Modélisation semi-analytique d'un système de CND-CF pour la caractérisation d'un défaut dans la structure d'un matériau conducteur

Dimension: px
Commencer à balayer dès la page:

Download "Modélisation semi-analytique d'un système de CND-CF pour la caractérisation d'un défaut dans la structure d'un matériau conducteur"

Transcription

1 UNIVERSITÉ KASDI MERBAH OUARGLA FACULTÉ DES SCIENCES ET TECHNOLOGIES ET SCIENCES DE LA MATIÉRE DÉPARTEMENT : GÉNIE ÉLECTRIQUE Mémoire Master académique Domaine : Génie électrique Filière : Electrotechnique Spécialité: Matériaux Electrotechnique Présenté par : Thème - TALEB M'HAMMED Mustapha - GHEDAMSI Elhachmi Modélisation semi-analytique d'un système de CND-CF pour la caractérisation d'un défaut dans la structure d'un matériau conducteur Soutenu publiquement Le : 26/06/2013 Devant le jury : -M - A.Manseur -MAA Président UKM Ouargla -M - T.Bouchala -MAA Encadreur/rapporteur UKM Ouargla -M - Y.Bourek -MAA Examinateur UKM Ouargla -M - A.Ben mir -MAA Examinateur UKM Ouargla Année Universitaire : 2012 /2013

2

3 REMERCIEMENTS Nous rendons grâce à dieu de nous avoir donné le courage et la patience afin de mener ce Travail à terme. Arrivé au terme de notre travail, nous tenons à exprimer vivement notre profonde gratitude à notre promoteur Mr.T.Bouchala pour l'aide, le suivie et l'intérêt qu'il n'a cessé de nous apporter jusqu'à l'achèvement de ce travail. Nous tenons également à remercier l'ensemble des membres du jury qui ont fait l'honneur de juger ce travail. Enfin, nos chaleureux remerciements vont également aux enseignants du département de génie électrique pour avoir contribuer à notre formation.

4 Sommaire

5 sommaire SOMMAIRE Introduction générale Chapitre I Généralité sur le contrôle non destructif par courant de Foucault I.1 Introduction... 3 I-2- Différentes techniques du C N D...4 I-2-1-Examen visuel...5 I.2.2-Ressuage.5 I.2.3-Radiographie..5 I.2.4-Contrôle par Ultrasons...6 I.2.5 -Flux de fuite magnétique (magnétoscopie)..7 I.3-Principe de fonctionnement du CND par courant de Foucault 8 I.4-Principe physique. 9 I.5. Effet de peau....9 I.6-Avantages et inconvénients du contrôle par Courant de Foucault.10 I.6.1-Avantages du contrôle par Courants de Foucault I.6.2-Inconvénients du contrôle par Courants de Foucault I.7-Objectifs des CND-CF...11 I.7.1-Caractérisation géométrique 11 I.7.2-Caractérisation électromagnétique..11 I.7.3-Contrôle de l état de la santé...11 I.8-classification des capteurs...11 I.8.1-Classification selon la géométrie.11 I La bobine encerclant I Sonde interne...12 I Sonde ponctuelle...12 I Bobine plate...13 I Sonde interne tournante 13 I.8.2-Classification selon la fonction I Capteur à double fonction 13 I Capteurs à fonctions séparés...14 I.8.3-Classification selon le mode de contrôle. 14 I Mode absolu.14 I Mode différentiel...15

6 sommaire I.9-Les défauts..16 I.10-Conclusion...17 Chapitre II Modalisation Des Systèmes CND-CF à Capteur Absolu Par La MCC II.1-Introduction..19 II.2-Lois classiques de l électromagnétisme 19 II.2.1-Loi d Ampère...19 II.2.2-Loi Lenz -Faraday..20 II.2.4-Loi de Biot et Savart...20 II.2.3-Les équations de Maxwell...21 II.3-Equations électromagnétiques couplées II.3.1-Principe et équation élémentaire du couplage des circuits 22 II Equation d'intégrale.23 II.3.2-Impédance d un bobinage à vide..24 II L impédance élémentaire à vide.24 II Impédance totale à vide...25 II.3.3-Modélisation d un système source charge...25 II Définitions des paramètres et grandeurs du domaine d étude...25 II Equation intégrale relative à la source...26 II Equation intégrale relative à la charge...26 II Impédance en charge...26 II.3.4-Cas d une excitation de courant.26 II.4-Capteur en présence d un matériau conducteur.27 II.4.1-Modèle des circuits électriques couplés 27 II.4.2-Equations couplées dans le capteur (source)...27 II.4.3-Equations couplées dans le matériau (charge)...27 II.4.4-Equations du système (capteur +charge)...28 II.5-Conclusion.30 Chapitre III Validation et application III.1-Introduction...32 III.2-Validation et exploitation 32 III.3-Etude de la variation de l impédance en fonction de la géométrie du défaut...33 III.3-1- Largeur du défaut.33

7 sommaire III.3-2- Profondeur du défaut 35 III.4-Conclusion 38 Conclusion générale...39 Références bibliographiques.41

8 Résumé Dans ce mémoire, nous présentons une modélisation semi-analytique d'un système de contrôle non destructif par courants de Foucault pour la caractérisation d'un défaut dans la structure d'un matériau conducteur. L objectif principal est d aboutir à l expression semi analytique de l impédance du capteur en fonction de la largeur et la profondeur du défaut à l aide d un capteur à double fonction. Avant d entamer la modélisation une recherche bibliographique a été menée sur les différentes techniques utilisées ainsi que les principes physiques intervenants. Les capteurs de contrôle non destructif par courant de Foucault sont souvent classés selon leurs géométries, leurs fonctions et leurs modes de contrôle. Dans un premier temps, les phénomènes inductifs mis en jeu dans le CND-CF sont décrits par les équations des circuits couplés. Ensuite, une expression semi analytique est donnée explicitement en fonction des paramètres du défaut surfacique considéré. Pour mieux comprendre l effet de chacun d eux sur l impédance du capteur et la fréquence du champ d excitation, nous élaborons plusieurs simulations sous le logiciel Matlab. Les résultats montrent que la signature augmente avec l augmentation du volume affecté. D'autre part, ces défauts sont bien captés lorsque la fréquence est élevée. Mot Clés: Contrôle Non Destructif, Courants de Foucault, Méthode des Circuit Couples Abstract In this memory, we present a semi-analytic modeling of eddy current non destructive testing for defect characterization in conductive material. The main objective is this study is to obtain the expression of the sensor impedance according to the defect width and the depth. Before starting the modeling, a bibliographic research has been led on the different techniques used as well as the intervening physical principles. The EC-NDT sensors are often classified according to their geometries and their functions. The inductive phenomena intervening in EC are described by the coupled circuit equations. Then, a semi analytic expression is given explicitly according to the considered superficial defect parameters. To understand accurately the effect of each defect parameter and exciting magnetic field frequency on the sensor impedance, we elaborate several simulations in Matlab software. The results show that the defect signature increases with the increase of the affected volume. In the same way, these kinds of defect are well captured when the frequency get higher. Key word: Non Destructive Resting, Eddy Current, Coupled Circuit Method.

9 Notations et symboles Notations et symboles H : Champ magnétique. B : Induction magnétique. E : Champ électrique. D : Induction électrique. A : Potentiel magnétique vecteur. Ø : Le flux magnétique V : Potentiel électrique scalaire. M : Aimantation magnétique. I : Polarisation magnétique. u : Tension élémentaire. U : Tension aux bornes du capteur. : Flux de l induction magnétique. : Force électromotrice. J : Densité de courants surfaciques. J v : Densité de courants volumiques. I : Intensité du courant électrique. I c : Intensité des courants induits. I v : Intensité des courants volumiques. I 0, I s : Intensité de courants dans la source (capteur) I 0. I m : Courants fictifs de magnétisation. : Densité de charges électriques volumiques. : Conductivité électrique. 0 : Conductivité électrique du capteur (bobine). c : Conductivité électrique de la cible. : Susceptibilité magnétique. r : Susceptibilité magnétique relative.

10 Notations et symboles Z : Impédance. X : Réactance. R : Résistance Z 0 : Impédance du capteur à vide. X 0 : Réactance du capteur à vide. R 0 : Résistance du capteur à vide. X n : Réactance normalisée. R n : Résistance normalisée. Z n : Impédance normalisée. Z : Variation de l impédance. X : Variation de la réactance. R : Variation de la résistance. : Épaisseur de peau. : Phase. : Amplitude. : Perméabilité magnétique. r : Perméabilité magnétique relative. 0 : Perméabilité magnétique du vide. G : Fonction relative aux coordonnées des points émetteurs et récepteurs. Gbr : Composante deg suivant l axe radial. Gbz : Composante deg suivant l axe vertical. n : Vecteur normale à la surface. E 1, E 2 : Fonctions elliptiques respectivement de la première et seconde espèce. t : Variable temporaire. x : Axe des abscisses en coordonnées cartésiennes. y : Axe des coordonnées en coordonnées cartésiennes. r : Axe radial en coordonnées cylindriques. : Axe angulaire en coordonnées cylindriques. z : Axe vertical en coordonnées cylindriques.

11 Notations et symboles e : Vecteur angulaire unitaire. e r : Vecteur radial unitaire. S : Surface. l m : Pas linéique sur la surface du noyau. : Volume. : Frontière. : Domaine d étude. c : Domaine de la charge., : Domaines de la source. o s N : Nombre d éléments total. N 0 : Nombre d éléments dans le capteur. N c : Nombre d éléments dans la charge. N m : Nombre d éléments a la surface du noyau.

12 Abréviation ABREVIATION CND : Contrôle Non Destructif CF : Courants de Foucault CND-CF : Contrôle Non Destructif par Courants de Foucault CCF : Capteur par Courants de Foucault. CM : Capteur Magnétique. MEF: Méthode des Eléments Finis. MCC: Méthode des Circuits Couplés. 2D: Bidimensionnel. 3D: Tridimensionnel.

