This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and

Dimension: px
Commencer à balayer dès la page:

Download "This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and"

Transcription

1 This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier s archiving and manuscript policies are encouraged to visit:

2 Journal des Anti-infectieux (2013) 15, Disponible en ligne sur ScienceDirect ARTICLE ORIGINAL Contribution des modèles mathématiques à la compréhension de la dynamique de diffusion des bactéries multi-résistantes à l hôpital Contributions of mathematical models to the understanding of the dynamics of nosocomial pathogens in hospitals L. Opatowski a, *,b, M. Domenech de Cellès a,b, S. Souissi a,b, L. Kardaś-Słoma c, L. Temime c, D. Guillemot a,b a Unité de pharmaco-épidémiologie et maladies infectieuses (PhEMI), UFR des sciences de la santé Paris-Îlede-France-Ouest, université de Versailles-Saint-Quentin-en-Yvelines, 2, avenue de la Source de la Bièvre, Montigny-le-Bretonneux, France b Inserm U657, institut Pasteur, 25, rue du Docteur Roux, Paris, France c Laboratoire modélisation et surveillance des risques pour la sécurité sanitaire, conservatoire national des arts et métiers, 292, rue Saint-Martin, Paris cedex 03, France MOTS CLÉS Modélisation mathématique ; Simulation ; Infections nosocomiales ; Résistance aux antibiotiques ; Contrôle Résumé Mieux comprendre et contrôler les infections ayant lieu dans les hôpitaux représente un important enjeu de santé publique. Les unités hospitalières constituent des environnements complexes dans lesquels la dynamique épidémique dépend d une combinaison de facteurs liés aux pathogènes multi-résistants circulant dans ces environnements, aux patients et personnels soignants et aux soins prodigués (incluant l exposition médicamenteuse). La complexité de ces phénomènes a engendré, ces dernières années, un fréquent recours à la modélisation mathématique afin de mieux comprendre les phénomènes en jeu dans les épidémies hospitalières. Les modèles publiés se différentient selon la méthodologie utilisée (ciblant la population ou les individus) et l objectif visé (explicatif versus prédictif). La plupart des modèles développés sont des modèles mathématiques compartimentaux, déterministes ou stochastiques, ou plus récemment des simulations informatiques multi-agents. Les avancées scientifiques qu ils ont engendrées dans le contexte de l hôpital sont remarquables. D une part, la modélisation a permis de quantifier, à partir de données de surveillance hospitalière, des paramètres épidémiologiques essentiels à une meilleure compréhension des épidémies hospitalières. Ceux-ci incluent l épidémicité des souches ou l effet sélectif des antibiotiques. D autre part, elle a permis de prédire et d évaluer l impact de différentes stratégies de * Auteur correspondant. Adresse (L. Opatowski) /$ see front matter # 2013 Elsevier Masson SAS. Tous droits réservés.

3 194 L. Opatowski et al. contrôle, selon le pathogène et le contexte, et ainsi de servir de base à la mise en place de politiques de contrôle et d une surveillance optimale à l hôpital. # 2013 Elsevier Masson SAS. Tous droits réservés. KEYWORDS Mathematical modeling; Simulation; Nosocomial infections; Antibiotic resistance; Infection control Summary Better understand and control hospital-associated infections is a key public health issue. Hospital wards are complex environments in which multiple factors interact and interfere to influence the spread of pathogens between patients. These factors include specificities related to circulating pathogens, hospitalized patients, healthcare workers, and drug exposure. The high level of complexity has led, in recent years, to an increased use of mathematical modelling to analyse the distinct phenomena underlying hospital epidemics. Published models can be distinguished according to the methodology used (population-based versus individualbased) and to their goal (explicative versus predictive). Most of the developed models are compartmental deterministic or stochastic models, or individual-based computerized simulations. Modelling studies have led to remarkable scientific improvements in the hospital context. On one hand, model building and statistical inference from surveillance data have allowed extrapolating and quantify hidden or unknown essential epidemiological parameters, leading to a better understanding of epidemics in hospitals. These parameters include the definition of strain s epidemicity or the selective effect of antibiotics on multi-resistant organisms. On the other hand, models have provided predictions and assessment regarding the impact of several control strategies (and their combinations), for distinct pathogens and contexts, supplying invaluable support for optimizing control policies and surveillance related to hospital infections. # 2013 Elsevier Masson SAS. All rights reserved. Introduction En raison d une forte proximité entre individus avec des contacts fréquents, de la présence d individus immunocompromis et de l usage important de molécules antibiotiques, l hôpital constitue un environnement privilégié pour la diffusion de pathogènes au sein des patients et des personnels de soin et pour le développement de résistances aux antibiotiques. Les infections liées aux soins représentent un réel enjeu de santé publique, à la fois pour la société (on estime le nombre de victimes de ces infections à par an en Europe selon l ECDC) mais aussi pour les hôpitaux qui doivent prendre des mesures pour limiter leur diffusion. Le coût mondial associé à ces infections est estimé à s1,5 milliards chaque année [1 3]. Certaines bactéries résistantes sont plus fréquemment trouvées à l hôpital, dans lesquelles elles créent des épidémies sporadiques ou des états endémiques. Les pathogènes les plus répandus ont été désignés par l acronyme ESKAPE (E : pour les entérocoques résistants à la vancomycine [VRE], S : Staphylococcus aureus résistant à la méthicilline [MRSA], K : Escherichia coli bêtalactamases à spectre étendu [BLSE] et Klebsiella, A : Acinetobacter baumannii, P : Pseudomonas aeruginosa, E : Entérobactéries). L une des difficultés majeures pour le contrôle de la diffusion de ces bactéries est leur caractère commensal : bien que dans certains cas, une infection bactérienne puisse se développer, les hôtes se colonisent et se décolonisent le plus souvent de façon asymptomatique. C est donc la connaissance de la prévalence de colonisation d une bactérie multi-résistante (BMR) dans un service qui permet de mesurer l ampleur de l épidémie. Afin de limiter la diffusion des BMR dans les services hospitaliers, de nombreuses mesures de contrôle ont été proposées. Ces mesures incluent l isolement des individus colonisés (cas) ou le regroupement en cohortes de cas potentiels (appelés «contacts», ils représentent les personnes ayant été en contact avec des cas pendant leur durée infectieuse), la mise en place de mesures de barrière telles que le port de masque, de blouse ou une amélioration de l hygiène (utilisation de solution hydro-alcooliques), des stratégies de dépistage systématique à l admission (avec décolonisation ou isolement des cas) ou encore des politiques d usage antibiotique raisonnées. Quantifier l impact de ces mesures (ou combinaisons de mesures) quant à leur efficacité à limiter la transmission des pathogènes dans la population est essentiel dans la perspective du choix de stratégie optimale pour une prise de décision en temps réel mais aussi d un point de vue économique (étude coût-efficacité). Les unités hospitalières constituent un environnement complexe : c est la combinaison d un grand nombre de facteurs qui détermine la dynamique épidémique d une bactérie résistante : facteurs liés au personnel soignant (niveau de conformité avec les mesures barrières, schéma d allocation aux patients, charge de travail), aux patients (sévérité de l état, immunosuppression) et aux soins qu ils reçoivent (dispositifs invasifs, antibiothérapie). Les méthodes classiques d épidémiologie ne prenant pas en compte les aspects dynamiques de la transmission sont limitées pour l analyse de ces phénomènes. La modélisation a été, ces dernières années, de plus en plus utilisée en épidémiologie et en santé publique [4]. Dans le contexte hospitalier, l usage de modèles de transmission des pathogènes présente trois intérêts majeurs. Premièrement, il permet de décrire de façon théorique la dynamique épidémique en intégrant les différents niveaux de complexité : microbiologique, individuel et populationnel. Cette formalisation peut ainsi apporter une meilleure compréhension de la dynamique d émergence, de sélection, et de diffusion des souches résistantes. Deuxièmement, la modélisation fournit, à partir de données recueillies, un moyen d estimer des paramètres clés, cachés ou mal connus voire inconnus. Enfin, c est le seul moyen

4 Modélisation des infections liées au soin 195 dont nous disposons pour anticiper les conséquences de la mise en place de stratégies de traitements/contrôle ou de politiques de santé publique sur la dynamique infectieuse. Les simulations peuvent fournir des prédictions sur les conséquences d une modification des pratiques. Ainsi, ces modèles constituent un outil supplémentaire et unique d aide à la décision pour la lutte contre les infections hospitalières. La contribution des modèles mathématiques à l épidémiologie en milieu hospitalier est relativement récente, les premiers travaux datant des années Plusieurs articles de revue récents [5 9] ont témoigné de l intérêt croissant pour l usage de modèles mathématiques en milieu hospitalier. Dans cet article nous proposons une mise au point sur les travaux de modélisation de la transmission de bactéries à l hôpital et sur leurs contributions à la compréhension des épidémies hospitalières. Dans la première partie nous détaillons les étapes nécessaires à la conception et la mise en place d un modèle. Les différents travaux publiés ensuite sont présentés selon deux axes : les apports des modèles dans un objectif de contrôle des épidémies hospitalières (partie deux) ; et les apports des différents travaux pour la compréhension de la dynamique des BMR (partie trois). Nous proposons ensuite dans une quatrième partie des perspectives de développement. Approches méthodologiques Les étapes présentées dans cette partie sont résumées en Annexe 1. Principe général : construire des modèles spécifiques aux questions posées Un aspect essentiel de la construction d un modèle mathématique réside dans la sélection des caractéristiques du système à prendre en compte (Fig. 1). En effet, la simplification requise pour construire les modèles mathématiques oblige à dégager les aspects essentiels de la dynamique afin de formaliser le système étudié. Cette étape devra être guidée, d une part, par la question que l on souhaite étudier à partir du modèle, et, d autre part, par les données et connaissances à disposition qui permettront d alimenter le modèle. Les analyses épidémiologiques «classiques» sont essentielles pour dégager ces aspects, de sorte que ces deux approches se complètent. Plus le modèle est destiné à reproduire la réalité d un système, plus la complexité est requise. Cependant, chaque nouvelle variable prise en compte introduit une incertitude supplémentaire dans les prédictions. Accroître la complexité de la modélisation n est donc pas toujours satisfaisant. Dans le cas où elle est utilisée dans une perspective explicative, un modèle simple incluant un minimum de variables et d information est recherché. Un tel modèle devra nécessairement être précis dans la description du mécanisme étudié, mais pourra être grossier dans la description des mécanismes annexes. Ce modèle, présentant l avantage d une plus grande transparence, pourra permettre d analyser qualitativement le phénomène et d apporter des éléments de compréhension nouveaux. Figure 1 Schéma indiquant les facteurs à prendre en compte pour le choix du modèle à utiliser. Les flèches indiquent, selon le but associé au travail de modélisation, vers quel modèle le modélisateur tendra à s orienter. Ainsi, la possibilité de disposer de données détaillées rend possible l usage de la modélisation par agents. À l inverse, si les paramètres sont peu connus on tendra à s orienter vers une modélisation plus simple et compartimentale. Les simulations des modèles agents étant très coûteuses d un point de vue computationnel, ces modèles sont privilégiés dans le cas de petites populations pour lesquels les comportements individuels et des aspects liés au hasard sont importants. La simulation de grandes populations pourra se faire à partir de modèles déterministes et compartimentaux. Enfin, le type de modèle dépendra également de l objectif visé : si l on cherche à comprendre les phénomènes sous-jacents et à estimer des paramètres, des modèles simples, compartimentaux seront souvent utilisés. À l inverse, lorsque l on cherche à fournir des prédictions avec le maximum de précision, un modèle agents très détaillé pourra être utilisé. Choix du modèle et construction Différentes approches de modélisation ont été utilisées pour étudier la diffusion de bactéries résistantes à l hôpital et l impact de mesures de contrôle de cette diffusion. Modèles compartimentaux La modélisation dite compartimentale consiste à répartir la population d étude dans des compartiments selon des critères choisis. Ces critères peuvent être de différente nature : sociologique ou démographique (patient/personnel soignant) ; infectieuse (susceptible ou non colonisé/ colonisé/immunisé) ; ou encore médicamenteuse (vacciné/ non vacciné, sous antibiotique ou non). Un diagramme de flux est souvent utilisé pour schématiser les transferts d individus entre les différents compartiments [10]. Un exemple de modèle simple est décrit en Annexe 2. Des exemples de structures de modèles pour différents cas d étude sont proposés dans le Tableau 1. Dans le cas où les aspects aléatoires ne sont pas pris en compte, on parle de modélisation déterministe. Un système d équations différentielles permet de décrire la dynamique des effectifs dans les compartiments du modèle. Lorsque l on prend en compte les aspects aléatoires du système, ce qui est plus réaliste dans le contexte de l hôpital, on parle de modélisation stochastique. L évolution du système peut alors être

