Symétrie axiale Symétrie par rapport à une droite Cours

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Symétrie axiale Symétrie par rapport à une droite Cours"

Transcription

1 Symétrie axiale Symétrie par rapport à une droite Cours Sont abordés dans ce cours : (cliquez sur le chapitre pour un accès direct) CHAPITRE 1 : symétrie axiale et figures symétriques par rapport à une droite CHAPITRE 2 : symétrique d un point par rapport à une droite et méthodes de construction CHAPITRE 3 : propriétés de la symétrie axiale et symétrique d une figure usuelle ou complexe Accès direct au site 1

2 CHAPITRE 1 : Symétrie axiale et figures symétriques Retour au menu Définition : Figures symétriques et axe de symétrie Deux figures sont symétriques par rapport à une droite si elles se superposent par pliage le long de cette droite. Cette droite est appelée l'axe de symétrie. Dans la suite de ce cours, l axe de symétrie sera indiqué en rouge et sera appelé la droite. Exemple : La figure verte et la figure bleue se superposent par pliage le long de la droite rouge donc ces figures sont symétriques par rapport à la droite. On dit également que la figure bleue est la figure symétrique de la figure verte dans la symétrie axiale d'axe. Remarque : Deux points sont symétriques par rapport à une droite si ces points se superposent par pliage le long de cette droite. Dans l exemple ci-contre, les points et sont symétriques par rapport à la droite. 2

3 CHAPITRE 2 : Symétrique d un point par rapport à une droite Retour au menu Définition : Symétrique d un point par rapport à une droite Le symétrique d'un point par rapport à une droite est un point. Précisément, le symétrique d un point par rapport à une droite est le point tel que la droite soit la médiatrice du segment. Autrement dit, le symétrique d un point par rapport à une droite est le point tel que la droite soit perpendiculaire au segment et qu elle passe par le milieu de ce segment. Remarque : Si un point appartient à une droite, alors le symétrique de ce point par rapport à la droite est le point lui-même. On dit alors que le point est invariant. L'ensemble des points invariants par une symétrie axiale est l axe de symétrie lui-même. Exemple : Construire le point, symétrique du point par rapport à la droite. Méthode : Symétrique d un point par rapport à une droite en utilisant un quadrillage 1 er cas : l axe de symétrie est horizontal ou vertical (selon les côtés des carreaux) 1 ère étape : On part du point et on compte le nombre de carreaux pour aller jusqu à la droite, axe de symétrie. On dénombre 4 carreaux entre ce point et la droite en suivant le quadrillage horizontalement (de gauche à droite). 2 e étape : Ensuite, on reproduit le trajet de 4 carreaux. On part alors de la droite puis on compte 4 carreaux en suivant le quadrillage horizontalement (en allant de la gauche vers la droite). 3 e étape : Le point est le symétrique du point par rapport à la droite. Remarque : On constate que la droite est bien la médiatrice du segment puisque la droite est perpendiculaire à et puisqu elle passe par le milieu du segment. 3

4 2 ème cas : l axe de symétrie est oblique (selon les diagonales des carreaux) 1 ère étape : On part du point et on compte le nombre de carreaux pour aller jusqu à la droite, axe de symétrie. On dénombre 4 carreaux entre ce point et la droite en suivant le quadrillage horizontalement (de droite à gauche). 2 e étape : Ensuite, on reproduit le trajet de 4 carreaux mais verticalement. On part alors de la droite puis on compte 4 carreaux en suivant le quadrillage verticalement (en allant de haut en bas). 3 e étape : Le point est le symétrique du point par rapport à la droite. 1 ère remarque : On peut également partir du point et aller jusqu à la droite en suivant le quadrillage verticalement (de haut en bas). Pour obtenir le symétrique de, on part alors de la droite et on suit horizontalement les carreaux (de la droite vers la gauche). 2 ème remarque : On peut également compter les carreaux en suivant leur diagonale. Du point à la droite, on dénombre deux diagonales de carreau. On reproduit le même trajet en partant de la droite et en suivant deux diagonales de carreau. 4

5 Méthode : Symétrique d un point par rapport à une droite en utilisant des instruments de géométrie 1 er cas : méthode utilisant l équerre et la règle graduée 1 ère étape : A l aide d une équerre, on construit la perpendiculaire à la droite et passant par le point. 2 e étape : A l aide d une règle graduée, on mesure la distance du point à la droite. 3 e étape : A l aide de la règle graduée, on reporte la distance mesurée de l autre côté de la droite, sur la perpendiculaire que l on a construite. 4 e étape : On obtient ainsi le point, symétrique de par rapport à puisque la droite est, par construction, la médiatrice du segment. 5

6 2 ème cas : méthode utilisant le compas 1 ère étape : A l aide d un compas, on trace un cercle de centre et coupant la droite. Ce cercle coupe la droite en deux points distincts. 2 e étape : On commence ici par nommer et les points d intersection du cercle et de la droite. A l aide du compas, on trace deux cercles ayant le même rayon (représenté ici en violet) et ayant pour centres respectifs les points et. 3 e étape : Les deux cercles bleus se coupent en deux points distincts : l un se trouve du même côté que le point et l autre se trouve de l autre côté de la droite. Ce dernier point est le point, symétrique de par rapport à. Remarque : Il est également possible de tracer des arcs de cercle à la place des cercles, afin de ne pas alourdir la figure par les tracés successifs. 3 ème cas : autre méthode utilisant le compas 1 ère étape : Sur l axe de symétrie, on place deux points distincts, appelés et. 6

7 2 e étape : On trace un cercle bleu foncé ayant pour centre le point et passant par le point et on trace un cercle bleu clair ayant pour centre le point et passant par. 3 e étape : Les deux cercles bleus se coupent en deux points distincts : l un est le point et l autre est le point, symétrique de par rapport à. Remarque : Cette deuxième méthode de construction avec le compas est plus intéressante que la précédente dès lors qu il faut construire plusieurs symétriques de points. En effet, grâce à cette méthode, on limite le nombre de cercles (ou arcs de cercles) et donc le risque de ne plus se repérer dans la figure. 7