13 Listes des figures et des tableaux

14 Listes des figures et des tableaux Listes des figures Chapitre I Fig. I-1 Principe du ressuage...5 Fig. I-2 Principe de la radiographie...6 Fig. I-3 Principe du CND par ultrasons...6 Fig. I-4 Principe de la magnétoscopie.7 Fig. I-5 Principe du CND par courant de Foucault Fig. I-6 Principe physique du CND par courant de Foucault.. 9 Fig. I-7 Bobine encerclant...12 Fig. I-8 Bobine interne glissante avec noyau 12 Fig. I-9 Bobine simple avec noyau...12 Fig. I-10 Bobine plate...13 Fig. I-11 Capteur interne tournant.13 Fig. I-12 Capteur à double fonction..14 Fig. I-13 Capteur à fonction séparée.14 Fig. I-14 Sonde absolue 15 Fig. I-15 Capteur différentiel à deux éléments Fig. I-16 influence du défaut sur la réparation des courants induits.16 Fig. I-17 Plaque présent un défaut cylindrique et sphérique.16 Fig. I-18 Pièce cylindrique avec un défaut cylindrique 17 Chapitre II Fig. II.1 Représentation des spires élémentaires...22 Fig. II.2 Domaine d étude 23 Fig. II.3 Système électromagnétique (source + charge) 25 Fig. II.4 Capteur en présence d un matériau à contrôler...27 Fig. II.5 Système matriciel...28 Fig. II.6 Etapes de simulation...29

15 Listes des figures et des tableaux Chapitre III Fig.III.1 exemple de maillage en tubes de courant..32 Fig.III.2 amplitude de la variation de l'impédance en fonction de Ld...34 Fig.III.3 amplitude de la variation de la réactance en fonction de Ld.34 Fig.III.4 amplitude de la variation de la résistance en fonction de Ld 34 Fig.III.5 amplitude de la variation de la phase en fonction de Ld...35 Fig.III.6 amplitude de la variation de l'impédance en fonction de Ed...36 Fig.III.7 amplitude de la variation de la réactance en fonction de Ed.36 Fig.III.8 amplitude de la variation de la résistance en fonction de Ld.37 Fig.III.9 amplitude de la variation de la phase en fonction de Ld...37 Liste des Tableaux Chapitre III Tableau.III.1 variation de l'impédance en fonction de la longueur du défaut à f=100khz...33 Tableau.III.2 variation de l'impédance en fonction de la longueur du défaut à f=300khz.33 Tableau.III.3 variation de l'impédance en fonction de la longueur du défaut à f=500khz...33 Tableau.III.4 variation de l'impédance en fonction de la profondeur du défaut à f=100khz...35 Tableau.III.5 variation de l'impédance en fonction de la profondeur du défaut à f=300khz...35 Tableau.III.6 variation de l'impédance en fonction de la profondeur du défaut à f=500khz...36

16 Introduction générale

17 Introduction générale Introduction générale Le contrôle non destructif par courants de Foucault (CND-CF) a atteint une maturité industrielle grâce à l évolution et la perfection des logiciels de simulation numérique [1]. D autre part, cette évolution est encouragée par les différents secteurs (aéronautique, nucléaire, métallurgie..) qui se sont trouvés devant la nécessité de se doter des techniques les plus sophistiquées pour se renseigner de l état de santé, des caractéristiques physiques et géométriques des différents matériaux sans les détruire [2]. L'objectif de ce travail est l'étude d'un dispositif de contrôle par courants de Foucault à travers une simulation d'un capteur type sonde pancake destiné pour la détection d'un défaut de section rectangulaire au sein d'un matériau conducteur. Etant donné la forme du défaut, cette étude est réservée à l'analyse de l'effet de la profondeur et la longueur du défaut. D'autre part, l'étude de l'effet de la fréquence sur la signature du défaut. Cette étude vise essentiellement à comprendre la relation entre la variation de l'impédance causée par un défaut et ses caractéristiques géométriques; afin d'envisager une procédure d'inversion rapide et efficace [3]. Pour ce faire, nous avons réparti notre travail en trois parties : Recensement des techniques de CND et particulièrement celle qui est basée sur l'induction électromagnétique. Elaboration d'un modèle semi analytique décrivant le phénomène mis en jeux en exprimant l'impédance en fonction des paramètres de la pièce testée. Exploitation du modèle pour l'étude des paramètres caractéristiques du défaut sur les grandeurs mesurables telle que la variation de l'impédance.

18 Chapitre I Généralités sur le contrôle non destructif par courant de Foucault

19 Chapitre I Généralités sur le contrôle non destructif par courant de Foucault I.1 Introduction L histoire du Le Contrôle Non Destructif (CND) a commencé à la fin du XIX siècle, avec la physique moderne, mais c est à partir de la seconde guerre mondiale que les techniques de CND ont pris leur essor dans l industrie, en particulier dans la métallurgie. Vers les années , le développement des centrales nucléaires et de l aéronautique a engendré une forte accélération du progrès du CND, et différentes méthodes ont été mises au point afin de pouvoir remplir les contraintes dues à la nature du défaut recherché, de la pièce à contrôler (rivetée, soudée, laminée, de forme complexe,...) et des conditions dans lesquelles le contrôle doit être effectué (en cours de fabrication, en recette, en service). Les défauts recherchés peuvent être classés en deux grandes familles : les défauts surfaciques et les défauts internes [4]. Les défauts surfaciques sont les plus problématiques sur le plan technologique. Ils incluent les criques, les fissures, les piqures, les craquelures pouvant provoquer à terme la rupture de la pièce, ou d aspect, c est à-dire la variation de paramètres géométriques et/ou physiques de la pièce tels que sa rugosité, son épaisseur, l homogénéité de la surface, qui rendent la pièce inutilisable. Les défauts internes sont des hétérogénéités de nature, forme et dimensions variées, localisées dans le volume du corps à contrôler. Ils sont susceptibles d affecter la santé de la pièce et peuvent se présenter sous la forme d une crique interne, des porosités, des soufflures, d inclusions diverses. Le contrôle non destructif a pour but d évaluer l intégrité d une pièce sans la détériorer. Cette étape du processus industriel est destinée à garantir la sécurité d utilisation des pièces contrôlées. Elles jouent aussi un rôle économique non négligeable, dans le sens où elle permet une gestion optimisée de la maintenance. [5] Les techniques utilisées dans le C N D sont très variées, le choix d une entre elle peut être conditionnée par un certain nombre de paramètres dont les principaux sont : - La nature du matériau a contrôlé (propriétés physique); - L information recherchée (détection, mesure, dimensionnement du défaut, ); - L environnement du contrôle (nature des perturbations externes, ); - Le type de contrôle a effectué (pièce mobile, possibilité de contact ou non, ); - Contraintes économiques; 3

20 Chapitre I Généralités sur le contrôle non destructif par courant de Foucault Les courants de Foucault servent alors de sondes. Dès qu ils rencontrent une fissure, une inhomogénéité, un changement de géométrie ils changent de trajet et d amplitude. Leur comportement est alors très riche en information sur la structure interne de l objet à contrôler. On ne peut pas accéder directement al évaluation des courants de Foucault mais a l évolution du champ magnétique qu ils génèrent. Le contrôle non destructif par courant de Foucault consiste donc à : - Exciter l objet à contrôler avec un champ électromagnétique variable. - mesurer le champ magnétique secondaire généré par les courants de Foucault. - analyser les propriétés du champ magnétique secondaire afin de déterminer la structure interne de l objet. I-2- Différentes techniques du C N D Les techniques non destructives doivent s adapter aux matériaux que nous souhaitons contrôler. Dans le cas des métaux, et pour un contrôle au sein du métal, il faut exploiter les phénomènes physiques qui permettent de pénétrer dans le métal et sélectionner celui qui permet le mieux de fournir les informations requises par l utilisateur. Actuellement, pour la plupart des métaux, il existe différents moyens de pénétrer au sein de la matière. Nous allons décrire le principe de chacun de ces moyens et faire une analyse succincte donnant une idée sur les possibilités d emploi de chacune de ces techniques. Chaque environnement industriel impose ces conditions propres et il n existe donc pas de méthode (universelle) permettent de réaliser le contrôle non destructif dans toutes les conditions au meilleur rendement. 4

21 Chapitre I Généralités sur le contrôle non destructif par courant de Foucault I-2-1-Examen visuel Le contrôle visuel est une technique essentielle lors du contrôle non destructif. L'état extérieur d'une pièce peut donner des informations essentielles sur l'état de celle-ci : des défauts évidents (comme des pliures, des cassures, de l'usure, de la corrosion ou fissures ouvertes). Des défauts cachés sous-jacents présentant une irrégularité sur la surface extérieure peut être une indication de défaut plus grave à l'intérieur. I.2.2-Ressuage Cet essai permet de déceler les défauts qui apparaissent à la surface. Il est appliqué dans le cas des matériaux non magnétiques (alliages à base d'al, de Cu, de Ti, aciers inoxydables, etc.). Son mode d'emploi est très simple. La pièce à examiner est badigeonnée de pétrole léger, coloré ou contenant une poudre fluorescente. Au lieu du pétrole léger tout autre liquide pénétrant, c.-à-d. de faible tension superficielle, peut aussi rendre le même service. Après pénétration capillaire, la surface est essuyée. Pour le cas d'un liquide fluorescent la résurgence du liquide à partir des fissures et des porosités est rendu visible par un éclairage aux rayons ultraviolets. Les fissures contenant du liquide coloré sont rendues visibles par une couche de talc, qu'on applique sur la pièce à l'aide d'un spray, qui ensuite absorbe le liquide coloré en se teignant. L'observation, dans ce cas, se fait à l œil nue. Les traces colorées indiquent les endroits où il y a des fissures (figure I 1). Fig I - 1. Principe du ressuage I.2.3-Radiographie La radiographie industrielle est comparable à la radiographie médicale : elle consiste à faire traverser par un rayonnement électromagnétique de très courte longueur d onde, comme les rayons X ou les rayons ɤ, la matière à inspecter. Lors de 5

22 Chapitre I Généralités sur le contrôle non destructif par courant de Foucault leur passage à l intérieur de la pièce, les photons voient leur énergie absorbée totalement ou partiellement par la matière, selon sa densité. Un film placé derrière la pièce est irradié par les photons qui ont encore suffisamment d énergie. Il récupère ainsi le radiogramme, où les zones avec des défauts sont représentées par une variation de densité optique (figure I 2). Fig I - 2. Principe de la radiographie I.2.4-Contrôle par Ultrasons Le contrôle par ultrasons est basé sur la transmission, la réflexion et l'absorption d'une onde ultrasonore se propageant dans la pièce à contrôler. Le train d'onde émis se réfléchit sur les défauts puis revient vers le traducteur (qui joue souvent le rôle d'émetteur et de récepteur). L'interprétation des signaux permet de positionner le défaut et de définir ses dimensions relatives. Cette méthode présente une résolution spatiale élevée et la possibilité de trouver des défauts aussi bien dans le volume de la matière qu'en surface. L'étape d'inversion est simple, du moins pour les pièces géométriquement et matériellement simples. Cette méthode nécessite d'effectuer un balayage mécanique exhaustif de la pièce. Il est d'ailleurs souvent nécessaire de contrôler plusieurs surfaces de la pièce pour pouvoir faire une représentation tridimensionnelle des défauts (figure I 3). Fig I - 3 Principe des ultrasons 6