5 196 L. Opatowski et al. Tableau 1 Exemple de mesures de contrôle mises en place à l hôpital et de modèle simple associé. Mesure Représentation du modèle Exemple de résultats Référence(s) Isolement/cohorting Mesure de contrôle efficace [13] Lavage de mains Mesure de contrôle la plus efficace [13,28] Dépistage à l entrée Le dépistage réduit le pourcentage de patients infectés, mais uniquement chez les patients sous antibiotiques [62] Exposition antibiotique Réduire l exposition antibiotique en hôpital permettrait de réduire fortement le nombre de colonisations en hôpital [13,35,62] Ville-hôpital L admission en hôpital de souches résistantes communautaires pourra entraîner à long terme l échec des mesures de contrôle mises en place pour empêcher la survenue d épidémies [6,30,40,63] La deuxième colonne du tableau présente un exemple de schéma de modèle compartimental pour des mesures de contrôle classiques (décrites dans la colonne 1). Pour chaque schéma, les rectangles représentent les différents compartiments (ou sous-populations) du modèle. S désigne les individus «susceptibles» ; C les individus «colonisé» [avec (C isolés ) pour «colonisés et isolés», (C S ) pour «colonisés par une souche sensible aux antibiotiques» et (C R ) pour «colonisés par une souche résistante aux antibiotiques»] ; et I les individus «isolés». Les flux entre les compartiments sont représentés par les flèches (les lettres indiquent le taux de passage d un compartiment à l autre). Modèle «isolement/cohorting» : les individus peuvent être non porteurs (S), colonisés (C) ou colonisés et isolés (C isolés ). Les individus S se colonisent par contact avec les individus C avec un taux b (appelé le taux de contact infectant). Les individus C se décolonisent après une durée moyenne (1/g). Les individus C sont isolés avec un taux q. Ils quittent la cellule d isolement lorsqu ils se décolonisent. Modèle «lavage de mains» : les individus S se colonisent par contact avec les colonisés avec un taux (1-c)rb, avec r : l efficacité du lavage de main (r < 1 réduit d autant la transmission) et c le taux de compliance au lavage de main. Ainsi, dans un service dans lequel 90 % du personnel soignant est compliant, et en supposant que le lavage de main réduit la transmission de 60 %, le taux de transmission réel sera (1 0,9) 0,6b. Modèle «Dépistage à l entrée» : les individus sont testés à l entrée dans le service. Les individus colonisés sont directement isolées (I). Modèle «Exposition antibiotique» : la population est répartie selon deux sous-groupes selon leur exposition aux antibiotiques : individus non exposés à gauche du schéma et individus exposés à droite. Les non porteurs (S) peuvent se coloniser soit avec une bactérie sensible (C S ) soit avec une bactérie résistante (C R ). Tout individu, quel que soit son état de portage peut être exposé aux antibiotiques. Il passera alors dans le compartiment correspondant à son état de colonisation de la partie droite du schéma (S a, C S a, C R a ). Après une durée moyenne de traitement, il retournera dans le groupe de compartiments non exposés. Modèle «Ville-Hôpital» : ici la population est divisée selon deux unités géographiques : la ville à gauche et l hôpital à droite. Les individus quittent la ville à leur entrée à l hôpital et retournent en ville après leur durée d hospitalisation. Le taux de transmission de la bactérie est différent en ville (noté b ville ) et à l hôpital (b hôpital ). représentée par une chaîne de Markov [11]. Dans les deux cas, des simulations numériques du modèle peuvent être réalisées. Les services de réanimation sont d importants réservoirs de BMR dans l hôpital. Les particularités de ces services (nombre limité de lits, faible mobilité des patients) font des agents circulants (personnel soignant, kinésithérapeute...) les principaux vecteurs de la transmission des pathogènes. D un point de vue méthodologique, des modèles de type «maladies à vecteurs» ont été proposés pour formaliser la transmission de pathogènes entre les patients, le personnel soignant étant alors vu comme le vecteur de transmission [12,13]. Modèles multi-agents ou individu-centrés Les modèles agents sont de plus en plus utilisés en épidémiologie des maladies infectieuses [14,15]. Ces modèles, qui permettent de simuler directement le devenir de chaque individu au lieu de les regrouper dans des compartiments, présentent deux intérêts majeurs. Tout d abord, ils permettent de prendre en compte les comportements individuels qui peuvent avoir un impact fort sur la transmission des

6 Modélisation des infections liées au soin 197 pathogènes, notamment dans le cadre de petites populations. Ensuite, ils permettent de décrire avec plus de précision les phénomènes considérés, sans être limités par une croissance exponentielle du nombre de compartiments et d équations. Ces modèles s avèrent donc très utiles pour la modélisation de la transmission des pathogènes nosocomiaux [16 19]. Cependant, cette amélioration de la précision s accompagne également d une augmentation conséquente du nombre de variables et donc de la complexité des modèles. De tels modèles n ont d intérêt que dans le cadre d une bonne connaissance des variables utilisées. Ainsi, la complexification des modèles ne peut se faire qu en parallèle d un recueil de données conséquent, dans le cadre d une collaboration entre modélisateurs, médecins et épidémiologistes. Confrontation aux données et estimation des paramètres Les données disponibles en milieu hospitalier sont souvent complexes à analyser : problème de censure (par exemple incertitude sur la date d acquisition d un patient), imperfection du test de dépistage, non-indépendance du risque causée par la transmission entre patients. Concernant l estimation des paramètres inconnus, diverses méthodes ont été appliquées aux modèles hospitaliers : les méthodes d estimation à partir de modèles compartimentaux stochastiques [20], de modèles de Markov caché ajustés sur des données d incidence d infection [21], de modèles de Markov ajustés sur des données de prévalence [11,22] ou de martingales [23]. Plus récemment, les méthodes de filtres particulaires ont également été utilisées [24,25]. Une liste d outils permettant le développement de modèles et l estimation de leurs paramètres est présentée dans le Tableau 2. Apports des modèles pour le contrôle de la diffusion de bactérie multi-résistante (BMR) Du fait de la stochasticité et de la complexité du système hospitalier, l épidémiologie classique ne permet pas d évaluer l effet d interventions sur la maîtrise d une épidémie sur le long terme. Dans certains cas, le succès apparent d une mesure peut être lié au hasard et n est pas facilement extrapolable à d autres contextes. La modélisation, en revanche, permet de formaliser les phénomènes et de fournir des informations qualitatives et quantitatives sur l effet des différentes stratégies de contrôle de la diffusion de BMR. Des structures de modèles simples décrivant l application de différentes mesures sont proposées dans le Tableau 1. Une exemple de comparaison, à partir de simulations, de l effet de différentes mesures, est présenté sur le Fig 2. Nécessité de la stochasticité Une contribution importante des premiers travaux de modélisation a été d appréhender l importance des effets aléatoires dans la dynamique épidémique à l hôpital. À cause de la faible taille de la population étudiée, typiquement patients dans une unité, de larges variations de prévalence sont attendues, qui ne reflètent pas nécessairement une modification de la situation Tableau 2 Outils pour le développement de modèles (non exhaustif). Type d analyse Mode d utilisation Liste d outils Lien, référence Modèle compartimental Interface graphique, clic Berkeley madonna Vensim Modèle compartimental Programmation R, librairie DeSolve Tout langage informatique Exemple en Annexes 2 (description) et 3 (code) Modèle agent Interface graphique Nososim Exemple de simulateur d un pathogène nosocomial dans un service : https:// sites.google.com/site/nososim/ Modèle agent Programmation Netlogo Repast Tout langage informatique Estimation de paramètres Programmation R, librairies Mcmc, pomp Tout langage informatique Exemple de modèle déjà programmé [25] : /13/187/additional Ce tableau présente une liste non exhaustive d outils informatiques qui peuvent être utilisés pour le développement de modèles mathématiques ou de simulations agents. Les outils cités dans la première ligne permettent la conception de modèles compartimentaux sans prérequis de programmation. La deuxième ligne propose des librairies permettant le développement rapide de modèles compartimentaux avec le logiciel R. Nous proposons ensuite un exemple de modèle agent directement utilisable (déjà programmé) simulant la transmission de pathogènes dans un service hospitalier (ligne 3) et des librairies permettant de programmer efficacement des modèles agents (ligne 4). Enfin la ligne 5 présente des librairies pour l estimation des paramètres.

7 198 L. Opatowski et al. majoritairement de l extérieur de l hôpital [28]. À partir d un modèle agent, Temime et al. ont montré qu un bon taux global de compliance global dans le service ne suffisait pas et que dans certains cas, un seul individu non compliant pouvait être à l origine d un phénomène de super-propagation [17], résultats confirmés plus récemment par Hornbeck et al. [29]. Isolement, cohortage Figure 2 Simulation de la prévalence à une bactérie multirésistante (BMR) dans un service selon différentes mesures mises en place. Ce graphique illustre le résultat de simulations d un modèle stochastique (trait fin) et d un modèle déterministe (trait épais) dans un service de 100 patients selon cinq scénarios différents de mise en place de mesures de contrôle le jour j = 200. Dans les quatre cas de mise en place d une mesure, la prévalence est réduite. On voit ici qu aucun des scénarios, mis en place seul, ne parvient à éradiquer l épidémie. La simulation de combinaisons de scénarios devrait permettre d identifier des scénarios menant à l éradication. Le modèle utilisé est décrit en détails dans l Annexe 2, et le code en R est également disponible dans l Annexe 3. épidémiologique. En 1999, Cooper et al. développent un modèle stochastique de transmission et démontrent que plusieurs simulations de ce modèle, avec le même jeu de paramètres (reflétant une situation épidémiologique donnée), peuvent produire des courbes de prévalence très différentes, entièrement du fait du hasard [26]. Les auteurs concluent que les modèles stochastiques sont essentiels à l analyse des données hospitalières. Ils suggèrent que des variations importantes de prévalence, dues au hasard, ont pu conduire à conclure faussement à l efficacité de mesures d isolement, notamment par des effets de régression à la moyenne quand l intervention était déclenchée par une prévalence inhabituellement élevée dans l unité [27]. Hygiène des mains Plusieurs études ont évalué l impact des mesures d hygiène sur la transmission des BMR et suggéré qu un bon taux de conformité du personnel de soin au lavage de mains est la stratégie de contrôle la plus efficace dans la prévention de l infection [13]. L analyse théorique d un modèle hospitalier décrivant les admissions et réadmissions de patients montre que la diminution de la transmission par des mesures d hygiène efficaces aurait un effet important sur les souches résistantes mais peu d effet seulement sur les souches sensibles, qui proviennent Des travaux de modélisation ont mis en évidence l efficacité de l isolement des patients colonisés et de l assignation d un personnel dédié pour réduire la transmission dans un service hospitalier [13,27]. Dans le cas de MRSA, Cooper et al. suggèrent que l introduction d unités d isolement conduit toujours à l éradication [30]. Cependant, d autres travaux suggèrent que l isolement de patients détectés par des cultures cliniques de routine uniquement (plutôt que par une détection systématique) n était pas une stratégie efficace [31]. Plusieurs auteurs ont proposé d étudier l impact des mesures d isolement en spécifiant un modèle d acquisition qui dissocie : un taux de transmission par les patients non isolés ; un taux de transmission par les patients isolés ; un taux d acquisition sporadique. L estimation des paramètres à partir des données de surveillance permet de déterminer le niveau d efficacité de la procédure d isolement, en fonction de la relation d ordre entre ces différentes voies d acquisition [20,32,33]. Dépistage et décolonisation Des travaux de modélisation, basés sur l expérience des pays du nord de l Europe dans lesquels les épidémies de MRSA sont très peu fréquentes, suggèrent que le dépistage systématique à l admission de certains patients «à haut risque» (porteurs de MRSA déjà identifiés auparavant ou patients en provenance de milieux à forte prévalence de colonisation), suivi de leur isolement jusqu à ce qu ils soient décolonisés (stratégies search and destroy) permet de réduire la prévalence de colonisation à MRSA à moins de 1 % [31]. Plus récemment, Worby et al. montrent que ces stratégies sont très fortement associées avec une réduction de la transmission de MRSA [34]. Rôle des antibiotiques Les travaux modélisant réellement le phénomène d émergence et de sélection de la résistance bactérienne dans un contexte hospitalier sont rares. La plupart des modèles étudient l effet de l usage des antibiotiques sur la diffusion des souches résistantes dans un service hospitalier [8,28,35,36]. Plusieurs études ont montré que, à consommation constante d antibiotiques, la distribution des classes d antibiotiques prescrites peut avoir un impact majeur sur la dynamique de diffusion des microorganismes à l hôpital [18]. Différentes stratégies visant à coordonner le traitement antibiotique des individus dans en milieu hospitalier ont été proposées. En particulier, deux stratégies, dont l efficacité

