Probabilités 6 : Loi normale N (μ ; σ 2 )
|
|
|
- Josselin Beaudry
- il y a 9 ans
- Total affichages :
Transcription
1 Probabilités 6 : Loi normale N (μ ; 2 ) «I» : Définition Soit μ un nombre réel et un réel strictement positif, o n dit qu'une variable aléatoire X suit la loi normale N (μ ; 2 ), lorsque la variable aléatoire centrée réduite Z associée à X, Z= X μ suit une loi normale centrée réduite N (0 ; 1). Exercice 01 La masse en Kg des nouveaux nés à la naissance est une variable aléatoire X modélisée par la loi normale N (3,3 ; 0,25). Déterminer la probabilité qu'un nouveau né pèse moins de 2,5 kg La variable aléatoire centrée réduite On cherche p(0 < X < 2,5) = p 3,3 Z = X = X 3,3 Z 2,5 3,3 «II» : Espérance et variance (admises) suit la loi normale centrée réduite N (0 ; 1) = p 3,3 Z 1,6 0,0548 On admet que si X suit une loi normale N (μ ; 2 ) alors E(X) = μ et V(X) = 2. «III» : Courbe représentative de la densité de probabilité de la loi normale N (μ ; 2 ) La densité de probabilité de la loi normale N (μ ; 2 ) a une expression similaire à celle de la loi normale centrée réduite. Cette densité de probabilité est définie par f (x)= 1 2 π e 1 2 ( x μ 2 ) La courbe est une courbe en cloche. (à ne pas retenir) La courbe représentative de la fonction densité de probabilité de la loi normale N(μ ; 2 ) admet la droite d'équation x = μ comme axe de symétrie. a une influence sur l'étalement de la courbe, plus est petit plus la courbe est haute et resserrée autour de son axe de symétrie 1 Lycée de Font Romeu SC
2 «IV» : Calculs de probabilités avec la loi normale N (μ ; 2 ). Si la variable aléatoire X suit une loi normale N ( μ ; 2 ) alors la calculatrice permet de calculer la probabilité d'un intervalle et de trouver le nombre a pour lequel p(x < a) est connu. Les calculs à la calculatrice sont exactement les mêmes que pour la loi normale centrée réduite à la différence près qu'il il faut rentrer les valeurs de μ et à la place de 0 et 1. Pour calculer p(x < a) ou p(x > a) on peut soit fixer une seconde borne (10 99 ou ) soit utiliser les propriétés de la courbe Si a μ alors p(x < a) = - p( ]a ; μ[ et p(x > a) = + p( ]a ; μ[ Si a μ alors p(x < d) = + p( ]μ ; a[ et p(x > a) = - p( ]μ ; a)[ Exercice 02 La variable aléatoire X suit une loi normale N (200 ; 100) 1/ p(-20 < X < 180) p(x < 250) et p(x > 3500) 2/ Déterminer a et b tels que p(x < a ) = 0,3 et p(x > b) = 0,2 1/ p(-20 < X < 180) 0,023 p(x < 2500) 0,42 et p(x > -200) 0,945 2/ a 194,76 et si p(x > b) = 0,2 alors 1 p(x < b) = 0,2 alors p(x < b) =0,8 d'où b 208,42 Exercice 03 Une compagnie de transport possède 200 cars. La variable aléatoire X qui a un car choisi au hasard associe la distance journalière parcourue en km suit la loi normale N (80 ; 14 2 ). Quelle est la probabilité, à 10-3 près, qu'un car parcourt entre 70 et 100 km par jour? La probabilité qu'un car parcoure entre 70 et 100 km par jour est p(70 < X < 100) soit environ 0,6859. Exercice 04 La durée de vie en jours d'un certain type d'appareil est modélisée par une variable aléatoire normale de moyenne μ et d'écart type inconnus. Les spécifications indiquent que 80 % de la production des appareils a une durée de vie entre 120 et 200 jours et que 5 % de la production des appareils a une durée de vie inférieure à 120 jours. 1/ Utiliser la loi normale centrée réduite associée pour calculer et μ. 2/ Déterminer la probabilité d'avoir un appareil dont la durée de vie est comprise entre 200 et 230 jours 1/ Soit X la variable aléatoire qui donne la durée de vie de ce type d'appareil L'énoncé s'écrit p(120 < X < 200) = 0,8 et p(x < 120) = 0,05 Par des propriétés géométriques de la courbe, p(120 < X < 200) = p(x < 200) p(x < 120) Donc p(x < 200) p(x < 120) = 0,8 Ou p(x < 200) 0,05 = 0,8 car p(x < 120) = 0,05 Ou pour finir p(x < 200) = 0,85 p( X <120)=0,05 On a donc le système suivant { p ( X <200)=0,85 On ne connaît ni ni μ et on ne peut donc pas utiliser la calculatrice. On considère la variable aléatoire Z= X μ p(x < 120) = 0,05 s'écrit p(z < 120 μ )=0,05 et p(x < 220) = 0,85 s'écrit p(z < 200 μ On peut donc utiliser la calculatrice et utiliser la loi normale centrée réduite pour trouver 200 μ 120 μ 200 μ. On trouve 1,645 et 1,036 )=0, μ et 2 Lycée de Font Romeu SC
