Modélisation cinématique des liaisons

Dimension: px
Commencer à balayer dès la page:

Download "Modélisation cinématique des liaisons"

Transcription

1 Cours 4 - Modélisation cinématique des liaisons Page /5 Modélisation cinématique des liaisons ) MODÉLISTION DES PIÈCES PR DES «SOLIDES PRFITS» ) MODÉLISTION DES LIISONS ) MODÉLISTION DES LIISONS PR DES «LIISONS PRFITES» ) NOTION DE REPÈRE LOCL ) NOTION DE DEGRÉ DE LIBERTÉ D UNE LIISON ) LIISONS NORMLISÉES ENTRE SOLIDES Complète ou encastrement... 5 Glissière de direction x... 5 ppui plan de normale z... 5 Cylindre-plan (ou linéaire rectiligne) de ligne de contact Ox, et de normale z... 5 Sphère-plan (ou ponctuelle) de point de contact O et de normale z... 5 Pivot glissant d axe Ox,... 6 Pivot d axe Ox,... 6 Hélicoïdale d axe Ox, et de pas p... 6 Sphérique (ou rotule) de centre O... 6 Sphérique (ou rotule) à doigt de centre O et de rotation interdite Oy,... 6 Sphère-cylindre (ou linéaire annulaire) de centre O et de direction x ) MODÉLISTION CINÉMTIQUE DES MÉCNISMES : GRPHE DE LIISON ET SCHÉM CINÉMTIQUE MINIML ) RÔLE DU SCHÉM CINÉMTIQUE ) MÉTHODE DE TRCÉ (UTILISER DE L COULEUR) Étape : Préciser la phase d étude Étape : Identifier les Classes d Équivalence Cinématique (CEC) Étape 3 : Réaliser le graphe de liaison (minimum de liaisons donc sans liaison en parallèle).. 7 Étape 4 : Tracer le schéma cinématique minimal ) EXEMPLES DE SCHÉMS CINÉMTIQUES ) LES LIISONS PR ÉLÉMENTS INTERPOSÉS GLISSNTS OU ROULNTS ) LES COUSSINETS ) LES ROULEMENTS À BILLES, À ROULEUX OU À IGUILLES ) LES BUTÉES À BILLES OU À ROULEUX ) LES DOUILLES À BILLES OU À ROULEUX... 45) LES VIS À BILLES OU À ROULEUX ) LES GUIDGES À BILLES OU À ROULEUX SUR RILS... 47) LES ROTULES LISSES.... MPSI-PCSI Sciences Industrielles pour l Ingénieur S. Génouël 8//

2 Cours 4 - Modélisation cinématique des liaisons Page /5 5) GRPHE DE STRUCTURE ET SCHÉM D RCHITECTURE.... 5) DIFFÉRENCE ENTRE SCHÉM CINÉMTIQUE ET SCHÉM D RCHITECTURE.... 5) EXEMPLE : LIISON ENTRE UN RBRE ET UN BÂTI RÉLISÉE PR L SSOCITION DE DEUX ROULEMENTS.... 6) LIISONS CINÉMTIQUEMENT ÉQUIVLENTES ) DÉFINITION D UNE LIISON ÉQUIVLENTE ) LIISONS EN SÉRIE / 3/ / / Leq V V V V V... 3 Exemple : Patin à rotule ) LIISONS EN PRLLÈLE Leq / / L / LB / LC V V V V V... 4 Exemple : Liaison entre un arbre et un bâti réalisée par l association de deux roulements.4 7) LOI ENTRÉE-SORTIE D UN MÉCNISME ) DÉFINITION D UNE LOI ENTRÉE-SORTIE ) CHÎNES DE SOLIDES OUVERTE, FERMÉE ET COMPLEXE Chaîne ouverte Chaîne fermée Chaîne complexe ) CRCTÉRISTIQUES GÉOMÉTRIQUES OU PRMÈTRES ) DÉTERMINTION D UNE LOI ENTRÉE-SORTIE Chaîne ouverte... 6 Cours 3 Cinématique du solide Chaîne fermée... 6 Fermeture géométrique liant les paramètres de position Fermeture angulaire liant les paramètres d orientation Produit scalaire constant de deux vecteurs d orientation Fermeture cinématique ) LES TRNSFORMTIONS DE MOUVEMENTS CLSSIQUES ) BIELLE-MNIVELLE ) PIGNON-CRÉMILLÈRE ) VIS-ÉCROU ) CROIX DE MLTE ) EXCENTRIQUE ) CME RDILE ) CME XILE... 8 MPSI-PCSI Sciences Industrielles pour l Ingénieur S. Génouël 8//

3 Cours 4 - Modélisation cinématique des liaisons Page 3/5 9) LES RÉDUCTEURS ET MULTIPLICTEURS DE VITESSE ) RPPORT DE TRNSMISSION, DE RÉDUCTION ET DE MULTIPLICTION ) TRNSMISSION PR DHÉRENCE : ROUES À FRICTION ) TRNSMISSION PR OBSTCLES : ENGRENGES.... Terminologie.... Engrenage, pignon, roue et couronne.... Diamètres primitifs.... Pas primitifs.... Module.... Rapport de transmission.... Différents types d engrenages.... Engrenage cylindrique extérieur ou intérieur (à denture droite ou hélicoïdale).... Engrenage conique (à denture droite ou hélicoïdale).... Engrenage à roue et vis sans fin (appelé aussi engrenage à vis).... Schémas normalisés.... Réducteurs ou multiplicateurs de vitesse à train simple.... Réducteurs ou multiplicateurs de vitesse à train épicycloïdal Inconvénients des trains simples Inconvénients des engrenages à roue et vis sans fin vantages des trains épicycloïdaux Définition d un train épicycloïdal Planétaires, satellites et porte satellites Condition géométrique entraînant une relation sur le nombre de dents des différents éléments Loi entrée-sortie : Relation de Willis Exemple du réducteur TV ) TRNSMISSIONS PR LIEN FLEXIBLE (PIGNONS-CHÎNE, POULIES-COURROIE) MPSI-PCSI Sciences Industrielles pour l Ingénieur S. Génouël 8//