8 Modélisation des infections liées au soin 199 est débattue ont été décrites : elles consistent respectivement à modifier périodiquement l antibiotique prédominant dans une population donnée (cycling ou antibiocycle), ou à assigner des patients consécutifs à différents antibiotiques (mixing ou mélange) [37,38]. Ces stratégies visent à faire varier la pression de sélection, et de créer ainsi une hétérogénéité environnementale inhibant la diffusion d une bactérie résistante. Des arguments écologiques ont suggéré qu une stratégie de mixing est généralement supérieure en milieu hospitalier, car elle génère une hétérogénéité environnementale supérieure à l échelle de la bactérie [39]. L effet de l usage de molécules antibiotiques d un point de vue à la fois quantitatif (quantité prescrite, doses, durées) et qualitatif (classes antibiotiques utilisées) a également été exploré récemment par Kardas-Sloma et al. Leurs travaux suggèrent qu une réduction de la consommation antibiotique à l hôpital peut avoir des conséquences très différentes sur la circulation des S. aureus résistants selon les classes sur lesquelles est exercée cette réduction [18]. Deux travaux récents, proposent un modèle multi-échelle (incluant à la fois la prise en compte de l hôpital et de la ville) pour étudier les conditions qui permettent la diffusion de MRSA communautaire à l hôpital [40,41]. Apports des modèles pour la compréhension : dévoiler l invisible La modélisation est souvent considérée comme un outil à visée prédictive. Ce n est pas son seul objectif. En épidémiologie des maladies infectieuses et en particulier dans le contexte hospitalier, elle permet, à partir de données observées, de reconstruire à posteriori les épidémies et ainsi de mieux comprendre les phénomènes invisibles qui ont pu avoir lieu. Cela passe le plus souvent par une phase d estimation de paramètres inconnus ou non observables. Ceux-ci incluent les caractéristiques de transmission liées au pathogène ou à l hôte. Mesurer la capacité épidémique intrinsèque des souches Les méthodes d épidémiologie classiques ne prenant pas en compte la dynamique temporelle, elles ne permettent donc pas d estimer la capacité de transmission des pathogènes. Les modèles mathématiques, en revanche, le permettent [4,20,21,34,42,43]. Dans un contexte hospitalier, la capacité de transmission d un pathogène (qui est liée au nombre de reproduction) dépendra de la bactérie mais aussi de l environnement (exposition médicamenteuse des hôtes, pathogènes co-circulants, contacts entre les individus etc.). Ainsi, mieux comprendre quelle est la part de cette transmission qui est liée à la bactérie elle-même (ce qu on pourrait appeler capacité épidémique intrinsèque de la souche) est de grande importance. Cette capacité peut dépendre de caractéristiques phénotypiques ou génétiques. Il a par exemple été suggéré que l acquisition de la résistance à un antibiotique pourrait engendrer un coût pour la bactérie se traduisant par une modification de son potentiel épidémique, on parle alors de coût en «fitness» [44,45]. Plusieurs travaux de modélisation récents ont mis en évidence des différences de potentiel épidémiques entre clones au sein d une espèce bactérienne [42,43,46]. Quantifier la part de différentes voies de transmission L acquisition de bactéries résistantes pour un patient à l hôpital peut résulter d une transmission humaine (via un patient ou un personnel soignant), d une contamination environnementale ou encore d un effet sélectif des antibiotiques. Dans un article fondateur de 2002 [11], Pelupessy et al. proposent d opérer une distinction entre les voies d acquisition exogène (correspondant à une transmission effective de patient à patient, généralement par l intermédiaire du personnel soignant) et endogène (résultant de l amplification d une sous-population d organismes résistants à des niveaux initialement indétectables, suite à l antibiothérapie). En pratique, ces différentes voies ont un impact différent sur la dynamique. La voie exogène dépend du nombre antérieur de patients colonisés dans l unité (aussi appelée pression de colonisation [47]) tandis que la route endogène peut raisonnablement être supposée indépendante de ce nombre. Les auteurs traduisent mathématiquement ces hypothèses via une définition de la force d infection afin d estimer la part de transmission via la voie endogène (taux d acquisition sporadique) et la voie exogène. Ils montrent que pour VRE la voie exogène est la plus importante, soulignant l importance des mesures d hygiène et d isolement pour ce pathogène [11]. Une extension de ce modèle, sur la transmission de VRE évalue à 89 % la part d acquisition par transmission croisée et à 11 % l acquisition sporadique [22]. Comme l indiquent van Kleef et al. dans leur récente revue de la littérature, la plupart des modèles hospitaliers publiés portent sur la transmission de MRSA et de VRE [9]. Peu de travaux se sont intéressés à d autres espèces comme les bactéries BLSE [9]. Néanmoins, des travaux récents ont montré, qu à l inverse de VRE et de MRSA, la voie endogène était vraisemblablement prédominante pour les E-BLSE dans un contexte endémique [25]. Les voies d acquisition variant fortement selon les pathogènes et sûrement le contexte, ces études permettent d identifier les voies qu il faudrait préférentiellement cibler dans la perspective de mettre en place des mesures de contrôle [25,48,49]. Mesurer le rôle des contacts humains Dans la petite population que constitue un service hospitalier, les comportements humains peuvent jouer un rôle important dans la diffusion de pathogènes. L utilisation de modèles agents, dans lesquels il est possible de simuler chaque individu de façon autonome, a permis de mettre en évidence l importance des aspects individuels et des réseaux de contacts dans la transmission des BMR. Temime et al. ont montré en modélisant de façon détaillée les réseaux de contact des individus selon leur statut (patient, infirmière, médecin et soignant «nomade» tels que les kinésithérapeutes ou radiologues) que certains individus, s ils n étaient pas totalement compliants au lavage de mains, pouvaient jouer un rôle de super-propagateur (superspreader) dans un service [17]. Dans le but de mieux comprendre la nature et le réseau de transmission des BMR, de nouveaux outils de recueil et d analyse de ces données individuelles ont été développés.

9 200 L. Opatowski et al. À l hôpital, l utilisation des bases de données hospitalières (localisation géographique, personnel, patients à une date donnée) [50] ou l enregistrement des contacts via un personnel dédié (appelé shadow) à suivre les personnels soignants et à rapporter tous leurs contacts [51,52] ont déjà permis de prendre en compte une structure de contacts plus réaliste. Des méthodes d investigations innovantes visant à recueillir des données de contacts à risque ont également commencé à émerger. L équipement par des capteurs (émetteur et récepteur) des patients et du personnel de soin pour la mesure des proximités entre les individus a permis de mesurer le réseau potentiel de transmission au sein de plusieurs services hospitaliers [53,54] (étude européenne MOSAR : Hornbeck et al. ont recueilli des données de contact dans un service de réanimation et construit un modèle agent de transmission à partir de ces données. Leur résultats confirment la présence de personnels soignants pouvant jouer un rôle de super-propagateur [17,29]. Perspectives d usage des modèles Nous détaillons ci-dessous les perspectives d exploitation des résultats issus de la modélisation ainsi que les améliorations nécessaires pour rendre les modèles plus réalistes. Modéliser pour décider Les modèles mathématiques sont de plus en plus utilisés en soutien à la prise de décision en santé publique. Ils ont par exemple été largement utilisés par l Organisation mondiale de la santé (OMS), le Center for Disease Control (CDC) ou encore les autorités françaises pour la gestion de la crise liée à l épidémie de grippe A (H1N1) en 2009 ; ils sont également sans cesse consultés dans le cadre de l épidémie de VIH/sida par l OMS. Concernant le contrôle des épidémies hospitalières, la mise en place de recommandations nationales de bonne pratique pour le contrôle des bactéries résistantes s est également appuyée sur les résultats de modèles, l exemple le plus notoire étant celui de la Grande Bretagne, où la Health Protection Agency est fréquemment consultée par les décideurs [27]. L utilisation des prédictions issues des modèles pour la prise de décision soulève d importantes questions : celle de la qualité du modèle, de la qualité des données utilisables pour la modélisation et enfin de la confiance en les prédictions. La production d intervalles de prédictions réalistes, sur lesquelles des décisions de santé publique peuvent effectivement s appuyer, nécessite une confiance importante en la structure du modèle (une bonne connaissance du processus de transmission dans la population) et les paramètres (une bonne connaissance de l histoire naturelle de la maladie). L amélioration des modèles hospitaliers passera certainement par la collection de nouvelles données individuelles comme la mesure des contacts à risque, la connaissance de la colonisation par plusieurs espèces ou clones, ou encore l exposition médicamenteuse (détaillé plus loin). Il est raisonnable d imaginer qu à moyen terme nous pourrons disposer de modèles spécifiques des services prenant en compte en temps réel la situation épidémique et les clones circulant et qui pourront aider, au sein d un service, à la prise de décision de politiques antibiotiques. Mieux comprendre l effet des antibiotiques Comme nous l avons vu, de nombreux travaux de modélisation ont étudié et permis de mieux comprendre l effet des mesures de contrôle pour limiter l acquisition exogène de bactérie résistantes. Cependant, peu de travaux se sont intéressés à la voie endogène, et en particulier à l effet de la prise d antibiotiques sur l acquisition et la transmission au niveau individuel. Plusieurs études cliniques ont pourtant suggéré qu un traitement antibiotique pourrait entraîner une augmentation du risque relatif de colonisation après un contact [5,55,56]. Ces études suggèrent, d une part, que les antibiotiques pourraient entraîner une forte excrétion de bactéries multi-résistantes et donc une amplification du taux de transmission [55,56]. Et, d autre part, elles suggèrent que le traitement antimicrobien, en éliminant la flore commensale, pourrait entraîner une augmentation du risque d acquisition de nouvelles bactéries [55,57,58]. Dans le futur, le développement de travaux reliant l exposition antibiotique et l émergence, la sélection au sein d un hôte, et la diffusion de bactéries multi-résistantes devrait permettre de mieux comprendre ces phénomènes. Mieux comprendre la transmission : l intégration de nouveaux types de données Nous l avons vu, des équipes ont développé et utilisé ces dernières années des méthodes innovantes permettant la mesure de contacts (ou proximités) entre les individus à partir de capteurs sans fils pour mesurer les contacts dans des services hospitaliers [53,54] (étude européenne MOSAR : L analyse de ces données complexes associées aux données microbiologiques va nécessiter des développements méthodologiques dans les années à venir. Des travaux récents comparent différentes formes d agrégations des données de contacts détaillées pour la compréhension de la transmission des BMR à l hôpital [59]. Ces données, jumelées à la connaissance clinique du portage microbien, devraient dans les prochaines années nous permettre de mieux comprendre la transmission des différents clones dans le contexte hospitalier. De manière générale, ces données de contact apporteront d importants éléments de connaissance sur les voies de transmission de différents pathogènes, en particulier pour les pathogènes à transmission aérienne ou manu portées, pour lesquelles les risques de contact infectieux sont mal quantifiés. Par ailleurs, ces données devraient permettre de quantifier la part de l épidémicité liée au schéma de contacts inter-individuels, et ainsi de s approcher de la mesure de l épidémicité intrinsèque des souches. Modéliser différentes échelles Si l émergence et la sélection des souches résistantes peuvent avoir lieu au sein de l hôte, la sélection et la diffusion des résistances dans la population ont lieu au niveau populationnel. Ainsi, modéliser le phénomène de la résistance bactérienne nécessite de prendre en compte les différents niveaux. Dans la communauté, quelques modèles multiéchelles existent déjà [60,61]. À l hôpital, Temime et al. ont développé un modèle agent prenant en compte des