3 Ce qui donne le système { μ 1,645=120 μ+1,036 =200 On trouve en arrondissant μ 169 et 30 2/ Dans ces conditions p(200 < X < 230) 0,13 Exercice 05 La durée de vie d'une ampoule, mesurée en heures, est une variable D qui suit la loi normale N (μ ; 2 ). On a pu déterminer les probabilités p(d > 2000) = 0,9251 et p(d > 3000) = 0,8577 1/ Quelle est la loi de la variable aléatoire X = D μ? 2/ a) Déterminer un système vérifié par μ et. b) En déduire μ et. 3/ Déterminer alors p(d < 1000) et p(d > 5000) 1/X suit la loi normale centrée réduite. 2/ a) p(d > 2000) = 0,9251 s'écrit p ( D μ > )=0,9251 ou p( X > )=0,9251 p(d >3000) = 0,8577 s'écrit p( D μ > )=0,8577 ou p ( X > )=0,8577 Or avec la loi normale centrée réduite, on sait trouver et On cherche tel que p(x > ) = 0,9251 ou 1 - p(x < ) = 0,92 ou p(x < ) = 1 0,9251. On trouve o = 1,44 ou μ 1,44 =2000 On cherche tel que p(x > ) = 0,8577 ou 1 - p(x < ) = 0,8577 ou p(x < ) = 1 0,8577. On trouve = 1,07 ou μ 1,07 =3000 Ce qui donne le système suivant { μ 1,44=2000 μ 1,07=3000 qui a pour solution μ 5892 et / On en déduit p(d < 1000) = p([1000 ; 5892]) car 1000 < 5892 donc p(d < 1000) 0,04 et de même p(d > 5000) 0,63 Exercice 06 La production laitière annuelle en litres de toute vache laitière de la race FFPN peut être modélisée par une variable aléatoire à densité X de la loi normale de moyenne μ = 6000 a) et d' écart type = 400. la fonction g désigne la fonction densité de la loi normale. 1/ Afin de gérer au plus près son quota laitier ( production maximale autorisée), en déterminant la taille optimale de sont troupeau, un éleveur faisant naître des vaches de cette race souhaite disposer de certaine probabilités. Calculer la probabilité qu'une vache quelconque de cette race produise : a) moins de 5800 litres par an b) entre 5900 et 6100 litres par an c) plus de 6250 litres par an 2/ Dans son futur troupeau, l'éleveur souhaite connaître certaine productions prévisibles. Calculer la production a) maximale prévisible des 30 % de vaches les moins productives du troupeau b) minimale prévisible des 20% de vaches les plus productives du troupeau 1/ a) p(x < 5800) = p([5800 ; 6000]) 0,19146 ou encore p(x < 5800) 0,309 b) p([5900 ; 6100]) 0,197 c) p(x > 6250) p(6250 < X < ) 0,266 2/ a) On cherche a pour que p(x < a) 0,3 à la calculatrice on trouve a 5790 b) On cherche b tel que p(x > b) 0,2 et on trouve à la calculatrice b Lycée de Font Romeu SC
4 «V» : Valeurs à connaître Les résultats suivants sont utilisés dans de nombreux contextes et sont à connaître Si X suit une loi normale N (μ ; 2 ) alors : p (μ < X < μ + ) 0,683 Environ 68% des valeurs de X se trouvent entre μ et μ + Si X suit une loi normale N (μ ; 2 ) alors : p (μ 2 < X < μ + 2) 0,954 Environ 95% des valeurs de X se trouvent entre μ 2 et μ + 2 Si X suit une loi normale N (μ ; 2 ) alors : p (μ 3 < X < μ + 3) 0,997 Environ 99,7 % des valeurs de X se trouvent entre μ 3 et μ + 3 Exercice 07 le test pour évaluer le QI est le test de Wechsler. On appelle X la variable aléatoire qui à toute personne choisie au hasard associe son QI mesuré à l'aide de ce test et on admet quelle suit une loi normale N (100;225) 1/ En remarquent que 130 = μ + 2, déterminer sans calculatrice la probabilité arrondie au millième qu'une personne choisit au hasard ait un QI supérieur à 130 2/ Vérifier à la calculatrice. 1/ p (μ 2 < X < μ + 2) 0,954 ici p (70 < X < 130) 0,954 Par symétrie de la courbe autour de la droite d' équation x = 100, p (70 < X < 130)= 2p (100 < X < 130) Donc p (100 < X < 130) 0,477 Et par des considérations géométriques sur la courbe en cloche, p(x > 130) = - p (100 < X < 130) ou p(x > 130) 0,023 2/ A la calculatrice p(x > 130) 0,0228 «V» : Remarque, du discret au continu En pratique dès que n 30, n p 5 et n (1-p) 5, on peut approximer la loi binomiale B (n ; p) par la loi normale N (np ; np(1 - p)). On passe ainsi d'une distribution discrète à une distribution continue beaucoup plus souple 4 Lycée de Font Romeu SC