4 Cours 4 - Modélisation cinématique des liaisons Page 4/5 Objectif : Donner une image simplifiée et symbolique d un mécanisme pour faciliter les études du fonctionnement, des efforts, des vitesses afin d en déterminer les lois entrées/sorties. ) Modélisation des pièces par des «solides parfaits». Nous supposerons dans nos études mécaniques (sauf indication contraire) que les pièces mécaniques sont des solides parfaits : - indéformables - géométriquement parfaits - homogènes (corps dont les constituants sont de même nature ; ce qui n est pas vrai pour le béton par exemple) corps qui ont - isotropes (corps dont les propriétés mécaniques sont identiques une masse dans toutes les directions ; ce qui n est pas vrai pour les matières constante fibreuses par exemple) NB : Les pièces déformables telles que les ressorts seront exclues de nos calculs lorsque nous utiliserons l hypothèse de solide parfait. ) Modélisation des liaisons. On peut parler de liaison entre pièces lorsque celles-ci sont en contact. Une liaison est un modèle du comportement cinématique d un solide par rapport à un autre. ) Modélisation des liaisons par des «liaisons parfaites». Nous supposerons dans nos études mécaniques (sauf indication contraire) que les liaisons entre pièces sont des liaisons parfaites : - surfaces de contact géométriquement parfaites - jeu de fonctionnement nul entre les surfaces de contact - contact supposé sans adhérence Une liaison parfaite est donc une liaison théorique, tant du point de vue géométrique que du point de vue de la nature physique du contact. ) Notion de repère local. En général, le repère local associé à une liaison entre deux solides n'appartient à aucun des deux solides. De plus, l'origine sera plutôt placée en un point caractéristique de la liaison et les vecteurs directeurs de sa base correspondent dans la mesure du possible à des axes de symétrie, de révolution,... Enfin, il sera choisi de sorte que les mouvements élémentaires soient indépendants. 3) Notion de degré de liberté d une liaison. Soit R, x, y, z le repère local associé à la liaison entre deux solides et. On peut définir des mouvements relatifs : Tx = liberté de mouvement de translation de direction x, Rx = liberté de mouvement de rotation d axe ( Ox, ), Un degré de liberté d une liaison est UN MOUVEMENT RELTIF INDÉPENDNT que la liaison autorise entre les solides considérés. (ttention à la liaison hélicoïdale ) Il existe donc 6 degrés de liberté possibles : - 3 translations Tx, Ty et Tz de par rapport à, - 3 rotations Rx, Ry et Rz de par rapport à. Par conséquent, le nombre de degrés de liberté entre deux solides est le nombre de paramètres cinématiques indépendants à DÉFINIR pour caractériser le mouvement relatif entre ces deux solides. MPSI-PCSI Sciences Industrielles pour l Ingénieur S. Génouël 8//

5 Cours 4 - Modélisation cinématique des liaisons Page 5/5 4) Liaisons normalisées entre solides. Parmi toutes les liaisons envisageables, la norme NF EN ISO 395- (mai 95) a retenu les plus courantes. Nom et description géométrique Représentation 3D x z O y z x Représentation D O y x O z y Degré de liberté Il est indispensable de connaître : - la forme générale du torseur cinématique de chacune des liaisons usuelles ; - leur «zone de validité», c est à dire l ensemble des points de l espace ou cette forme est la même! Validité Forme du torseur cinématique Écriture en COLONNE Forme du torseur cinématique Écriture en LIGNE Relations particulières Complète ou encastrement Tout point de l espace V / V / ( x, y, z) / V / Glissière de direction x Tout point de l espace v x, / V / V / ( x, y, z) v x, / x V V / / / y z ppui plan de normale z 3 Tout point de l espace x, / z,/ V / vy, / V / z,/ v ( x, y, z) z vx, / x vy, / y V/ z Cylindre-plan (ou linéaire rectiligne) de ligne de contact Ox, et de normale z Sphère-plan (ou ponctuelle) de point de contact O et de normale z 4 5 Tout point du plan ( O, x, z ) Tout point de la normale ( Oz, ) x,/ x, / x,/ x z,/ V / vy, / V / V z,/ v x,/ x, / / y,/ y, / v v ( x, y, z) z,/ ( x, y, z) V / z v x, / x vy, / y x,/ x y,/ y z,/ z v x, / x vy, / y V/ z V/ z MPSI-PCSI Sciences Industrielles pour l Ingénieur S. Génouël 8//

6 Cours 4 - Modélisation cinématique des liaisons Page 6/5 Pivot glissant d axe Ox, Tout point de l axe ( Ox, ) x,/ x, / V / x,/ V / v ( x, y, z) x v x, / x V V / / y z Pivot d axe Ox, Tout point de l axe ( Ox, ) x,/ V / x,/ V / ( x, y, z) x V / Hélicoïdale d axe Ox, et de pas p Sphérique (ou rotule) de centre O Sphérique (ou rotule) à doigt de centre O et de rotation interdite Oy, Sphère-cylindre (ou linéaire annulaire) de centre O et de direction x 3 4 Tout point de l axe ( Ox, ) Seulemen p x,/. x,/ V / V / ( x, y, z) x,/ x x,/. p x Le pas p est la distance linéaire parcourue par le solide par rapport au solide lorsque le solide tourne d un tour par rapport au solide : ( rad ) p ( mm ). p x x. p x v Pas à droite + et Pas à gauche - ( rad) x ( mm) x,/ x,/ y,/ z,/ t en O V / y,/ / Seulemen O z,/ ( x, y, z) V V V / / y z x y z V O x,/ t en O V / x,/ x z,/ V / Seulemen,/ O z ( x, y, z) O z x,/ x, O/ x,/ y,/ z,/ t en O V / y,/ / v x O v z,/ ( x, y, z) O / VO / x y z V VO / O xo, / VO / y z On utilise les torseurs écrits en colonne pour déterminer la forme du torseur cinématique d une liaison équivalente à n liaisons en série ou en parallèle (voir partie 6). On utilise les torseurs écrits en ligne pour déterminer une loi entrée-sortie en vitesse (voir partie 7). MPSI-PCSI Sciences Industrielles pour l Ingénieur S. Génouël 8//

7 Cours 4 - Modélisation cinématique des liaisons Page 7/5 3) Modélisation cinématique des mécanismes : graphe de liaison et schéma cinématique minimal. 3) Rôle du schéma cinématique. Le schéma cinématique est un outil de description simplifiée d un sytème réel. Il ne tient compte ni des formes ni des dimensions. Il permet de faire apparaître clairement les mouvements possibles entre les solides qui constituent le système. 3) Méthode de tracé (UTILISER DE L COULEUR). Étape : Préciser la phase d étude. Indiquer dans quelle phase vous étudiez le mécanisme. En effet, certaines pièces (ex : vis ) n ont pas le même mouvement pendant leur fonctionnement que pendant leur montage ou pendant leur réglage Étape : Identifier les Classes d Équivalence Cinématique (CEC). CEC : groupes de pièces en liaison encastrement entre elles (n'ayant aucun mouvement relatif entre elles). Cette étape se divise en sous-étapes : ) Rechercher et colorier différemment chaque CEC sur la représentation technique D ou 3D. ) Nommer chacune des CEC (S, S ) et lister, dans l ordre croissant les pièces qui les constituent.de chaque CEC : {S} = {, } {S} = {3} {S3}={4,5,7} {S4}={6} C Remarques : Toutes les pièces déformables sont à exclure des CEC (ressorts, joints ). Les éléments roulants (billes, rouleaux ) des roulements ne sont pas pris en compte. Étape 3 : Réaliser le graphe de liaison (minimum de liaisons donc sans liaison en parallèle). ) Représenter les CEC par des bulles et les placer en respectant si possible leurs positions relatives observées sur le système réel. ) Préciser la CEC considérée comme fixe. 3) Déterminer les liaisons entre ces CEC en identifiant la géométrie du contact. Exemple : graphe de liaison du serre-joint NB : On ne verra JMIS apparaître de liaison encastrement sur un graphe de liaison. Étape 4 : Tracer le schéma cinématique minimal. ) Positionner les centres et les axes des liaisons en respectant si possible leurs positions relatives observées sur le système réel. ) Mettre en place les représentations symboliques des liaisons élémentaires et du bâti en utilisant le code de couleur retenu et en respectant leur orientation. 3) Relier tous les éléments de même couleur en respectant si possible l architecture du système réel et en évitant que des traits se croisent. 4) Compléter «éventuellement» par quelques traits le schéma pour faciliter la compréhension. 5) vérifier la cohérence entre les mouvements possibles entre les CEC sur le schéma cinématique et les mouvements observés sur le système réel. Schéma cinématique minimal D Schéma MPSI-PCSI Sciences Industrielles pour l Ingénieur S. Génouël 8// cinématique minimal 3D