23 Chapitre I Généralités sur le contrôle non destructif par courant de Foucault I.2.5 -Flux de fuite magnétique (magnétoscopie) Un courant électrique crée un champ magnétique dans un matériau conducteur. Il est alors possible d'engendrer un champ magnétique en contrôlant la direction du courant électrique magnétisant. Il existe 2 types de magnétisation: La magnétisation circulaire : elle permet de détecter des défauts obliques par rapport à une génératrice. Le principe est : un courant électrique passant à travers un conducteur axial crée un champ magnétique circonférentiel autour du tube. Les lignes de champ sont toujours perpendiculaires à la direction du courant qui induit le champ magnétique. La magnétisation longitudinale : le courant électrique passe à travers une bobine, le champ magnétique est parallèle à l axe de la bobine. Cette méthode permet la détection de défauts traverses et circonférentiels, [6]. Les Flux de fuite magnétique sont ensuite généralement visualisés soit à l aide d un produit indicateur porteur de limaille de fer, soit à l aide d un film magnétisable (Magnétographie), soit à l aide d appareils de mesure de champ magnétique figure (I 4). Fig I - 4 Principe de la magnétoscopie I.2.6- CND par courant de Foucault Ce type de contrôle s effectue en excitant par un champ magnétique variable la surface d une pièce métallique. Toute perturbation par un défaut des courants induits dans la pièce va se traduire par une modification de l impédance vue aux bornes du capteur. En agissant sur la fréquence du courant d excitation et la géométrie des bobines, plusieurs contrôles peuvent être réalisés. [2] 7

24 Chapitre I Généralités sur le contrôle non destructif par courant de Foucault I.3-Principe de fonctionnement du CND par courant de Foucault Le contrôle par courant de Foucault est l une des méthodes les plus privilégiées parmi les méthodes électromagnétiques de CND. Cette méthode ne s applique qu aux pièces électriquement conductrices et s adapte très bien aux pièces cylindriques (barres, tubes, )[7]. Le principe de cette méthode consiste à soumettre une pièce à l action d un champ magnétique variable dans le temps à l aide d une bobine (excitatrice) parcourue par un courant électrique variable, ce qui va créer des courants induits dans la pièce à contrôler, la trajectoire de ces courants sera perturbé soit par la géométrie soit par les caractéristiques internes de la pièce. Ces courants vont créer à leur tour un champ magnétique qui va s opposer au champ initial d excitation (loi de Lenz) et le champ résultant sera fonction des paramètres physiques et géométriques de la cible. Une mesure directe de ce champ ou d une de ces grandeurs dérivées (tension, impédance etc.) permettra de caractériser la cible. La figure ci-dessous donne un aperçu du principe figure (I 5). Fig. I-5 principe du CND-CF. Les courants de Foucault se développent principalement sur la surface de la pièce à contrôler. Leur densité décroît rapidement à l intérieur de la cible (effet de peau). 8

25 Chapitre I Généralités sur le contrôle non destructif par courant de Foucault I.4-Principe physique L alimentation de la bobine du capteur par courant variable crée un champ d'excitation variable sous la loi de Maxwell Ampère. Toute pièce conductrice baignant dans ce champ sera le siège des courants induits appelés courants de Foucault (loi de Maxwell faraday et loi d ohm).en vertu de la loi de Lenz, ces courants reproduisent à leur tour un champ opposant au champ qui leur a donné naissance. Le champ résultant (excitation et réaction) modifiera alors le courant dans la source et par conséquent l impédance du capteur. Par ailleurs, les courants de Foucault sont importants à la surface de la pièce et s affaiblissent en allant sur la profondeur.l utilisation des faibles fréquences peut assurer la capture des défauts profonds. La figure (I-6) résume le principe de CND par courant de Foucault. I.5. Effet de peau Fig. I-6 principe physique du CND-CF Ce phénomène d origine électromagnétique apparaît dans tous matériaux conducteurs parcourus par un courant électrique alternatif ou soumis à un champ électromagnétique variable dans le temps, dans le cas du contrôle non destructif, les courants induits dans la pièce commencent à décroître d une manière exponentielle à partir de la surface. La grandeur caractéristique de ce phénomène est la profondeur de pénétration donnée par : 1 f 0 r (I-1) f : la fréquence d alimentation. : La perméabilité magnétique relative du matériau. r 9

26 Chapitre I Généralités sur le contrôle non destructif par courant de Foucault : La perméabilité magnétique du vide. 0 : La conductivité électrique. La profondeur de pénétration est donc inversement proportionnelle à la fréquence du champ et à la nature du matériau [7]. Si on considère une cible plane semi infinie excitée par une nappe de courants extérieurs parallèles au plan, dans ce cas le module de la densité de courant est régi par la relation suivante : J ( z ) J c c0. e z (I-2) Jc Z : la profondeur considérée à l intérieur de la cible ( z ): Le module de la densité de courant en fonction de la profondeur : Profondeur de pénétration ou épaisseur de peau. I.6-Avantages et inconvénient du contrôle par Courant de Foucault I.6.1-Avantages du contrôle par Courants de Foucault Rapidité de balayage et de détection (3 fois plus rapide que la magnétoscopie). Détection possible à travers un revêtement surfacique. Aucune préparation particulière de la surface à contrôler. Qualité de détection indépendante de la vitesse de balayage. Pas de nécessité d'étalonnage de l'appareil, une simple calibration est suffisante. Traitement informatique avec stockage des données de simulation. Contrôle non polluant [7]. I.6.2-Inconvénients du contrôle par Courants de Foucault Effet de bords des pièces produisant des signaux parasites Le revêtement de surface doit être non magnétique et isolant électrique. Importance du positionnement de la sonde par rapport au défaut existant. Formation théorique et pratique des utilisateurs et intervenants [7]. 10

27 Chapitre I Généralités sur le contrôle non destructif par courant de Foucault I.7-Objectifs des CND-CF Un capteur à courants de Foucault peut accomplir diverses tâches. Du fait que l impédance du système Capteur/Pièce est fonction des différentes caractéristiques électromagnétiques et géométriques. Cette technique est parfois utilisée pour la caractérisation géométrique et électromagnétique, d autre fois pour le contrôle de l état de santé en cherchant et caractérisant les défauts [6]. I.7.1-Caractérisation géométrique Mesure de l entrefer. Mesure de l épaisseur. I.7.2-Caractérisation électromagnétique Mesure de la conductivité. Mesure de la perméabilité. I.7.3-Contrôle de l état de la santé Détection du défaut. Position du défaut. Taille du défaut. Forme du défaut. Propriété physique. I.8-classification des capteurs Plusieurs critères sont pris en compte durant la classification des capteurs. La configuration des capteurs diffère selon leurs géométries, leurs fonctions et leurs modes de contrôle. I.8.1-Classification selon la géométrie I La bobine encerclante C est un capteur dont les enroulements de mesure entourent le produit à examiner. Il est utilisé pour contrôler par l extérieur des objets de faibles sections, les tubes,... figure (I 7). 11

28 Chapitre I Généralités sur le contrôle non destructif par courant de Foucault Fig. I-7 Bobine encerclant. I Sonde interne C est un capteur qui est destiné à l examen d un produit creux par l intérieur, dont les enroulements de mesure entourent l axe de translation. Ils opèrent soit avec ou sans noyau (figure I 8). Fig.I-8 Bobine interne glissante avec noyau I Sonde ponctuelle Elle est utilisée pour l inspection des objets à des endroits précis. L axe du capteur est perpendiculaire à la surface de la pièce. En effet, ce palpeur permet de faire un contrôle local des pièces même celles dont la géométrie est complexe Figure (I-9). Fig. I-9 Bobine simple avec noyau 12

29 Chapitre I Généralités sur le contrôle non destructif par courant de Foucault I Bobine plate De la même que la bobine ponctuelle, ce capteur opère sur les surfaces des pièces. Vue sa géométrie, sa zone d action est plus large (Fig.I-10). I Sonde interne tournante Fig. I-10 Bobine plate Dans ce cas, le capteur tourne auteur de l axe de translation. Il en résulte alors un champ magnétique perpendiculaire à l axe du tube. Ce capteur permet de localiser le défaut avec précision sur la surface interne du tube (Fig.I-11) Fig. I-11 Capteur interne tournant I.8.2-Classification selon la fonction En principe, tous les capteurs assurent deux fonctions : la fonction d alimentation et de mesure. Si ces dernières sont assurées par un seul enroulement, on parle de capteur à double fonction, sinon il s agit un capteur à fonction séparée. I Capteur à double fonction Ce type de capteurs est très utilisé dans les applications type courant de Foucault sinusoïdaux. C est un capteur dans lequel les fonctions d excitation et de réception sont assurées par la ou les mêmes bobines. L exploitation se fait par la mesure de l impédance équivalente de la bobine dans son environnement. Ce type de capteurs favorise la détection de grandeurs à évolution lente telles que l épaisseur de revêtement et de conductivité figure (I-12). 13

30 Chapitre I Généralités sur le contrôle non destructif par courant de Foucault Fig. I-12 Capteur à double fonction I Capteurs à fonctions séparées La détection des défauts profonds favorise une augmentation des dimensions de la bobine d excitation. Cependant, cet accroissement de la taille de l émetteur se fait au détriment de la résolution spatiale du capteur. Il est donc nécessaire d établir un compromis sensibilité-résolution. Ce compromis est facilité par l adoption de capteurs à fonctions séparées. C est un type de capteurs ou la fonction d excitation et de réception est assurée par des éléments distincts. La réception peut alors se faire à un endroit différent de la position de l émetteur. L élément de mesure peut être une bobine plus petite aux bornes de laquelle on mesure la variation d impédance (Fig.I-13). Fig. I-13 capteur à fonction séparée I.8.3-Classification selon le mode de contrôle On distingue deux modes de contrôle: mode absolu et mode différentielle. I Mode absolu Le schéma suivant montre la mesure en mode absolu par un pont d impédance (Fig.I-14). la bobine d examen est une branche d un pont d impédance alimenté par un oscillateur. en absence de défaut, le pont est équilibré. 14

