La translation dans le plan
|
|
|
- Baptiste Lafond
- il y a 9 ans
- Total affichages :
Transcription
1 La translation dans le plan Définitions: Une translation plane qui transforme le point A en le point B est un déplacement rectiligne dans le plan (glissement) qui amène le point A sur le point B. Le point B est appelé translaté de A dans cette translation. Nous dirons aussi que B est l'image de A dans cette translation. Pour définir une translation il faut donc connaître deux points: un point de départ (A) et un point d'arrivée (B). Nous définissons ainsi trois choses: - une droite (AB) sur laquelle nous nous déplaçons (le déplacement est rectiligne). - une distance AB. C'est la longueur du parcours, du glissement. - un sens de parcours: de A vers B. Aller dans le sens inverse (de B vers A) c'est utiliser une autre translation (la translation inverse, celle qui nous ramène à notre point de départ). Tous les points du plan peuvent alors être transformés de la même manière que A se transforme en B. Il suffit, pour translater un point M en P dans la translation qui transforme A en B, de: - suivre un chemin parallèle à la droite (AB): donc (MP) doit être parallèle à (AB) - parcourir la même distance: donc MP doit être égal à AB. - se déplacer sur (MP) dans le même sens que sur (AB). PROPRIETEE FONDAMENTALE Dans le paragraphe précédent nous avons vu que translater M en P dans la translation qui transforme A en B, c'est construire un point P tel que : MP= AB et la droite (MP) soit parallèle à la droite (AB) en respectant le sens du déplacement. Comme le quadrilatère ABPM est non croisé avec AB=MP et (AB) parallèle à (MP) alors ABPM est un parallélogramme.
2 Nous avons donc le théorème: Dans la translation qui transforme A en B: Si M a pour translaté P Alors ABPM est un parallélogramme. Remarque: Si M est sur la droite (AB) (ou :M aligné avec A et B) alors P est aussi sur (AB) et le parallélogramme n'a plus de hauteur (qui est l'écartement entre les deux droites (AB) et (MP)). Nous dirons qu'il est "aplati". Construction du translaté d'un point: B. Soit les points A et B. Nous allons construire l'image du point M dans la translation de A vers Cas particulier: le point M est sur la droite (AB). Lorsque A va en B, M va en P. Ces quatre points sont alignés. Le parallélogramme ABPM est dit aplati. Cas général: Il y a plusieurs façons de procéder: tout dépend des données connues et du matériel disponible. - Sur papier quadrillé: Nous connaissons les points A, B et M. Nous devons construire le point P translaté de M dans la translation qui transforme A en B. Les constructions ci-dessous ne sont envisageables que si les points A, B et M sont sur des noeuds (intersections) du quadrillage. Le modèle de translation est donné par les positions des points A et B. Nous comptons le nombre de carreaux qui séparent ces deux points.d'abord horizontalement, puis verticalement. Voici deux exemples:
3 De A à B: Horizontalement: 7 carreaux à droite De A à B: Horizontalement: 4 carreaux à gauche Verticalement: 2 carreaux vers le haut Verticalement: 7 carreaux vers le bas Puis nous effectuons le même comptage, dans le même ordre (horizontalement puis verticalement) à partir du point M. Nous obtenons le point P. - en construisant un parallélogramme: Dans la translation de A vers B, si le point P est le translaté de M alors ABPM est un parallélogramme. Il nous faut donc construire un parallélogramme dont nous connaissons trois sommets: A, B et M. Le quatrième sommet sera P. Il y a deux manières de procéder: soit en utilisant l'égalité des côtés opposés d'un parallélogramme (méthode 1), soit en utilisant le centre du parallélogramme comme centre de symétrie (méthode 2). Méthode 1: (voir l'animation) Tracez, avec M comme centre, un arc de cercle de rayon égal à AB. Tracez, avec B comme centre, un arc de cercle de rayon égal à AM. Soit P l'intersection de ces deux arcs. Comme MP=AB et BP=AM alors ABPM est un parallélogramme. Le point P est donc le translaté de M dans la translation de A vers B. Méthode 2: (voir l'animation)
4 Tracez le segment [MB]. C'est une diagonale du parallélogramme ABPM. Soit O son milieu (pour déterminer avec précision ce milieu, il est nécessaire de tracer la mediatrice de [MB]). Tracez la droite (AO). Coupez le prolongement de (AO) vers O, par un arc de cercle de centre O et de rayon OA. Soit P le point obtenu (P est le symetrique de A par rapport à O). Comme [AP] et [BM] se coupent en leur milieu O alors ABPM est un parallélogramme. Le point P est donc le translaté de M dans la translation de A vers B. Translatées de quelques figures simples: Les constructions suivantes reposent sur la construction du translaté d'un point. Nous utiliserons de préférence la méthode 1 décrite dans le paragraphe précédent (la méthode 2 convient aussi, bien sûr, mais elle induit trop de constructions ce qui nuit à la clarté des figures). Pour toutes les constructions ci-dessous, la translation utilisée est celle qui transforme A en B. translaté d'un segment: Le segment [MN] a deux points remarquables: ses extrémités M et N. Pour translater ce segment il suffit de translater ses extrémités et de joindre les deux points obtenus. Le translaté d'un segment est un segment parallèle de même longueur. Remarque: Nous avons deux parallélogrammes ABPM et ABQN avec un côté commun [AB]. Nous avons donc: AB=MP=NQ et (MP) et (NQ) parallèles à (AB). Comme MNQP est un quadrilatère non croisé qui a deux côtés parallèles et de même longueur alors MNQP est un parallélogramme. Comme MNQP est un parallélogramme alors [MN] et [QP] ont même longueur et sont parallèles. translatée d'une droite: Il suffit de choisir deux points M et N sur la droite (D) et de les translater en P et Q. La droite (PQ) est l'image de la droite (D) dans la translation de A vers B..