8 Cours 4 - Modélisation cinématique des liaisons Page 8/5 33) Exemples de schémas cinématiques. Chargeur Bobcat Nacelle élévatrice Robot 3 axes MPSI-PCSI Sciences Industrielles pour l Ingénieur S. Génouël 8//

9 Cours 4 - Modélisation cinématique des liaisons Page 9/5 4) Les liaisons par éléments interposés glissants ou roulants. Certaines liaisons dans les mécanismes n utilisent pas le principe de contact direct entre les deux solides. Grâce à l interposition d éléments glissants ou roulants entre les solides, il est possible d obtenir des mouvements relatifs plus performants d un point de vue énergétique. 4) Les coussinets. Ils permettent d obtenir un mouvement relatif entre deux solides modélisable par une liaison pivot ou pivot glissant 4) Les roulements à billes, à rouleaux ou à aiguilles. Constitution : Exemples d éléments roulants : MPSI-PCSI Sciences Industrielles pour l Ingénieur S. Génouël 8//

10 Cours 4 - Modélisation cinématique des liaisons Page /5 Différents types de roulements : Roulement à une rangée de billes Roulement à deux rangées de billes Le plus souvent le rotulage > 5 Roulement à aiguilles ou à rouleaux Le plus souvent le rotulage < 5 Roulement à rotule (billes ou rouleaux) Le plus souvent le rotulage < 5 Rotulage entre et 4 Modélisation : Il existe toujours un jeu, aussi minime soit-il, entre les billes et les bagues. Ce jeu a pour conséquence de permettre une rotation relative des bagues, autour des axes perpendiculaires à l'axe principal du roulement. Ces rotations sont appelées «rotulage». Exemple : ngle de rotulage du roulement <5 Les deux bagues sont arrêtées en translation Si l angle maximal de rotulage (fourni par le constructeur) est >5, alors les mouvements de rotation autour des axes secondaires sont considérés possibles. De plus, si les bagues du roulement ne sont pas arrêtées transversalement, alors le mouvement de translation suivant la direction de l axe principal est possible. Exemple : ngle de rotulage du roulement <5 Une de deux bagues n est pas arrêtée en translation modélisable par une liaison pivot Exemple 3 : ngle de rotulage du roulement >5 Les deux bagues sont arrêtées en translation modélisable par une liaison pivot glissant Exemple 4 : ngle de rotulage du roulement >5 Une de deux bagues n est pas arrêtée en translation modélisable par une liaison sphérique modélisable par une liaison sphère-cylindre MPSI-PCSI Sciences Industrielles pour l Ingénieur S. Génouël 8//

11 Cours 4 - Modélisation cinématique des liaisons Page /5 43) Les butées à billes ou à rouleaux. Elles permettent d obtenir un mouvement relatif entre deux solides modélisable par une liaison pivot. 44) Les douilles à billes ou à rouleaux. Elles permettent d obtenir un mouvement relatif entre deux solides modélisable par une liaison pivot glissant. 45) Les vis à billes ou à rouleaux. Elles permettent d obtenir un mouvement relatif entre deux solides modélisable par une liaison hélicoïdale. 46) Les guidages à billes ou à rouleaux sur rails. Ils permettent d obtenir un mouvement relatif entre deux solides modélisable par une liaison glissière. 47) Les rotules lisses. Elles permettent d obtenir un mouvement relatif entre deux solides modélisable par une liaison sphérique. MPSI-PCSI Sciences Industrielles pour l Ingénieur S. Génouël 8//

12 Cours 4 - Modélisation cinématique des liaisons Page /5 5) Graphe de structure et schéma d architecture. 5) Différence entre schéma cinématique et schéma d architecture. Permet de visualiser Est construit à partir du Schéma cinématique minimal la cinématique du mécanisme (c est à dire les mouvements relatifs des différentes classes d équivalence) graphe de liaison Schéma d architecture l architecture du mécanisme (c'est-à-dire la disposition des liaisons) il colle à la réalité technologique puisqu il tient compte du choix des constituants adoptés graphe de structure 5) Exemple : Liaison entre un arbre et un bâti réalisée par l association de deux roulements. Rlt Circlips Rlt B x x Joint Utilisation de deux roulements à billes situés à chaque extrémité de l arbre, modélisables, l un par une liaison sphérique et l autre par une liaison sphère-cylindre. Graphe de liaison : Graphe de structure : Pivot d axe (B) Sphèrecylindre de centre B et de direction x Sphérique de centre Schéma cinématique minimal : Schéma d architecture Sur le graphe de structure et le schéma d architecture, figurent toutes les liaisons élémentaires (ou locales) (se situant dans les zones de guidage). MPSI-PCSI Sciences Industrielles pour l Ingénieur S. Génouël 8//

13 Cours 4 - Modélisation cinématique des liaisons Page 3/5 6) Liaisons cinématiquement équivalentes. 6) Définition d une liaison équivalente. Lors d'une approche globale, afin de simplifier la modélisation d un mécanisme, on peut être amené à chercher des liaisons fictives équivalentes à un ensemble de liaisons élémentaires. Cette recherche peut se faire analytiquement par les torseurs cinématiques ou intuitivement dans les cas simples. NB : La liaison fictive équivalente est une liaison qui a le même comportement que l association des liaisons élémentaires, c'est à dire qu elle transmet la même action mécanique et qu elle autorise le même mouvement. Deux types de configuration peuvent se rencontrer : en série ou en parallèle. 6) Liaisons en série. L L / L / L3 L L 3 / 3 Léq. L eq à condition que la Leq soit normalisée 3 La liaison Leq est identifiée à partir de la forme de son torseur cinématique associé. V 3/ 3/ / / Leq V V V V par la relation de composition des mouvements Exemple : Patin à rotule Dessin : Graphe de structure : Schéma d architecture : Liaison sphérique de centre O Liaison appui plan de normale z V V x,/ / y,/ O z,/ ( x, y, z) et vxo, / / vyo, / O z,/ ( x, y, z) V x,/ x, O/ / y,/ y, O/ O v v z,/ z,/ ( x, y, z) équivalent à une liaison sphère-plan de normale z NB : Technologiquement parlant, il est donc préférable de réaliser une liaison ponctuelle par mise en série d'une liaison appui plan et d'une liaison rotule pour limiter la pression de contact. En effet, on passe d un contact ponctuel, où la pression est infinie (F=p.S), à un contact surfacique, où la pression devient admissible pour les matériaux. MPSI-PCSI Sciences Industrielles pour l Ingénieur S. Génouël 8//