10 Modélisation des infections liées au soin 201 différents niveaux : individuel et populationnel [16]. D Agata et al. ont également étudié, à l aide d un modèle agent et d un modèle déterministe, l effet de l exposition antibiotique à l hôpital, intégrant les aspects intra-hôtes comme les aspects de transmission interindividuelle [35]. Cependant, jusqu à très récemment, le nombre de modèles décrivant à la fois les aspects intra-hôtes et populationnels était faible. Dans les prochaines années, l utilisation de plus en plus fréquente des algorithmes individu-centrés, dans lesquels les agents peuvent être simulés individuellement avec le niveau de précision souhaité, devrait faciliter la description des deux échelles dans un modèle commun. Modéliser plusieurs espèces ou souches bactériennes Ces dernières années, de plus en plus de travaux suggèrent qu il pourrait y avoir un effet de la flore commensale de l hôte sur l acquisition de nouvelles BMR. L étude de tels phénomènes nécessite de modéliser, simultanément, la colonisation par plusieurs clones d une même espèce ou de pathogènes issus d espèces différentes. L amélioration des modèles dans cette direction nécessite le recueil de données de multi-portage au niveau individuel. L intégration de telles données dans les modèles permettra une meilleure compréhension de la synergie et/ou de la compétition qui existent au sein d une espèce bactérienne et entre les espèces. Des collaborations entre épidémiologistes et biologistes pourraient permettre d approfondir nos connaissances et ainsi d améliorer les modèles actuels. Conclusion La modélisation mathématique est un instrument privilégié pour l étude du phénomène de la résistance bactérienne en milieu hospitalier. Elle a permis de quantifier, à partir de données de surveillances hospitalières, des paramètres épidémiologiques essentiels à une meilleure compréhension des épidémies hospitalières. Elle a aussi permis d évaluer l impact de différentes stratégies de contrôle et ainsi de mettre en place une politique de contrôle et de surveillance de l infection optimale. De nombreuses perspectives sont encore à explorer. Les modèles devraient nous permettre, dans les années à venir, de préciser encore mieux les facteurs à l origine de l émergence et de la diffusion des BMR, incluant les aspects liés à l hôte tels que l exposition antibiotique ou la flore commensale. L étude de la transmission de pathogènes à partir de réseaux de contacts empiriques à l hôpital devrait permettre une amélioration des prédictions des modèles afin d en faire un outil d aide à la prise de décision, en temps réel, sur le terrain pour le contrôle de la diffusion des BMR. Pour y parvenir, le paramétrage des modèles devra être affiné grâce à un recueil de nouvelles données. Nous espérons que cette mise au point ouvrira la voie à de nouvelles collaborations entre médecins, épidémiologistes, biologistes et modélisateurs. Déclaration d intérêts Les auteurs déclarent ne pas avoir de conflits d intérêts en relation avec cet article. Annexes 1 3. Matériels complémentaires Les matériels complémentaires (Annexes 1 3) accompagnant la version en ligne de cet article sont disponibles sur et org/ /j.antinf Références [1] Kilgore ML, Ghosh K, Beavers CM, Wong DY, Hymel Jr PA, Brossette SE. The costs of nosocomial infections. Med Care 2008;46(1): [2] ECDC. ECDC/EMEA Joint Technical Report The bacterial challenge: time to react. European Centre for Disease Prevention and Control (ECDC) and European Medicines Agency (EMEA); [3] WHO. The evolving threat of antimicrobial resistance: options for action. World Health Organization; [4] Grassly NC, Fraser C. Mathematical models of infectious disease transmission. Nat Rev Microbiol 2008;6(6): [5] Bonten MJ, Austin DJ, Lipsitch M. Understanding the spread of antibiotic resistant pathogens in hospitals: mathematical models as tools for control. Clin Infect Dis 2001;33(10): [6] Grundmann H, Hellriegel B. Mathematical modelling: a tool for hospital infection control. Lancet Infect Dis 2006;6(1): [7] Temime L, Hejblum G, Setbon M, Valleron AJ. The rising impact of mathematical modelling in epidemiology: antibiotic resistance research as a case study. Epidemiol Infect 2008;136(3): [8] Opatowski L, Guillemot D, Boelle PY, Temime L. Contribution of mathematical modeling to the fight against bacterial antibiotic resistance. Curr Opin Infect Dis 2011;24(3): [9] van Kleef E, Robotham JV, Jit M, Deeny SR, Edmunds WJ. Modelling the transmission of healthcare-associated infections: a systematic review. BMC Infect Dis 2013;13:294. [10] Anderson RM, May RM. Infectious diseases of humans. Dynamics and control,. 1995, New York: Oxford University Press; [11] Pelupessy I, Bonten MJ, Diekmann O. How to assess the relative importance of different colonization routes of pathogens within hospital settings. Proc Natl Acad Sci U S A 2002; 99(8): [12] Armeanu E, Bonten MJ. Control of vancomycin-resistant enterococci: one size fits all? Clin Infect Dis 2005;41(2): [13] Austin DJ, Bonten MJ, Weinstein RA, Slaughter S, Anderson RM. Vancomycin-resistant enterococci in intensive care hospital settings: transmission dynamics, persistence, and the impact of infection control programs. Proc Natl Acad Sci U S A 1999;96(12): [14] Ferguson NM, Cummings DA, Cauchemez S, Fraser C, Riley S, Meeyai A, et al. Strategies for containing an emerging influenza pandemic in Southeast Asia. Nature 2005;437(7056): [15] Kim JH, Riolo RL, Koopman JS. HIV transmission by stage of infection and pattern of sexual partnerships. Epidemiology 2010;21(5): [16] Temime L, Kardas L, Opatowski L, Boelle PY, Guillemot D. NOSOSIM: an agent-based model of nosocomial pathogens circulation in hospitals. In International Conference on Computational Science ICCS ;2010: [17] Temime L, Opatowski L, Pannet Y, Brun-Buisson C, Boelle PY, Guillemot D. Peripatetic healthcare workers as potential superspreaders. Proc Natl Acad Sci U S A 2009;106(43): [18] Kardas-Sloma L, Boelle PY, Opatowski L, Brun-Buisson C, Guillemot D, Temime L. Impact of antibiotic exposure patterns on selection of community-associated methicillin-resistant