31 Chapitre I Généralités sur le contrôle non destructif par courant de Foucault un signal apparait dans pont complexe dès que la sonde s approche du défaut. L amplitude du signal est liée au volume de la matière affectée par le défaut de même, la phase est fonction du type du défaut et de la profondeur. I Mode différentiel Ils sont constitués d au moins deux éléments de mesure rigidement liés dans le capteur. Dans le cas d un capteur à deux éléments, la mesure différentielle équivaut à comparer deux mesures effectuées simultanément en deux emplacements voisins. Ce type de capteur est particulièrement utilisé pour détecter des discontinuités lors de son déplacement le long d une pièce s affranchissant des perturbations induites par une variation d épaisseur ou de conductivité. Le schéma suivant montre la mesure par pont d impédance (Fig.I-15) deux branches du pont constituent des bobines d examen. Le pont est équilibré en absence de défaut ; le passage de la sonde devant un défaut provoque l apparition d un signal (courbe de Lissajous) dans le plan complexe. L amplitude du signal est fonction du volume de la matière. De même, la phase est liée au type de défaut et à sa profondeur. Fig. I-15 15

32 Chapitre I Généralités sur le contrôle non destructif par courant de Foucault I.9-Les défauts Lorsqu une pièce conductrice est plongée dans un champ magnétique variable, des courants induits vont apparaitre avec une répartition telle qu ils créent un champ magnétique opposant à la variation du champ d excitation. L intensité et le chemin des courants peuvent être modifiés par la présence d un défaut. Cette modification engendrera la même variation d impédance que provoquera une variation de conductivité (Fig.I-16) [2]. Voici la figure (I-17) qui présente les défauts axisymétriques dans les configurations de type pancake. Fig.I-16 influence du défaut sur la réparation des courants induits Fig.I-17 plaque présente un défaut cylindrique et sphérique Cette figure (I-18) présente une pièce cylindrique dont le défaut est axisymétrique. Ce dernier peut être détecté par un capteur différentiel (fixe ou en déplacement) ou par un capteur absolu [5]. 16

33 Chapitre I Généralités sur le contrôle non destructif par courant de Foucault Fig.I-18 pièce cylindrique avec un défaut cylindrique et sphérique I.10-Conclusion Dans ce premier chapitre, nous avons présenté les capteurs de contrôle non destructif par courant de Foucault qui sont souvent classés selon leurs géométries, fonctions et leurs modes de contrôle. En générale, le contrôle non destructif nous donne une idée sur les différentes techniques utilisées ainsi que les principes physiques qui les régissent. Cette technique est basée sur la mesure de la variation de l impédance qui est souvent fonction de plusieurs paramètres. En effet, la variation de l un de ces paramètres engendrera une modification sur l impédance aux bornes du capteur. La conception et l optimisation des capteurs à CF nécessitent une compréhension préalable mécanisme de création des courants de Foucault et des modèles mathématiques qui les dérivent. Le prochain chapitre fera l'objet d'une modélisation semi-analytique de ces dispositifs. 17

34 Chapitre II Modélisation des systèmes CND-CF à capteur absolu par la MCC

35 Chapitre II Modalisation Des Systèmes CND-CF à Capteur Absolu Par La MCC II.1-Introduction Le développement de toute technologie s appuie non seulement sur l expérimentation qui demeure nécessaire, mais aussi sur un modèle de simulation qui décrit le plus fidèlement possible le comportement du dispositif à concevoir [7]. Dans ce chapitre nous établirons principalement l expression de l impédance d un bobinage servant à alimenter, en champ électromagnétique, un matériau conducteur non magnétique et homogène. La modélisation concernera les dispositifs de contrôle et d évaluation non destructive par courants de Foucault dont le capteur à double fonction [8][9]. Dans ce cas les capteurs permettent d une part, de caractériser le matériau et d autre part, à détecter une anomalie dans sa structure. Pour atteindre ces deux objectifs, nous établissons l expression intégrale de l impédance aux bornes du capteur en fonction de la répartition de l intensité de la variable d état électromagnétique induite dans ce matériau. Dans ce chapitre, nous allons donner un aperçu historique sur l électromagnétisme ainsi que la présentation des équations de Maxwell et leur simplification en régime quasistationnaire. Cette phase est suivie d une modélisation par la méthode des circuits couplés des courants de Foucault [6]. II.2-Lois classiques de l électromagnétisme II.2.1-Loi d Ampère Le théorème d'ampère permet de déterminer la valeur du champ magnétique à partir du courant électrique. Ce théorème est une forme intégrale de l'équation de Maxwell-Ampère. Il a été découvert par André-Marie Ampère. En régime permanent, dans le vide, le théorème d'ampère énonce que " la circulation du champ magnétique engendré par une distribution de courant est égale à la somme algébrique des courants qui traversent la surface définie par le circuit orienté, multipliée par la perméabilité du vide (μ0 = 4π.10^ -7H / m) [8]. B dl 0.. I (II 1) où : représente l'intégrale curviligne sur le contour fermé τ 19

36 Chapitre II Modalisation Des Systèmes CND-CF à Capteur Absolu Par La MCC B est l' induction magnétique. dl est l'élément infinitésimal de déplacement le long du contour τ. est la perméabilité du vide. 0 I est la somme algébrique des intensités des courants enlacés par le contour τ. traversant II.2.2-Loi Lenz -Faraday Par une pure expérience, Faraday remarque qu à chaque fois qu il y a variation de flux magnétique ou variation du champ d induction lui-même, un courant est alors mesuré par un galvanomètre. Ce courant est dit courant induit. En effet, cette loi relie la force électromotrice induite à la variation de flux magnétique qui l engendre.[4] e = - (II 2) Le signe (-) de la loi de Faraday a une signification bien précise donnée explicitement par la loi de Lenz. Cette loi a été formulée par Lenz et éclaircit mieux le phénomène d induction que faraday avait observé. Elle indique que le sens du courant induit lors d un phénomène d induction électromagnétique dans un circuit électrique est tel qu il s oppose à la variation du flux initial. Donc la force électromotrice induite s oppose à l action qui leur a donné naissance [2]. II.2.4-Loi de Biot et Savart Cette loi donne le champ magnétique créé par une distribution de courants continus. Elle constitue l'une des lois fondamentales de la magnétostatique, au même titre que la loi de Coulomb pour l'électrostatique. En un point p de l espace, l élément de conducteurdl, parcouru par un courant I génère un champ d induction magnétique élémentaire vide. Cette induction est donnée par : B. I dl r r l u db dans le (II 3) 20

37 Chapitre II Modalisation Des Systèmes CND-CF à Capteur Absolu Par La MCC II.2.3-Les équations de Maxwell James Clark Maxwell est principalement connu pour avoir unifié en un seul ensemble d équations l électricité, le magnétisme et l induction en développant la formulation mathématique des travaux précédents réalisés par Michael Faraday et André-Marie Ampère. Il a démontré que les champs électriques et magnétiques se propagent dans l espace sous la forme d une onde et à la vitesse de la lumière. Les équations de Maxwell dérivent d un ensemble de vingt équations différentielles à vingt variables, plus tard réduites à quatre. Equation de Maxwell-Gauss :div D (II - 4) Maxwell- Ampère: rot H D J t (II - 5) Maxwell-faraday: rot E B t (II - 6) Conservation du flux magnétique : div B 0 (II - 7) Ou E [V/m] et H [A/m] sont respectivement le champ électrique et magnétique. D [A.s/m] et B [T] sont respectivement l'induction électrique et magnétique. J [A / 2 m ] et [c / 3 m ] sont respectivement la densité de courant de conduction et de charge électrique. L équation (II - 5) est une généralisation de théorème d Ampère. Elle permet d établir la relation entre le champ électromagnétique et les courants électriques. Elle traduit la création d un champ magnétique sous les courants électriques de conduction et de déplacement. L équation (II - 6) correspond à la loi d induction de Faraday, qui établir le lien entre un champ électrique et un flux magnétique. Cette loi traduit le phénomène inductif qui se produit dans un conducteur suomis à un champ magnétique variable ou dans un conducteur ou un mouvement soumis à un champ magnétique constant. Les équations (II 5) et (II 6) définissent la relation entre les champs et leurs sources. D'autre part, les équations (II 4) et (II 7) traduisent respectivement la conservation du champ magnétique et de la charge électrique [2]. II.3-Equations électromagnétiques couplées L effet électromagnétique d un point q, sur un point p de l espace se formalise par les équations de Maxwell simplifiées suivantes [4] : 21

38 Chapitre II Modalisation Des Systèmes CND-CF à Capteur Absolu Par La MCC 0 div grad A ( p, q) J ( q) ( a) J ( p) da ( p, q) grad V ( p). e 0 ( b) ( p) dt (II 8) l équation (II.8.a) explique que la densité de courant J(q) au point p, est la source du potentiel vecteur A(p,q) au point p.l équation (II.8.b) définit le phénomène d induction telle que la densité du courant J(p) est induite sous la variation temporelle du potentiel magnétique A(p,q) et spatiale du potentiel électrique V(p). La figure suivante montre que pour un système ayant une symétrie de révolution, le potentiel magnétique vecteur n a qu une composante dirigée suivant.le courant circule donc sur un contour (C) de rayon r(q) et de longueur I(q). On admet par approximation que le courant est constant dans la spire. Fig.II.1-Représentation des spires élémentaires II.3.1-Principe et équation élémentaire du couplage des circuits On obtient l expression du potentiel en fonction des intégrales elliptiques [10] : A p q 2 0 (, ) G( p, q) I( q) r( p) G ( p, q ) E K ( p, q ) ( a) rq ( ) 2 (2 K ) E1( K ) 2 E 2( K ) E K ( p, q ) ( b) K 4 r ( p) r ( q ) K ( p, q ) ( c ) 2 2 ( r ( p) r ( q )) ( z ( p) z ( q )) (II 9) (II 10) 22

39 Chapitre II Modalisation Des Systèmes CND-CF à Capteur Absolu Par La MCC E1(K) et E2(K) sont respectivement des fonctions elliptiques de première et de seconde espèce de Legendre [6]. r(p) et r(q) sont respectivement les rayons des points émetteur et récepteur z(p) et z(q) sont leurs hauteurs respectives. La variation spatiale du potentiel électrique scalaire est exprimée en fonction de la tension appliquée ou induite u(p) aux bornes de la spire et de sa géométrie, comme suit : grad V. e u( p) 2 r( p) (II 11) On remplace les équations (II.9) et (II.11) dans l équation (II.8.b), nous arrivons à exprimer l équation électromagnétique élémentaire en fonction de la densité de courant et de la tension des points sources q et charge p [11-13]. 2 r ( p) d I ( q ) J ( p) 0r ( p) G ( p, q ) u( p) ( p) dt (II 12) II Equation d'intégrale La figure (II.2) montre un domaine bidimensionnel traversé par une densité de courant de répartition non uniforme. Le potentiel A(p) en un point p est généré par la somme de toutes les densités de courants J(q), soit [10] : A p 0 ( ) (, ) ( ) 2 G p q J q d (II 13) Dans le vide la création des densités de courants induits sous l effet seulement de l induction électromagnétique ou sous l effet de la variation temporelle du potentiel vecteur magnétique. Il s agit alors des courants de Foucault. Fig.II.2-domaine d étude 23