5 Exercice 08 Un fabricant souhaite lancer une nouvelle console de jeu pour Noël. Les études marketing montrent que parmi les 2000 joueurs de la région, 40% ont déclaré avoir l'intention d'acheter la console de jeu. 1/ Quelle est la loi suivie par X? 2/ En approximant la loi de la variable X par une loi normale dont on précisera les caractéristiques, déterminer le stock que doit avoir le magasin pour que la probabilité de rupture de stock soit inférieure à 0,1. 1/ X suit la loi binomiale B (2000, 0,4) 2/ La loi normale est la loi N (800 ; 480). On cherche p(x > a) = 0,1 soit 1 p(x < a) = 0,1 ou p(x < a) = 0, 9 On trouve a 828,1 Le stock doit être de environ 828 consoles pour que la probabilité de rupture de stock soit inférieure à 0,1. 5 Lycée de Font Romeu SC
TSTI 2D CH X : Exemples de lois à densité 1
TSTI 2D CH X : Exemples de lois à densité I Loi uniforme sur ab ; ) Introduction Dans cette activité, on s intéresse à la modélisation du tirage au hasard d un nombre réel de l intervalle [0 ;], chacun
Loi binomiale Lois normales
Loi binomiale Lois normales Christophe ROSSIGNOL Année scolaire 204/205 Table des matières Rappels sur la loi binomiale 2. Loi de Bernoulli............................................ 2.2 Schéma de Bernoulli
Représentation d une distribution
5 Représentation d une distribution VARIABLE DISCRÈTE : FRÉQUENCES RELATIVES DES CLASSES Si dans un graphique représentant une distribution, on place en ordonnées le rapport des effectifs n i de chaque
Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé
Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé A. P. M. E. P. Exercice 1 5 points 1. Réponse d. : 1 e Le coefficient directeur de la tangente est négatif et n est manifestement pas 2e
Estimation et tests statistiques, TD 5. Solutions
ISTIL, Tronc commun de première année Introduction aux méthodes probabilistes et statistiques, 2008 2009 Estimation et tests statistiques, TD 5. Solutions Exercice 1 Dans un centre avicole, des études
Probabilités et Statistiques. Feuille 2 : variables aléatoires discrètes
IUT HSE Probabilités et Statistiques Feuille : variables aléatoires discrètes 1 Exercices Dénombrements Exercice 1. On souhaite ranger sur une étagère 4 livres de mathématiques (distincts), 6 livres de
Baccalauréat ES/L Amérique du Sud 21 novembre 2013
Baccalauréat ES/L Amérique du Sud 21 novembre 2013 A. P. M. E. P. EXERCICE 1 Commun à tous les candidats 5 points Une entreprise informatique produit et vend des clés USB. La vente de ces clés est réalisée
Lois de probabilité. Anita Burgun
Lois de probabilité Anita Burgun Problème posé Le problème posé en statistique: On s intéresse à une population On extrait un échantillon On se demande quelle sera la composition de l échantillon (pourcentage
Baccalauréat ES/L Métropole La Réunion 13 septembre 2013 Corrigé
Baccalauréat S/L Métropole La Réunion 13 septembre 2013 Corrigé A. P. M.. P. XRCIC 1 Commun à tous les candidats Partie A 1. L arbre de probabilité correspondant aux données du problème est : 0,3 0,6 H
Probabilités conditionnelles Exercices corrigés
Terminale S Probabilités conditionnelles Exercices corrigés Exercice : (solution Une compagnie d assurance automobile fait un bilan des frais d intervention, parmi ses dossiers d accidents de la circulation.
Baccalauréat ES Pondichéry 7 avril 2014 Corrigé
Baccalauréat ES Pondichéry 7 avril 204 Corrigé EXERCICE 4 points Commun à tous les candidats. Proposition fausse. La tangente T, passant par les points A et B d abscisses distinctes, a pour coefficient
Moments des variables aléatoires réelles
Chapter 6 Moments des variables aléatoires réelles Sommaire 6.1 Espérance des variables aléatoires réelles................................ 46 6.1.1 Définition et calcul........................................
Actuariat I ACT2121. septième séance. Arthur Charpentier. Automne 2012. [email protected]. http ://freakonometrics.blog.free.