11 202 L. Opatowski et al. Staphylococcus aureus in hospital settings. Antimicrob Agents Chemother 2011;55(10): [19] Deeny SR, Cooper BS, Cookson B, Hopkins S, Robotham JV. Targeted versus universal screening and decolonization to reduce healthcare-associated meticillin-resistant Staphylococcus aureus infection. J Hosp Infect 2013;85(1): [20] Forrester ML, Pettitt AN, Gibson GJ. Bayesian inference of hospital-acquired infectious diseases and control measures given imperfect surveillance data. Biostatistics 2007;8(2): [21] Cooper B, Lipsitch M. The analysis of hospital infection data using hidden Markov models. Biostatistics 2004;5(2): [22] McBryde ES, Pettitt AN, Cooper BS, McElwain DL. Characterizing an outbreak of vancomycin-resistant enterococci using hidden Markov models. J R Soc Interface 2007;4(15): [23] Wolkewitz M, Dettenkofer M, Bertz H, Schumacher M, Huebner J. Statistical epidemic modeling with hospital outbreak data. Stat Med 2008;27(30): [24] He D, Ionides EL, King AA. Plug-and-play inference for disease dynamics: measles in large and small populations as a case study. J R Soc Interface 2010;7(43): [25] Domenech de Celles M, Zahar JR, Abadie V, Guillemot D. Limits of patient isolation measures to control extended-spectrum beta-lactamase-producing Enterobacteriaceae: model-based analysis of clinical data in a pediatric ward. BMC Infect Dis 2013;13:187. [26] Cooper BS, Medley GF, Scott GM. Preliminary analysis of the transmission dynamics of nosocomial infections: stochastic and management effects. J Hosp Infect 1999;43(2): [27] Cooper BS, Stone SP, Kibbler CC, Cookson BD, Roberts JA, Medley GF, et al. Systematic review of isolation policies in the hospital management of methicillin-resistant Staphylococcus aureus: a review of the literature with epidemiological and economic modelling. Health Technol Assess 2003;7(39): [28] Lipsitch M, Bergstrom CT, Levin BR. The epidemiology of antibiotic resistance in hospitals: paradoxes and prescriptions. Proc Natl Acad Sci U S A 2000;97(4): [29] Hornbeck T, Naylor D, Segre AM, Thomas G, Herman T, Polgreen PM. Using sensor networks to study the effect of peripatetic healthcare workers on the spread of hospital-associated infections. J Infect Dis 2012;206(10): [30] Cooper BS, Medley GF, Stone SP, Kibbler CC, Cookson BD, Roberts JA, et al. Methicillin-resistant Staphylococcus aureus in hospitals and the community: stealth dynamics and control catastrophes. Proc Natl Acad Sci U S A 2004;101(27): [31] Bootsma MC, Diekmann O, Bonten MJ. Controlling methicillinresistant Staphylococcus aureus: quantifying the effects of interventions and rapid diagnostic testing. Proc Natl Acad Sci U S A 2006;103(14): [32] Forrester M, Pettitt AN. Use of stochastic epidemic modeling to quantify transmission rates of colonization with methicillinresistant Staphylococcus aureus in an intensive care unit. Infect Control Hosp Epidemiol 2005;26(7): [33] Kypraios T, O Neill PD, Huang SS, Rifas-Shiman SL, Cooper BS. Assessing the role of undetected colonization and isolation precautions in reducing methicillin-resistant Staphylococcus aureus transmission in intensive care units. BMC Infect Dis 2012;10. [34] Worby CJ, Jeyaratnam D, Robotham JV, Kypraios T, O Neill PD, De Angelis D, et al. Estimating the effectiveness of isolation and decolonization measures in reducing transmission of methicillin-resistant Staphylococcus aureus in hospital general wards. Am J Epidemiol 2013;177(11): [35] D Agata EM, Magal P, Olivier D, Ruan S, Webb GF. Modeling antibiotic resistance in hospitals: the impact of minimizing treatment duration. J Theor Biol 2007;249(3): [36] D Agata EM, Webb G, Horn M. A mathematical model quantifying the impact of antibiotic exposure and other interventions on the endemic prevalence of vancomycin-resistant enterococci. J Infect Dis 2005;192(11): [37] Bal AM, Kumar A, Gould IM. Antibiotic heterogeneity: from concept to practice. Ann N Y Acad Sci 2010;1213: [38] Brown EM, Nathwani D. Antibiotic cycling or rotation: a systematic review of the evidence of efficacy. J Antimicrob Chemother 2005;55(1):6 9. [39] Bergstrom CT, Lo M, Lipsitch M. Ecological theory suggests that antimicrobial cycling will not reduce antimicrobial resistance in hospitals. Proc Natl Acad Sci U S A 2004;101(36): [40] Kardas-Sloma L, Boelle PY, Opatowski L, Guillemot D, Temime L. Antibiotic reduction campaigns do not necessarily decrease bacterial resistance: the example of methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 2013;57(9): [41] Kouyos R, Klein E, Grenfell B. Hospital-community interactions foster coexistence between methicillin-resistant strains of Staphylococcus aureus. PLoS Pathog 2013;9(2):e [42] Domenech de Celles M, Salomon J, Marinier A, Lawrence C, Gaillard JL, Herrmann JL, et al. Identifying more epidemic clones during a hospital outbreak of multidrug-resistant Acinetobacter baumannii. PLoS One 2012;7(9):e [43] Cooper BS, Kypraios T, Batra R, Wyncoll D, Tosas O, Edgeworth JD. Quantifying type-specific reproduction numbers for nosocomial pathogens: evidence for heightened transmission of an Asian sequence type 239 MRSA clone. PLoS Comput Biol 2012;8 (4):e [44] Andersson DI. The biological cost of mutational antibiotic resistance: any practical conclusions? Curr Opin Microbiol 2006;9(5): [45] Martinez JL, Fajardo A, Garmendia L, Hernandez A, Linares JF, Martinez-Solano L, et al. A global view of antibiotic resistance. FEMS Microbiol Rev 2009;33(1): [46] Bootsma MC, Wassenberg MW, Trapman P, Bonten MJ. The nosocomial transmission rate of animal-associated ST398 meticillin-resistant Staphylococcus aureus. J R Soc Interface 2011;8(57): [47] Bonten MJ, Slaughter S, Ambergen AW, Hayden MK, van Voorhis J, Nathan C, et al. The role of colonization pressure in the spread of vancomycin-resistant enterococci: an important infection control variable. Arch Intern Med 1998;158(10): [48] Bootsma MC, Bonten MJ, Nijssen S, Fluit AC, Diekmann O. An algorithm to estimate the importance of bacterial acquisition routes in hospital settings. Am J Epidemiol 2007;166(7): [49] Schultsz C, Bootsma MC, Loan HT, Nga TT, Thao le TP, Thuy TT, et al. Effects of infection control measures on acquisition of five antimicrobial drug-resistant microorganisms in a tetanus intensive care unit in Vietnam. Intensive Care Med 2013;39(4): [50] Ueno T, Masuda N. Controlling nosocomial infection based on structure of hospital social networks. J Theor Biol 2008;254(3): [51] Polgreen PM, Tassier TL, Pemmaraju SV, Segre AM. Prioritizing healthcare worker vaccinations on the basis of social network analysis. Infect Control Hosp Epidemiol 2010;31(9): [52] McBryde ES, Bradley LC, Whitby M, McElwain DL. An investigation of contact transmission of methicillin-resistant Staphylococcus aureus. J Hosp Infect 2004;58(2): [53] Chelius S, Fraboulet A, Worldsens FE. Development and prototyping tools for application specific wireless sensors networks. In: IPSN 2007: Massachusetts, USA. ACM: Cambridge (MIT Campus); [54] Isella L, Romano M, Barrat A, Cattuto C, Colizza V, Van den Broeck W, et al. Close encounters in a pediatric ward: measuring face-to-face proximity and mixing patterns with wearable sensors. PLoS One 2011;6(2):e17144.

12 Modélisation des infections liées au soin 203 [55] Lawley TD, Clare S, Walker AW, Goulding D, Stabler RA, Croucher N, et al. Antibiotic treatment of clostridium difficile carrier mice triggers a supershedder state, spore-mediated transmission, and severe disease in immunocompromised hosts. Infect Immun 2009;77(9): [56] Lipsitch M, Samore MH. Antimicrobial use and antimicrobial resistance: a population perspective. Emerg Infect Dis 2002;8 (4): [57] Donskey CJ, Chowdhry TK, Hecker MT, Hoyen CK, Hanrahan JA, Hujer AM, et al. Effect of antibiotic therapy on the density of vancomycin-resistant enterococci in the stool of colonized patients. N Engl J Med 2000;343(26): [58] Hoyen CK, Pultz NJ, Paterson DL, Aron DC, Donskey CJ. Effect of parenteral antibiotic administration on establishment of intestinal colonization in mice by Klebsiella pneumoniae strains producing extended-spectrum beta-lactamases. Antimicrob Agents Chemother 2003;47(11): [59] Machens A, Gesualdo F, Rizzo C, Tozzi AE, Barrat A, Cattuto C. An infectious disease model on empirical networks of human contact: bridging the gap between dynamic network data and contact matrices. BMC Infect Dis 2013;13:185. [60] Temime L, Boelle PY, Courvalin P, Guillemot D. Bacterial resistance to penicillin G by decreased affinity of penicillinbinding proteins: a mathematical model. Emerg Infect Dis 2003;9(4): [61] Opatowski L, Mandel J, Varon E, Boelle PY, Temime L, Guillemot D. Antibiotic dose impact on resistance selection in the community: a mathematical model of beta-lactams and Streptococcus pneumoniae dynamics. Antimicrob Agents Chemother 2010;54(6): [62] D Agata EM, Horn MA, Ruan S, Webb GF, Wares JR. Efficacy of infection control interventions in reducing the spread of multidrug-resistant organisms in the hospital setting. PLoS One 2012;7(2):e [63] D Agata EM, Webb GF, Horn MA, Moellering Jr RC, Ruan S. Modeling the invasion of community-acquired methicillin-resistant Staphylococcus aureus into hospitals. Clin Infect Dis 2009;48(3):

INFECTIONS NOSOCOMIALES

INFECTIONS NOSOCOMIALES INFECTIONS NOSOCOMIALES I - Définitions La définition générale d une infection nososcomiale est la suivante : infection contractée au cours d un séjour dans un établissement de soins. Un délai de 48h au

Plus en détail

MRSA. Staphylococcus aureus. A. C. Simon MD. Hygiène Hospitalière

MRSA. Staphylococcus aureus. A. C. Simon MD. Hygiène Hospitalière MRSA A. C. Simon MD Hygiène Hospitalière Staphylococcus aureus 1 Les sites d infection possibles Lancet Infect Dis 2005;5:751-62 Taux de portage de Staph aureus par site chez l adulte Dans la population

Plus en détail

Analyse de survie appliquée à la modélisation de la transmission des maladies infectieuses : mesurer l impact des interventions

Analyse de survie appliquée à la modélisation de la transmission des maladies infectieuses : mesurer l impact des interventions Analyse de survie appliquée à la modélisation de la transmission des maladies infectieuses : mesurer l impact des interventions Génia Babykina 1 & Simon Cauchemez 2 1 Université de Lille, Faculté Ingénierie

Plus en détail

Mise en ligne 19 08 2010

Mise en ligne 19 08 2010 Mise en ligne 19 08 2010 Contexte Problématique du rapatriement en France de patients, porteurs de BMR Difficultés : patients asymptomatiques Patients atteints d infections urinaires ou cutanées à BMR

Plus en détail

Les Infections Associées aux Soins

Les Infections Associées aux Soins Les Infections Associées aux Soins Dr Catherine Sartor EOH Conception Assistance Publique Hôpitaux de Marseille Ecole IFSI, Marseille, 12 septembre 2014 Définitions 2007 Infection Nosocomiale (IN) 1999

Plus en détail

Résistance aux Antimicrobiens: Ensemble, nous pouvons réduire ce risque

Résistance aux Antimicrobiens: Ensemble, nous pouvons réduire ce risque Résistance aux Antimicrobiens: Ensemble, nous pouvons réduire ce risque Débats de Santé Publique 2014 Carmem Lúcia Pessoa-Silva, MD, PhD Health Security and Environment, WHO Headquarters, Geneva pessoasilvacl@who.int

Plus en détail

Stratégies de dépistage des bactéries multirésistantes. Qui? Pourquoi? Comment? Après? L exemple des MRSA

Stratégies de dépistage des bactéries multirésistantes. Qui? Pourquoi? Comment? Après? L exemple des MRSA Stratégies de dépistage des bactéries multirésistantes à l hôpital et en MRS: Qui? Pourquoi? Comment? Après? L exemple des MRSA Prof. Dr. Youri Glupczynski Unité d Hygiène hospitalière & Laboratoire de

Plus en détail

et la gestion des alertes

et la gestion des alertes Le signalement des infections nosocomiales et la gestion des alertes L expérience française Bruno Coignard, MD, MSc Institut de veille sanitaire, Saint-Maurice, France JAPI, Québec, 20/11/2008 Plan de

Plus en détail

La colonisation par SARM : Un effet secondaire de l utilisation des antibiotiques. HB DRUGEON

La colonisation par SARM : Un effet secondaire de l utilisation des antibiotiques. HB DRUGEON La colonisation par SARM : Un effet secondaire de l utilisation des antibiotiques. HB DRUGEON Colonisation naturelle 20 % colonisés permanents 1 souche principalement SASM Seulement 3.5 % SARM 60% de colonisés

Plus en détail

Epidémiologie des bactéries hautement résistantes et émergeantes en France

Epidémiologie des bactéries hautement résistantes et émergeantes en France Bactéries hautement résistantes et émergentes (BHRe) Epidemiology of emergent and highly resistant bacteria in France Epidémiologie des bactéries hautement résistantes et émergeantes en France Bactéries

Plus en détail

VRE - Hopital - Prise en charge des patients colonisés/infectés par un entérocoque vancomycine résistant (VRE) et des contacts

VRE - Hopital - Prise en charge des patients colonisés/infectés par un entérocoque vancomycine résistant (VRE) et des contacts FICHE TECHNIQUE VRE - Hopital - Prise en charge des patients colonisés/infectés par un entérocoque vancomycine résistant (VRE) et des contacts 1. OBJET Cette instruction de prise en charge a pour objectif

Plus en détail

Bactéries Hautement Résistantes aux Antibiotiques BHR. Karine ASTRUC ARLIN Bourgogne

Bactéries Hautement Résistantes aux Antibiotiques BHR. Karine ASTRUC ARLIN Bourgogne Bactéries Hautement Résistantes aux Antibiotiques BHR Karine ASTRUC ARLIN Bourgogne A. BMR / BHR Introduction Depuis l utilisation des ATB=> émergence des résistance BMR : Résistance à plusieurs familles

Plus en détail

Téléphones mobiles à l hôpital: utilisation par les soignants et contamination bactérienne

Téléphones mobiles à l hôpital: utilisation par les soignants et contamination bactérienne Téléphones mobiles à l hôpital: utilisation par les soignants et contamination bactérienne E. Botelho-Nevers 1, L. Papazian 2, S. Badiaga 3, M. Leone 4, P. Brouqui 5 et M. Drancourt 5 1 Service de Maladies

Plus en détail

BLSE facteurs de risque d acquisition dans la communauté

BLSE facteurs de risque d acquisition dans la communauté BLSE facteurs de risque d acquisition dans la communauté Philippe Berthelot, Unité d hygiène inter hospitalière, Service des Maladies Infectieuses, CHU de Saint-Etienne EBLSE Phénomène émergent Pitout

Plus en détail

Quelle politique de dépistage des BMR au sein des établissements de santé?