5 Le translaté d'une droite est une droite qui lui est parallèle. Pour translater une droite il suffit donc de choisir un point M sur cette droite, de le translater en un point P et de tracer par P une droite parallèle à la droite donnée. Remarque: si la droite (D) est parallèle à la droite (AB) alors la droite (D) glisse sur elle même dans le mouvement de translation de A vers B. L'image de (D) est donc (D). Nous dirons qu'elle est globalement invariante. translatées de deux droites parallèles: Les droites (D) et (d) sont parallèles. Nous construisons d'abord l'image de (D) comme cidessus. Nous obtenons (D'). Nous pourrions construire l'image de (d) de la même façon mais nous préférons, afin de ne pas encombrer la figure, construire l'image de I, intersection de (MP) avec (d). Soit J l'image de I (remarquez que PJ=MI). Par J nous traçons (d') parallèlement à (D'). Il est facile de montrer que les quatre droites (D), (d), (D') et (d') sont parallèles entre elles. Les translatées de deux droites parallèles sont deux droites parallèles entre elles et parallèles aux deux droites données. Nous translatons la droite (D) en choisissant un point M dessus et en le translatant en un point P par lequel nous traçons une droite parallèle (D') à (D). La construction de P nous permet de choisir le point I sur la droite (d) et de le translater en le point J par lequel nous traçons la droite (d') parallèle à (D'). translatées de deux droites perpendiculaires: Les droites (D) et (d) sont perpendiculaires en M. Soit N un point de (D) et I un point de (d). Il suffit de construire les images P, Q et J de ces trois points puis de tracer les droites (PQ) et (PJ). Nous avons (PQ) parallèle à (D) et (PJ) parallèle à (d). Nous avons donc un parallélogramme
6 avec un angle droit en M. Ce parallélogramme est donc un rectangle. Ce qui démontre qu'il y a un angle droit en P et que les droites images sont perpendiculaires comme les deux droites données. Les translatées de deux droites perpendiculaires sont deux droites perpendiculaires entre elles et parallèles deux à deux aux deux droites données. Il suffit de translater trois points: le point d'intersection des deux droites perpendiculaires, un point choisi sur l'une et un autre point choisi sur l'autre. Par les images de ces points nous traçons des droites parallèles aux deux droites données. ou encore Nous translatons (D) en (D') à l'aide des translatés Q et P de N et M point d'intersection avec (d). En P nous traçons la droite perpendiculaire à (D'): nous obtenons (d'). translaté d'un angle: Soit l'angle de sommet O et de côtés [Ox) et [Oy). Nous choisissons un point sur chacun des côtés: M et N. Les images O', P et Q des points O, M et N sont construites de la façon habituelle. Les demi-droites [O'P) et [O'Q) sont les côtés de l'angle image. Nous démontrons en cours que la mesure de l'angle image est égale à la mesure de l'angle donné (sur la figure cidessous: prolongez [Oy) qui coupe [O'x') en I puis démontrez que les angles xôi, OÎO' et IÔ'y' ont même mesure en utilisant le théorème des droites paralleles coupees par une secante). Le translaté d'un angle est un angle de même mesure et dont les côtés sont parallèles deux à deux aux côtés de l'angle donné. Il suffit de translater trois points: le sommet de l'angle, un point choisi sur l'un des côtés et un autre point choisi sur l'autre côté. Par les images de ces points nous traçons des demi-droites parallèles aux deux demi-droites données.
7 translaté d'un cercle: Soit le cercle de centre O et de rayon OM. Nous translatons le rayon [OM]. Nous obtenons le segment [O'P] de même longueur. Tous les rayons du cercle de centre O ont la même longueur. Par translation tous ces rayons sont translatés en des segments de même longueur d'extrémité O'. L'image du cercle de centre O est donc un cercle de centre O' et de rayon O'P (égale à OM) Le translaté d'un cercle est un cercle de même rayon et dont le centre est le point translaté du centre du cercle donné. Le cercle image a le même rayon que le cercle donné. Il suffit donc de translater le centre du cercle donné et avec ce point comme centre nous traçons le cercle image en utilisant un rayon égal au rayon du cercle donné Guesmi.B
Exercice numéro 1 - L'escalier
Exercice numéro 1 - L'escalier On peut monter un escalier une ou deux marches à la fois. La figure de droite montre un exemple. 1. De combien de façons différentes peut-on monter un escalier de une marche?