Actuariat I ACT2121 septième séance Arthur Charpentier [email protected] http ://freakonometrics.blog.free.fr/ Automne 2012 1 Exercice 1 En analysant le temps d attente X avant un certain événement
Correction du baccalauréat ES/L Métropole 20 juin 2014
Correction du baccalauréat ES/L Métropole 0 juin 014 Exercice 1 1. c.. c. 3. c. 4. d. 5. a. P A (B)=1 P A (B)=1 0,3=0,7 D après la formule des probabilités totales : P(B)=P(A B)+P(A B)=0,6 0,3+(1 0,6)
EXERCICE 4 (7 points ) (Commun à tous les candidats)
EXERCICE 4 (7 points ) (Commun à tous les candidats) On cherche à modéliser de deux façons différentes l évolution du nombre, exprimé en millions, de foyers français possédant un téléviseur à écran plat
BTS Groupement A. Mathématiques Session 2011. Spécialités CIRA, IRIS, Systèmes électroniques, TPIL
BTS Groupement A Mathématiques Session 11 Exercice 1 : 1 points Spécialités CIRA, IRIS, Systèmes électroniques, TPIL On considère un circuit composé d une résistance et d un condensateur représenté par
Baccalauréat ES Antilles Guyane 12 septembre 2014 Corrigé
Baccalauréat ES Antilles Guyane 12 septembre 2014 Corrigé EXERCICE 1 5 points Commun à tous les candidats 1. Réponse c : ln(10)+2 ln ( 10e 2) = ln(10)+ln ( e 2) = ln(10)+2 2. Réponse b : n 13 0,7 n 0,01
ACTUARIAT 1, ACT 2121, AUTOMNE 2013 #4-5
ACTUARIAT 1, ACT 2121, AUTOMNE 2013 #4-5 ARTHUR CHARPENTIER 1 Un certain test médical révèle correctement, avec probabilité 0.85, qu une personne a le sida lorsqu elle l a vraiment et révèle incorrectement,
Simulation de variables aléatoires
Chapter 1 Simulation de variables aléatoires Références: [F] Fishman, A first course in Monte Carlo, chap 3. [B] Bouleau, Probabilités de l ingénieur, chap 4. [R] Rubinstein, Simulation and Monte Carlo
FORD C-MAX + FORD GRAND C-MAX CMAX_Main_Cover_2013_V3.indd 1-3 22/08/2012 15:12
1 2 3 4 5 6 7 8 9 10 12,999,976 km 9,136,765 km 1,276,765 km 499,892 km 245,066 km 112,907 km 36,765 km 24,159 km 7899 km 2408 km 76 km 12 14 16 1 12 7 3 1 6 2 5 4 3 11 9 10 8 18 20 21 22 23 24 26 28 30
ACTUARIAT 1, ACT 2121, AUTOMNE 2013 #12
ACTUARIAT 1, ACT 2121, AUTOMNE 2013 #12 ARTHUR CHARPENTIER 1 Une compagnie d assurance modélise le montant de la perte lors d un accident par la variable aléatoire continue X uniforme sur l intervalle
Calcul élémentaire des probabilités
Myriam Maumy-Bertrand 1 et Thomas Delzant 1 1 IRMA, Université Louis Pasteur Strasbourg, France Licence 1ère Année 16-02-2006 Sommaire La loi de Poisson. Définition. Exemple. 1 La loi de Poisson. 2 3 4
Les devoirs en Première STMG
Les devoirs en Première STMG O. Lader Table des matières Devoir sur table 1 : Proportions et inclusions....................... 2 Devoir sur table 1 : Proportions et inclusions (corrigé)..................
GEA II Introduction aux probabilités Poly. de révision. Lionel Darondeau
GEA II Introduction aux probabilités Poly. de révision Lionel Darondeau Table des matières Énoncés 4 Corrigés 10 TD 1. Analyse combinatoire 11 TD 2. Probabilités élémentaires 16 TD 3. Probabilités conditionnelles
Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé
Baccalauréat S ntilles-guyane 11 septembre 14 Corrigé EXERCICE 1 6 points Commun à tous les candidats Une entreprise de jouets en peluche souhaite commercialiser un nouveau produit et à cette fin, effectue
Chapitre 1 : Évolution COURS
Chapitre 1 : Évolution COURS OBJECTIFS DU CHAPITRE Savoir déterminer le taux d évolution, le coefficient multiplicateur et l indice en base d une évolution. Connaître les liens entre ces notions et savoir
Les puissances 4. 4.1. La notion de puissance. 4.1.1. La puissance c est l énergie pendant une seconde CHAPITRE
4. LES PUISSANCES LA NOTION DE PUISSANCE 88 CHAPITRE 4 Rien ne se perd, rien ne se crée. Mais alors que consomme un appareil électrique si ce n est les électrons? La puissance pardi. Objectifs de ce chapitre
Estimation: intervalle de fluctuation et de confiance. Mars 2012. IREM: groupe Proba-Stat. Fluctuation. Confiance. dans les programmes comparaison
Estimation: intervalle de fluctuation et de confiance Mars 2012 IREM: groupe Proba-Stat Estimation Term.1 Intervalle de fluctuation connu : probabilité p, taille de l échantillon n but : estimer une fréquence
Exercices supplémentaires sur l introduction générale à la notion de probabilité 2009-2010