40 Chapitre II Modalisation Des Systèmes CND-CF à Capteur Absolu Par La MCC On intègre l équation (II.9) puis on la remplace dans l équation (II.12) retrouvant l équation suivante : 2 r( p) d J ( q) J ( p) 0r( p) G ( p, q) d u( p) ( p) dt (II 14) Dans le cas sinusoïdal : 2 r( p) J ( p ) j 0 r ( p ) G ( p, q ) J ( q ) d u ( p ) ( p) (II 15) II.3.2-Impédance d un bobinage à vide II L impédance élémentaire à vide Les bobines destinée à réaliser des capteurs à courants de Foucault sont généralement constituées de plusieurs spires jointives et disposée sen série. Dans ce cas on peut considérer que la section de la coupe de cette bobine est un domaine bidimensionnel et continu. L impédance, noté Z ( ) 0 e p, des spires élémentaire ou d un point p du domaine se déduit l équation (II.6),par l application de la loi d ohm de l électrocinétique comme suit[8] : u( p) 2 r( p) J( q) r( p) Z p j G p q J q d 0 0e( ) (, ) ( ) I( p) ( p) I( p) I( p) (II 16) De fait que les spires sont en série, la densité de courants est de répartition uniforme dans ce domaine. Si on note par N le nombre de spires constituant la bobine, la section élémentaire du domaine sera / N les spires sont reliés par : et par conséquent, l intensité et la densité des courants traversant N J ( p) I( p) (II 17) Alors l équation (II.9) s écrit : N 2 r( p) Z0e( p) j0 r( p) G( p, q) d ( p) (II 18) 24

41 Chapitre II Modalisation Des Systèmes CND-CF à Capteur Absolu Par La MCC II Impédance totale à vide Chaque élément p est soumis à une tension u(p) et a une impédance Z ( ) 0 p nous pouvons écrire [10] : N U u p d ( a) N Z ( ) ( ) 0 Z0e p d b 2 N 2 r( p) Z0 2 d j0 r( p) G( p, q) dd ( p) e par conséquent (II 19) (II 20) Par la sommation des impédances élémentaires nous arrivons à l expression de l impédance totale vue aux bornes de la bobine : Nous constatons que l impédance à vide est en fonction des caractéristiques géométriques et électromagnétiques du capteur. II.3.3-Modélisation d un système source charge II Définitions des paramètres et grandeurs du domaine d étude La figure (II.3) représente une configuration géométrique d un système électromagnétique axisymétrique comportent une source de domaine s qui est la source principale du champ électromagnétique et une pièce conductrice massive de domaine c qui est le siège de courants de Foucault et qui s oppose au champ de la source [8]. Fig. II.3-Système électromagnétique (source+ charge) 25

Electrocinétique et magnétostatique

Electrocinétique et magnétostatique Chapitre 3 Electrocinétique et magnétostatique 3.1 Electrocinétique - Vecteur densité de courant Un courant électrique correspond à des charges électriques mobiles. On appelle vecteur densité de courant

Plus en détail

Guide Utilisateur des Techniques Alternatives au Ressuage et à la Magnétoscopie

Guide Utilisateur des Techniques Alternatives au Ressuage et à la Magnétoscopie Guide Utilisateur des Techniques Alternatives au Ressuage et à la Magnétoscopie Fiche thématique A01 Les techniques alternatives au ressuage et à la magnétoscopie Cette fiche liste les techniques qui peuvent

Plus en détail

- cas d une charge isolée en mouvement et par extension d un ensemble de

- cas d une charge isolée en mouvement et par extension d un ensemble de Notion de courant de particule ; conservation du courant = expression du courant de particules chargées ; charges; j = q k k - cas d une charge isolée en mouvement et par extension d un ensemble de v k

Plus en détail

CHAPITRE CP1 C Conversion électromagnétique statique

CHAPITRE CP1 C Conversion électromagnétique statique PSI Brizeux Ch. CP1: Conversion électromagnétique statique 1 CHAPITRE CP1 C Conversion électromagnétique statique Les sources d énergie, naturelles ou industrielles, se trouvent sous deux formes : thermique

Plus en détail

CONTRÔLE D'UNE AUBE DE RÉACTEUR

CONTRÔLE D'UNE AUBE DE RÉACTEUR ACTIVITE ITEC TP 9 Durée : 2h Centre d intérêt : CONTROLE NON DESTRUCTIF CONTRÔLE D'UNE AUBE DE RÉACTEUR DE MIRAGE 2000 BA133 COMPETENCES TERMINALES ATTENDUES NIVEAU D ACQUISITION 1 2 3 * Moyens pour réaliser

Plus en détail

Chapitre 7. Circuits Magnétiques et Inductance. 7.1 Introduction. 7.1.1 Production d un champ magnétique

Chapitre 7. Circuits Magnétiques et Inductance. 7.1 Introduction. 7.1.1 Production d un champ magnétique Chapitre 7 Circuits Magnétiques et Inductance 7.1 Introduction 7.1.1 Production d un champ magnétique Si on considère un conducteur cylindrique droit dans lequel circule un courant I (figure 7.1). Ce courant

Plus en détail

Induction électromagnétique

Induction électromagnétique Induction électromagnétique Sommaire I) Théorie de l induction électromagnétique..2 A. Introduction 2 B. Notion de force électromotrice 3 C. Loi de Faraday..5 D. Quelques applications.7 Spire circulaire

Plus en détail

Tournez la page S.V.P.

Tournez la page S.V.P. 17 Tourne la page S.V.P. Le problème est constitué de quatre parties indépendantes La mesure de l intensité d un courant électrique peut nécessiter des méthodes très éloignées de celle utilisée dans un

Plus en détail

Le moteur asynchrone triphasé

Le moteur asynchrone triphasé Cours d Electricité 2 Électrotechnique Le moteur asynchrone triphasé I.U.T Mesures Physiques Université Montpellier 2 Année universitaire 2008-2009 Table des matières 1 Définition et description 2 2 Principe

Plus en détail

L induction électromagnétique et la loi de Faraday (Tous les cours à partir du cours XIX)

L induction électromagnétique et la loi de Faraday (Tous les cours à partir du cours XIX) L induction électromagnétique et la loi de Faraday (Tous les cours à partir du cours XIX) Le phénomène d induction électromagnétique peut être mis en évidence par les deux expériences simples suivantes.

Plus en détail

ÉLECTROMAGNÉTISME BLINDAGE ELECTROMAGNETIQUE

ÉLECTROMAGNÉTISME BLINDAGE ELECTROMAGNETIQUE Spé ψ 1-11 Devoir n ÉLECTROMAGNÉTISME LINDAGE ELECTROMAGNETIQUE Ce problème s intéresse à certains aspects du blindage électromagnétique par des conducteurs La section A rassemble quelques rappels destinés

Plus en détail

Prospection Géophysique : Méthode Electromagnétique

Prospection Géophysique : Méthode Electromagnétique Prospection Géophysique : Méthode Electromagnétique Romain Brossier romain.brossier@ujf-grenoble.fr ISTerre, Université Joseph Fourier Grenoble L3P PPRS 2013-2014 R. Brossier (ISTerre, UJF) Méthode EM

Plus en détail

Observation : Le courant induit circule dans le sens opposé.

Observation : Le courant induit circule dans le sens opposé. 2 e BC 3 Induction électromagnétique 21 Chapitre 3: Induction électromagnétique 1. Mise en évidence du phénomène : expériences fondamentales a) Expérience 1 1. Introduisons un aimant dans une bobine connectée

Plus en détail

Sujet E3A 2012 Physique (Seulement) Option MP

Sujet E3A 2012 Physique (Seulement) Option MP Sujet E3A 2012 Physique (Seulement) ption MP Première partie : Caméra de contrôle des plaques d immatriculation A / Propagation de la lumière A1. Question de cours : position de Bessel La position de Bessel

Plus en détail

Z-SCOPE V5. ANALYSEUR D IMPEDANCE SUR PORT USB destiné au contrôle non destructif

Z-SCOPE V5. ANALYSEUR D IMPEDANCE SUR PORT USB destiné au contrôle non destructif Z-SCOPE V5 ANALYSEUR D IMPEDANCE SUR PORT USB destiné au contrôle non destructif Fonctionnalités Générateur d un signal d excitation sinusoïdal de fréquence variable jusqu à 100 khz Mesure d un signal

Plus en détail

G.P. DNS05 Octobre 2012

G.P. DNS05 Octobre 2012 DNS Sujet Impédance d'une ligne électrique...1 I.Préliminaires...1 II.Champ électromagnétique dans une ligne électrique à rubans...2 III.Modélisation par une ligne à constantes réparties...3 IV.Réalisation

Plus en détail

Champ électromagnétique?