Construction de la bissectrice d un angle
onstruction de la bissectrice d un angle 1. Trace un angle. 1. 2. Trace un angle cercle. de centre (le sommet de l angle) et de rayon quelconque. 1. 2. 3. Trace Le cercle un angle cercle coupe. de la demi-droite
AC AB. A B C x 1. x + 1. d où. Avec un calcul vu au lycée, on démontre que cette solution admet deux solutions dont une seule nous intéresse : x =
LE NOMBRE D OR Présentation et calcul du nombre d or Euclide avait trouvé un moyen de partager en deu un segment selon en «etrême et moyenne raison» Soit un segment [AB]. Le partage d Euclide consiste
Si deux droites sont parallèles à une même troisième. alors les deux droites sont parallèles entre elles. alors
N I) Pour démontrer que deux droites (ou segments) sont parallèles (d) // (d ) (d) // (d ) deux droites sont parallèles à une même troisième les deux droites sont parallèles entre elles (d) // (d) deux
Mesure d angles et trigonométrie
Thierry Ciblac Mesure d angles et trigonométrie Mesure de l angle de deux axes (ou de deux demi-droites) de même origine. - Mesures en degrés : Divisons un cercle en 360 parties égales définissant ainsi
La géométrie du triangle III IV - V Cercles remarquables - Lieux géométriques - Relations métriques
La géométrie du triangle III IV - V Cercles remarquables - Lieux géométriques - Relations métriques III. Cercles 1. Cercle d'euler 2. Droite d'euler 3. Théorème de Feuerbach 4. Milieux des segments joignant
Correction : E = Soit E = -1,6. F = 12 Soit F = -6 3 + 45. y = 11. et G = -2z + 4y G = 2 6 = 3 G = G = -2 5 + 4 11
Correction : EXERCICE : Calculer en indiquant les étapes: (-6 +9) ( ) ( ) B = -4 (-) (-8) B = - 8 (+ 6) B = - 8 6 B = - 44 EXERCICE : La visite médicale Calcul de la part des élèves rencontrés lundi et
Représentation géométrique d un nombre complexe
CHAPITRE 1 NOMBRES COMPLEXES 1 Représentation géométrique d un nombre complexe 1. Ensemble des nombres complexes Soit i le nombre tel que i = 1 L ensemble des nombres complexes est l ensemble des nombres
Le seul ami de Batman
Le seul ami de Batman Avant de devenir un héros de cinéma en 1989, Batman est depuis plus de 50 ans un fameux personnage de bandes dessinées aux États-Unis. Il fut créé en mai 1939 dans les pages de Détective
Baccalauréat S Nombres complexes Index des exercices sur les complexes de septembre 1999 à juin 2012 Tapuscrit : DENIS VERGÈS
Baccalauréat S Nombres complexes Index des exercices sur les complexes de septembre 1999 à juin 2012 Tapuscrit : DENIS VERGÈS N o Lieu et date Q.C.M. Algébrique Géométrie 1 Asie juin 2012 2 Métropole juin
Exprimer ce coefficient de proportionnalité sous forme de pourcentage : 3,5 %
23 CALCUL DE L INTÉRÊT Tau d intérêt Paul et Rémi ont reçu pour Noël, respectivement, 20 et 80. Ils placent cet argent dans une banque, au même tau. Au bout d une année, ce placement leur rapportera une
Les Angles. I) Angles complémentaires, angles supplémentaires. 1) Angles complémentaires. 2 Angles supplémentaires. a) Définition.
Les Angles I) Angles complémentaires, angles supplémentaires 1) Angles complémentaires Deux angles complémentaires sont deux angles dont la somme des mesures est égale à 90 41 et 49 41 49 90 donc Les angles
Si un quadrilatère a. Si un quadrilatère a. Si un quadrilatère a. Si un quadrilatère a. ses côtés opposés. ses côtés opposés de. deux côtés opposés
P1 P2 P3 P4 a a a a ses côtés opposés ses côtés opposés de deux côtés opposés ses diagonales qui se parallèles, alors c est même longueur alors parallèles et de même coupent en leur un c est un longueur
Le théorème de Thalès et sa réciproque
Le théorème de Thalès et sa réciproque I) Agrandissement et Réduction d une figure 1) Définition : Lorsque toutes les longueurs d une figure F sont multipliées par un même nombre k on obtient une autre
F411 - Courbes Paramétrées, Polaires
1/43 Courbes Paramétrées Courbes polaires Longueur d un arc, Courbure F411 - Courbes Paramétrées, Polaires Michel Fournié [email protected] http://www.math.univ-toulouse.fr/ fournie/ Année 2012/2013
Chapitre 2 : Vecteurs
1 Chapitre 2 : Vecteurs Nous allons définir ce qu'est un vecteur grâce à une figure (le parallélogramme), mais au préalable nous allons aussi définir une nouvelle transformation (la translation). Nous
PARTIE NUMERIQUE (18 points)
4 ème DEVOIR COMMUN N 1 DE MATHÉMATIQUES 14/12/09 L'échange de matériel entre élèves et l'usage de la calculatrice sont interdits. Il sera tenu compte du soin et de la présentation ( 4 points ). Le barème
5 ème Chapitre 4 Triangles
5 ème Chapitre 4 Triangles 1) Médiatrices Définition : la médiatrice d'un segment est l'ensemble des points équidistants des extrémités du segment (cours de 6 ème ). Si M appartient à la médiatrice du
C.F.A.O. : Conception et Fabrication Assistées par Ordinateur.