Quelle politique de dépistage des BMR au sein des établissements de santé? Quelle politique de dépistage des BMR au sein des établissements de santé? Journée Régionale des CLIN et EOH de Haute Normandie Mardi 20 avril 2010 Dr Sophie Boyer Laboratoire de Microbiologie Nouvelles

Plus en détail

BMR et personnel soignant

BMR et personnel soignant BMR et personnel soignant Dr. ML. LEPORI Service de Santé au Travail CHU BRABOIS NANCY Rappels On appelle infection nosocomiale ou infection hospitalière toute maladie contractée à l hôpital due à des

Plus en détail

Unité d hygiène et de lutte contre les Infections nosocomiales, Hôpital Bichat-Claude Bernard, Paris. 2

Unité d hygiène et de lutte contre les Infections nosocomiales, Hôpital Bichat-Claude Bernard, Paris. 2 Suspicions de portage de bactéries multi ou hautement résistantes (BMR/BHR) aux antibiotiques chez des patients rapatriés ou ayant été hospitalisés à l étranger M. Lepainteur 1, G. Birgand 1,3, I. Lolom

Plus en détail

Lecture critique. Maîtrise de la diffusion de la résistance aux antibiotiques l hôpital : le rôle de l hygiène hospitalière D. Lepelletier, N.

Lecture critique. Maîtrise de la diffusion de la résistance aux antibiotiques l hôpital : le rôle de l hygiène hospitalière D. Lepelletier, N. Maîtrise de la diffusion de la résistance aux antibiotiques l hôpital : le rôle de l hygiène hospitalière D. Lepelletier, N. Marty Lecture critique Monica Attinger - Unité HPCI Forum HH 10 mars 2015 Article

Plus en détail

Quand lever un Isolement? ERG, EPC, ABRI

Quand lever un Isolement? ERG, EPC, ABRI Quand lever un Isolement? ERG, EPC, ABRI Dr Karine BLANCKAERT Santé publique médecine -sociale Praticien hospitalier Hygiène hospitalière Coordonnateur de l antenne régionale nord pas de calais de lutte

Plus en détail

Bactéries Multi-résistantes (BMR)

Bactéries Multi-résistantes (BMR) L information biomédicale des Laboratoires Oriade - Janvier 2014 Bactéries Multi-résistantes (BMR) Isolées en ville Devant l émergence des bactéries multirésistantes (BMR) isolées en ville, les biologistes

Plus en détail

POLITIQUE DE DÉPISTAGE DES BMR

POLITIQUE DE DÉPISTAGE DES BMR POLITIQUE DE DÉPISTAGE DES BMR CLIN avril 2012 CONTEXTE : ICALIN 2 Nouveaux items pour le calcul du score du bilan des activités de lutte contre les infections nosocomiales dans les établissements de santé

Plus en détail

S. aureus : champ de la question

S. aureus : champ de la question S. aureus : champ de la question SASM et SARM SASM : 25% porteurs à l admission 50% des infectés SARM : 5% porteurs à l admission 50% des infectés Le dépistage, pour quoi faire? P. contact Mesures spécifiques

Plus en détail

Conduite à tenir devant une suspicion ou un cas de grippe A(H1N1) chez un professionnel de santé en établissement de santé 16 septembre 2009

Conduite à tenir devant une suspicion ou un cas de grippe A(H1N1) chez un professionnel de santé en établissement de santé 16 septembre 2009 Conduite à tenir devant une suspicion ou un cas de grippe A(H1N1) chez un professionnel de santé en établissement de santé 16 septembre 2009 Consensus des CCLIN (http://www.cclin-france.fr/) Cette conduite

Plus en détail

Modélisation mathématique des épidémies et décision publique

Modélisation mathématique des épidémies et décision publique Modélisation mathématique des épidémies et décision publique Antoine Flahault Ecole Romande de Santé Publique Modèle = miroir simplifié de la réalité Modèle = «planche à dessin» Réalité validation Observation

Plus en détail

ENQUETE NATIONALE DE PREVALENCE

ENQUETE NATIONALE DE PREVALENCE ENQUETE NATIONALE DE PREVALENCE MODULE REGIONAL PORTAGE DIGESTIF EBLSE ET EPC PROTOCOLE www.rhc-arlin.com 1 CONTEXTE La prévalence de la colonisation digestive à EBLSE pour les patients des établissements

Plus en détail

1. QUESTIONNAIRE DÉMOGRAPHIQUE (remplir un questionnaire par établissement / par site pour les hôpitaux multisites) Année 20

1. QUESTIONNAIRE DÉMOGRAPHIQUE (remplir un questionnaire par établissement / par site pour les hôpitaux multisites) Année 20 Surveillances BMR, bactériémies, infections en hémodialyse Hôpitaux, Clinques, CTR, services/centres d hémodialyse Données de surveillance, démographiques et de laboratoire 1. QUESTIONNAIRE DÉMOGRAPHIQUE

Plus en détail

TITRE DE LA THESE. Développement durable et lutte contre la pauvreté, Cas de la Tunisie. Par. Riadh Béchir. Unité de recherche ; Laboratoire ;

TITRE DE LA THESE. Développement durable et lutte contre la pauvreté, Cas de la Tunisie. Par. Riadh Béchir. Unité de recherche ; Laboratoire ; TITRE DE LA THESE Développement durable et lutte contre la pauvreté, Cas de la Tunisie Par Riadh Béchir Unité de recherche ; Laboratoire ; Entreprise - Economie - Environnement Economie et sociétés rurales

Plus en détail

Peut-on prédire la thrombose veineuse profonde par la clinique?

Peut-on prédire la thrombose veineuse profonde par la clinique? Peut-on prédire la thrombose veineuse profonde par la clinique? TVP et algorithme de prédiction clinique - 1 Médiocre sensibilité et spécificité des signes et symptômes cliniques Utilité démontrée de la

Plus en détail

Atelier 2 : Etudes thérapeutiques. 16h30 17h15 Unités de modélisation Individuelles : micro-simulations Franck Maunoury

Atelier 2 : Etudes thérapeutiques. 16h30 17h15 Unités de modélisation Individuelles : micro-simulations Franck Maunoury LA MODELISATION DE L EFFICIENCE : Comment CONSTRUIRE une étude de PRIMO inscription? SEMINAIRE JGEM-SFES Atelier 2 : Etudes thérapeutiques 16h30 17h15 Unités de modélisation Individuelles : micro-simulations

Plus en détail

ARLIN Nord-pas de Calais

ARLIN Nord-pas de Calais PLAN DE MAITRISE D UNE EPIDEMIE Date : 07/07/11 Page : 1/15 REDACTION VERIFICATION APPROBATION ARLIN Nord-pas de Calais NOM : Fonction : Visa : NOM : Fonction : Visa : NOM : Fonction Visa : I. OBJET Proposer

Plus en détail

David Marsden Labour market segmentation in Britain: the decline of occupational labour markets and the spread of entry tournaments

David Marsden Labour market segmentation in Britain: the decline of occupational labour markets and the spread of entry tournaments David Marsden Labour market segmentation in Britain: the decline of occupational labour markets and the spread of entry tournaments Article (Accepted version) (Refereed) Original citation: Marsden, David

Plus en détail

dès l initiation de l antibiothérapie?

dès l initiation de l antibiothérapie? V ème Journée Antibio-Résistance & Infections Paris Jeudi 3 décembre 2015 Optimiser l antibiotic stewardship: dès l initiation de l antibiothérapie? François Barbier Réanimation Médicale - Centre Hospitalier

Plus en détail

Nouvelle grippe A(H1N1) : actualités et conduite à tenir pour les équipes opérationnelles d'hygiène

Nouvelle grippe A(H1N1) : actualités et conduite à tenir pour les équipes opérationnelles d'hygiène Nouvelle grippe A(H1N1) : actualités et conduite à tenir pour les équipes opérationnelles d'hygiène Bruno Coignard pour les équipes d investigation Grippe A(H1N1) Institut de veille sanitaire, Saint-Maurice

Plus en détail

Place du dépistage du staphylocoque dans la prévention des infections du site opératoire

Place du dépistage du staphylocoque dans la prévention des infections du site opératoire Place du dépistage du staphylocoque dans la prévention des infections du site opératoire Enseignement Post-Universitaire La Salines-les-Bains - Jeudi 26 avril 2012 Didier LEPELLETIER Unité de Gestion du

Plus en détail

1 ère JOURNEE GRENOBLOISE DES EHPAD LE RISQUE NOSOCOMIAL EN EHPAD. Dr CHARDON-TOURNE Gériatrie Chissé C.H.U. de Grenoble

1 ère JOURNEE GRENOBLOISE DES EHPAD LE RISQUE NOSOCOMIAL EN EHPAD. Dr CHARDON-TOURNE Gériatrie Chissé C.H.U. de Grenoble 1 ère JOURNEE GRENOBLOISE DES EHPAD LE RISQUE NOSOCOMIAL EN EHPAD Dr CHARDON-TOURNE Gériatrie Chissé C.H.U. de Grenoble INFECTION NOSOCOMIALE : DEFINITION Consécutive à des soins Le plus souvent à l hôpital

Plus en détail

Classification. Session organisée par Charles Bouveyron et Francois Caron et Marie Chavent

Classification. Session organisée par Charles Bouveyron et Francois Caron et Marie Chavent Classification Session organisée par Charles Bouveyron et Francois Caron et Marie Chavent La classification a pour objet de regrouper des données en classes possédant des caractéristiques similaires. La

Plus en détail

Incertitude et variabilité : la nécessité de les intégrer dans les modèles

Incertitude et variabilité : la nécessité de les intégrer dans les modèles Incertitude et variabilité : la nécessité de les intégrer dans les modèles M. L. Delignette-Muller Laboratoire de Biométrie et Biologie Evolutive VetAgro Sup - Université de Lyon - CNRS UMR 5558 24 novembre

Plus en détail

10 questions sur les BHRe Tout ce que les recommandations du HCSP ne vous disent pas

10 questions sur les BHRe Tout ce que les recommandations du HCSP ne vous disent pas 10 questions sur les BHRe Tout ce que les recommandations du HCSP ne vous disent pas Olivier Baud ARlin Auvergne EOHH CHU Clermont Ferrand Méthode Relecture des recommandations Recherche des questions

Plus en détail

bénéfices et maléfices des mesures d isolement

bénéfices et maléfices des mesures d isolement bénéfices et maléfices des mesures d isolement MC. Eisenring Centre de Maladies Infectieuses et Épidémiologie (CMIE) Institut Central des Hôpitaux Valaisans (ICHV), Sion Journée de formation, Assemblée

Plus en détail

Peut-on diminuer la durée e du portage de l ERG l l utilisation d un d

Peut-on diminuer la durée e du portage de l ERG l l utilisation d un d Peut-on diminuer la durée e du portage de l ERG l par l utilisation d un d probiotique? Olivier Lesens Maladies Infectieuses et Tropicales, CHU de Clermont-Ferrand PLAN Problématique Généralités sur les

Plus en détail

Pendant de nombreuses années, les mesures dites

Pendant de nombreuses années, les mesures dites PRÉVENIR Transmission croisée Pendant de nombreuses années, les mesures dites d isolement, ont été définies par le réservoir de l agent infectieux : isolement entérique, cutané, respiratoire Les Centers

Plus en détail

Patient BMR + : risques de contamination et prévention en préhospitalier et aux urgences

Patient BMR + : risques de contamination et prévention en préhospitalier et aux urgences 52 e congrès national d anesthésie et de réanimation. Infirmiers. Infirmier(e)s d urgence 2010 Sfar. Tous droits réservés. Patient BMR + : risques de contamination et prévention en préhospitalier et aux