8 CHAPITRE 3 : Symétrique d une figure usuelle ou complexe Retour au menu Propriété : Symétrique d une droite par rapport à une droite Le symétrique d'une droite par rapport à un axe est une droite. La symétrie axiale conserve l'alignement. Méthode : Symétrique d une droite par rapport à une droite Pour tracer le symétrique de la droite verte par rapport à l axe de symétrie rouge, on prend deux points de la droite verte et on trace leur symétrique respectif (ici en bleu) par rapport à l axe de symétrie. La droite symétrique est la droite bleue qui passe par le symétrique des deux points bleus. Propriété : Symétrique d un segment par rapport à une droite Le symétrique d'un segment par rapport à un axe est un segment de même longueur. La symétrie axiale conserve les longueurs. Méthode : Symétrique d un segment par rapport à une droite Pour tracer le symétrique du segment vert par rapport à l axe de symétrie rouge, on trace le symétrique de chaque extrémité verte du segment par rapport à l axe de symétrie. Le segment symétrique du segment vert est le segment bleu qui relie les points symétriques bleus. Propriété : Symétrique d un cercle par rapport à une droite Le symétrique d'un cercle par rapport à un axe est un cercle de même rayon. Les centres des cercles sont symétriques par rapport à cet axe. 8

9 Méthode : Symétrique d un cercle par rapport à une droite Pour tracer le symétrique du cercle vert par rapport à l axe de symétrie rouge, on trace le symétrique du centre du cercle vert par rapport à l axe de symétrie puis le cercle ayant pour centre le point bleu et pour rayon le même rayon que celui du cercle vert. Le cercle symétrique est le cercle bleu. Propriété : Conservations par rapport à une droite La symétrie axiale conserve : les mesures de longueurs les mesures d angles l alignement de points les périmètres les aires Propriété : Symétrique d une figure complexe Pour construire le symétrique d'une figure complexe, on la décompose en figures usuelles et on construit le symétrique de chacune de ces figures usuelles. 9

Symétrie Axiale. La médiatrice d un segment est LA droite qui coupe perpendiculairement ce segment en son milieu.

Symétrie Axiale. La médiatrice d un segment est LA droite qui coupe perpendiculairement ce segment en son milieu. Symétrie Axiale 1 Médiatrice d un segment. 1 a Définition La médiatrice d un segment est LA droite qui coupe perpendiculairement ce segment en son milieu. Exemple : (d) est la médiatrice du segment [AB]

Plus en détail

CHAPITRE 13 : SYMETRIE AXIALE ET AXES DE SYMETRIE

CHAPITRE 13 : SYMETRIE AXIALE ET AXES DE SYMETRIE CHAPITRE 13 : SYMETRIE AXIALE ET AXES DE SYMETRIE I) SYMETRIE AXIALE. 1) SYMETRIQUE D UN POINT PAR RAPPORT A UNE DROITE. a) Définition. On dit que A est le symétrique de A par rapport à (d). Remarque :

Plus en détail

Constructions géométriques

Constructions géométriques Constructions géométriques Objectifs : - reconnaître deux droites parallèles et deux droites perpendiculaires - savoir déterminer une distance d un point à une droite - connaître les constructions géométriques

Plus en détail

Cours 6ème Chapitre VIII. La symétrie axiale. Définition 1 : Deux figures sont symétriques par rapport à une droite (d) lorsque par

Cours 6ème Chapitre VIII. La symétrie axiale. Définition 1 : Deux figures sont symétriques par rapport à une droite (d) lorsque par La symétrie axiale I. Figures symétriques Définition 1 : Deux figures sont symétriques par rapport à une droite (d) lorsque par pliage autour de la droite (d), elles se superposent. Ex : (d) (F 1 ) (F

Plus en détail

Droites remarquables d un triangle

Droites remarquables d un triangle Droites remarquables d un triangle 1. Médiatrices d un triangle 1.1. Médiatrice d un segment 1.1.1. Définition La médiatrice d un segment est la droite qui passe par le milieu du segment et qui est perpendiculaire

Plus en détail

Géométrie. Reports et constructions d angles au compas

Géométrie. Reports et constructions d angles au compas Géométrie Reports et constructions d angles au compas 1. Reports d angles Reporter un angle, c'est partir d'un angle dessiné à un endroit sur une feuille et le redessiner à un autre endroit de la feuille

Plus en détail

Les droites, points, segments 1. Le point

Les droites, points, segments 1. Le point Les droites, points, segments 1. Le point Un point est un endroit précis du plan. On le repère avec une croix ( ). On le nomme avec une lettre majuscule. 2. La ligne et la droite Une ligne est une suite

Plus en détail

SYMETRIE AXIALE. 1 ) symétrie axiale. a) symétrique d'un point

SYMETRIE AXIALE. 1 ) symétrie axiale. a) symétrique d'un point 1 ) symétrie axiale SYMETRIE AXIALE a) symétrique d'un point Définition : A' est le symétrique du point A par rapport à la droite (d) si (d) est la médiatrice du segment [AA'] (C'est à dire si la droite

Plus en détail

Angle inscrit et angle au centre Géométrie Exercices corrigés

Angle inscrit et angle au centre Géométrie Exercices corrigés Angle inscrit et angle au centre Géométrie Exercices corrigés Sont abordés dans cette fiche : (cliquez sur l exercice pour un accès direct) Exercice 1 : angle inscrit dans un cercle (reconnaissance d un