C.F.A.O. : Conception et Fabrication Assistées par Ordinateur. La CFAO réunit dans une même démarche informatique les actions de conception et de fabrication d un objet. La technique utilisée permet à
I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES
I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES Théorème - Définition Soit un cercle (O,R) et un point. Une droite passant par coupe le cercle en deux points A et
1S Modèles de rédaction Enoncés
Par l équipe des professeurs de 1S du lycée Parc de Vilgénis 1S Modèles de rédaction Enoncés Produit scalaire & Corrigés Exercice 1 : définition du produit scalaire Soit ABC un triangle tel que AB, AC
Chapitre. Conquérant est une toile de 1930 qui se trouve au Centre Paul Klee à Berne (Suisse). Paul Klee (1879-
Chapitre 9 REVOIR > les notions de points, droites, segments ; > le milieu d un segment ; > l utilisation du compas. DÉCOUVRIR > la notion de demi-droite ; > de nouvelles notations ; > le codage d une
LE PRODUIT SCALAIRE ( En première S )
LE PRODUIT SCALAIRE ( En première S ) Dernière mise à jour : Jeudi 4 Janvier 007 Vincent OBATON, Enseignant au lycée Stendhal de Grenoble ( Année 006-007 ) 1 Table des matières 1 Grille d autoévaluation
Démontrer qu'un point est le milieu d'un segment
émntrer qu'un pint est le milieu d'un segment P 1 Si un pint est sur un segment et à égale distance de ses etrémités alrs ce pint est le milieu du segment. P 2 Si un quadrilatère est un alrs ses diagnales
COMPTE-RENDU «MATHS EN JEANS» LYCEE OZENNE Groupe 1 : Comment faire une carte juste de la Terre?
Claire FORGACZ Marion GALLART Hasnia GOUDJILI COMPTERENDU «MATHS EN JEANS» LYCEE OZENNE Groupe 1 : Comment faire une carte juste de la Terre? Si l on se pose la question de savoir comment on peut faire
point On obtient ainsi le ou les points d inter- entre deux objets».
Déplacer un objet Cliquer sur le bouton «Déplacer». On peut ainsi rendre la figure dynamique. Attraper l objet à déplacer avec la souris. Ici, on veut déplacer le point A du triangle point ABC. A du triangle
Géométrie dans l espace
Géométrie dans l espace Mabrouk Brahim Université Virtuelle de Tunis 2007 Ce cours a pour objet la présentation des différents concepts de la géométrie de l espace comme une continuation de ceux vus en
Le contexte. Le questionnement du P.E.R. :
Le contexte Ce travail a débuté en janvier. Le P.E.R. engagé depuis fin septembre a permis de faire émerger ou de réactiver : Des raisons d être de la géométrie : Calculer des grandeurs inaccessibles et
Chapitre 2 : Caractéristiques du mouvement d un solide
Chapitre 2 : Caractéristiques du mouvement d un solide I Rappels : Référentiel : Le mouvement d un corps est décris par rapport à un corps de référence et dépend du choix de ce corps. Ce corps de référence
Les droites (d 1 ) et (d 2 ) sont sécantes en A Le point A est le point d intersection des 2 droites
I Droites perpendiculaires Lorsque deux droites se coupent, on dit qu elles sont sécantes Les droites (d 1 ) et (d 2 ) sont sécantes en A Le point A est le point d intersection des 2 droites Lorsque deux
Deux disques dans un carré
Deux disques dans un carré Table des matières 1 Fiche résumé 2 2 Fiche élève Seconde - version 1 3 2.1 Le problème............................................... 3 2.2 Construction de la figure avec geogebra...............................
1 radian. De même, la longueur d un arc de cercle de rayon R et dont l angle au centre a pour mesure α radians est α R. R AB =R.
Angles orientés Trigonométrie I. Préliminaires. Le radian Définition B R AB =R C O radian R A Soit C un cercle de centre O. Dire que l angle géométrique AOB a pour mesure radian signifie que la longueur
Angles orientés et trigonométrie
Chapitre Angles orientés et trigonométrie Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Trigonométrie Cercle trigonométrique. Radian. Mesure d un angle orienté, mesure principale.