14 Cours 4 - Modélisation cinématique des liaisons Page 4/5 63) Liaisons en parallèle. L / en L / en B L / en C L L3 L Léq. La liaison Leq est identifiée à partir de forme de son torseur cinématique associé. V Leq V / V / L V / LB V / LC L eq à condition que la Leq soit normalisée La compatibilité cinématique des n liaisons en parallèle avec la liaison équivalente, s'exprime par une identité des composantes de tous ces torseurs réduits au même point. Exemple : Liaison entre un arbre et un bâti réalisée par l association de deux roulements. Dessin : Graphe de structure : Schéma d architecture : Rlt Rlt B x x Sphèrecylindre de centre B et de direction x Sphérique de centre On pose B a. x LB LB x,/ v, / xb LB LB V /,/ et V y LB B z,/ ( x, y, z) Car le changement de point (transfert au point B) pour la liaison en donne : L L x,/,/ x L L L / y,/ y,/ a. z,/ L L L a. z,/,/ y,/ ( x, y, z) B z ( x, y, z) L L L L L L L L B/ / / x,/ y,/ z,/ y,/ z,/ V V B a. x (. x. y. z) a.. z a.. y Or, comme les liaisons sont en parallèle : V / / LB L Leq V V V / LB L LB x,/ v, / x,/ xb LB L L Leq / y,/ y,/ a. z,/ LB L L a. z,/,/ y,/ B ( x, y, z) B z ( x, y, z) donc : V V LB L x,/ x,/ LB L LB L y,/ y,/ x,/ x,/ LB L,/ LB L,/,/,/,/ x z z y y VLeq LB LB L vxb, / z,/ z,/ B L ( x, y, z) LB a. z,/ vxb, / L a. y,/ équivalent à une liaison pivot d axe ( Bx, ) MPSI-PCSI Sciences Industrielles pour l Ingénieur S. Génouël 8//

15 Cours 4 - Modélisation cinématique des liaisons Page 5/5 7) Loi entrée-sortie d un mécanisme. 7) Définition d une loi entrée-sortie. On appelle loi d entrée sortie d un système mécanique, l ensemble des relations entre les paramètres de position et d orientation (ou de leurs dérivées) du «solide d entrée» et ceux du «solide de sortie». NB : le solide d entrée est celui qui est mis en mouvement par l actionneur de la chaine d énergie. Dans l'exemple de la pompe, le solide d'entrée est l'arbre, et le solide de sortie le piston. La loi entrée-sortie est donc la relation entre la vitesse de rotation de l arbre et la vitesse de translation du piston. La manière dont on obtient cette loi entrée-sortie dépend de la configuration de la chaine cinématique. 7) Chaînes de solides ouverte, fermée et complexe. Chaîne ouverte. Chaîne fermée. Chaîne complexe. Une chaîne de solides,, est ouverte si les solides des extrêmes sont différents. Une chaîne de solides,, est fermée si le solide initial est le même que le solide final. Une chaîne de solides,, est complexe si elle comporte plusieurs chaînes ouvertes ou fermées. L exemple type est le robot : Le premier solide étant le bâti et le dernier, la pince. Exemple : bras de robot. Exemple : lève-barrière Exemple : plate forme élévatrice NB : Dans ces systèmes, chaque liaison, pilotée par son propre actionneur, est appelée un axe. On parle alors de robots ou de machine trois axes, quatre axes, etc. 73) Caractéristiques géométriques ou paramètres. Certaines caractéristiques géométriques (longueur de bielles ) du système sont invariantes et sont supposées connues. D autres paramètres (angle de rotation d un arbre ) permettent de caractériser les mouvements des solides les uns par rapport aux autres. La loi entrée-sortie est une loi exprimant le(s) paramètre(s) de sortie du système uniquement en fonction du(des) paramètre(s) d entrée et des caractéristiques géométriques invariantes du système, sans faire intervenir les paramètres de mouvement intermédiaires. MPSI-PCSI Sciences Industrielles pour l Ingénieur S. Génouël 8//

16 Chaîne fermée Chaîne ouverte Cours 4 - Modélisation cinématique des liaisons Page 6/5 74) Détermination d une loi entrée-sortie. Quelque soit la méthode utilisée, il faut commencer par identifier le paramètre d entrée et le paramètre de sortie du système afin de correctement cibler la loi entrée-sortie recherchée. Typologie Démarche Résultat Cours 3 Cinématique du solide. Fermeture géométrique liant les paramètres de position. Fermeture angulaire liant les paramètres d orientation. Utiliser le cours sur la cinématique du solide analytique ou graphique. Exemples : Bras de robot, vérin, manège, presse, lève-glace, hayon de véhicule Écrire la relation vectorielle de fermeture de la chaîne de solide. En général, cela consiste à écrire une relation de Chasles en passant par les points caractéristiques des différents solides tout en parcourant la chaîne fermée : B BC CD... P. En projetant cette équation sur les vecteurs unitaires d une base unique judicieusement choisie de manière à faire apparaître tous les paramètres, on obtient : - 3 équations scalaires pour un système en mouvement spatial, - équations scalaires pour un système en mouvement plan. On élimine enfin les paramètres intermédiaires en combinant les équations obtenues ) afin d obtenir la relation d entrée sortie recherchée. Écrire la relation angulaire de fermeture de la chaîne de solide : ( x, x ) ( x, x )... ( x, x ). n On obtient ainsi équation scalaire. Une loi entrée-sortie entre les coordonnées articulaires (c'est-à-dire les paramètres pilotant les actionneurs : moteurs, vérins ) et les coordonnées opérationnelles (c'est-àdire les coordonnées d un point de l effecteur en bout de chaine : pince, outil ). Une loi entrée-sortie en position, ou une loi entrée-sortie en vitesse en dérivant cette relation. Produit scalaire constant de deux vecteurs d orientation. Écrire l équation qui traduit la particularité angulaire du système. Il s agit en général de la conservation, imposée par certaines liaisons, d une valeur angulaire lors du mouvement des solides du système. x. x i j constante ( si ce sont vecteurs orthogonaux). On obtient ainsi équation scalaire. Exemple type : le joint de cardan. En utilisant une écriture en ligne des torseurs cinématique, écrire la relation de composition des mouvements : Vn / Vn / n... V/ V / Une loi entrée-sortie en vitesse, Fermeture cinématique condition d avoir exprimé tous les torseurs au même point, cette équation torsorielle permet d obtenir équations vectorielles : - composition des vecteurs rotation ; - composition des vecteurs vitesse. Ce qui conduit à : - 6 équations scalaires pour un système en mouvement spatial ; - 3 équations scalaires pour un système en mouvement plan. Pour obtenir la loi entrée-sortie recherchée, on peut résoudre ce système d équations, ou alors écrire uniquement la relation qui lie le paramètre d entrée au paramètre de sortie sans faire apparaître les paramètres «indésirables». ou une loi entrée-sortie en position en intégrant cette relation. (En n'oubliant pas la constante d'intégration qui se détermine pour une position particulière). MPSI-PCSI Sciences Industrielles pour l Ingénieur S. Génouël 8//

