

Plus en détail

Algorithmes de recherche

Algorithmes de recherche Algorithmes de recherche 1 Résolution de problèmes par recherche On représente un problème par un espace d'états (arbre/graphe). Chaque état est une conguration possible du problème. Résoudre le problème

Plus en détail

1) Explications (Expert) :

1) Explications (Expert) : 1) Explications (Expert) : Mesures expérimentales : Dans nos conditions d expérience, nous avons obtenu les résultats suivants : Les dimensions des récipients sont : 1) bocal vide : épaisseur de verre

Plus en détail

Mercredi 24 Juin 2015

Mercredi 24 Juin 2015 BACCALAURÉAT GÉNÉRAL Session 2015 MATHÉMATIQUES Série ES ENSEIGNEMENT OBLIGATOIRE Durée de l épreuve : 3 heures coefficient : 5 MATHÉMATIQUES Série L ENSEIGNEMENT DE SPÉCIALITÉ Durée de l épreuve : 3 heures

Plus en détail

3 Fonctions logarithmiques

3 Fonctions logarithmiques Log-Cours_standard.nb 12 3 Fonctions logarithmiques Edition 2007-2008 / DELM Liens hypertextes Cours de niveau avancé (plus étoffé): http://www.deleze.name/marcel/sec2/cours/logarithmes/log-cours_avance.pdf

Plus en détail

Chapitre-4 Logique du 1er ordre - Syntaxe -

Chapitre-4 Logique du 1er ordre - Syntaxe - Chapitre-4 Logique du 1er ordre - Syntaxe - Plan 1- Introduction 2- Alphabet 3-Termes d'un langage 4- Formule de la logique du 1er ordre 5-Sous-formule d'une formule du 1er ordre 6- Arbre de décomposition

Plus en détail

Sauvegarder et restaurer les données PMB

Sauvegarder et restaurer les données PMB Fiche technique PMB n 2.9 Sauvegarder et restaurer les données PMB Objectif : Savoir sauvegarder les paramètres, les notices, les exemplaires, les prêts... avec PMB Notez bien : Le documentaliste est responsable

Plus en détail

CALCUL DES PROBABILITES

CALCUL DES PROBABILITES CALCUL DES PROBABILITES Exemple On lance une pièce de monnaie une fois. Ensemble des événements élémentaires: E = pile, face. La chance pour obtenir pile vaut 50 %, pour obtenir face vaut aussi 50 %. Les

Plus en détail

Baccalauréat ES/L Amérique du Sud 21 novembre 2013

Baccalauréat ES/L Amérique du Sud 21 novembre 2013 Baccalauréat ES/L Amérique du Sud 21 novembre 2013 A. P. M. E. P. EXERCICE 1 Commun à tous les candidats 5 points Une entreprise informatique produit et vend des clés USB. La vente de ces clés est réalisée

Plus en détail