Champ électromagnétique? Qu est-ce qu un Champ électromagnétique? Alain Azoulay Consultant, www.radiocem.com 3 décembre 2013. 1 Définition trouvée à l article 2 de la Directive «champs électromagnétiques» : des champs électriques

Plus en détail

5.1 Équilibre électrostatique d un conducteur

5.1 Équilibre électrostatique d un conducteur 5 CONDUCTEURS À L ÉQUILIBRE 5.1 Équilibre électrostatique d un conducteur Dans un isolant, les charges restent à l endroit où elles ont été apportées (ou enlevées). Dans un conducteur, les charges sont

Plus en détail

Thèse de doctorat en science. Mme ZERGUINI SAKINA

Thèse de doctorat en science. Mme ZERGUINI SAKINA MINISTERE DE L ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE SCIENTIFIQUE UNIVERSITE DE CONSTANTINE Thèse de doctorat en science Présentée au département d'électrotechnique Pour obtenir le titre de Docteur

Plus en détail

4.1 Charges en mouvement - Courant et intensité électriques

4.1 Charges en mouvement - Courant et intensité électriques Chapitre 4 Distributions de courants En électrostatique, les charges restent immobiles. Leur déplacement est à l origine des courants électriques qui sont la source du champ magnétique que nous étudierons

Plus en détail

Université Mouloud Mammeri de Tizi-ouzou. Faculté de génie électrique et informatique Département d électrotechnique

Université Mouloud Mammeri de Tizi-ouzou. Faculté de génie électrique et informatique Département d électrotechnique MINISTÈRE DE L ENSEIGNEMENT SUPÉRIEUR ET DE LA RECHERCHE SCIENTIFIQUE Université Mouloud Mammeri de Tizi-ouzou Faculté de génie électrique et informatique Département d électrotechnique Mémoire de Magister

Plus en détail

Propagation des ondes électromagnétiques dans le vide

Propagation des ondes électromagnétiques dans le vide Chapitre 5 Propagation des ondes électromagnétiques dans le vide 5.1 Equations de propagation pour E et B Dans le vide, au voisinage de tout point où les charges et les courants sont nuls, les équations

Plus en détail

Professeur Eva PEBAY-PEYROULA

Professeur Eva PEBAY-PEYROULA UE3-1 : Physique Chapitre 4 : Les ondes Professeur Eva PEBAY-PEYROULA Année universitaire 2010/2011 Université Joseph Fourier de Grenoble - Tous droits réservés. IV- Les ondes Finalité du chapitre Pour

Plus en détail

Caractérisation de défauts par Magnétoscopie, Ressuage, Courants de Foucault

Caractérisation de défauts par Magnétoscopie, Ressuage, Courants de Foucault Page 1 25 octobre 2012 Journée «Contrôle non destructif et caractérisation de défauts» Caractérisation de défauts par Magnétoscopie, Ressuage, Courants de Foucault Henri Walaszek sqr@cetim.fr Tel 0344673324

Plus en détail

Courant électrique et distributions de courants

Courant électrique et distributions de courants Cours d électromagnétisme Courant électrique et distributions de courants 1 Courant électrique 1.1 Définition du courant électrique On appelle courant électrique tout mouvement d ensemble des particules

Plus en détail

avec E qui ne dépend que de la fréquence de rotation.

avec E qui ne dépend que de la fréquence de rotation. Comment régler la vitesse d un moteur électrique?. Comment régler la vitesse d un moteur à courant continu? Capacités Connaissances Exemples d activités Connaître le modèle équivalent simplifié de l induit

Plus en détail

Électromagnétisme et Optique Physique

Électromagnétisme et Optique Physique Électromagnétisme et Optique Physique Dr.R.Benallal DÉPARTEMENT DE PHYSIQUE École Préparatoire en Sciences et Techniques de Tlemcen Physique 4 Fevrier-Juin 2013 Programme du module I Électromagnétisme

Plus en détail

Electromagnétique 4 (1 ère session)

Electromagnétique 4 (1 ère session) Licence SP Sem4 mardi 30 mai 2006 (1 ère session) Durée : 2 h 00 Document autorisé : aucun Calculatrice : non autorisée I. Equations locales : En intégrant les équations locales en considérant un régime

Plus en détail

Cours n 15 : Champ magnétique

Cours n 15 : Champ magnétique Cours n 15 : Champ magnétique 1) Champ magnétique 1.1) Définition et caractérisation 1.1.1) Définition Comme nous l avons fait en électrostatique en introduisant la notion de champ électrique, on introduit

Plus en détail

SIMULATION DU CND CF AVEC FLUX ET CIVA SIMULATION OF EDDY CURRENT TESTING WITH FLUX AND CIVA

SIMULATION DU CND CF AVEC FLUX ET CIVA SIMULATION OF EDDY CURRENT TESTING WITH FLUX AND CIVA SIMULATION DU CND CF AVEC FLUX ET CIVA SIMULATION OF EDDY CURRENT TESTING WITH FLUX AND CIVA F. Foucher, X. Brunotte, A. Kalai, Y. Le Floch CEDRAT SA, 15, Chemin Malacher, ZIRST, 38246 Meylan Cedex, France

Plus en détail

Les rails du métro sous le regard des courants de Foucault. de voie. Ce dispositif à poste fixe mesure. court-circuit qui actionne un relais.

Les rails du métro sous le regard des courants de Foucault. de voie. Ce dispositif à poste fixe mesure. court-circuit qui actionne un relais. Solutions MESURES PHYSIQUES Les rails du métro sous le regard des courants de Foucault Détecter un rail cassé, c est bien. Mais prévenir ce type de défaut majeur, avant la rupture, c est mieux. Et si le

Plus en détail

POLY-PREPAS Centre de Préparation aux Concours Paramédicaux. - Section i-prépa annuel -

POLY-PREPAS Centre de Préparation aux Concours Paramédicaux. - Section i-prépa annuel - POLY-PREPAS Centre de Préparation aux Concours Paramédicaux - Section i-prépa annuel - I. Vecteur champ magnétique : a) Détection : si l on saupoudre de limaille de fer un support horizontal au-dessous

Plus en détail

Electricité et magnétisme - TD n 10 Induction

Electricité et magnétisme - TD n 10 Induction Electricité et magnétisme - TD n 1 Induction 1. Inductance mutuelle - transformateur On considère un solénoïde de section circulaire, de rayon R 1, de longueur, et constitué de N 1 spires. A l intérieur

Plus en détail

Conversion électronique statique

Conversion électronique statique Conversion électronique statique Sommaire I) Généralités.2 A. Intérêts de la conversion électronique de puissance 2 B. Sources idéales.3 C. Composants électroniques..5 II) III) Hacheurs..7 A. Hacheur série

Plus en détail

S 5 F I) Notion de champ magnétique : 1) Mise en évidence : a) Expérience :

S 5 F I) Notion de champ magnétique : 1) Mise en évidence : a) Expérience : Chapitre 5 : CHAMP MAGNETIQUE S 5 F 1) Mise en évidence : a) Expérience : Des petites aiguilles aimantées montées sur pivots sont disposées près d'un aimant droit. Chaque aiguille constitue un dipôle orienté.

Plus en détail

Les Conditions aux limites

Les Conditions aux limites Chapitre 5 Les Conditions aux limites Lorsque nous désirons appliquer les équations de base de l EM à des problèmes d exploration géophysique, il est essentiel, pour pouvoir résoudre les équations différentielles,

Plus en détail

VOITURE ELECTRIQUE : LA CHARGE SANS CONTACT

VOITURE ELECTRIQUE : LA CHARGE SANS CONTACT Epreuve commune de TIPE Session 2012 Ariel SHEMTOV - 25269 VOITURE ELECTRIQUE : LA CHARGE SANS CONTACT I. PRESENTATION DU MONTAGE ETUDE THEORIQUE 1) Dispositif, lois physiques régissant son fonctionnement

Plus en détail

ACTION DES CHAMPS ELECTRIQUE ET MAGNETIQUE SUR LE MOUVEMENT DES ELECTRONS. MESURE DU RAPPORT e/m

ACTION DES CHAMPS ELECTRIQUE ET MAGNETIQUE SUR LE MOUVEMENT DES ELECTRONS. MESURE DU RAPPORT e/m EEl 1 ACTION DES CHAMPS ELECTRIQUE ET MAGNETIQUE SUR LE MOUVEMENT DES ELECTRONS MESURE DU RAPPORT e/m 1. THEORIE 1.1. Effet d un champ électrique sur une charge électrique Dans un champ électrique E une

Plus en détail

PHYSIQUE-CHIMIE. Traitements des surfaces. Partie I - Codépôt électrochimique cuivre-zinc.

PHYSIQUE-CHIMIE. Traitements des surfaces. Partie I - Codépôt électrochimique cuivre-zinc. PHYSIQUE-CHIMIE Traitements des surfaces Partie I - Codépôt électrochimique cuivre-zinc IA - Pour augmenter la qualité de surface d une pièce en acier, on désire recouvrir cette pièce d un alliage cuivre-zinc

Plus en détail

CHAPITRE 8 LE CHAMP MAGNETIQUE

CHAPITRE 8 LE CHAMP MAGNETIQUE CHAPTRE 8 LE CHAMP MAGETQUE ) Champ magnétique 1) Magnétisme Phénomène connu depuis l'antiquité. Les corps possédant des propriétés magnétiques sont appelés des aimants naturel (fer, oxyde magnétique de

Plus en détail

Caractérisation risation thermique photothermiques périodiques

Caractérisation risation thermique photothermiques périodiques Journée «Contrôle non destructif par voie optique infrarouge : De nouvelles techniques et de nouvelles applications». Salon Mesurexpo, Paris-Expo, Porte de Versailles, Jeudi Caractérisation risation thermique

Plus en détail

Contrôle Non Destructif C.N.D.

Contrôle Non Destructif C.N.D. Contrôle Non Destructif C.N.D. 16 Principales techniques Particules magnétiques Pénétrants 7% Autres 7% 6% Ultrasons 30% Objets divers Pétrochimique 15% 10% Aérospatial 25% Courants de Foucault 10% Autres

Plus en détail

Machines synchrones. Gérard-André CAPOLINO. Machines synchrones

Machines synchrones. Gérard-André CAPOLINO. Machines synchrones Gérard-ndré CPOLINO 1 Machine à pôles lisses Concept (machine à 2 pôles) Le stator est un circuit magnétique circulaire encoché Un bobinage triphasé est placé dans les encoches Le rotor est également un

Plus en détail

ACFM & AMIGO ACFM & AMIGO

ACFM & AMIGO ACFM & AMIGO ACFM & AMIGO 1 Principe de base de l ACFM Alternating Current Field Measurment (ACFM) ACFM est une technique basée sur la mesure absolue du champ magnétique en surface qui est produit par un champ magnétique

Plus en détail

2. Déplacement d une charge ponctuelle dans un champ magnétique uniforme stationnaire

2. Déplacement d une charge ponctuelle dans un champ magnétique uniforme stationnaire Chapitre VII Forces électromagnétiques VII.a. Force de Lorentz La force à laquelle est soumis, à un instant t, un point matériel de charge q, situé en M et se déplaçant à une vitesse v(t) par rapport à

Plus en détail

Sciences et technologie industrielles

Sciences et technologie industrielles Sciences et technologie industrielles Spécialité : Génie Energétique Classe de terminale Programme d enseignement des matières spécifiques Sciences physiques et physique appliquée CE TEXTE REPREND LE PUBLIE

Plus en détail

ELECTROTECHNIQUE. Chapitre 5 Bobines couplées magnétiquement Inductances mutuelles. Électromagnétisme. Michel PIOU. Édition: 01/06/2010

ELECTROTECHNIQUE. Chapitre 5 Bobines couplées magnétiquement Inductances mutuelles. Électromagnétisme. Michel PIOU. Édition: 01/06/2010 ELECTROTECHNIQUE Électromagnétisme Michel PIOU Chapitre 5 Bobines couplées magnétiquement Inductances mutuelles Édition: 0/06/00 Extrait de la ressource en ligne MagnElecPro sur le site Internet Table