17 83) Vis-écrou. 8) Pignon-crémaillère 8) Bielle-manivelle. Cours 4 - Modélisation cinématique des liaisons Page 7/5 8) Les transformations de mouvements classiques. NB : - Pour tous ces systèmes, le mouvement d'entrée est généralement continu, alors que le mouvement de sortie peut être, continu, alterné ou intermittent. - Lorsque l entrée et la sortie peuvent être permutées, on dit que le système est réversible. Transformation : Rotation continue en translation alternative (et réciproquement parfois). Réversibilité : parfois. Utilisation : Moteurs thermiques, compresseurs, certaines pompes et moteurs hydrauliques, marteau perforateur NB : Dans un moteur thermique ou une pompe, le bâti au niveau du piston s appelle chemise ou cylindre. Caractéristiques géométriques : OB e BC L Très souvent : L>>e (L>5.e suffit en général pour pouvoir faire cette hypothèse). Pièce : manivelle (ou maneton ou vilebrequin) Pièce : bielle Pièce 3 : piston (ou coulisseau) Paramètres : ( x, x) ( x, x) OC X. x Transformation : Rotation continue en translation continue (et réciproquement). Réversibilité : toujours. Utilisation : Porte de TGV, porte de garage, direction de voiture, bras manipulateur Caractéristiques géométriques : Diamètre du pignon. Paramètres : ngle de rotation du pignon, et position de la crémaillère. Transformation : Rotation continue en translation continue. Réversibilité : parfois. Elle dépend des matériaux en contact et de l angle de l hélice. Ce système est toujours réversible lorsque l on a interposition d éléments roulants limitant le frottement. Utilisation : Vérins électriques, chariots de machine outil, pilote automatique, élévateur... Pièce : vis Pièce : coulisseau (ou écrou) Caractéristiques géométriques : Pas de la vis : p (mm) à droite Paramètres : ( x, x) B. z MPSI-PCSI Sciences Industrielles pour l Ingénieur S. Génouël 8//

18 87) Came axiale. 85) Excentrique. 84) Croix de Malte. Cours 4 - Modélisation cinématique des liaisons Page 8/5 Transformation : Rotation continue en rotation intermittente. Réversibilité : jamais. Utilisation : Plateau tournant de machine de transfert, indexage Caractéristiques géométriques : ngle entre les différentes rainures, et rayon de l ergot. Paramètres : ngle de rotation de l ergot, et angle de rotation de la croix. Transformation : Rotation continue en translation alternative. Réversibilité : jamais. Utilisation : Pompes hydrauliques, taille haie, certains mécanismes d ablocage (blocage d une pièce sur une table). Caractéristiques géométriques : BC R OB e 86) Came radiale. Pièce : excentrique Pièce : piston (ou coulisseau) Paramètres : ( x, x) OD X. x CD. y NB : L excentrique est une came radiale circulaire Même principe que l excentrique : L excentrique qui était un disque est remplacée par une pièce de forme aléatoire (la came). Le schéma est identique au précédent mais avec R variable (mais connu). Utilisation : Pompes hydrauliques, certains mécanismes d ablocage, arbre à cames de moteur, ferme-porte Transformation : Rotation continue en translation alternative. Pièce : came (ici un plateau incliné) La came peut être un cylindre sur lequel est usinée une rainure de forme quelconque. Réversibilité : jamais. Utilisation : Pompes hydrauliques. Caractéristiques géométriques : ( x, x) ( y, y) cons tant OD R Le plan ( O, x, y ) définit le plateau. Paramètres : ( y, y) CD X. x MPSI-PCSI Sciences Industrielles pour l Ingénieur S. Génouël 8//

19 Cours 4 - Modélisation cinématique des liaisons Page 9/5 9) Les réducteurs et multiplicateurs de vitesse. Dans un système, l énergie mécanique de rotation en sortie de l actionneur est rarement directement utilisable par l effecteur. Lorsque l on souhaite adapter les caractéristiques cinématiques de cette énergie, on utilise un transmetteur permettant de réduire ou de multiplier la vitesse angulaire. On peut classer ces transmetteurs en deux grandes familles vis à vis de la technologie employée pour transmettre le mouvement : ceux utilisant la transmission par adhérence : roue à friction (exemple : dynamo de vélo), dispositif pouliecourroie lisse (exemple : alternateur de voiture) ; ceux utilisant la transmission par obstacle : dispositif poulie-courroie crantée (exemple : courroie de distribution d une voiture), dispositif pignon-chaîne (exemple : vélo, moto), engrenages (exemple : boîte de vitesse). 9) Rapport de transmission, de réduction et de multiplication. / Le rapport de transmission d un système est : i e (avec le bâti). s/ Un rapport de réduction ou de multiplication est toujours supérieur à. insi, pour un réducteur, le rapport de réduction est i et pour un multiplicateur, le rapport de multiplication est /i. 9) Transmission par adhérence : roues à friction. Schémas normalisés : y R O O Roue menée z I R z ressort presseur O I y x x x x Principe : Deux roues cylindriques ou coniques sont en contact linéique. L adhérence au contact des deux roues permet de transmettre le mouvement d entrée (roue menante ) à la roue de sortie (roue menée ). Pour un bon fonctionnement, il faut assurer un roulement sans glissement en utilisant : - un couple de matériaux avec un fort coefficient d adhérence ; - un effort presseur entre les deux roues. Utilisation : Transmissions de faible puissance (petits appareils portables comme des baladeurs), ou dans des variateurs de vitesse. O Roue menante Caractéristiques géométriques : Les rayons des roues : R et R. Paramètres : Les angles définissant les positions angulaires des roues : ( x, x) et ( x, x). Rapport de transmission : La condition de roulement sans glissement en I (CIR de /) s exprime par : VI / soit VI/ VI/. R. R (Le signe négatif indique que le sens de rotation est inversé par ce type de transmetteur). Donc / / R R Nb : si alors / / On en déduit le rapport de transmission R D i R D / / Cette solution reste limitée car elle nécessite des pressions de contact importantes pour assurer le roulement sans glissement en I. Pour pallier cette difficulté, on réalise des transmissions par obstacle (voir paragraphe suivant). MPSI-PCSI Sciences Industrielles pour l Ingénieur S. Génouël 8//

20 Cours 4 - Modélisation cinématique des liaisons Page /5 93) Transmission par obstacles : engrenages. Pignon z dents y D y x Roue z dents I D O I z D O θ I x x D O z O θ x Utilisation : Transmissions de faible et forte puissances. pplications : de la montre à la boite de vitesse automobile. Caractéristiques géométriques : Les rayons des roues dentées : R et R. Paramètres : Les angles définissant les positions angulaires du pignon et de la roue : ( x, x) et ( x, x). Terminologie. Engrenage, pignon, roue et couronne. Un engrenage est constitué de deux roues dentées. On appelle la petite le pignon et la grande la roue (ou couronne si c est un engrenage intérieur). Diamètres primitifs. La forme des dents assure le roulement sans glissement au point de contact I des cercles fictifs de diamètres D et D. Ces cercles sont appelés cercles primitifs. Ils correspondent aux profils des roues de friction qui assureraient le même rapport de transmission. Pas primitifs. Le pas primitif correspond à la longueur de l arc de cercle primitif compris entre deux dents successives. Pour garantir l engrènement, les pas primitifs des deux roues dentées doivent être égaux.. R. R pas (où z z z et z sont les nombres de dents des roues de diamètre primitif D et D ). On en déduit que : R z R et donc aussi que z D z D. z Module. Ce dernier rapport caractérise la forme de la dent. Il est appelé module (symbolisé m). Pour une roue donnée : D m (unité en mm) et pas. m z Donc deux roues qui n ont pas le même module ne peuvent pas engrener car leur pas est différent. Rapport de transmission. La condition de roulement sans glissement au point de contact I entre les deux cercles primitifs permet d obtenir : / R D z le rapport de transmission i. R D z / m=4mm z=5dents m=,5mm z=dents MPSI-PCSI Sciences Industrielles pour l Ingénieur S. Génouël 8//