Mesurer les altitudes avec une carte
www.ign.fr > Espace éducatif > Les fiches thématiques > Lecture de la carte Mesurer les altitudes avec une carte Les cartes topographiques ne sont pas uniquement une représentation plane de la surface
Construction d un cercle tangent à deux cercles donnés.
Préparation au CAPES Strasbourg, octobre 2008 Construction d un cercle tangent à deux cercles donnés. Le problème posé : On se donne deux cercles C et C de centres O et O distincts et de rayons R et R
La médiatrice d un segment
EXTRT DE CURS DE THS DE 4E 1 La médiatrice d un segment, la bissectrice d un angle La médiatrice d un segment Définition : La médiatrice d un segment est l ae de smétrie de ce segment ; c'est-à-dire que
«Aucune investigation humaine ne peut être qualifiée de science véritable si elle ne peut être démontrée mathématiquement.
«Aucune investigation humaine ne peut être qualifiée de science véritable si elle ne peut être démontrée mathématiquement.» Léonard de Vinci MATHEMATIQUES Les mathématiques revêtaient un caractère particulier
Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé.
Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé. I- ACTIVITES NUMERIQUES (12 points) Exercice 1 (3 points) On considère
Vision industrielle et télédétection - Détection d ellipses. Guillaume Martinez 17 décembre 2007
Vision industrielle et télédétection - Détection d ellipses Guillaume Martinez 17 décembre 2007 1 Table des matières 1 Le projet 3 1.1 Objectif................................ 3 1.2 Les choix techniques.........................
MAT2027 Activités sur Geogebra
MAT2027 Activités sur Geogebra NOTE: Il n est pas interdit d utiliser du papier et un crayon!! En particulier, quand vous demandez des informations sur les différentes mesures dans une construction, il
Nom : Groupe : Date : 1. Quels sont les deux types de dessins les plus utilisés en technologie?
Nom : Groupe : Date : Verdict Chapitre 11 1 La communication graphique Pages 336 et 337 1. Quels sont les deux types de dessins les plus utilisés en technologie? Les dessins de fabrication. Les schémas.
Géométrie dans l espace Produit scalaire et équations
Chapitre 11. 2ème partie Géométrie dans l espace Produit scalaire et équations Terminale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES 2ème partie Produit scalaire Produit scalaire
VOS PREMIERS PAS AVEC TRACENPOCHE
Vos premiers pas avec TracenPoche page 1/16 VOS PREMIERS PAS AVEC TRACENPOCHE Un coup d'oeil sur l'interface de TracenPoche : La zone de travail comporte un script, une figure, un énoncé, une zone d analyse,
Triangles isométriques Triangles semblables
Triangles isométriques Triangles semblables Les transformations du plan ont permis de dégager des propriétés de figures superposables. Le théorème de Thalès a permis de s initier aux notions de réduction
Faire de la déformation interactive avec GIMP
Faire de la déformation interactive avec GIMP 1 - Option "Fichier", puis cliquer sur "Ouvrir" Nous allons créer un clin d'œil 2 - Choisir l'image à modifier en navigant dans les dossiers de l'ordinateur
Exercices de géométrie
Exercices de géométrie Stage olympique de Bois-le-Roi, avril 2006 Igor Kortchemski Exercices vus en cours Exercice 1. (IMO 2000) Soient Ω 1 et Ω 2 deux cercles qui se coupent en M et en N. Soit la tangente
Le Dessin Technique.
Jardin-Nicolas Hervé cours 1 / 9. Modélisation et représentation d un objet technique. La modélisation et la représentation d un objet sont deux formes de langage permettant de définir complètement la
Cours de Mécanique du point matériel
Cours de Mécanique du point matériel SMPC1 Module 1 : Mécanique 1 Session : Automne 2014 Prof. M. EL BAZ Cours de Mécanique du Point matériel Chapitre 1 : Complément Mathématique SMPC1 Chapitre 1: Rappels
Notion de fonction. Résolution graphique. Fonction affine.
TABLE DES MATIÈRES 1 Notion de fonction. Résolution graphique. Fonction affine. Paul Milan LMA Seconde le 12 décembre 2011 Table des matières 1 Fonction numérique 2 1.1 Introduction.................................
Baccalauréat L spécialité, Métropole et Réunion, 19 juin 2009 Corrigé.
Baccalauréat L spécialité, Métropole et Réunion, 19 juin 2009 Corrigé. L usage d une calculatrice est autorisé Durée : 3heures Deux annexes sont à rendre avec la copie. Exercice 1 5 points 1_ Soit f la
Calcul intégral élémentaire en plusieurs variables
Calcul intégral élémentaire en plusieurs variables PC*2 2 septembre 2009 Avant-propos À part le théorème de Fubini qui sera démontré dans le cours sur les intégrales à paramètres et qui ne semble pas explicitement
1 Définition. 2 Systèmes matériels et solides. 3 Les actions mécaniques. Le système matériel : Il peut être un ensemble.un sous-ensemble..