Plus en détail

cpgedupuydelome.fr -PC Lorient

cpgedupuydelome.fr -PC Lorient Première partie Modèle scalaire des ondes lumineuses On se place dans le cadre de l optique géométrique 1 Modèle de propagation 1.1 Aspect ondulatoire Notion d onde électromagnétique On considère une onde

Plus en détail

Les machines électriques Électricité 2 Électrotechnique Christophe Palermo IUT de Montpellier Département Mesures Physiques & Institut d Electronique du Sud Université Montpellier 2 e-mail : Christophe.Palermo@univ-montp2.fr

Plus en détail

Problème IPhO : Diode électroluminescente et lampe de poche

Problème IPhO : Diode électroluminescente et lampe de poche IPhO : Diode électroluminescente et lampe de poche Les diodes électroluminescentes (DEL ou LED en anglais) sont de plus en plus utilisées pour l éclairage : affichages colorés, lampes de poche, éclairage

Plus en détail

Utilisation des matériaux magnétostrictifs filaires comme capteurs de mesure de champ magnétique

Utilisation des matériaux magnétostrictifs filaires comme capteurs de mesure de champ magnétique Utilisation des matériaux magnétostrictifs filaires comme capteurs de mesure de champ magnétique Eric CRESCENZO 1 Evagelos HRISTOFOROU 2 1) IXTREM 9 rue Edouard Denis Baldus, F-711 CHALON SUR SAONE Tél

Plus en détail

Chapitre 7. Électromagnétisme. 7.1 Magnétisme. 7.1.1 Aimants

Chapitre 7. Électromagnétisme. 7.1 Magnétisme. 7.1.1 Aimants Chapitre 7 Électromagnétisme 7.1 Magnétisme 7.1.1 Aimants Les aimants furent découverts d abord en Chine et puis en Grèce. Les premiers aimants sont des pierres noires qui ont la propriété d attirer des

Plus en détail

Master Lumière et Mesures Extrêmes Signal et Bruits : travaux pratiques. Détection par effet mirage Mesures photothermiques

Master Lumière et Mesures Extrêmes Signal et Bruits : travaux pratiques. Détection par effet mirage Mesures photothermiques 1 Master Lumière et Mesures Extrêmes Signal et Bruits : travaux pratiques 1 Introduction Détection par effet mirage Mesures photothermiques La méthode de détection par effet mirage fait partie de méthodes

Plus en détail

Electromagnétisme. Bipolarité Un champ magnétique possède toujours un pôle nord et un pôle sud. Ils sont indissociables.

Electromagnétisme. Bipolarité Un champ magnétique possède toujours un pôle nord et un pôle sud. Ils sont indissociables. Electromagnétisme Les champs magnétiques Les sources de champs magnétiques existent à l état naturel (Terre, aimant naturel) ou peuvent être crées artificiellement (aimant, électro-aimant). L unité du

Plus en détail

Chapitre 1 : PROPRIETES GENERALES DES CAPTEURS

Chapitre 1 : PROPRIETES GENERALES DES CAPTEURS ELEC 2811 : Instrumentation et capteurs 2011-2012 Chapitre 1 : PROPRIETES GENERALES DES CAPTEURS 1. INTRODUCTION 2. NOTIONS ET TERMINOLOGIE 2.1. Distinction entre grandeurs et paramètres physiques 2.2.

Plus en détail

Charge électrique loi de Coulomb

Charge électrique loi de Coulomb Champ électrique champ magnétique Charge électrique loi de Coulomb 1/ répulsion réciproque de deux charges < r 12 > Q 1 Q 2 Les deux charges Q 1 et Q 2 se repoussent mutuellement avec une force F 12 telle

Plus en détail

TP Cours Ferromagnétisme - Transformateur

TP Cours Ferromagnétisme - Transformateur TP Cours Ferromagnétisme - Transformateur 1. PROPRIETES DES MILIEUX FERROMAGNETIQUES La réalisation de transformateurs nécessite l utilisation de matériaux fortement aimantables. Ce sont les ferromagnétiques.

Plus en détail

Plan du chapitre «Milieux magnétiques»

Plan du chapitre «Milieux magnétiques» Plan du chapitre «Milieux magnétiques» 1. Sources microscopiques de l aimantation en régime statique 2. Etude macroscopique de l aimantation en régime statique 3. Aimantation en régime variable 4. Les

Plus en détail

Chapitre 5. Le champ magnétique. 5.1 Introduction et historique. 5.1.1 Les phénomènes magnétiques

Chapitre 5. Le champ magnétique. 5.1 Introduction et historique. 5.1.1 Les phénomènes magnétiques Chapitre 5 Le champ magnétique 5.1 Introduction et historique Le domaine de l électrostatique est celui de l interaction entre charges immobiles et de ses effets. Nous allons compléter notre étude en nous

Plus en détail

CHAPITRE 14. CHAMP MAGNETIQUE

CHAPITRE 14. CHAMP MAGNETIQUE CHAPITRE 14. CHAMP MAGNETIQUE 1. Notion de champ Si en un endroit à la surface de la Terre une boussole s'oriente en pointant plus ou moins vers le nord, c'est qu'il existe à l'endroit où elle se trouve,

Plus en détail

MAGNETISME. 3) Effet du magnétisme 31) Action sur un aimant :

MAGNETISME. 3) Effet du magnétisme 31) Action sur un aimant : MAGNETISME 1) Les différentes sources de champ magnétique La terre crée le champ magnétique terrestre Les aimants naturels : les magnétites Fe 3 O 4 L acier que l on aimante Les électroaimants et circuits

Plus en détail

Actionneurs électriques 1. Introduction

Actionneurs électriques 1. Introduction Actionneurs électriques 1. Introduction Master Spécialisé 1 Mécatronique Faculté des Sciences de Tétouan Février-Juin 2014 Jaouad Diouri Projet du cours Contenu Circuits magnétiques, transformateurs, puissance,

Plus en détail

Module d Electricité. 2 ème partie : Electrostatique. Fabrice Sincère (version 3.0.1) http://pagesperso-orange.fr/fabrice.sincere

Module d Electricité. 2 ème partie : Electrostatique. Fabrice Sincère (version 3.0.1) http://pagesperso-orange.fr/fabrice.sincere Module d Electricité 2 ème partie : Electrostatique Fabrice Sincère (version 3.0.1) http://pagesperso-orange.fr/fabrice.sincere 1 Introduction Principaux constituants de la matière : - protons : charge

Plus en détail

Champ magnétique de la barre aimantée.

Champ magnétique de la barre aimantée. Module expérimental : Etude de la loi de Faraday Étude de la loi de Faraday Objectif Etude expérimentale de la loi de Faraday de l induction. La loi de Faraday de l induction est abordée par l observation

Plus en détail

Prospection EM - source locale

Prospection EM - source locale Chapitre 10 Prospection EM - source locale 10.1 Modèle générique de prospection EM On peut présenter les choses à partir d un modèle générique valable pour toutes les méthodes. Figure 10.1: Modèle générique

Plus en détail

Les Capteurs. Images informationnelles utilisables. Informations traitées

Les Capteurs. Images informationnelles utilisables. Informations traitées I. INTRODUCTION : Les Capteurs Le traitement des informations par un système s'effectue aujourd'hui de manière électronique. Il est donc indispensable que ces informations soient supportées par des signaux

Plus en détail

Cours d électricité. Dipôles simples en régime alternatif. Mathieu Bardoux. 1 re année: 2011-2012

Cours d électricité. Dipôles simples en régime alternatif. Mathieu Bardoux. 1 re année: 2011-2012 Cours d électricité Dipôles simples en régime alternatif Mathieu Bardoux mathieu.bardoux@univ-littoral.fr IUT Saint-Omer / Dunkerque Département Génie Thermique et Énergie 1 re année: 2011-2012 Plan du

Plus en détail

Contrôle non destructif Magnétoscopie

Contrôle non destructif Magnétoscopie Contrôle non destructif Magnétoscopie Principes physiques : Le contrôle magnétoscopique encore appelé méthode du flux de fuite magnétique repose sur le comportement particulier des matériaux ferromagnétiques

Plus en détail

MATIE RE DU COURS DE PHYSIQUE

MATIE RE DU COURS DE PHYSIQUE MATIE RE DU COURS DE PHYSIQUE Titulaire : A. Rauw 5h/semaine 1) MÉCANIQUE a) Cinématique ii) Référentiel Relativité des notions de repos et mouvement Relativité de la notion de trajectoire Référentiel

Plus en détail

Sujet. calculatrice: autorisée durée: 2 heures (10h-12h)

Sujet. calculatrice: autorisée durée: 2 heures (10h-12h) DS SCIENCES PHYSIQUES MATHSPÉ CONCOURS BLANC calculatrice: autorisée durée: 2 heures (10h-12h) Sujet Vaisseau spatial... 2 I.Vaisseau spatial dans un champ newtonien... 2 II.Vitesse de libération...3 A.Option

Plus en détail

Concours CASTing 2011

Concours CASTing 2011 Concours CASTing 2011 Épreuve de mécanique Durée 1h30 Sans calculatrice Le candidat traitera deux exercices parmi les trois proposés dans le sujet. Dans le cas où les trois exercices seraient traités partiellement,

Plus en détail

MESURE DES TENSIONS ET DES COURANTS

MESURE DES TENSIONS ET DES COURANTS Chapitre 7 MESURE DES TENSIONS ET DES COURANTS I- MESURE DES TENSIONS : I-1- Généralités : Pour mesurer la tension UAB aux bornes d un récepteur, il faut brancher un voltmètre entre les points A et B (

Plus en détail

Electricité. Mesure du champ magnétique sur un conducteur droit et sur des boucles conductrices. LEYBOLD Fiches d expériences de physique P3.3.4.