21 Cours 4 - Modélisation cinématique des liaisons Page /5 Différents types d engrenages. Engrenage cylindrique extérieur ou intérieur (à denture droite ou hélicoïdale). Contact extérieur (avec son dessin normalisé) Contact intérieur (avec son dessin normalisé) Denture droite Denture hélicoïdale Jumelé avec dentures hélicoïdales inversées Denture à chevrons Ils transmettent un mouvement de rotation entre des arbres à axes parallèles. Cas particulier pour denture droite : Ce sont les plus simples et les plus économiques. Comme leurs dents sont parallèles aux axes de rotation, ils peuvent admettre des déplacements axiaux. Ils sont bruyants. Cas particulier pour denture hélicoïdale : NB : Les deux roues à denture hélicoïdale doivent avoir leurs hélices de sens opposés pour engrener ensembles. Le nombre de couple de dents en prise étant plus important, l engrènement est donc plus progressif et plus continu : ils sont donc plus silencieux et peuvent transmettre un effort plus important. Employé seul, cet engrenage génère des efforts axiaux (pour compenser cet effort, on utilise un jumelage de engrenages à dentures hélicoïdales inversées ou alors des roues à chevrons). Engrenage conique (à denture droite ou hélicoïdale). Denture droite Denture hélicoïdale Dessin normalisé Ils transmettent un mouvement de rotation entre des arbres à axes concourants perpendiculaires ou non. Les arbres sont en porte à faux. Ils génèrent des efforts axiaux. Les sommets des cônes doivent coïncider. NB : Pour déterminer le rapport de transmission, on prendra le nombre de filets pour la vis. Vis sans fin avec roue cylindrique Engrenage à roue et vis sans fin (appelé aussi engrenage à vis). Vis sans fin Vis globique Dessin normalisé avec roue creuse avec roue creuse Vue de coté Vue de face vec roue cylindrique avec roue creuse Transmission entre arbres à axes non concourants. Irréversibilité possible sécurité anti-retour (utile quand le récepteur peut devenir moteur : exemple : appareils de levage). Grand rapport de réduction (entre 5 et 5). L engrènement se fait avec beaucoup de glissement entre les dentures, donc usure, et rendement faible (6%). La vis supporte un effort axial important. fin d augmenter la surface de contact des dentures, on utilise très souvent des systèmes à roue creuse. (ou mieux encore une vis globique, mais le coût de la vis est important). MPSI-PCSI Sciences Industrielles pour l Ingénieur S. Génouël 8//

22 Cours 4 - Modélisation cinématique des liaisons Page /5 Schémas normalisés. NB : Les cercles représentés sur le schéma cinématique correspondent aux cercles primitifs des roues. Engrenage cylindrique extérieur et intérieur Engrenage conique Pignon-crémaillère Vis sans fin + roue creuse Réducteurs ou multiplicateurs de vitesse à train simple. Pour augmenter le rapport de réduction ou de multiplication, on peut associer plusieurs engrenages en série. On parle alors de trains d engrenages. Lorsque les axes des différentes roues ont tous une position invariable par rapport au bâti, on parle de «train simple». On qualifie de «train épicycloïdal» lorsqu un des axes des différentes roues a une position variable par rapport au bâti au cours du fonctionnement (voir paragraphe suivant). Exemples courants de réducteurs ou multiplicateurs de vitesse à train simple : engrenages extérieurs 3 engrenages extérieurs engr. extérieur + engr. intérieur e / e /. / z ( ' z i ).( s ) z z s/ / s/ e '' e / e / / 3/ z.. ( ' z ).( 3 z i ).( s ) s / / 3/ s / ze z'' z3 e / e /. / z ( ' z i ).( s ) z z s/ / s/ e '' insi, le rapport de transmission peut être déterminé à l aide de la relation suivante, où n correspond au nombre de contacts ou engrenages extérieurs entre roues : / n Produit du nombre de dents des roues menées i e ( ). s / Produit du nombre de dents des roues menantes le ( ) n donne le sens de rotation entre les axes d entrée et de sortie (il est donc utilisé seulement si ces axes sont parallèles) Dans un engrenage, on qualifie de «roue menante» une roue motrice, et de «roue menée» une roue réceptrice. Dans le ème exemple, on qualifie la roue 3 de «roue folle». Cette roue est à la fois menante (de la roue s) et menée (par la roue ), son rôle est de changer le sens de rotation. MPSI-PCSI Sciences Industrielles pour l Ingénieur S. Génouël 8//

23 Cours 4 - Modélisation cinématique des liaisons Page 3/5 Réducteurs ou multiplicateurs de vitesse à train épicycloïdal. Inconvénients des trains simples. - les arbres d entrée et de sortie ne sont pas coaxiaux ; - pour des raisons de géométrie, le rapport de réduction ou multiplication d un seul couple de roues dentées est généralement limité à 7 ; - l utilisation de trains simples à plusieurs étages permet de combler ces problèmes mais cette solution devient rapidement encombrante et lourde. Inconvénients des engrenages à roue et vis sans fin. - les arbres d entrée et de sortie ne sont pas coaxiaux ; - le rapport de réduction ou multiplication d'un engrenage à roue et vis sans fin peut atteindre 5, malheureusement son rendement n excède pas les 6%. vantages des trains épicycloïdaux. -, les trains épicycloïdaux ont l arbre d entrée et de sortie coaxiaux ; - le rapport de réduction ou multiplication est élevé dans un encombrement faible. Définition d un train épicycloïdal. Un train épicycloïdal est composé d organes rotatifs dont au moins un élément le satellite est susceptible de prendre deux mouvements de rotation indépendants : une rotation autour de son axe (rotation propre) et une rotation par rapport à l axe général du système. Planétaires, satellites et porte satellites. Satellite 3 Planétaire 3 O O O 4 O 3 B Planétaire Porte satellite 4 Satellite Planétaires et 3 Porte satellites 4 Il s agit d une pièce en rotation par rapport au bâti sur laquelle sont montés le ou les satellites. Il s agit de roues dentées en rotation par rapport au porte satellite. Leur axe de rotation n est donc pas fixe par rapport au bâti. Les planétaires sont des roues dentées (pignon ou couronne) qui engrènent avec le ou les satellites NB : Dans les trains épicycloïdaux de type II, III et IV le satellite est appelé satellite double. 4 3 MPSI-PCSI Sciences Industrielles pour l Ingénieur S. Génouël 8//