Exercices supplémentaires sur l introduction générale à la notion de probabilité 2009-2010 Exercices fortement conseillés : 6, 10 et 14 1) Un groupe d étudiants est formé de 20 étudiants de première année
Programmes des classes préparatoires aux Grandes Ecoles
Programmes des classes préparatoires aux Grandes Ecoles Filière : scientifique Voie : Biologie, chimie, physique et sciences de la Terre (BCPST) Discipline : Mathématiques Seconde année Préambule Programme
Chapitre 3 : Principe des tests statistiques d hypothèse. José LABARERE
UE4 : Biostatistiques Chapitre 3 : Principe des tests statistiques d hypothèse José LABARERE Année universitaire 2010/2011 Université Joseph Fourier de Grenoble - Tous droits réservés. Plan I. Introduction
Correction du baccalauréat STMG Polynésie 17 juin 2014
Correction du baccalauréat STMG Polynésie 17 juin 2014 EXERCICE 1 Cet exercice est un Q.C.M. 4 points 1. La valeur d une action cotée en Bourse a baissé de 37,5 %. Le coefficient multiplicateur associé
PROBABILITES ET STATISTIQUE I&II
PROBABILITES ET STATISTIQUE I&II TABLE DES MATIERES CHAPITRE I - COMBINATOIRE ELEMENTAIRE I.1. Rappel des notations de la théorie des ensemble I.1.a. Ensembles et sous-ensembles I.1.b. Diagrammes (dits
Probabilités Loi binomiale Exercices corrigés
Probabilités Loi binomiale Exercices corrigés Sont abordés dans cette fiche : (cliquez sur l exercice pour un accès direct) Exercice 1 : épreuve de Bernoulli Exercice 2 : loi de Bernoulli de paramètre
t 100. = 8 ; le pourcentage de réduction est : 8 % 1 t Le pourcentage d'évolution (appelé aussi taux d'évolution) est le nombre :
Terminale STSS 2 012 2 013 Pourcentages Synthèse 1) Définition : Calculer t % d'un nombre, c'est multiplier ce nombre par t 100. 2) Exemples de calcul : a) Calcul d un pourcentage : Un article coûtant
Travaux dirigés d introduction aux Probabilités
Travaux dirigés d introduction aux Probabilités - Dénombrement - - Probabilités Élémentaires - - Variables Aléatoires Discrètes - - Variables Aléatoires Continues - 1 - Dénombrement - Exercice 1 Combien
NOTIONS DE PROBABILITÉS
NOTIONS DE PROBABILITÉS Sommaire 1. Expérience aléatoire... 1 2. Espace échantillonnal... 2 3. Événement... 2 4. Calcul des probabilités... 3 4.1. Ensemble fondamental... 3 4.2. Calcul de la probabilité...
Statistique : Résumé de cours et méthodes
Statistique : Résumé de cours et méthodes 1 Vocabulaire : Population : c est l ensemble étudié. Individu : c est un élément de la population. Effectif total : c est le nombre total d individus. Caractère
Unité E Variation et analyse statistique
Unité E Variation et analyse statistique VARIATION ET ANALYSE STATISTIQUE Introduction Ce module présente aux élèves deux méthodes d'utilisation des statistiques pour décrire des données et tirer des conclusions
Probabilités (méthodes et objectifs)
Probabilités (méthodes et objectifs) G. Petitjean Lycée de Toucy 10 juin 2007 G. Petitjean (Lycée de Toucy) Probabilités (méthodes et objectifs) 10 juin 2007 1 / 19 1 Déterminer la loi de probabilité d
LA NOTATION STATISTIQUE DES EMPRUNTEURS OU «SCORING»
LA NOTATION STATISTIQUE DES EMPRUNTEURS OU «SCORING» Gilbert Saporta Professeur de Statistique Appliquée Conservatoire National des Arts et Métiers Dans leur quasi totalité, les banques et organismes financiers
Economie de l incertain et de l information Partie 1 : Décision en incertain probabilisé Chapitre 1 : Introduction à l incertitude et théorie de
Economie de l incertain et de l information Partie 1 : Décision en incertain probabilisé Chapitre 1 : Introduction à l incertitude et théorie de l espérance d utilité Olivier Bos [email protected]
MATHEMATIQUES TES 2012-2013 Corrigés des devoirs
MATHEMATIQUES TES 2012-2013 Corrigés des devoirs DS1 26/09/2012 page2 DV 09/10/2012 page 6 DS 24/10/2012 page 8 DV 30/11/2012 page 14 DV 14/12/2012 page 16 BAC BLANC 18/01/2013 page 17 DV 05/02/2013 page
Notion de fonction. Série 1 : Tableaux de données. Série 2 : Graphiques. Série 3 : Formules. Série 4 : Synthèse
N7 Notion de fonction Série : Tableaux de données Série 2 : Graphiques Série 3 : Formules Série 4 : Synthèse 57 SÉRIE : TABLEAUX DE DONNÉES Le cours avec les aides animées Q. Si f désigne une fonction,
1 TD1 : rappels sur les ensembles et notion de probabilité