Electricité. Mesure du champ magnétique sur un conducteur droit et sur des boucles conductrices. LEYBOLD Fiches d expériences de physique P3.3.4. Electricité Magnétostatique Loi de iot et Savart LEYOLD Fiches d epériences de physique Mesure du champ magnétique sur un conducteur droit et sur des boucles conductrices Objectifs epérimentau Mesure du

Plus en détail

Moteurs à courant continu Moteurs asynchrones

Moteurs à courant continu Moteurs asynchrones Chapitre 17 Sciences Physiques - BTS Moteurs à courant continu Moteurs asynchrones 1 Loi de Laplace 1.1 Etude expérimentale Le conducteur est parcouru par un courant continu ; il est placé dans un champ

Plus en détail

Oraux ENSEA/ENSIIE 2015 - Rapport sur l'épreuve de Physique

Oraux ENSEA/ENSIIE 2015 - Rapport sur l'épreuve de Physique Oraux ENSEA/ENSIIE 2015 - Rapport sur l'épreuve de Physique NATURE DE L'ÉPREUVE L épreuve comporte deux parties dont les énoncés sont communiqués aux candidats au début d une préparation de 20 mn. L exposé

Plus en détail

LA THERMOGRAPHIE INFRAROUGE

LA THERMOGRAPHIE INFRAROUGE LA THERMOGRAPHIE INFRAROUGE 1 EMISSION THERMIQUE DE LA MATIERE 2 1.1 LE RAYONNEMENT ELECTROMAGNETIQUE 2 1.2 LES CORPS NOIRS 2 1.3 LES CORPS GRIS 3 2 APPLICATION A LA THERMOGRAPHIE INFRAROUGE 4 2.1 DISPOSITIF

Plus en détail

Electricité et magnétisme - TD n 1 Loi de Coulomb

Electricité et magnétisme - TD n 1 Loi de Coulomb 1. Force électrique Electricité et magnétisme - TD n 1 Loi de Coulomb Calculer le rapport entre force gravitationnelle et électrique entre le proton et l électron dans l atome d hydrogène. Soit a 0 la

Plus en détail

Propriétés ondulatoires du son

Propriétés ondulatoires du son Propriétés ondulatoires du son But de la manipulation : Illustrer le caractère ondulatoire du son. Introduction : Pour se convaincre que le son est une onde, il suffit de montrer que son comportement est

Plus en détail

Electromagnétisme. Chapitre 1 : Champ magnétique

Electromagnétisme. Chapitre 1 : Champ magnétique 2 e BC 1 Champ magnétique 1 Electromagnétisme Le magnétisme se manifeste par exemple lorsqu un aimant attire un clou en fer. C est un phénomène distinct de la gravitation, laquelle est une interaction

Plus en détail

Chapitre P12 : Le magnétisme

Chapitre P12 : Le magnétisme : ) Qu'est-ce que le champ magnétique? 1) Comment détecter un champ magnétique? Expérience : Voir fiche Expériences 1 et 2 En un lieu donné, une aiguille aimantée, pouvant tourner dans un plan horizontal,

Plus en détail

Faisceau gaussien. A = a 0 e ikr e i k. 2R (x2 +y 2 )

Faisceau gaussien. A = a 0 e ikr e i k. 2R (x2 +y 2 ) Faisceau gaussien 1 Introduction La forme du faisceau lumineux émis par un laser est particulière, et correspond à un faisceau gaussien, ainsi nommé car l intensité décroît suivant une loi gaussienne lorsqu

Plus en détail

Les correcteurs accorderont une importance particulière à la rigueur des raisonnements et aux représentations graphiques demandées.

Les correcteurs accorderont une importance particulière à la rigueur des raisonnements et aux représentations graphiques demandées. Les correcteurs accorderont une importance particulière à la rigueur des raisonnements et aux représentations graphiques demandées. 1 Ce sujet aborde le phénomène d instabilité dans des systèmes dynamiques

Plus en détail

Test d auto-évaluation 2010

Test d auto-évaluation 2010 SwissPhO Olympiade Suisse de Physique 2010 Test d auto-évaluation 2010 Ce test permet aux intéressés d évaluer leurs capacités à résoudre des problèmes et de reconnaître des lacunes dans certaines notions.

Plus en détail

Chapitre 1 Régime transitoire dans les systèmes physiques

Chapitre 1 Régime transitoire dans les systèmes physiques Chapitre 1 Régime transitoire dans les systèmes physiques Savoir-faire théoriques (T) : Écrire l équation différentielle associée à un système physique ; Faire apparaître la constante de temps ; Tracer

Plus en détail

ECHANGE DE CHALEUR: LA CONDUCTION

ECHANGE DE CHALEUR: LA CONDUCTION ECHANGE DE CHALEUR: LA CONDUCTION Nous n étudierons dans ce chapitre que la conduction en régime permanent, c'est-à-dire lorsque l équilibre thermique est atteint ce qui se caractérise par des températures

Plus en détail

NOTICE DOUBLE DIPLÔME

NOTICE DOUBLE DIPLÔME NOTICE DOUBLE DIPLÔME MINES ParisTech / HEC MINES ParisTech/ AgroParisTech Diplômes obtenus : Diplôme d ingénieur de l Ecole des Mines de Paris Diplôme de HEC Paris Ou Diplôme d ingénieur de l Ecole des

Plus en détail

ÉLECTRICITÉ 1/5. En rotation : W = M.q. M = F.r. P = W t. eo. Q S W = VAB. Q VA - VB AB. I = Q t W = U. Q. P = U. I I : intensité ( ampère )

ÉLECTRICITÉ 1/5. En rotation : W = M.q. M = F.r. P = W t. eo. Q S W = VAB. Q VA - VB AB. I = Q t W = U. Q. P = U. I I : intensité ( ampère ) ÉLECTRICITÉ / Travail ( W ) en joule En translation : W = F.d Puissance mécanique ( P ) en watt Champ électrique uniforme ( e ) en volt/mètre Travail de la force électrique ( W ) en joule Champ et potentiel

Plus en détail

Cours d électricité. Circuits électriques en courant constant. Mathieu Bardoux. 1 re année

Cours d électricité. Circuits électriques en courant constant. Mathieu Bardoux. 1 re année Cours d électricité Circuits électriques en courant constant Mathieu Bardoux mathieu.bardoux@univ-littoral.fr IUT Saint-Omer / Dunkerque Département Génie Thermique et Énergie 1 re année Objectifs du chapitre

Plus en détail

PHY 235 : T.D corrigés 2011. est plongée dans un champ uniforme orthogonal à, un cercle de rayon. Si

PHY 235 : T.D corrigés 2011. est plongée dans un champ uniforme orthogonal à, un cercle de rayon. Si PHY 235 : TD corrigés 2011 Force de Lorentz 29(M) Sachant que le flux du champ magnétique est conservatif, décrire (qualitativement) la trajectoire d une particule chargée dans un champ magnétique non

Plus en détail

B31+B32 - Lignes. Ces grandeurs dépendent de la longueur l de la ligne : ce sont des grandeurs dites "réparties".

B31+B32 - Lignes. Ces grandeurs dépendent de la longueur l de la ligne : ce sont des grandeurs dites réparties. G. Pinson - Physique Appliquée Lignes B31+B32-TP / 1 B31+B32 - Lignes But : on veut transmettre des données numériques sous forme d'impulsions binaires dans une ligne, en veillant à minimiser les perturbations

Plus en détail

B = (R 2 + (x x c ) 2 )

B = (R 2 + (x x c ) 2 ) PHYSQ 126: Champ magnétique induit 1 CHAMP MAGNÉTIQUE INDUIT 1 But Cette expérience 1 a pour but d étudier le champ magnétique créé par un courant électrique, tel que décrit par la loi de Biot-Savart 2.

Plus en détail

Modèle réduit pour la DSC : Application aux solutions binaires

Modèle réduit pour la DSC : Application aux solutions binaires Modèle réduit pour la DSC : Application aux solutions binaires Stéphane GIBOUT 1, Erwin FRANQUET 1, William MARÉCHAL 1, Jean-Pierre BÉDÉCARRATS 1, Jean-Pierre DUMAS 1 1 Univ. Pau & Pays Adour, LaTEP-EA

Plus en détail

Électromagnétisme 2 : Travaux Pratiques

Électromagnétisme 2 : Travaux Pratiques Université de Franche-Comté - UFR Sciences et Techniques Département de Physique Licences de Physique et Physique-Chimie Électromagnétisme 2 : Travaux Pratiques 1 TP1 : Le phénomène d induction Durée :

Plus en détail

Capteurs. Capteur. 1. Position du problème. 2. définitions. s = f(m) 3. Les principes physiques mis en oeuvres

Capteurs. Capteur. 1. Position du problème. 2. définitions. s = f(m) 3. Les principes physiques mis en oeuvres Ce cours est destiné à donner un aperçu : - des possibilités de mesure des grandeurs physiques ; - des principales caractéristiques dont il faut tenir compte lors de l utilisation d un capteur. Bibliographie

Plus en détail

Professeur Eva PEBAY-PEYROULA

Professeur Eva PEBAY-PEYROULA UE3-1 : Physique Chapitre 2 : Électrostatique Professeur Eva PEBAY-PEYROULA Année universitaire 2010/2011 Université Joseph Fourier de Grenoble - Tous droits réservés. II- Électrostatique Finalité du chapitre

Plus en détail

3.1 Circulation du champ d une charge ponctuelle A(Γ)

3.1 Circulation du champ d une charge ponctuelle A(Γ) Chapitre 3 Le potentiel électrostatique Le champ électrostatique peut être caractérisé simplement à l aide d une fonction que nous appellerons potentiel électrostatique. Cette fonction scalaire est souvent

Plus en détail

Electron S.R.L. Electron S.R.L. - MERLINO - MILAN ITALIE Tel (++ 39 02) 9065 9200 Fax 9065 9180 Web www.electron.it, e-mail electron@electron.

Electron S.R.L. Electron S.R.L. - MERLINO - MILAN ITALIE Tel (++ 39 02) 9065 9200 Fax 9065 9180 Web www.electron.it, e-mail electron@electron. Electron S.R.L. Design Production & Trading of Educational Equipment B4510 UNIITE DIIDACTIIQUE LIIGNE DE TRANSMIISSIION MANUEL D IINSTRUCTIIONS Electron S.R.L. - MERLINO - MILAN ITALIE Tel (++ 39 02) 9065

Plus en détail

PRISME ET RESEAU APPLICATION A LA MESURE DE LONGUEURS D'ONDE

PRISME ET RESEAU APPLICATION A LA MESURE DE LONGUEURS D'ONDE PRISME ET RESEAU APPLICATION A LA MESURE DE LONGUEURS D'ONDE PARTIE THEORIQUE A - RESEAUX 1 - Définition On appelle réseau plan le système constitué par un grand nombre de fentes fines, parallèles, égales

Plus en détail

Cours d électricité. Étude des régimes alternatifs. Mathieu Bardoux. 1 re année. IUT Saint-Omer / Dunkerque Département Génie Thermique et Énergie

Cours d électricité. Étude des régimes alternatifs. Mathieu Bardoux. 1 re année. IUT Saint-Omer / Dunkerque Département Génie Thermique et Énergie Cours d électricité Étude des régimes alternatifs Mathieu Bardoux mathieu.bardoux@univ-littoral.fr IUT Saint-Omer / Dunkerque Département Génie Thermique et Énergie 1 re année Plan du chapitre s sur les

Plus en détail