Plus en détail

Chapitre 4 - Les triangles

Chapitre 4 - Les triangles Chapitre 4 - Les triangles I- Définitions et triangles particuliers Un triangle est un polygone qui a trois côtés. Dessiner trois triangles : un quelconque (classique), un qui est équilatéral et un qui

Plus en détail

SYMETRIE AXIALE. 1) Figures symétriques. 2) Symétrique d'un point Construction

SYMETRIE AXIALE. 1) Figures symétriques. 2) Symétrique d'un point Construction SYMETRIE XILE 1) Figures symétriques définition On dit que deux figures sont symétriques par rapport à une droite si en pliant suivant la droite, les deux figures se superposent. i-dessous les figures

Plus en détail

Ex 1 : Complète avec les mots de la leçon a)on le représente par une croix : c est. b)on nomme un segment entre

Ex 1 : Complète avec les mots de la leçon a)on le représente par une croix : c est. b)on nomme un segment entre Ex 1 : Complète avec les mots de la leçon a)on le représente par une croix : c est La géométrie exige rigueur et précision dans le vocabulaire utilisé. Une droite est formée par un nombre infini de points

Plus en détail

Chapitre 5 7 UTILISER UNE SYMETRIE

Chapitre 5 7 UTILISER UNE SYMETRIE Chapitre 5 7 UTILISER UNE SYMETRIE I CONSTRUCTION DU SYMETRIQUE D'UNE FIGURE 1. l'aide de papier calque F est le symétrique de F par rapport à O. 2. En utilisant le quadrillage P est le symétrique de P

Plus en détail

Lire les coordonnées d un point

Lire les coordonnées d un point Lire les coordonnées d un point 1) Repérer les cases 2) Repérer les nœuds : On peut repérer les nœuds d un quadrillage avec un code. La lettre indique le code de la colonne. Le nombre indique le code de

Plus en détail

Chapitre 1 : Géométrie repérée dans le plan

Chapitre 1 : Géométrie repérée dans le plan Chapitre 1 : Géométrie repérée dans le plan I Rappels sur les symétries : I. 1 Symétrie axiale : On note I le milieu de [ ]. On appelle médiatrice du segment [ ] la droite perpendiculaire en I à ( ). Propriétés

Plus en détail

Chapitre 11 : Symétrie axiale.

Chapitre 11 : Symétrie axiale. Chapitre 11 : Symétrie axiale. I Approche expérimentale. Définition : Deux figures sont symétriques par rapport à une droite si, en pliant suivant cette droite, les deux figures se superposent. Cette droite

Plus en détail

Thème N 12: SYMETRIE AXIALE

Thème N 12: SYMETRIE AXIALE Thème N 12: SYMETRIE XILE la fin du thème, tu dois savoir : onstruire le symétrique d un point, d une droite, d un segment, d un cercle (que l axe de symétrie coupe ou non la figure). onstruire ou compléter

Plus en détail

Groupe seconde chance Feuille d exercices numéro 5

Groupe seconde chance Feuille d exercices numéro 5 Groupe seconde chance Feuille d exercices numéro 5 Exercice Ecrire chacun des nombres ci-dessous sous forme d une puissance d un nombre entier. On laissera visible les étapes du calcul. = 2 0 x 4 3 = 3

Plus en détail

Symétrie axiale. : Delta lettre grecque. Alphabet grec :

Symétrie axiale. : Delta lettre grecque. Alphabet grec : Table des matières 1Figures symétriques par rapport à une droite...2 2Axes de symétrie...2 3SYMÉTRIQUES DE FIGURES...3 1Symétrique d un point...3 Définition...3 Construction...3 2Symétrique d une droite...3

Plus en détail

SOMMAIRE GEOMETRIE GEOM. http://delautrecotedubureau.eklablog.com/

SOMMAIRE GEOMETRIE GEOM. http://delautrecotedubureau.eklablog.com/ SOMMAIRE GEOMETRIE GEOM http://delautrecotedubureau.eklablog.com/ N Intitulé CE2 CM1 CM2 GEOM0 GEOM1 GEOM2 GEOM3 GEOM4 GEOM5 GEOM6 GEOM7 GEOM8 GEOM9 Les instruments Points, lignes, droites et segments

Plus en détail

Une droite est une ligne qui ne s arrête jamais.

Une droite est une ligne qui ne s arrête jamais. GEOMETRIE GEOM.0 Points, lignes, droites et segments GEOM.1 Tableaux et quadrillages GEOM.2 Reproduire une figure GEOM.3 ercle et compas GEOM.4 onstruire une figure géométrique GEOM.5 Les polygones GEOM.6

Plus en détail

Chapitre 2 : Symétrie centrale

Chapitre 2 : Symétrie centrale Chapitre 2 : Symétrie centrale I- Symétrie axiale (rappel) Deux figures sont symétriques par rapport à une droite (d) lorsque, en pliant suivant cette droite, les deux figures se superposent. Cette droite

Plus en détail

Évaluations nationales Annales CM

Évaluations nationales Annales CM Évaluations nationales Annales CM symétrie Axes de symétrie 1 / Entoure les figures pour lesquelles la droite en pointillés te semble être un axe de symétrie. (Évaluations nationales 2004) 3 / Entoure

Plus en détail

Table des matières Symétrie Centrale

Table des matières Symétrie Centrale Table des matières 1Découverte de la symétrie centrale...2 1Figures symétriques par rapport à un point...2 2Centre de symétrie...2 3Construire le symétrique de la figure par rapport au point O à l aide

Plus en détail

Géométrie C.M.1. Ecole primaire de Provenchères sur Fave

Géométrie C.M.1. Ecole primaire de Provenchères sur Fave Géométrie C.M.1 Ecole primaire de Provenchères sur Fave Sommaire Dans le plan Le point p. 03 La droite p. 04 La demi-droite p. 05 Le segment de droite p. 06 Droites sécantes p. 07 Droites perpendiculaires

Plus en détail

I. Définition : - [MM ] est perpendiculaire à d. - Le milieu de [MM ] est sur d. On dit que M est le symétrique de M par la symétrie axiale d axe d.