1 Définition GÉNÉRALITÉS Statique 1 2 Systèmes matériels et solides Le système matériel : Il peut être un ensemble.un sous-ensemble..une pièce mais aussi un liquide ou un gaz Le solide : Il est supposé
Sujet. calculatrice: autorisée durée: 4 heures
DS SCIENCES PHYSIQUES MATHSPÉ calculatrice: autorisée durée: 4 heures Sujet Approche d'un projecteur de diapositives...2 I.Questions préliminaires...2 A.Lentille divergente...2 B.Lentille convergente et
La C.A.O (Conception Assistée par Ordinateur). Le logiciel de C.A.O.
CAO1 La C.A.O (Conception Assistée par Ordinateur). Aujourd'hui, lorsque des ingénieurs décident de concevoir un nouveau produit, ils n'utilisent plus de stylo. Les plans sont réalisés sur ordinateur.
PRATIQUE DU COMPAS ou
PRTQU U OMPS ou Traité élémentaire de tous les traits servant aux rts et Métiers et à la construction des âtiments ZR, éomètre ii Reproduction de l édition de 1833, VNN, imprimerie TMON Père et ils, par
La gravitation universelle
La gravitation universelle Pourquoi les planètes du système solaire restent-elles en orbite autour du Soleil? 1) Qu'est-ce que la gravitation universelle? activité : Attraction universelle La cohésion
TBI et mathématique. Pour vous soutenir dans votre enseignement des mathématiques. Les outils du logiciel Notebook. les ressources internet
TBI et mathématique Pour vous soutenir dans votre enseignement des mathématiques Dessin tiré du site www.recitus.qc.ca Les outils du logiciel Notebook et les ressources internet Document préparé par France
Corrigé du baccalauréat S Pondichéry 12 avril 2007
Corrigé du baccalauréat S Pondichéry 1 avril 7 EXERCICE 1 Commun à tous les candidats 4 points 1 a Les vecteurs AB et AC ont pour coordonnées AB ; ; ) et AC 1 ; 4 ; 1) Ils ne sont manifestement pas colinéaires
Ch.G3 : Distances et tangentes
4 e - programme 2011 mathématiques ch.g3 cahier élève Page 1 sur 14 1 DISTC D U PIT À U DRIT Ch.G3 : Distances et tangentes 1.1 Définition ex 1 DÉFIITI 1 : Soit une droite et un point n'appartenant pas
Paris et New-York sont-ils les sommets d'un carré?
page 95 Paris et New-York sont-ils les sommets d'un carré? par othi Mok (3 ), Michel Vongsavanh (3 ), Eric hin (3 ), iek-hor Lim ( ), Eric kbaraly ( ), élèves et anciens élèves du ollège Victor Hugo (2
ÉVALUATION EN FIN DE CM1. Année scolaire 2014 2015 LIVRET DE L'ÉLÈVE MATHÉMATIQUES
ÉVALUATION EN FIN DE CM1 Année scolaire 2014 2015 LIVRET DE L'ÉLÈVE MATHÉMATIQUES NOM :....... Prénom :....... Né le :./../ École :............ Classe : Domaine Score de réussite NOMBRES ET CALCUL GÉOMÉTRIE
De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que
Introduction. On suppose connus les ensembles N (des entiers naturels), Z des entiers relatifs et Q (des nombres rationnels). On s est rendu compte, depuis l antiquité, que l on ne peut pas tout mesurer
Dérivation CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES
Capitre 4 Dérivation Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Dérivation Nombre dérivé d une fonction en un point. Tangente à la courbe représentative d une fonction dérivable
Adobe Illustrator Logiciel de dessin vectoriel et de Cartographie Assistée par Ordinateur
Adobe Illustrator Logiciel de dessin vectoriel et de Cartographie Assistée par Ordinateur I- Ouverture d une nouvelle feuille de travail Fichier / Nouveau (ou ctrl + N) Indiquer dans la fenêtre qui s ouvre
Tâche complexe produite par l académie de Clermont-Ferrand. Mai 2012 LE TIR A L ARC. (d après une idée du collège des Portes du Midi de Maurs)
(d après une idée du collège des Portes du Midi de Maurs) Table des matières Fiche professeur... 2 Fiche élève... 5 1 Fiche professeur Niveaux et objectifs pédagogiques 5 e : introduction ou utilisation
3) Demandeur: FIVES-CAIL BABCOCK, Société anonyme 7 rue Montallvet F-75383 Parts Cedex 08 (FR)