Plus en détail

Recommandations pour la prise en charge des Carbapenemase Producing Enterobacteriaceae (CPE)

Recommandations pour la prise en charge des Carbapenemase Producing Enterobacteriaceae (CPE) Recommandations pour la prise en charge des Carbapenemase Producing Enterobacteriaceae (CPE) o Prendre rapidement les mesures nécessaires visant à assurer une maîtrise rapide de l émergence de CPE et d

Plus en détail

Utilité du dépistage des MRSA par PCR

Utilité du dépistage des MRSA par PCR Utilité du dépistage des MRSA par PCR Stephan Harbarth, MD, MS Infection Control Program University of Geneva Hospitals Agenda Epidémiologie Détection améliorée des porteurs inconnus Profile du patient

Plus en détail

et mupirocine/chlorhexidine

et mupirocine/chlorhexidine Etude de l évolution des résistances bactériennes sous décontamination digestive sélectiveet et mupirocine/chlorhexidine chlorhexidinesur une période de quatre ans en réanimation médicale Mémoire de DESC

Plus en détail

Bactéries Hautement Résistantes BHRe

Bactéries Hautement Résistantes BHRe Bactéries Hautement Résistantes BHRe Des recommandations adaptées à des BMR particulières Entérocoques résistants aux glycopeptides (ERG) Dès 2005 (avis CTINILS puis fiches techniques) Rapport HCSP 2010

Plus en détail

Avis du Comité sur les infections nosocomiales du Québec

Avis du Comité sur les infections nosocomiales du Québec Avis du Comité sur les infections nosocomiales du Québec Risque de transmission de zoonoses par les animaux utilisés en centre d hébergement et de soins de longue durée La présente a pour but de répondre

Plus en détail

Assises professionnelles de l infectiologie

Assises professionnelles de l infectiologie Valoriser l infectiologie transversale par l amélioration de la qualité Arnaud Pouillart Hôpitaux pédiatriques de Nice CHU-Lenval 1 Champ de l étude Activités transversales : Expertise, activité intellectuelle

Plus en détail

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution

Plus en détail

Les précautions «standard» sont décrites dans la circulaire

Les précautions «standard» sont décrites dans la circulaire PRÉVENIR Précautions standard Les précautions «standard» sont décrites dans la circulaire DGS/DH - n 98/249 du 20 avril 1998 relative à la prévention de la transmission d agents infectieux véhiculés par

Plus en détail

Autres termes clés (Other key terms)

Autres termes clés (Other key terms) Carve-out method Autres termes clés (Other key terms) Norme Rapports d assurance sur les contrôles d une société de services extérieurs (, Assurance Reports on Controls at a Third Party Service Organization)

Plus en détail

LECTURE CRITIQUE 1 ER PAS

LECTURE CRITIQUE 1 ER PAS 1 LECTURE CRITIQUE D UN ARTICLE SCIENTIFIQUE 1 ER PAS FORUM PCI 20,05,14 MJ Thévenin / Inf. EPIAS/ SMPH BUTS ET ORGANISATION DE LA PRÉSENTATION Utiliser une grille de lecture critique d un article Comprendre

Plus en détail

DU Anti-infectieux, 2009-2010. Dr JM Chapplain Service de Maladies Infectieuses Unité d Hygiène CHU Rennes

DU Anti-infectieux, 2009-2010. Dr JM Chapplain Service de Maladies Infectieuses Unité d Hygiène CHU Rennes Faut-il dépister d les SARM? DU Anti-infectieux, 2009-2010 Dr JM Chapplain Service de Maladies Infectieuses Unité d Hygiène CHU Rennes Qui se pose la question? Le clinicien? Le bactériologiste? Le pharmacien?

Plus en détail

Entérocoque résistant à la Vancomycine Entérocoque résistant au Glycopeptides

Entérocoque résistant à la Vancomycine Entérocoque résistant au Glycopeptides VRE-GRE Entérocoque résistant à la Vancomycine Entérocoque résistant au Glycopeptides Dr.Véronique Erard, HFR Février 2012 Entérocoques Cocci gram positifs Chez l homme: présence Tractus gastro-intestinal

Plus en détail

Les mesures de prévention du risque infectieux. Mesures de prévention du risque infectieux lié à l eau. Philippe BERTHELOT

Les mesures de prévention du risque infectieux. Mesures de prévention du risque infectieux lié à l eau. Philippe BERTHELOT Mesures de prévention du risque infectieux lié à l eau Philippe BERTHELOT Unité d Hygiène inter-hospitalière Service des Maladies Infectieuses et laboratoire de microbiologie, CHU de Saint-Etienne Professeur

Plus en détail

Il est bien établi que le réseau d eau hospitalier peut

Il est bien établi que le réseau d eau hospitalier peut Les micro-organismes de l eau impliqués dans les infections nosocomiales Depuis 2001 chez Pall, en charge de l information scientifique et réglementaire dans les domaines d applications couverts par la

Plus en détail

Exemple PLS avec SAS

Exemple PLS avec SAS Exemple PLS avec SAS This example, from Umetrics (1995), demonstrates different ways to examine a PLS model. The data come from the field of drug discovery. New drugs are developed from chemicals that

Plus en détail

Département Prestation de services et sécurité (SDS) Siège de l Organisation mondiale de la Santé

Département Prestation de services et sécurité (SDS) Siège de l Organisation mondiale de la Santé Département Prestation de services et sécurité (SDS) Siège de l Organisation mondiale de la Santé Antibioprophylaxie en chirurgie dans le cadre des soins : enquête mondiale OMS RÉSUMÉ DU PROJET Comme en

Plus en détail

INEGALITES SOCIALES ET MEDECINE PREDICTIVE: QUELS ENJEUX EN ONCOGENETIQUE?

INEGALITES SOCIALES ET MEDECINE PREDICTIVE: QUELS ENJEUX EN ONCOGENETIQUE? INEGALITES SOCIALES ET MEDECINE PREDICTIVE: QUELS ENJEUX EN ONCOGENETIQUE? Laetitia HUIART Praticien Hospitalier, CHU La Réunion Résumé. - Les avancées techniques en matière génétique permettent, depuis

Plus en détail

Hygiène Stérilisation. Centre de Formation des Professions de Santé Programme 2013 111

Hygiène Stérilisation. Centre de Formation des Professions de Santé Programme 2013 111 Hygiène Stérilisation 2013 111 Formation des correspondants en hygiène hospitalière CCLIN Sud-Ouest (formation réservée aux correspondants hygiène de Midi-Pyrénées) Répondre aux exigences de la circulaire

Plus en détail

BMR/ BHR en EHPAD Prise en charge des résidents

BMR/ BHR en EHPAD Prise en charge des résidents BMR/ BHR en EHPAD Prise en charge des résidents L. Grolier-Bois - Médecin hygiéniste Centre Hospitalier de Bretagne-Sud (56) Centre Hospitalier de Quimperlé (29) ARLIN BRETAGNE Journée Régionale de Formation

Plus en détail

Evaluation des Précautions Complémentaires de type Contact

Evaluation des Précautions Complémentaires de type Contact Evaluation des Précautions Complémentaires de type Contact GUIDE POUR L ORGANISATION DE L ÉVALUATION ET LE RECUEIL DES DONNÉES Novembre 2011 Composition groupe de travail / Etablissements test : CH Germon

Plus en détail

LES INFECTIONS NOSOCOMIALES ET LEUR PREVENTION PAR L HYGIENE HOSPITALIERE

LES INFECTIONS NOSOCOMIALES ET LEUR PREVENTION PAR L HYGIENE HOSPITALIERE LES INFECTIONS NOSOCOMIALES ET LEUR PREVENTION PAR L HYGIENE HOSPITALIERE DCEM 1 Professeur Michel Drancourt Michel.drancourt@univmed.fr Années 2012-2013 http://www.mediterranee-infection.com/ DEFINITION

Plus en détail

Testing : A Roadmap. Mary Jean Harrold. Présentation de Olivier Tissot

Testing : A Roadmap. Mary Jean Harrold. Présentation de Olivier Tissot Testing : A Roadmap Mary Jean Harrold Présentation de Olivier Tissot Testing : A Roadmap I. L auteur II. Introduction sur les test : les enjeux, la problématique III. Les tests : roadmap IV. Conclusion

Plus en détail

CHRA PR HYG 03 ind 2 ISOLEMENT SEPTIQUE

CHRA PR HYG 03 ind 2 ISOLEMENT SEPTIQUE CHRA PR HYG 03 ind 2 ISOLEMENT SEPTIQUE Date de diffusion : 06/2000 Version : 2 Pages : 5 Rédigée par : M.C. Hum et A. Charvier Vérifiée par : C. Santré Validée par : CLIN Objet : La procédure a pour but

Plus en détail

MEDIAPLANNING & HYBRIDATION APPLIQUE A L INTERNET

MEDIAPLANNING & HYBRIDATION APPLIQUE A L INTERNET MEDIAPLANNING & HYBRIDATION APPLIQUE A L INTERNET MOBILE Gaël Crochet 1 & Gilles Santini 2 1 Médiamétrie, 70 rue Rivay, 92532 Levallois-Perret, France, gcrochet@mediametrie.fr 2 Vintco SARL, 8 rue Jean

Plus en détail

Konstantin Avrachenkov, Urtzi Ayesta, Patrick Brown and Eeva Nyberg

Konstantin Avrachenkov, Urtzi Ayesta, Patrick Brown and Eeva Nyberg Konstantin Avrachenkov, Urtzi Ayesta, Patrick Brown and Eeva Nyberg Le présent document contient des informations qui sont la propriété de France Télécom. L'acceptation de ce document par son destinataire

Plus en détail

Prise en charge des patients porteurs de germes résistants.

Prise en charge des patients porteurs de germes résistants. 53 e congrès national d anesthésie et de réanimation Médecins. Conférence d actualisation 2011 Sfar. Tous droits réservés. Prise en charge des patients porteurs de germes résistants. A. LEPAPE PAM Urgence

Plus en détail

La modélisation des épidémies de maladies émergentes : les exemples du chikungunya et de la pandémie grippale

La modélisation des épidémies de maladies émergentes : les exemples du chikungunya et de la pandémie grippale LA MODÉLISATION DES ÉPIDÉMIES DE MALADIES ÉMERGENTES 49 La modélisation des épidémies de maladies émergentes : les exemples du chikungunya et de la pandémie grippale Aujourd hui, pour la première fois

Plus en détail

«Isolement» Précautions Complémentaires d Hygiène (PCH)

«Isolement» Précautions Complémentaires d Hygiène (PCH) «Isolement» Précautions Complémentaires d Hygiène (PCH) EPU «Bactéries Multi-Résistantes» 21 janvier 2010 Dr I. Martin Équipe Opérationnelle d Hygiène 1 Définitions «Isolement» : mesures d hygiène visant

Plus en détail

ABL and Evivar Medical for Strategic Partnership and Alliance in HIV and Hepatitis

ABL and Evivar Medical for Strategic Partnership and Alliance in HIV and Hepatitis ABL and Evivar Medical for Strategic Partnership and Alliance in HIV and Hepatitis Conférence de Presse ABL SA - Chambre de Commerce de Luxembourg - Mardi 29 Septembre 2009, 18h Annonce de Presse ABL and

Plus en détail

refine initiative Conference 2011 Radisson Blu Centrum Hotel - WARSAW 04 / 05 October 2011

refine initiative Conference 2011 Radisson Blu Centrum Hotel - WARSAW 04 / 05 October 2011 Conference 2011 Conference under the patronage of the Polish National Contact Point for Research Programmes of the EU Supported by: Let s Construct Europe s Future With Innovative Buildings and Infrastructures

Plus en détail

Prévenir la Diffusion des BHRe en région Centre : les nouvelles recommandations françaises pour le SSR, le SLD, l HAD et le secteur Médico-Social