I. Définition : - [MM ] est perpendiculaire à d. - Le milieu de [MM ] est sur d. On dit que M est le symétrique de M par la symétrie axiale d axe d. I. Définition : M M' N M est le point symétrique de M par rapport à la droite d signifie que : - [MM ] est perpendiculaire à d. - Le milieu de [MM ] est sur d. On dit que M est le symétrique de M par la

Plus en détail

Les triangles. CAS PARTICULIERS : Propriété 2 (admise) : Si les points A, B et C sont alignés dans cet ordre, alors AC=AB+BC.

Les triangles. CAS PARTICULIERS : Propriété 2 (admise) : Si les points A, B et C sont alignés dans cet ordre, alors AC=AB+BC. Les triangles. Activité avec des spaghettis cassées en 3 parties. Peut-on toujours construire un triangle? Activité : les triangles sont-ils constructibles. I- Construction d un triangle. a. Inégalité

Plus en détail

I. Découverte de la symétrie centrale

I. Découverte de la symétrie centrale La symétrie centrale Cours I. Découverte de la symétrie centrale 1. Figures symétriques par rapport à un point O Deux figures sont symétriques par rapport à un point O si, en faisant tourner un calque

Plus en détail

Une définition mathématique de la symétrie d'axe D

Une définition mathématique de la symétrie d'axe D Une définition mathématique de la symétrie d'axe D «la transformation du plan dans luimême qui à un point M associe le point M' tel que D soit la médiatrice du segment [MM']» M (D) M' Deux points de vue

Plus en détail

Chap 5 : A la règle, à l équerre, au compas et au rapporteur

Chap 5 : A la règle, à l équerre, au compas et au rapporteur Chap 5 : A la règle, à l équerre, au compas et au rapporteur A la fin du chapitre, tu dois être capable de : 6 G 7 : Tracer, par un point donné, la perpendiculaire ou la parallèle à une droite donnée (usage

Plus en détail

Chapitre n 8 : «Symétrie axiale»

Chapitre n 8 : «Symétrie axiale» Chapitre n 8 : «Symétrie axiale» I. Définition 1/ Activité La symétrie est un principe assez naturel. On trouve des symétries chez l'homme, les animaux ; dans les objets... Pour avoir «symétrie», il faut

Plus en détail

TRANSFORMATIONS DU PLAN

TRANSFORMATIONS DU PLAN TRANSFORMATIONS DU PLAN On appelle transformation plane (ou transformation du plan) dans lui-même tout procédé qui, à partir de n importe quel point M du plan, permet de construire un point M du plan.

Plus en détail

Symétrie axiale. La médiatrice d un segment est la droite qui passe par le milieu de ce segment et qui lui est perpendiculaire.

Symétrie axiale. La médiatrice d un segment est la droite qui passe par le milieu de ce segment et qui lui est perpendiculaire. Symétrie axiale I) Médiatrice d un segment : Définition : La médiatrice d un segment est la droite qui passe par le milieu de ce segment et qui lui est perpendiculaire. Exemple : La droite (d) est perpendiculaire

Plus en détail

Ex 1 : Vrai ou faux CM1

Ex 1 : Vrai ou faux CM1 Ex 1 : Vrai ou faux a)une droite est limité par deux points En géométrie, il faut être attentif lors de la lecture des consignes et très précis quand on utilise le vocabulaire. b)si trois points sont sur

Plus en détail

CE QU IL FAUT RETENIR DE LA SEANCE

CE QU IL FAUT RETENIR DE LA SEANCE TFS : DT01-153318-01 Page 1 sur 13 CE QU IL FUT RETENIR DE L SENCE Définition... 2 Représentation... 3 Report d angle... 4 Report d angle (suite)... 5 utils pour le report d angle... 6 ngles égaux... 7

Plus en détail

Programmation numération CM1

Programmation numération CM1 Programmation numération CM1 Les nombres entiers jusqu au milliard - Connaître, savoir écrire et nommer les nombres entiers jusqu au milliard. - Comparer, ranger, encadrer ces nombres. P1 Les nombres de

Plus en détail

Compétence C5: Construire une hauteur d un triangle

Compétence C5: Construire une hauteur d un triangle Compétence C5: Construire une hauteur d un triangle Etape 1 : Reconnaissance visuelle de droites perpendiculaires (à vue ou utilisation de l équerre dans certains cas) Exercice 1 : Demander à l élève de

Plus en détail

Bilan de géométrie n 1 Le cercle

Bilan de géométrie n 1 Le cercle Bilan de géométrie n 1 Le cercle 1. Connaître les éléments caractéristiques d'un cercle.... / 5 Observe cette figure. Dis si ces phrases sont vraies (V) ou fausses (F).... Le cercle noir a pour centre

Plus en détail

Symétrie axiale. Translation Rotation LES TRANSFORMATIONS D. LE FUR. Lycée Pasteur, São Paulo D. LE FUR LES TRANSFORMATIONS

Symétrie axiale. Translation Rotation LES TRANSFORMATIONS D. LE FUR. Lycée Pasteur, São Paulo D. LE FUR LES TRANSFORMATIONS LES TRANSFORMATIONS D. LE FUR Lycée Pasteur, São Paulo Symétrie centrale Symétrique d un point A O A Symétrique d un point A O A Le symétrique A du point A dans la symétrie de centre O est tel que O soit

Plus en détail

Ex 1 : Vrai ou faux. Géom 1

Ex 1 : Vrai ou faux. Géom 1 CONNAITRE LE VOCABULAIRE ET LES INSTRUMENTS GEOMETRIQUES Géom 1 Ex 1 : Vrai ou faux a)une droite est limité par deux points En géométrie, il faut être attentif lors de la lecture des consignes et très