24 Cours 4 - Modélisation cinématique des liaisons Page 4/5 Condition géométrique entraînant une relation sur le nombre de dents des différents éléments. Exemple pour un train épi. de type I : D3 D. D z3 z. z Exemple pour un train épi. de type II : R R' R'' R3 z z' z'' z3 Loi entrée-sortie : Relation de Willis. Pour déterminer la loi entrée-sortie d un train épicycloïdal, on utilise la relation de Willis : Pla. / Pla. B/ Po. Sa/ avec Pla. / Pla. B/ Les équations géométriques peuvent se substituer aux équations avec le nombre de dents si et seulement si les modules des engrenages sont égaux. Po. Sa / Pour mieux retenir cette relation, on peut s apercevoir que la somme de ces coefficients est nulle : ( ). Pla planétaire Pla B planétaireb Po Sa porte satellite : raison de base du train épicycloïdal. C est une constante qui correspond au rapport de transmission du train d engrenage simple obtenu si on immobilise le porte satellite. Cette constante se détermine sans tenir compte du fait que certaines pièces sont bloquées ou ont une vitesse imposée!! L utilisation d un train épicycloïdal nécessite d imposer la vitesse angulaire par rapport au bâti de deux des trois entrées possibles ( Pla. /, Pla. B/ ou Po. Sa/ ). Cependant dans la pratique, on fixe souvent un des deux planétaires ( Pla. / ou Pla. B/ ) et on impose la vitesse de rotation d entrée à l autre planétaire ( Pla. / ou Pla. B/ ). La troisième, la sortie donc ( Po. Sa/ généralement), est alors donnée par la relation de Willis en prenant en compte la vitesse nulle de l'entrée bloquée. NB : L utilisation de plusieurs satellites (voir exemple ci-contre) ne modifie pas le comportement cinématique du train, mais permet de mieux répartir les efforts. Exemple du réducteur TV. Ci-dessous le schéma cinématique du réducteur TV (avec z 66, z' 6, z'' 64, et z3 7 ). La relation de Willis s écrit : avec Or /, 3 s et 4 e. /. 3/. 4/ / z' z ( ).. 3,999 3/ z z '' insi la relation de Willis s écrit : 4/. s/. e/ e/ soit : 33 s / c est à dire un rapport de réduction très important. MPSI-PCSI Sciences Industrielles pour l Ingénieur S. Génouël 8//

25 Cours 4 - Modélisation cinématique des liaisons Page 5/5 94) Transmissions par lien flexible (pignons-chaîne, pouliescourroie). Les liens flexibles sont particulièrement avantageux lorsqu il s agit de transmettre un mouvement de rotation entre deux axes parallèles très distants. NB : ttention les roues ou poulies tournent dans le même sens (contrairement aux engrenages). / insi R D i / R D Pignons-chaîne. Schéma normalisé : vantages et inconvénients : Transmission de couples très importants. ucun glissement. Bruyant et nécessite une lubrification. Poulies-courroie. Schéma normalisé : La transmission de puissance par poulie-courroie se fait par l intermédiaire de l adhérence entre la courroie et la poulie. vantages et inconvénients : Rigidité en torsion assez faible, ceci permet leur utilisation lorsque les axes des poulies ne sont pas parallèles (possibilité d utiliser des galets intermédiaires). Solution économique. Fonctionnement silencieux. mortissement des à-coups grâce à l'élasticité des courroies. Matériaux des courroies non adaptés à des conditions difficiles (température élevée par exemple). Durée de vie limitée. Nécessite une surveillance périodique en vue du remplacement de la courroie. Glissement (sauf pour courroie crantée). MPSI-PCSI Sciences Industrielles pour l Ingénieur S. Génouël 8//

Corrigé Exercice 1 : BRIDE HYDRAULIQUE AVEC HYPOTHÈSE PROBLÈME PLAN.

Corrigé Exercice 1 : BRIDE HYDRAULIQUE AVEC HYPOTHÈSE PROBLÈME PLAN. TD 6 corrigé - PFS Résolution analytique (Loi entrée-sortie statique) Page 1/1 Corrigé Exercice 1 : BRIDE HYDRAULIQUE AVEC HYPOTHÈSE PROBLÈME PLAN. Question : Réaliser le graphe de structure, puis compléter

Plus en détail

INTRODUCTION. A- Modélisation et paramétrage : CHAPITRE I : MODÉLISATION. I. Paramétrage de la position d un solide : (S1) O O1 X

INTRODUCTION. A- Modélisation et paramétrage : CHAPITRE I : MODÉLISATION. I. Paramétrage de la position d un solide : (S1) O O1 X INTRODUCTION La conception d'un mécanisme en vue de sa réalisation industrielle comporte plusieurs étapes. Avant d'aboutir à la maquette numérique du produit définitif, il est nécessaire d'effectuer une

Plus en détail

1 Définition. 2 Systèmes matériels et solides. 3 Les actions mécaniques. Le système matériel : Il peut être un ensemble.un sous-ensemble..

1 Définition. 2 Systèmes matériels et solides. 3 Les actions mécaniques. Le système matériel : Il peut être un ensemble.un sous-ensemble.. 1 Définition GÉNÉRALITÉS Statique 1 2 Systèmes matériels et solides Le système matériel : Il peut être un ensemble.un sous-ensemble..une pièce mais aussi un liquide ou un gaz Le solide : Il est supposé

Plus en détail

CIRCUITS DE PUISSANCE PNEUMATIQUES

CIRCUITS DE PUISSANCE PNEUMATIQUES V ACTIONNEURS PNEUMATIQUES : 51 Généralités : Ils peuvent soulever, pousser, tirer, serrer, tourner, bloquer, percuter, abloquer, etc. Leur classification tient compte de la nature du fluide (pneumatique

Plus en détail

Chapitre 0 : Généralités sur la robotique 1/125

Chapitre 0 : Généralités sur la robotique 1/125 Chapitre 0 : Généralités sur la robotique 1/125 Historique de la robotique Étymologie : le mot tchèque robota (travail). Définition : un robot est un système mécanique polyarticulé mû par des actionneurs

Plus en détail

DISQUE DUR. Figure 1 Disque dur ouvert

DISQUE DUR. Figure 1 Disque dur ouvert DISQUE DUR Le sujet est composé de 8 pages et d une feuille format A3 de dessins de détails, la réponse à toutes les questions sera rédigée sur les feuilles de réponses jointes au sujet. Toutes les questions

Plus en détail

1 Définition. 2 Modélisation des actions mécaniques. On appelle action mécanique toute cause susceptible de : - maintenir un corps au repos

1 Définition. 2 Modélisation des actions mécaniques. On appelle action mécanique toute cause susceptible de : - maintenir un corps au repos 1 Définition On appelle action mécanique toute cause susceptible de : - maintenir un corps au repos - créer ou modifier un mouvement - déformer un corps odélisation des actions mécaniques.1. Notion de

Plus en détail

MOTO ELECTRIQUE. CPGE / Sciences Industrielles pour l Ingénieur TD06_08 Moto électrique DIAGRAMME DES INTER-ACTEURS UTILISATEUR ENVIRONNEMENT HUMAIN

MOTO ELECTRIQUE. CPGE / Sciences Industrielles pour l Ingénieur TD06_08 Moto électrique DIAGRAMME DES INTER-ACTEURS UTILISATEUR ENVIRONNEMENT HUMAIN MOTO ELECTRIQUE MISE EN SITUATION La moto électrique STRADA EVO 1 est fabriquée par une société SUISSE, située à LUGANO. Moyen de transport alternatif, peut-être la solution pour concilier contraintes