1 TD1 : rappels sur les ensembles et notion de probabilité 1.1 Ensembles et dénombrement Exercice 1 Soit Ω = {1, 2, 3, 4}. Décrire toutes les parties de Ω, puis vérier que card(p(ω)) = 2 4. Soit k n (
BACCALAURÉAT GÉNÉRAL SESSION 2012 OBLIGATOIRE MATHÉMATIQUES. Série S. Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE
BACCALAURÉAT GÉNÉRAL SESSION 2012 MATHÉMATIQUES Série S Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE Les calculatrices électroniques de poche sont autorisées, conformément à la
Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures)
Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures) Eercice 1 (5 points) pour les candidats n ayant pas choisi la spécialité MATH Le tableau suivant donne l évolution du chiffre
M2 IAD UE MODE Notes de cours (3)
M2 IAD UE MODE Notes de cours (3) Jean-Yves Jaffray Patrice Perny 16 mars 2006 ATTITUDE PAR RAPPORT AU RISQUE 1 Attitude par rapport au risque Nousn avons pas encore fait d hypothèse sur la structure de
DENOMBREMENT-COMBINATOIRE-PROBABILITES GENERALES
BTS GPN ERE ANNEE-MATHEMATIQUES-DENOMBREMENT-COMBINATOIRE-EXERCICE DE SYNTHESE EXERCICE RECAPITULATIF (DE SYNTHESE) CORRIGE Le jeu au poker fermé DENOMBREMENT-COMBINATOIRE-PROBABILITES GENERALES On joue
Couples de variables aléatoires discrètes
Couples de variables aléatoires discrètes ECE Lycée Carnot mai Dans ce dernier chapitre de probabilités de l'année, nous allons introduire l'étude de couples de variables aléatoires, c'est-à-dire l'étude
4 Distributions particulières de probabilités
4 Distributions particulières de probabilités 4.1 Distributions discrètes usuelles Les variables aléatoires discrètes sont réparties en catégories selon le type de leur loi. 4.1.1 Variable de Bernoulli
Probabilités conditionnelles Loi binomiale
Fiche BAC ES 05 Terminale ES Probabilités conditionnelles Loi binomiale Cette fiche sera complétée au fur et à mesure Exercice n 1. BAC ES. Centres étrangers 2012. [RÉSOLU] Un sondage a été effectué auprès
Licence MASS 2000-2001. (Re-)Mise à niveau en Probabilités. Feuilles de 1 à 7
Feuilles de 1 à 7 Ces feuilles avec 25 exercices et quelques rappels historiques furent distribuées à des étudiants de troisième année, dans le cadre d un cours intensif sur deux semaines, en début d année,
3. Caractéristiques et fonctions d une v.a.
3. Caractéristiques et fonctions d une v.a. MTH2302D S. Le Digabel, École Polytechnique de Montréal H2015 (v2) MTH2302D: fonctions d une v.a. 1/32 Plan 1. Caractéristiques d une distribution 2. Fonctions
Cours de Tests paramétriques
Cours de Tests paramétriques F. Muri-Majoube et P. Cénac 2006-2007 Licence Ce document est sous licence ALC TYPE 2. Le texte de cette licence est également consultable en ligne à l adresse http://www.librecours.org/cgi-bin/main?callback=licencetype2.
Terminale STMG Lycée Jean Vilar 2014/2015. Terminale STMG. O. Lader
Terminale STMG O. Lader Table des matières Interrogation 1 : Indice et taux d évolution........................... 2 Devoir maison 1 : Taux d évolution................................ 4 Devoir maison 1
I3, Probabilités 2014 Travaux Dirigés F BM F BM F BM F BM F B M F B M F B M F B M 20 20 80 80 100 100 300 300
I3, Probabilités 2014 Travaux Dirigés TD 1 : rappels. Exercice 1 Poker simplié On tire 3 cartes d'un jeu de 52 cartes. Quelles sont les probabilités d'obtenir un brelan, une couleur, une paire, une suite,
Plan général du cours
BTS GPN 1ERE ANNEE-MATHEMATIQUES-PROBABILITES-DENOMBREMENT,COMBINATOIRE PROBABILITES Plan général du cours 1. Dénombrement et combinatoire (permutations, arrangements, combinaisons). 2. Les probabilités
véhicule hybride (première
La motorisation d un véhicule hybride (première HERVÉ DISCOURS [1] La cherté et la raréfaction du pétrole ainsi que la sensibilisation du public à l impact de son exploitation sur l environnement conduisent
Programmation linéaire
1 Programmation linéaire 1. Le problème, un exemple. 2. Le cas b = 0 3. Théorème de dualité 4. L algorithme du simplexe 5. Problèmes équivalents 6. Complexité de l Algorithme 2 Position du problème Soit
Raisonnement par récurrence Suites numériques
Chapitre 1 Raisonnement par récurrence Suites numériques Terminale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Raisonnement par récurrence. Limite finie ou infinie d une suite.