Plus en détail

Compétences Math CE2-CM1-CM2

Compétences Math CE2-CM1-CM2 Compétences Math CE2-CM1-CM2 MATHÉMATIQUES - NOMBRES ET CALCUL CE2 CM1 CM2 Notions abordées dans le logiciel LES NOMBRES ENTIERS JUSQU AU MILLION Connaître, savoir écrire et nommer les nombres entiers

Plus en détail

Transformations du plan (exercices)

Transformations du plan (exercices) Exercice 1 : Transformations du plan (exercices) 1. Construire les symétriques de cette figure par rapport aux trois axes tracés (horizontal, vertical puis oblique ) 2. Construire les symétriques de la

Plus en détail

-G4- -Symétrie axiale-

-G4- -Symétrie axiale- hapitre -G4- -Symétrie axiale- Dernière mise à jour le 24 mai 2015 Sommaire 1.0.1 Le point sur le programme........................... 1 1.0.2 Symétire par rapport à une droite : Définition.................

Plus en détail

Julien Fonteniaud Professeur de mathématiques

Julien Fonteniaud Professeur de mathématiques 4 Symétrie centrale Parallélogramm es [G2] 2 semaines ½ Mettre en œuvre ou écrire un protocole de construction d une figure géométrique. Coder une figure. Comprendre l effet d une translation, d une symétrie

Plus en détail

6.G5 Symétrie axiale

6.G5 Symétrie axiale Symétrie Axiale Géométrie 6.G5 Symétrie axiale 6.G50[S] Connaître la symétrie axiale (constructions sur quadrillage, trouver des axes de symétrie éventuels). 6.G51[S] Construire l'image d'un point, d'un

Plus en détail

6 eme La symétrie axiale

6 eme La symétrie axiale 6 eme La symétrie axiale 1. La médiatrice d un segment On dit que est la médiatrice du segment [] si : - - - Ex 1 : Trace la médiatrice de [IJ] et [MN] puis place G pour que soit la médiatrice de [FG].

Plus en détail

Géométrie. Bissectrices, médiatrices, parallèles et perpendiculaires au compas

Géométrie. Bissectrices, médiatrices, parallèles et perpendiculaires au compas Géométrie Bissectrices, médiatrices, parallèles et perpendiculaires au compas 1. Bissectrices d angles La bissectrice d un angle est la droite qui le partage en deux angles isométriques: La bissectrice

Plus en détail

Si A (d), alors le symétrique du point A par rapport à la droite (d) est lui-même.

Si A (d), alors le symétrique du point A par rapport à la droite (d) est lui-même. I. Figures symétriques Définition : CHAPITRE : SYMETRIE AXIALE Deux figures sont symétriques par rapport à une droite, si en pliant autour de cette droite, les deux figures se superposent. Cette droite

Plus en détail

Symétrie axiale Page 123

Symétrie axiale Page 123 Classe de sixième CHPITRE 6 SYMETRIE XILE Symétrie axiale Page 123 Fiche d'exercices 6.1. FIGURES SYMETRIQUES Le mot symétrie vient du grec syn : "avec" et metron : "mesure". On reviendra sur le sens de

Plus en détail

SOMMAIRE ÉVALUATIONS GÉOMÉTRIE CE2

SOMMAIRE ÉVALUATIONS GÉOMÉTRIE CE2 SOMMAIRE ÉVALUATIONS GÉOMÉTRIE CE2 1. Les angles : définir, nommer, situer un angle droit, utilisation de l équerre 2. Définition, traçage : La droite, la demi-droite, le segment, le polygone 3. Reconnaître

Plus en détail

Cours n 6 : Droites perpendiculaires et parallèles. () 26 octobre / 1

Cours n 6 : Droites perpendiculaires et parallèles. () 26 octobre / 1 Cours n 6 : Droites perpendiculaires et parallèles () 26 octobre 2012 1 / 1 1) Droites sécantes () 26 octobre 2012 2 / 1 1) Droites sécantes Définition Lorsque deux droites ont un point en commun, on dit

Plus en détail

Grilles des compétences mathématiques : CM2 et SIXIEME

Grilles des compétences mathématiques : CM2 et SIXIEME Grilles des compétences mathématiques : CM2 et SIIEME Travaux géométriques Utiliser les instruments (ou un matériel) pour : Connaître les figures planes Tracer une droite passant par 2 points Tracer 2

Plus en détail

Cercle et constructions aux compas (triangles, milieu)

Cercle et constructions aux compas (triangles, milieu) ercle et constructions aux compas (triangles, milieu) I. Le cercle 1/ L'essentiel ctivités Placer un point puis construire, à la règle, le plus de points possibles situés à 2,3 cm de. Que remarque-t-on?

Plus en détail

Activité 1 : Miroir, mon beau miroir

Activité 1 : Miroir, mon beau miroir ctivité : Miroir, mon beau miroir Figure Figure Figure. Observe les trois figures ci-dessus. a. Quel est leur point commun? omment peux-tu le mettre en évidence? b. ans des publicités ou des magazines,

Plus en détail

Réponse. Réponse. Réponse

Réponse. Réponse. Réponse Exercice 1 La médiatrice d un segment est la droite qui est perpendiculaire à ce segment et qui passe par son milieu. Justifier avec rigueur l affirmation suivante : La droite (d) est la médiatrice du

Plus en détail

Définition : Un quadrilatère est une figure géométrique qui a quatre côtés.. Il peut se nommer :. R, O, S et E sont les quatre...

Définition : Un quadrilatère est une figure géométrique qui a quatre côtés.. Il peut se nommer :. R, O, S et E sont les quatre... Définition et vocabulaire : Définition : Un quadrilatère est une figure géométrique qui a quatre côtés. Vocabulaire : R. Ce quadrilatère est un quadrilatère non croisé.. Il peut se nommer :. R,, S et E

Plus en détail

Symétries. Objectifs du chapitre. Énigme du chapitre.