Prévenir la Diffusion des BHRe en région Centre : les nouvelles recommandations françaises pour le SSR, le SLD, l HAD et le secteur Médico-Social Prévenir la Diffusion des BHRe en région Centre : les nouvelles recommandations françaises pour le SSR, le SLD, l HAD et le secteur Médico-Social Bruno Grandbastien pour le groupe de travail du HCSP Faculté

Plus en détail

Role du portage nasal dans les infections à S. aureus

Role du portage nasal dans les infections à S. aureus Role du portage nasal dans les infections à S. aureus Jean-Christophe LUCET, UHLIN GH Bichat Claude Bernard, APHP Université Denis Diderot, Paris VII JNI, 11 juin 2009 Le champ de la question Ce que je

Plus en détail

M ODELE EUROPÉEN DE CURRICULUM VITAE

M ODELE EUROPÉEN DE CURRICULUM VITAE M ODELE EUROPÉEN DE CURRICULUM VITAE INFORMATIONS PERSONNELLES Nom FLAHAULT ANTOINE Téléphone +33 2 99 02 27 11 Télécopie +33 2 99 02 28 29 Courrier électronique antoine.flahault@ehesp.fr Nationalité Française

Plus en détail

La résistance d'agents infectieux aux médicaments antimicrobiens

La résistance d'agents infectieux aux médicaments antimicrobiens DECLARATION COMMUNE DES ACADEMIES DU G SCIENCE 2013 La résistance d'agents infectieux aux médicaments antimicrobiens Une menace globale pour l'humanité Depuis l introduction dans les années 40 du premier

Plus en détail

LA PRESCRIPTION ANTIBIOTIQUE : UNE APPROCHE SOCIO- COMPORTEMENTALE

LA PRESCRIPTION ANTIBIOTIQUE : UNE APPROCHE SOCIO- COMPORTEMENTALE LA PRESCRIPTION ANTIBIOTIQUE : UNE APPROCHE SOCIO- COMPORTEMENTALE Prof. Céline Pulcini Service de Maladies Infectieuses CHRU de Nancy 5 février 2015 DU ATB Grenoble BON USAGE DES ANTIBIOTIQUES Définition

Plus en détail

UNIVERSITE PARIS V Faculté Cochin Port Royal. Les bactéries multi-résistantes BMR en HEPAD, mythe ou réalité. Dr LE PAIH LEROY Marie-Françoise

UNIVERSITE PARIS V Faculté Cochin Port Royal. Les bactéries multi-résistantes BMR en HEPAD, mythe ou réalité. Dr LE PAIH LEROY Marie-Françoise UNIVERSITE PARIS V Faculté Cochin Port Royal Les bactéries multi-résistantes BMR en HEPAD, mythe ou réalité Dr LE PAIH LEROY Marie-Françoise DIU de médecin coordonnateur HEPAD Année 2007-2008 1 1 - INTRODUCTION

Plus en détail

RÉSUMÉ DE THÈSE. L implantation des systèmes d'information (SI) organisationnels demeure une tâche difficile

RÉSUMÉ DE THÈSE. L implantation des systèmes d'information (SI) organisationnels demeure une tâche difficile RÉSUMÉ DE THÈSE L implantation des systèmes d'information (SI) organisationnels demeure une tâche difficile avec des estimations de deux projets sur trois peinent à donner un résultat satisfaisant (Nelson,

Plus en détail

Surveillance de la Prescription des Antibiotiques

Surveillance de la Prescription des Antibiotiques Surveillance de la Prescription des Antibiotiques Rémy Gauzit Yves Péan Jérôme Robert JP Bedos Emmanuelle Varon Jean Paul Stahl Alain Lepape Jean Pierre Bru Xavier Bertrand Serge Alfandari Au nom de tous

Plus en détail

TABLEAU DE BORD DES INFECTIONS NOSOCOMIALES

TABLEAU DE BORD DES INFECTIONS NOSOCOMIALES JOURNÉE RÉGIONALE DE FORMATION EN HYGIÈNE HOSPITALIÈRE Lorient Mercredi 27 mars 2013 TABLEAU DE BORD DES INFECTIONS NOSOCOMIALES Actualités & perspectives Dr Grégory EMERY Bureau Qualité et sécurité des

Plus en détail

DIAGNOSTIC ET TRAITEMENT D UNE INFECTION URINAIRE NOSOCOMIALE CHEZ LE PATIENT SONDE

DIAGNOSTIC ET TRAITEMENT D UNE INFECTION URINAIRE NOSOCOMIALE CHEZ LE PATIENT SONDE DIAGNOSTIC ET TRAITEMENT D UNE INFECTION URINAIRE NOSOCOMIALE CHEZ LE PATIENT SONDE LILLAZ J. GENERALITES 1ère à 3eme cause d infection nosocomiale en réa. Richards MJ.Crit Care Med 1999.Spencer RC.Eur

Plus en détail

Epidémiologie des infec0ons à pneumocoque et de la grippe

Epidémiologie des infec0ons à pneumocoque et de la grippe Epidémiologie des infec0ons à pneumocoque et de la grippe Dr Nadim Cassir Maladies Infec0euses et Tropicales Comité de Lu>e contre les Infec0ons Nosocomiales Hôpital Nord Marseille 1 Personnes âgées de

Plus en détail

Groupes de gestion de l antibiothérapie (GGA) dans les hôpitaux belges. Dr Evelyne Van Gastel

Groupes de gestion de l antibiothérapie (GGA) dans les hôpitaux belges. Dr Evelyne Van Gastel Groupes de gestion de l antibiothérapie (GGA) dans les hôpitaux belges Dr Evelyne Van Gastel Contenu 1. Normes en financement GGA 2. IDSA-SHEA Guidelines on Antimicrobial Stewardship 3. Analyse des rapports

Plus en détail

De quoi parlons nous?

De quoi parlons nous? De quoi parlons nous? 1 De quoi parlons nous? Grippe Pandémie Grippe Peste saisonnière grippale humaine H5N1 aviaire H1N1 H2N2 H3N2 H5N1 2 De quoi parlons nous? Grippe Pandémie Grippe Peste saisonnière

Plus en détail

Mais aussi. Mais aussi. www.webbertraining.com. Contexte. Existant. Contexte

Mais aussi. Mais aussi. www.webbertraining.com. Contexte. Existant. Contexte Contexte Recommanda)ons françaises pour la préven)on de la transmission croisée des «Bactéries Hautement Résistantes aux an)bio)ques émergentes» (BHRe), 2013 Preven&ng emergent and highly resistant bacteria

Plus en détail

Programme National de Prévention des infections associées aux soins en ES, 2009-2012

Programme National de Prévention des infections associées aux soins en ES, 2009-2012 Programme National de Prévention des infections associées aux soins en ES, 2009-2012 Pr Coordonnateur Groupe de Pilotage du Programme National de Lutte contre les Infections Nosocomiales Séminaire National

Plus en détail

Vers une approche Adaptative pour la Découverte et la Composition Dynamique des Services

Vers une approche Adaptative pour la Découverte et la Composition Dynamique des Services 69 Vers une approche Adaptative pour la Découverte et la Composition Dynamique des Services M. Bakhouya, J. Gaber et A. Koukam Laboratoire Systèmes et Transports SeT Université de Technologie de Belfort-Montbéliard

Plus en détail

La recherche clinique au cœur du progrès thérapeutique

La recherche clinique au cœur du progrès thérapeutique 2 èmes Assises de l Innovation Thérapeutique Paris, 05-11-2014 La recherche clinique au cœur du progrès thérapeutique Pr. Jean-François DHAINAUT Président du Groupement Inter-régional de la Recherche Clinique

Plus en détail

ICC International Court of Arbitration Bulletin. Cour internationale d arbitrage de la CCI

ICC International Court of Arbitration Bulletin. Cour internationale d arbitrage de la CCI ICC International Court of Arbitration Bulletin Cour internationale d arbitrage de la CCI Extract for restricted use Extrait à tirage limité International Court of Arbitration 38, Cours Albert 1er, 75008

Plus en détail

Transmission nosocomiale des entérovirus :

Transmission nosocomiale des entérovirus : Transmission nosocomiale des entérovirus : Intérêt du diagnostic moléculaire rapide associé au génotypage prospectif Enseignement à propos d une observation Audrey MIRAND EA3843 Laboratoire de Virologie

Plus en détail

COMMUNICATION LORS DE TRANSFERTS ENTRE HÔPITAL ET MRS D UN RÉSIDENT PORTEUR DE BMR

COMMUNICATION LORS DE TRANSFERTS ENTRE HÔPITAL ET MRS D UN RÉSIDENT PORTEUR DE BMR COMMUNICATION LORS DE TRANSFERTS ENTRE HÔPITAL ET MRS D UN RÉSIDENT PORTEUR DE BMR Symposium 19 novembre 2015 D. Favay (CPAS Charleroi), C. Guillaume (ISPPC), J. Janiczek (ISPPC), C. Laveaux (CHU Tivoli)

Plus en détail

Evolution de l introduction des statines chez les diabétiques âgés au Québec entre 2000 et 2008

Evolution de l introduction des statines chez les diabétiques âgés au Québec entre 2000 et 2008 Evolution de l introduction des statines chez les diabétiques âgés au Québec entre 2000 et 2008 ML Laroche 1, E Demers 2, MC Breton 2, JP Gregoire 2, J Moisan 2 1- EA 6310 HAVAE, Université, Limoges, France

Plus en détail

Le nouveau paradigme de l évaluation des médicaments en vie réelle

Le nouveau paradigme de l évaluation des médicaments en vie réelle Académie de Pharmacie 2 décembre 2015 Le nouveau paradigme de l évaluation des médicaments en vie réelle Lucien Abenhaim Laser Analytica London School of Hygiene & Tropical Medicine 1 Questions Définitions

Plus en détail

Amélioration et réinstauration de pratiques d EFP

Amélioration et réinstauration de pratiques d EFP Amélioration et réinstauration de pratiques d EFP LLP-LDV-TOI-2011-LT-0087 1 Information sur le projet Titre: Code Projet: Année: 2011 Type de Projet: Statut: Accroche marketing: Amélioration et réinstauration

Plus en détail

S adapter à un nouvel environnement. Historique. Conduite de projet. Choix retenu : cabinet d architecture Brunet Saunier PARIS

S adapter à un nouvel environnement. Historique. Conduite de projet. Choix retenu : cabinet d architecture Brunet Saunier PARIS S adapter à un nouvel environnement Historique Création de groupes de travail 2000. Concours d architectes 2001 : 3 candidats. APS : Avant Projet Sommaire 2002. APD : Avant Projet Détaillé 2003. Premier

Plus en détail

patient porteur de BHR en SSR

patient porteur de BHR en SSR Gestion d un d patient porteur de BHR en SSR Centre Mutualiste de RééR ééducation et Réadaptation R Fonctionnelles de Kerpape D. HELGUEN-E. LE CAIGNEC EOHH Journée régionale de formation en hygiène hospitalière

Plus en détail

Surveillance et modélisation mathématique des maladies transmissibles

Surveillance et modélisation mathématique des maladies transmissibles Surveillance et modélisation mathématique des maladies transmissibles Antoine Flahault Inserm - Université Pierre et Marie Curie UMR-S 707 16 juillet 2007 Modèle = miroir simplifié de la réalité Modèle

Plus en détail

Objectif : Programme: Projet coordonné par l Office International de l Eau. Evènement labellisé World Water Forum 6

Objectif : Programme: Projet coordonné par l Office International de l Eau. Evènement labellisé World Water Forum 6 Atelier WaterDiss2.0: Valoriser les résultats de la recherche sur l'eau comme catalyseur de l'innovation. Paris, Pollutec, 1 er Décembre 2011 De 14h à 17h Salle 617 Objectif : L'objectif du projet WaterDiss2.0

Plus en détail