ACTUARIAT 1, ACT 2121, AUTOMNE 2013 #16
ACTUARIAT 1, ACT 2121, AUTOMNE 201 #16 ARTHUR CHARPENTIER 1 Dans une petite compagnie d assurance le nombre N de réclamations durant une année suit une loi de Poisson de moyenne λ = 100. On estime que
Items étudiés dans le CHAPITRE N5. 7 et 9 p 129 D14 Déterminer par le calcul l'antécédent d'un nombre par une fonction linéaire
CHAPITRE N5 FONCTIONS LINEAIRES NOTION DE FONCTION FONCTIONS LINEAIRES NOTION DE FONCTION FONCTIONS LINEAIRES NOTION DE FONCTION Code item D0 D2 N30[S] Items étudiés dans le CHAPITRE N5 Déterminer l'image
mathématiques mathématiques mathématiques mathématiques
mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques
Probabilités. Rappel : trois exemples. Exemple 2 : On dispose d un dé truqué. On sait que : p(1) = p(2) =1/6 ; p(3) = 1/3 p(4) = p(5) =1/12
Probabilités. I - Rappel : trois exemples. Exemple 1 : Dans une classe de 25 élèves, il y a 16 filles. Tous les élèves sont blonds ou bruns. Parmi les filles, 6 sont blondes. Parmi les garçons, 3 sont
UFR de Sciences Economiques Année 2008-2009 TESTS PARAMÉTRIQUES
Université Paris 13 Cours de Statistiques et Econométrie I UFR de Sciences Economiques Année 2008-2009 Licence de Sciences Economiques L3 Premier semestre TESTS PARAMÉTRIQUES Remarque: les exercices 2,
Gestion des stocks et des approvisionnements
Les stocks représentent dans le bilan des entreprises de 20 à 80% du total de l actifs. Engendrent un important besoin de financement. Les stocks remplissent d importantes fonctions. Bien gérer les stocks
Probabilités III Introduction à l évaluation d options
Probabilités III Introduction à l évaluation d options Jacques Printems Promotion 2012 2013 1 Modèle à temps discret 2 Introduction aux modèles en temps continu Limite du modèle binomial lorsque N + Un
Exercices types Algorithmique et simulation numérique Oral Mathématiques et algorithmique Banque PT
Exercices types Algorithmique et simulation numérique Oral Mathématiques et algorithmique Banque PT Ces exercices portent sur les items 2, 3 et 5 du programme d informatique des classes préparatoires,
Introduction à la Statistique Inférentielle
UNIVERSITE MOHAMMED V-AGDAL SCIENCES FACULTE DES DEPARTEMENT DE MATHEMATIQUES SMI semestre 4 : Probabilités - Statistique Introduction à la Statistique Inférentielle Prinemps 2013 0 INTRODUCTION La statistique
pour les canalisations de transport 14 avril 2010-1 -
Arrêté multifluide du 4 août t 2006 pour les canalisations de transport 14 avril 2010-1 - Une volonté de l administration L ancien arrêté portant règlement de sécurité des ouvrages de transport de gaz
Probabilités conditionnelles Loi binomiale
Exercices 23 juillet 2014 Probabilités conditionnelles Loi binomiale Équiprobabilité et variable aléatoire Exercice 1 Une urne contient 5 boules indiscernables, 3 rouges et 2 vertes. On tire au hasard
Soit la fonction affine qui, pour représentant le nombre de mois écoulés, renvoie la somme économisée.
ANALYSE 5 points Exercice 1 : Léonie souhaite acheter un lecteur MP3. Le prix affiché (49 ) dépasse largement la somme dont elle dispose. Elle décide donc d économiser régulièrement. Elle a relevé qu elle
Projet de Traitement du Signal Segmentation d images SAR
Projet de Traitement du Signal Segmentation d images SAR Introduction En analyse d images, la segmentation est une étape essentielle, préliminaire à des traitements de haut niveau tels que la classification,
Amphi 3: Espaces complets - Applications linéaires continues
Amphi 3: Espaces complets - Applications linéaires continues Département de Mathématiques École polytechnique Remise en forme mathématique 2013 Suite de Cauchy Soit (X, d) un espace métrique. Une suite
* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours
Exo7 Continuité (étude globale). Diverses fonctions Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france.fr * très facile ** facile *** difficulté moyenne **** difficile *****
Chaînes de Markov au lycée
Journées APMEP Metz Atelier P1-32 du dimanche 28 octobre 2012 Louis-Marie BONNEVAL Chaînes de Markov au lycée Andreï Markov (1856-1922) , série S Problème 1 Bonus et malus en assurance automobile Un contrat
Variables Aléatoires. Chapitre 2
Chapitre 2 Variables Aléatoires Après avoir réalisé une expérience, on ne s intéresse bien souvent à une certaine fonction du résultat et non au résultat en lui-même. Lorsqu on regarde une portion d ADN,
Calculs de probabilités avec la loi normale
Calculs de probabilités avec la loi normale Olivier Torrès 20 janvier 2012 Rappels pour la licence EMO/IIES Ce document au format PDF est conçu pour être visualisé en mode présentation. Sélectionnez ce
Exercice du cours Gestion Financière à Court Terme : «Analyse d un reverse convertible»
Exercice du cours Gestion Financière à Court Terme : «Analyse d un reverse convertible» Quand la trésorerie d une entreprise est positive, le trésorier cherche le meilleur placement pour placer les excédents.
Peut-on imiter le hasard?
168 Nicole Vogel Depuis que statistiques et probabilités ont pris une large place dans les programmes de mathématiques, on nous propose souvent de petites expériences pour tester notre perception du hasard
Poudlard But Matériel : Mise en place Prologue d'emplacements différents
2 à 4 joueurs à partir de 10 ans 30 minutes Poudlard C est la rentrée à Poudlard. Le Choixpeau a réparti les nouveaux élèves dans les 4 maisons et le banquet se termine. Les élèves quittent le réfectoire
Fonctions de plusieurs variables
Module : Analyse 03 Chapitre 00 : Fonctions de plusieurs variables Généralités et Rappels des notions topologiques dans : Qu est- ce que?: Mathématiquement, n étant un entier non nul, on définit comme
Biostatistiques Biologie- Vétérinaire FUNDP Eric Depiereux, Benoît DeHertogh, Grégoire Vincke
www.fundp.ac.be/biostats Module 140 140 ANOVA A UN CRITERE DE CLASSIFICATION FIXE...2 140.1 UTILITE...2 140.2 COMPARAISON DE VARIANCES...2 140.2.1 Calcul de la variance...2 140.2.2 Distributions de référence...3
LEÇON N 7 : Schéma de Bernoulli et loi binomiale. Exemples.