Symétries. Objectifs du chapitre. Énigme du chapitre. Symétries C H P I T R E 4 Énigme du chapitre. Objectifs du chapitre. Construire une figure géométrique qui a deux centres de symétrie. Construire le symétrique (axiale) d une droite. Construire le symétrique

Plus en détail

Compétence 1. Réaliser des tracés géométriques

Compétence 1. Réaliser des tracés géométriques c1problemesconstruiresite gysgp6ak3cp6tzphblxci0pedb181848_in.doc - 1 - ompétence 1 Réaliser des tracés géométriques Savoir en jeu dans les activités Définitions et propriété de base de géométrie, quadrilatères,

Plus en détail

Programmation annuelle MATHEMATIQUES

Programmation annuelle MATHEMATIQUES Programmation annuelle MATHEMATIQUES COMPETENCES PERIODE 1 PERIODE 2 PERIODE 3 PERIODE 4 PERIODE 5 NOMBRES ET CALCUL Les nombres entiers jusqu au milliard Connaître, savoir écrire et nommer les nombres

Plus en détail

Droites parallèles et perpendiculaires Groupe 1

Droites parallèles et perpendiculaires Groupe 1 Droites parallèles et perpendiculaires Groupe 1 Objectif: reconnaître et tracer des droites parallèles et perpendiculaires. 1. Trace la droite perpendiculaire à la droite d et qui passe par le point C.

Plus en détail

CHAPITRE II. Légende du tableau de compétences : Deux points verts : Je sais très bien faire. Je ne sais pas bien faire, il y a trop d erreurs

CHAPITRE II. Légende du tableau de compétences : Deux points verts : Je sais très bien faire. Je ne sais pas bien faire, il y a trop d erreurs HPITE II SYMÉTIE ENTLE MPÉTENES ÉVLUÉES DNS E HPITE : (T : compétences transversales, N : activités numériques, G : activités géométriques, F : gestion de données et fonctions) Intitulé des compétences

Plus en détail

Chapitre24 Parallélogrammes particuliers 1. Rectangles 1.1 Définition Un rectangle est un quadrilatère qui a quatre angles droits.

Chapitre24 Parallélogrammes particuliers 1. Rectangles 1.1 Définition Un rectangle est un quadrilatère qui a quatre angles droits. Chapitre24 Parallélogrammes particuliers 1. Rectangles 1.1 Définition Un rectangle est un quadrilatère qui a quatre angles droits. Le quadrilatère ABCD a quatre angles droits ; c'est un rectangle 1.2 rectangles

Plus en détail

Triangles et droites remarquables

Triangles et droites remarquables Triangles et droites remarquables chapitre 8 Te souviens-tu? 1. ; 2. ; 3. ; 4. ; 5. et ctivités 1 Découvrir l'inégalité triangulaire 1. Le voyage de lara Le trajet le plus court est celui passant par Paris.

Plus en détail

Fichier de géométrie

Fichier de géométrie Fichier de géométrie Sommaire F1 F2 F3 F4 Périmètres Aires Volumes Tableaux de conversions F5 F6 Comment démontrer que deux droites sont parallèles Comment démontrer que deux droites sont perpendiculaires

Plus en détail

Symétrie centrale cours 5e

Symétrie centrale cours 5e Symétrie centrale cours 5e F.Gaudon 14 février 2005 Table des matières 1 Première approche, définition et vocabulaire 2 2 Construction 4 3 Propriétés 4 1 1 Première approche, définition et vocabulaire

Plus en détail

Symétrie centrale. Symétrie centrale. Table des matières. 1 Symétrique d un point

Symétrie centrale. Symétrie centrale. Table des matières. 1 Symétrique d un point Table des matières 1 Symétrique d un point 1 2 Propriétés de la symétrie centrale 2 3 Utilisation d un quadrillage 6 1 Symétrique d un point, M et M sont trois points du plan. Le symétrique de M par rapport

Plus en détail

GEOMETRIE CM2. Gé1 Points alignés et droites Pour représenter un point, on dessine une croix et on lui donne une lettre qu on écrit à côté.

GEOMETRIE CM2. Gé1 Points alignés et droites Pour représenter un point, on dessine une croix et on lui donne une lettre qu on écrit à côté. Gé1 Points alignés et droites Pour représenter un point, on dessine une croix et on lui donne une lettre qu on écrit à côté. x I x K x F Une droite est un alignement infini de points. On la désigne par

Plus en détail

SYMÉTRIE AXIALE. Exercices conseillés En devoir Exercices conseillés En devoir p182 n 12, 13, 14. p182 n 15 p180 n 12, 15, 14

SYMÉTRIE AXIALE. Exercices conseillés En devoir Exercices conseillés En devoir p182 n 12, 13, 14. p182 n 15 p180 n 12, 15, 14 1 SYMÉTRIE AXIALE Du grec, syn «avec» et metron «mesure». «symmetria» désignait la juste mesure. I. Construire le symétrique d un point Construire le symétrique de A par rapport à la droite. A 1 2 M 1

Plus en détail

FICHE 4.5 : LE CERCLE

FICHE 4.5 : LE CERCLE FICHE 4.5 : LE CERCLE Mise à jour : 04/11/11 Le cercle On pense pourtant tout connaître sur lui et ce n est finalement qu en 4 ème année qu il nous révèle pourtant tant de secrets. 1. DÉFINITION EN FRANÇAIS

Plus en détail

Des clés pour démontrer :

Des clés pour démontrer : es clés pour démontrer : I- omment démontrer que trois points sont alignés. hypothèses Un angle plat. Soit : = 180 () (d ) ; ( ) // d Si l angle est plat, alors les trois points, et sont alignés Par un