raiemami ê #curupaiscnes European Patent Office Numéro de publication: 0 21 9 365 Office européen des brevets A1 DEMANDE DE BREVET EUROPEEN Numéro de dépôt: 86401852.8 Int. Cl.4: B 65 G 65/06 @ Date de
Trois personnes mangent dans un restaurant. Le serveur
29=30 Trois personnes mangent dans un restaurant. Le serveur leur amène une addition de 30 francs. Les trois personnes décident de partager la facture en trois, soit 10 francs chacun. Le serveur rapporte
TUTORIEL IMPRESS. Ouvrir Impress cocher «présentation vierge», «suivant» cocher «écran», «suivant» cocher «standard», «créer»
TUTORIEL IMPRESS Ouvrir Impress cocher «présentation vierge», «suivant» cocher «écran», «suivant» cocher «standard», «créer» Une page impress s'ouvre : Le volet gauche contiendra toutes les diapositives
6 ème. Rallye mathématique de la Sarthe 2013/2014. 1 ère épreuve de qualification : Problèmes Jeudi 21 novembre 2013
Retrouver tous les sujets, les corrigés, les annales, les finales sur le site du rallye : http://sarthe.cijm.org I Stéphane, Eric et Christophe sont 3 garçons avec des chevelures différentes. Stéphane
Guide pour la réalisation d'un document avec Open Office Writer 2.2
Guide pour la réalisation d'un document avec Open Office Writer 2.2 1- Lancement de l'application : Le Traitement de textes de la Suite OpenOffice peut être lancé : soit depuis le menu «Démarrer / Programmes/OpenOffice2.2/Writer
Cercle trigonométrique et mesures d angles
Cercle trigonométrique et mesures d angles I) Le cercle trigonométrique Définition : Le cercle trigonométrique de centre O est un cercle qui a pour rayon 1 et qui est muni d un sens direct : le sens inverse
Fonctions de plusieurs variables
Module : Analyse 03 Chapitre 00 : Fonctions de plusieurs variables Généralités et Rappels des notions topologiques dans : Qu est- ce que?: Mathématiquement, n étant un entier non nul, on définit comme
Exercice n o 54 : Tracer le graphique d une fonction
Eercice n o 54 : Tracer le graphique d une fonction G- Pour chaque fonction donnée dans les problèmes à 6 : a) Dessine le graphique correspondant. b) Indique le domaine et l'image. c) Évalue f(0). d) Trouve
cent mille NOMBRES RELATIFS ET REPÉRAGEȘ 1 Chapitre 3 Notion de nombre relatif Comparaison Repérage sur une droite et dans le plan Calcul littéral
Chapitre 3 cent NOMBRS 5 T RPÉRAGȘ RLATIFS Notion de nombre relatif 3 Comparaison 9 mille Repérage sur une droite et dans le plan Calcul littéral ACTIVITÉS USAG DS NOMBRS RLATIFS ACTIVITÉ Dans la vie quotidienne
Soit la fonction affine qui, pour représentant le nombre de mois écoulés, renvoie la somme économisée.
ANALYSE 5 points Exercice 1 : Léonie souhaite acheter un lecteur MP3. Le prix affiché (49 ) dépasse largement la somme dont elle dispose. Elle décide donc d économiser régulièrement. Elle a relevé qu elle
UN TOURNOI A GAGNER ENSEMBLE
UN TOURNOI A GAGNER ENSEMBLE Ce tournoi réunit 3 classes de CM1, CM2 et 6, chaque équipe essaye de réussir le plus grand nombre possible des 82 exercices proposés. Objectifs généraux : Pour les 6, accueillir
Sommaire de la séquence 10
Sommaire de la séquence 10 Séance 1........................................................................................................ J étudie un problème concret................................................................................
TD: Cadran solaire. 1 Position du problème
Position du problème On souhaite réaliser un cadran solaire à l aide d un stylet, de longueur a, perpendiculaire à un plan. (Le stylet n est donc pas orienté vers le pôle nord céleste). Ce cadran solaire
INTRODUCTION. Pour réaliser une pièce sur Charlyrobot, il faut le faire en trois étapes :
Charly Graal est un logiciel de CFAO INTRODUCTION (Conception Fabrication Assistée par Ordinateur) Il intègre 3 applications : Gcao : Graal Conception Assistée par Ordinateur Gfao : Graal Fabrication Assistée
DOCM 2013 http://docm.math.ca/ Solutions officielles. 1 2 10 + 1 2 9 + 1 2 8 = n 2 10.