LEÇON N 7 : Schéma de Bernoulli et loi binomiale. Exemples. Pré-requis : Probabilités : définition, calculs et probabilités conditionnelles ; Notion de variables aléatoires, et propriétés associées : espérance,
Continuité et dérivabilité d une fonction
DERNIÈRE IMPRESSIN LE 7 novembre 014 à 10:3 Continuité et dérivabilité d une fonction Table des matières 1 Continuité d une fonction 1.1 Limite finie en un point.......................... 1. Continuité
Commun à tous les candidats
EXERCICE 3 (9 points ) Commun à tous les candidats On s intéresse à des courbes servant de modèle à la distribution de la masse salariale d une entreprise. Les fonctions f associées définies sur l intervalle
TESTS D'HYPOTHESES Etude d'un exemple
TESTS D'HYPOTHESES Etude d'un exemple Un examinateur doit faire passer une épreuve type QCM à des étudiants. Ce QCM est constitué de 20 questions indépendantes. Pour chaque question, il y a trois réponses
DÉRIVÉES. I Nombre dérivé - Tangente. Exercice 01 (voir réponses et correction) ( voir animation )
DÉRIVÉES I Nombre dérivé - Tangente Eercice 0 ( voir animation ) On considère la fonction f définie par f() = - 2 + 6 pour [-4 ; 4]. ) Tracer la représentation graphique (C) de f dans un repère d'unité
Correction du Baccalauréat S Amérique du Nord mai 2007
Correction du Baccalauréat S Amérique du Nord mai 7 EXERCICE points. Le plan (P) a une pour équation cartésienne : x+y z+ =. Les coordonnées de H vérifient cette équation donc H appartient à (P) et A n
Le modèle de Black et Scholes
Le modèle de Black et Scholes Alexandre Popier février 21 1 Introduction : exemple très simple de modèle financier On considère un marché avec une seule action cotée, sur une période donnée T. Dans un
TEST PRATIQUE DU TEST DE LOGIQUE MATHEMATIQUE ET VERBAL
TEST PRATIQUE DU TEST DE LOGIQUE MATHEMATIQUE ET VERBAL COPYRIGHT 2008 PROCTER & GAMBLE CINCINNATI, OH 45202 U.S.A. AVERTISSEMENT : Tous droits réservés. Aucune section du présent livret ne doit être reproduite
Les quatre chantiers :
Tweet Voir aussi : Les programmes de performance, La méthode Kaizen, Le Lean en 10 points. Le Lean est une démarche systématique dont l'objectif est d'éliminer toutes les sources de gaspillages dans les
Que faire lorsqu on considère plusieurs variables en même temps?
Chapitre 3 Que faire lorsqu on considère plusieurs variables en même temps? On va la plupart du temps se limiter à l étude de couple de variables aléatoires, on peut bien sûr étendre les notions introduites
Texte Agrégation limitée par diffusion interne
Page n 1. Texte Agrégation limitée par diffusion interne 1 Le phénomène observé Un fût de déchets radioactifs est enterré secrètement dans le Cantal. Au bout de quelques années, il devient poreux et laisse
Probabilité. Table des matières. 1 Loi de probabilité 2 1.1 Conditions préalables... 2 1.2 Définitions... 2 1.3 Loi équirépartie...
1 Probabilité Table des matières 1 Loi de probabilité 2 1.1 Conditions préalables........................... 2 1.2 Définitions................................. 2 1.3 Loi équirépartie..............................
Marchés oligopolistiques avec vente d un bien non homogène
Marchés oligopolistiques avec vente d un bien non homogène Partons de quelques observations : 1. La plupart des industries produisent un grand nombre de produits similaires mais non identiques; 2. Parmi
G.P. DNS02 Septembre 2012. Réfraction...1 I.Préliminaires...1 II.Première partie...1 III.Deuxième partie...3. Réfraction
DNS Sujet Réfraction...1 I.Préliminaires...1 II.Première partie...1 III.Deuxième partie...3 Réfraction I. Préliminaires 1. Rappeler la valeur et l'unité de la perméabilité magnétique du vide µ 0. Donner
Baccalauréat ES 2013. L intégrale d avril à novembre 2013
Baccalauréat ES 2013 L intégrale d avril à novembre 2013 Pour un accès direct cliquez sur les liens bleus Pondichéry 15 avril 2013.......................................................... 3 Amérique du
FORMULAIRE DE STATISTIQUES
FORMULAIRE DE STATISTIQUES I. STATISTIQUES DESCRIPTIVES Moyenne arithmétique Remarque: population: m xμ; échantillon: Mx 1 Somme des carrés des écarts "# FR MOYENNE(série) MOYENNE(série) NL GEMIDDELDE(série)