Plus en détail

Repères enseignants pour l évaluation au cycle 3

Repères enseignants pour l évaluation au cycle 3 NOMBRES ET CALCULS Ecrire, nommer, comparer et utiliser les nombres entiers, les nombres décimaux et quelques fractions simples Connaître, savoir écrire et nommer les nombres entiers Comparer, ranger,

Plus en détail

Géométrie et Mesures CM1 Période 1

Géométrie et Mesures CM1 Période 1 Géométrie et Mesures CM1 Période 1 Ecris la lettre des figures qui sont des polygones. A B En utilisant ton compas, trouve tous les segments qui ont la même longueur que le segment [AB]. C D Avec ta règle

Plus en détail

EXERCICES DE GÉOMÉTRIE. Exercice 2. Déterminer tous les axes et centres de symétrie des gures suivantes :

EXERCICES DE GÉOMÉTRIE. Exercice 2. Déterminer tous les axes et centres de symétrie des gures suivantes : EXERIES E GÉOMÉTRIE Exercice 1. ans un triangle, tracer : a) la hauteur passant par, b) la médiane passant par, c) la bissectrice de l'angle Â, d) la médiatrice du segment []. Exercice 2. éterminer tous

Plus en détail

SYMETRIES. 1 ) Axe de symétrie.

SYMETRIES. 1 ) Axe de symétrie. Chapitre GEOMETRIE SYMETRIES 1 ) Axe de symétrie. On dit qu une figure plane admet un axe de symétrie lorsque, si je plie ma feuille le long de l axe, alors les deux parties de la figure se superposent

Plus en détail

PROGRAMMATION DE MATHÉMATIQUES CM1. Période 1

PROGRAMMATION DE MATHÉMATIQUES CM1. Période 1 PROGRAMMATION DE MATHÉMATIQUES CM1 Période 1 Programmes Séances Objectifs Palier 2 du socle commun B.O. 2008 et 2012 Découverte Structuration Entraînement Nombres et calcul : les nombres entiers Écrire,

Plus en détail

Groupe seconde chance Feuille d exercice n 12

Groupe seconde chance Feuille d exercice n 12 Groupe seconde chance Feuille d exercice n 2 Exercice (D après CRPE Antilles Guyane 995) Monsieur Dupré achète un terrain triangulaire dont les côtés mesurent 20 m, 96 m et 72 m.. Quels sont en millimètres

Plus en détail

Cosinus d un angle aigu (trigonométrie) Exercices corrigés

Cosinus d un angle aigu (trigonométrie) Exercices corrigés Cosinus d un angle aigu (trigonométrie) Exercices corrigés Sont abordés dans cette fiche : Exercices 1 et 2 : calcul de la longueur d un côté adjacent à un angle aigu Exercice 3 : calcul de la longueur

Plus en détail

Chapitre : Les parallélogrammes. Définition : Un parallélogramme est un quadrilatère qui a ses côtés opposés parallèles.

Chapitre : Les parallélogrammes. Définition : Un parallélogramme est un quadrilatère qui a ses côtés opposés parallèles. hapitre : Les parallélogrammes I Généralités éfinition : Un parallélogramme est un quadrilatère qui a ses côtés opposés parallèles. ( ) // ( ) et ( ) // ( ) est un parallélogramme II iagonales Propriété

Plus en détail

Exercice 3 (Aix-Marseille - 2006) Géométrie : corrigé fiche 3

Exercice 3 (Aix-Marseille - 2006) Géométrie : corrigé fiche 3 Exercice 3 (Aix-Marseille - 2006) Géométrie : corrigé fiche 3 Exercice 4 (Aix Marseille 1996) 1. Rappel : tracé de l hexagone. On place un point, qu on nomme O. On trace un cercle de centre O, de rayon

Plus en détail

Géométrie Année

Géométrie Année Géométrie nnée 2012-2013 Sommaire G1- Le vocabulaire de géométrie G2- Les droites perpendiculaires G3- Les droites parallèles G4- Les polygones G5- Les quadrilatères G6- Les triangles G7- Les cercles G8-

Plus en détail

GEOMETRIE. Tableaux et quadrillages. Reproduire une figure. Droites perpendiculaires. Droites parallèles. Les quadrilatères

GEOMETRIE. Tableaux et quadrillages. Reproduire une figure. Droites perpendiculaires. Droites parallèles. Les quadrilatères GEOMETRIE GEOM. 1 Le vocabulaire GEOM. 2 Des instruments pour tracer, mesurer, vérifier GEOM. 3 Tableaux et quadrillages GEOM. 4 Reproduire une figure GEOM. 5 Les angles GEOM. 6 Droites perpendiculaires

Plus en détail

FICHES OUTILS GEOMETRIE CM1

FICHES OUTILS GEOMETRIE CM1 FIHES OUTILS GEOMETRIE 1 Utilisation de la règle et de l équerre 2 Utilisation du compas 3 Reproduire des figures planes 4 Reconnaitre des figures planes 5 onstruire des figures géométriques 6 Les solides

Plus en détail

EXTRAITS DU B.O. SPECIAL N 6 DU 28 AOÛT 2008 Connaissances Capacités Commentaires

EXTRAITS DU B.O. SPECIAL N 6 DU 28 AOÛT 2008 Connaissances Capacités Commentaires XTRTS.O. SPL N 6 28 OÛT 2008 onnaissances apacités ommentaires 3.2 Symétrie orthogonale par rapport à une droite (symétrie axiale) onstruire le symétrique d un point, d une droite, d un segment, d un cercle

Plus en détail

Distributivité de la multiplication par rapport à l addition Exercices corrigés

Distributivité de la multiplication par rapport à l addition Exercices corrigés Distributivité de la multiplication par rapport à l addition Exercices corrigés Sont abordés dans cette fiche : (cliquez sur l exercice pour un accès direct) Exercice 1 : décrire une expression en utilisant

Plus en détail

Lexique illustré de géométrie.