A1 Trouvez l entier positif n qui satisfait l équation suivante: Solution 1 2 10 + 1 2 9 + 1 2 8 = n 2 10. En additionnant les termes du côté gauche de l équation en les mettant sur le même dénominateur
Cours de tracés de Charpente, Le TRAIT
Page 1/5 Cours de tracés de Charpente, Le TRAIT Recherches de vraies grandeurs, angles de coupes, surfaces. Les Méthodes : Le tracé et les calculs Chaque chapitre ou fichier comportent une explication
2.4 Représentation graphique, tableau de Karnaugh
2 Fonctions binaires 45 2.4 Représentation graphique, tableau de Karnaugh On peut définir complètement une fonction binaire en dressant son tableau de Karnaugh, table de vérité à 2 n cases pour n variables
Mécanique. 1 Forces. 1.1 Rappel. 1.2 Mesurer des forces. 3BC - AL Mécanique 1
3BC - AL Mécanique 1 Mécanique 1 Forces 1.1 Rappel Pour décrire les effets d une force, nous devons préciser toutes ses propriétés : son point d application ; sa droite d action, c est-à-dire sa direction
La perspective conique
La perspective conique Définitions et principes. Deux cas de la perspective conique : la perspective conique oblique et la perspective conique centrale. Principe de la perspective conique : . La perspective
Séquence 10. Géométrie dans l espace. Sommaire
Séquence 10 Géométrie dans l espace Sommaire 1. Prérequis 2. Calculs vectoriels dans l espace 3. Orthogonalité 4. Produit scalaire dans l espace 5. Droites et plans de l espace 6. Synthèse Dans cette séquence,
Priorités de calcul :
EXERCICES DE REVISION POUR LE PASSAGE EN QUATRIEME : Priorités de calcul : Exercice 1 : Calcule en détaillant : A = 4 + 5 6 + 7 B = 6 3 + 5 C = 35 5 3 D = 6 7 + 8 E = 38 6 3 + 7 Exercice : Calcule en détaillant
COURS EULER: PROGRAMME DE LA PREMIÈRE ANNÉE
COURS EULER: PROGRAMME DE LA PREMIÈRE ANNÉE Le cours de la première année concerne les sujets de 9ème et 10ème années scolaires. Il y a bien sûr des différences puisque nous commençons par exemple par
STATIQUE GRAPHIQUE ET STATIQUE ANALYTIQUE
ÉCOLE D'INGÉNIEURS DE FRIBOURG (E.I.F.) SECTION DE MÉCANIQUE G.R. Nicolet, revu en 2006 STATIQUE GRAPHIQUE ET STATIQUE ANALYTIQUE Eléments de calcul vectoriel Opérations avec les forces Equilibre du point
6. Les différents types de démonstrations
LES DIFFÉRENTS TYPES DE DÉMONSTRATIONS 33 6. Les différents types de démonstrations 6.1. Un peu de logique En mathématiques, une démonstration est un raisonnement qui permet, à partir de certains axiomes,
Leçon 18 Coupes et sections
Leçon 18 Coupes et sections SketchUp'version 5.0 exercices LES COUPES Les coupes, vous permettent de regarder à travers un modèle. Elles vous donnent la possibilité de faire des modifications sans avoir
Aide GeoGebra. Manuel Officiel 3.2. Markus Hohenwarter et Judith Hohenwarter www.geogebra.org
Aide GeoGebra Manuel Officiel 3.2 Markus Hohenwarter et Judith Hohenwarter www.geogebra.org 1 Aide GeoGebra 3.2 Auteurs Markus Hohenwarter, [email protected] Judith Hohenwarter, [email protected] Traduction
Utilisation de l'outil «Open Office TEXTE»
PRESENTATION / FORMATION Utilisation de l'outil «Open Office TEXTE» Présentation générale : OpenOffice Texte est un traitement de texte assez similaire à celui proposé par Microsoft ; il est d'ailleurs
Eté 2015. LIVRET de RÉVISIONS en MATHÉMATIQUES
Eté 2015 LIVRET de RÉVISIONS en MATHÉMATIQUES Destiné aux élèves entrant en Seconde au Lycée Honoré d Estienne d Orves Elaboré par les professeurs de mathématiques des collèges et lycées du secteur Une
CHAPITRE IX : Les appareils de mesures électriques
CHAPITRE IX : Les appareils de mesures électriques IX. 1 L'appareil de mesure qui permet de mesurer la différence de potentiel entre deux points d'un circuit est un voltmètre, celui qui mesure le courant
Angles orientés et fonctions circulaires ( En première S )
Angles orientés et fonctions circulaires ( En première S ) Dernière mise à jour : Jeudi 01 Septembre 010 Vincent OBATON, Enseignant au lycée Stendhal de Grenoble (Année 006-007) Lycée Stendhal, Grenoble
LibreOffice Calc : introduction aux tableaux croisés dynamiques
Fiche logiciel LibreOffice Calc 3.x Tableur Niveau LibreOffice Calc : introduction aux tableaux croisés dynamiques Un tableau croisé dynamique (appelé Pilote de données dans LibreOffice) est un tableau
TRUCS & ASTUCES SYSTEME. 1-Raccourcis Programme sur le Bureau (7)
TRUCS & ASTUCES SYSTEME 1-Raccourcis Programme sur le Bureau (7) 2- Mettre la souris sur Tous les programmes 3- Clic DROIT sur le programme dont on veut créer un raccourcis 4- Dans le menu contextuel Clic
DEVOIR MAISON : THEME : LES CLES DE CONTROLE. I. La clé des codes barres
DEVOIR MAISON : THEME : LES CLES DE CONTROLE I. La clé des codes barres Le code U.P.C. (Universal Product Code) utilise des nombres de treize chiffres pour désigner un produit de consommation. Les douze
FctsAffines.nb 1. Mathématiques, 1-ère année Edition 2007-2008. Fonctions affines
FctsAffines.nb 1 Mathématiques, 1-ère année Edition 2007-2008 Fonctions affines Supports de cours de mathématiques de degré secondaire II, lien hpertete vers la page mère http://www.deleze.name/marcel/sec2/inde.html