Lexique illustré de géométrie. 1 Lexique illustré de géométrie. LEXIQUE GÉOMÉTRIE COLLÈGE A Abscisse K Sur un axe gradué L Le point K a pour abscisse -6. Le point L a pour abscisse 3,5 Dans un repère Le point A a pour abscisse 3,5.

Plus en détail

Vocabulaire géométrique (Cm1) Vocabulaire géométrique (Cm2)

Vocabulaire géométrique (Cm1) Vocabulaire géométrique (Cm2) Vocabulaire géométrique (Cm1) La droite : c est un trait qui passe par un nombre infini de points alignés. On ne peut donc pas mesurer une droite. Le point : on le représente par une croix et on le nomme

Plus en détail

Chap. II. Symétrie centrale

Chap. II. Symétrie centrale Chap. II. Symétrie centrale I. Symétrie axiale ( rappels) Définition Deux figures sont symétriques par rapport à une droite si, en pliant suivant la droite, les deux figures se superposent. La droite est

Plus en détail

Nombres complexes Partie réelle et partie imaginaire Exercices corrigés

Nombres complexes Partie réelle et partie imaginaire Exercices corrigés Nombres complexes Partie réelle et partie imaginaire Exercices corrigés Objectifs abordés dans cette fiche : (cliquez sur l exercice pour un accès direct) Exercice 1 : donner la partie réelle et la partie

Plus en détail

La translation dans le plan

La translation dans le plan La translation dans le plan Définitions: Une translation plane qui transforme le point A en le point B est un déplacement rectiligne dans le plan (glissement) qui amène le point A sur le point B. Le point

Plus en détail

analytique plane 2. 2013

analytique plane 2. 2013 analytique plane 2. 2013 Maths-A TABLE DES MATIÈRES Rappels sur les vecteurs... 30 Pente d une droite... 31 Equation d une droite, première forme... 32 Equation d une droite, deuxième forme... 33 Equation

Plus en détail

ÉTAPE 1 : Construction de perpendicualires et de parallèles sur papier uni, introduction des propriétés 1 et 2

ÉTAPE 1 : Construction de perpendicualires et de parallèles sur papier uni, introduction des propriétés 1 et 2 ÉTAPE 1 : Construction de perpendicualires et de parallèles sur papier uni, introduction des propriétés 1 et 2 Exercice des 24 h du Mans Une voiture part de la ligne de départ. Elle se déplace en ligne

Plus en détail

Chapitre 15 : Axes de symétrie

Chapitre 15 : Axes de symétrie hapitre 15 : es de symétrie 1) e de symétrie d une figure : Une droite est un ae de symétrie d une figure si les deu parties de la figure se superposent par pliage le long de cette droite. D La droite

Plus en détail

Relations et propriétés : axe de symétrie d une figure. - Percevoir un axe de symétrie d une figure.

Relations et propriétés : axe de symétrie d une figure. - Percevoir un axe de symétrie d une figure. SYMETRIE AXIALE I. Les programmes 1. Cycle des apprentissages fondamentaux La symétrie fait l objet d une première approche au cycle 2 à l occasion d activités telles que l agencement d objets géométriques

Plus en détail

GEOMETRIE ENTRAINEMENT TRANSFERT RECHERCHE NIVEAU

GEOMETRIE ENTRAINEMENT TRANSFERT RECHERCHE NIVEAU Fiche n 1 1 Compétence visée : Découvrir la symétrie axiale par pliage. - Plie une feuille en deux. - Découpe la forme que tu veux. - Ouvre la feuille. - Trace l axe de symétrie. - Colle ta feuille ici.

Plus en détail

Connaître le vocabulaire et le codage en géométrie. Connaître le vocabulaire et le codage en géométrie. res

Connaître le vocabulaire et le codage en géométrie. Connaître le vocabulaire et le codage en géométrie. res Ge1 Connaître le vocabulaire et le codage en géométrie. Ge2 Connaître le vocabulaire et le codage en géométrie. La géométrie exige rigueur et précision dans le vocabulaire utilisé. Une droite est formée

Plus en détail

Géom 1 Connaître le vocabulaire et le codage géométrique

Géom 1 Connaître le vocabulaire et le codage géométrique Géom 1 Connaître le vocabulaire et le codage géométrique En géométrie, il faut être attentif lors de la lecture des consignes et très précis quand on utilise le vocabulaire. La règle sert à mesurer, tracer

Plus en détail

Dizaines et centaines

Dizaines et centaines Comprendre ce que vaut un chiffre Dizaines et centaines 2 centaines = 200 unités 0 dizaines 1 dizaine = 10 unités 1 centaine = 100 unités 2 dizaines = 20 unités 2 centaines = 200 unités 205 ou 1 centaine

Plus en détail

Quelques théorèmes de géométrie du triangle

Quelques théorèmes de géométrie du triangle Quelques théorèmes de géométrie du triangle Z, auctore 1 er novembre 2005 1 Propriété des angles Théorème 1 Dans un triangle, la somme des trois angles vaut 180. Précisément, pour un triangle, on a la

Plus en détail

Repères dans le plan - configurations planes

Repères dans le plan - configurations planes Repères dans le plan - configurations planes ) Repères dans le plan : a) notion de repère dans un plan : Définition : Un repère est constitué d'un point origine, de deux droites orientées et graduées (axes).

Plus en détail

Les parallélogrammes particuliers

Les parallélogrammes particuliers Les parallélogrammes particuliers I Une histoire de famille Le parallélogramme fait partie de la famille des quadrilatères: Ce sont des polygones à 4 cotés, 4 angles, 2 diagonales et c'est tout. Ils peuvent

Plus en détail