Plus en détail

Le Système de Récupération de l Energie Cinétique (SREC)

Le Système de Récupération de l Energie Cinétique (SREC) Concours EPITA 011 Epreuve de Sciences Industrielles pour l ingénieur Le Système de Récupération de l Energie Cinétique (SREC) Tous documents interdits Calculatrice autorisée Durée : h L augmentation de

Plus en détail

Guide pour l analyse de l existant technique. Partie 3

Guide pour l analyse de l existant technique. Partie 3 Partie 3 La Liaison Pivot sur roulement : Le Composant ROULEMENT 0 Introduction Le but de ce guide est de vous permettre une meilleure rédaction des rapports de Bureaux d Études que vous aurez à nous remettre

Plus en détail

S2I. La robotique au service du handicap

S2I. La robotique au service du handicap I Introduction S2I PSI 4 heures Calculatrices autorisées La robotique au service du handicap 2010 Les avancées technologiques récentes des actionneurs électriques ont permis le développement du champ d

Plus en détail

LES LOIS PHYSIQUES APPLIQUÉES AUX DEUX-ROUES : 1. LA FORCE DE GUIDAGE

LES LOIS PHYSIQUES APPLIQUÉES AUX DEUX-ROUES : 1. LA FORCE DE GUIDAGE LES LOIS PHYSIQUES APPLIQUÉES AUX DEUX-ROUES : 1. LA FORCE DE GUIDAGE 2. L EFFET GYROSCOPIQUE Les lois physiques qui régissent le mouvement des véhicules terrestres sont des lois universelles qui s appliquent

Plus en détail

Problèmes sur le chapitre 5

Problèmes sur le chapitre 5 Problèmes sur le chapitre 5 (Version du 13 janvier 2015 (10h38)) 501 Le calcul des réactions d appui dans les problèmes schématisés ci-dessous est-il possible par les équations de la statique Si oui, écrire

Plus en détail

10 leçon 2. Leçon n 2 : Contact entre deux solides. Frottement de glissement. Exemples. (PC ou 1 er CU)

10 leçon 2. Leçon n 2 : Contact entre deux solides. Frottement de glissement. Exemples. (PC ou 1 er CU) 0 leçon 2 Leçon n 2 : Contact entre deu solides Frottement de glissement Eemples (PC ou er CU) Introduction Contact entre deu solides Liaisons de contact 2 Contact ponctuel 2 Frottement de glissement 2

Plus en détail

Test : principe fondamental de la dynamique et aspect énergétique

Test : principe fondamental de la dynamique et aspect énergétique Durée : 45 minutes Objectifs Test : principe fondamental de la dynamique et aspect énergétique Projection de forces. Calcul de durée d'accélération / décélération ou d'accélération / décélération ou de

Plus en détail

Concours EPITA 2009 Epreuve de Sciences Industrielles pour l ingénieur La suspension anti-plongée de la motocyclette BMW K1200S

Concours EPITA 2009 Epreuve de Sciences Industrielles pour l ingénieur La suspension anti-plongée de la motocyclette BMW K1200S Concours EPIT 2009 Epreuve de Sciences Industrielles pour l ingénieur La suspension anti-plongée de la motocyclette MW K1200S Durée : 2h. Calculatrices autorisées. Présentation du problème Le problème

Plus en détail

Chapitre 0 Introduction à la cinématique

Chapitre 0 Introduction à la cinématique Chapitre 0 Introduction à la cinématique Plan Vitesse, accélération Coordonnées polaires Exercices corrigés Vitesse, Accélération La cinématique est l étude du mouvement Elle suppose donc l existence à

Plus en détail

BACCALAURÉAT TECHNOLOGIQUE SESSION 2008 POSITIONNEUR DE PANNEAU SOLAIRE POUR CAMPING-CAR

BACCALAURÉAT TECHNOLOGIQUE SESSION 2008 POSITIONNEUR DE PANNEAU SOLAIRE POUR CAMPING-CAR BACCALAURÉAT TECHNOLOGIQUE SÉRIE SCIENCES ET TECHNIQUES INDUSTRIELLES GÉNIE ÉLECTROTECHNIQUE SESSION 2008 ÉPREUVE: ÉTUDE DES CONSTRUCTIONS Durée: 4 heures Coefficient : 6 POSITIONNEUR DE PANNEAU SOLAIRE

Plus en détail

STATIQUE GRAPHIQUE ET STATIQUE ANALYTIQUE

STATIQUE GRAPHIQUE ET STATIQUE ANALYTIQUE ÉCOLE D'INGÉNIEURS DE FRIBOURG (E.I.F.) SECTION DE MÉCANIQUE G.R. Nicolet, revu en 2006 STATIQUE GRAPHIQUE ET STATIQUE ANALYTIQUE Eléments de calcul vectoriel Opérations avec les forces Equilibre du point

Plus en détail

INFORMATION TECHNIQUE. Chargeur camion Support à la vente # IT-03PA01

INFORMATION TECHNIQUE. Chargeur camion Support à la vente # IT-03PA01 INFORMATION TECHNIQUE Chargeur camion Support à la vente # IT-03PA01 PAGE: INDEX Gamme complète 1 Principaux composants 4 Structure 5 Dispositif de rotation 11 Hydraulique 17 Stabilisateur 25 Divers 28

Plus en détail

Dimensionnement d une roue autonome pour une implantation sur un fauteuil roulant

Dimensionnement d une roue autonome pour une implantation sur un fauteuil roulant Dimensionnement d une roue autonome pour une implantation sur un fauteuil roulant I Présentation I.1 La roue autonome Ez-Wheel SAS est une entreprise française de technologie innovante fondée en 2009.

Plus en détail

(Exemple ici de calcul pour une Ducati 748 biposto, et également pour un S2R1000, équipé d un disque acier en fond de cloche, et ressorts d origine)

(Exemple ici de calcul pour une Ducati 748 biposto, et également pour un S2R1000, équipé d un disque acier en fond de cloche, et ressorts d origine) Analyse de la charge transmise aux roulements de la roue dentée, notamment en rajoutant les efforts axiaux dus aux ressorts de l embrayage (via la cloche) (Exemple ici de calcul pour une Ducati 748 biposto,

Plus en détail

Cours de Mécanique du point matériel

Cours de Mécanique du point matériel Cours de Mécanique du point matériel SMPC1 Module 1 : Mécanique 1 Session : Automne 2014 Prof. M. EL BAZ Cours de Mécanique du Point matériel Chapitre 1 : Complément Mathématique SMPC1 Chapitre 1: Rappels

Plus en détail

par Jacques DURANDEAU Ingénieur de l École Nationale Supérieure d Arts et Métiers Directeur de SETRADEX Conseil

par Jacques DURANDEAU Ingénieur de l École Nationale Supérieure d Arts et Métiers Directeur de SETRADEX Conseil Escaliers mécaniques Trottoirs roulants par Jacques DURANDEAU Ingénieur de l École Nationale Supérieure d Arts et Métiers Directeur de SETRADEX Conseil 1. Définitions... C 3 726-2 2. Constitution... 3

Plus en détail

LÈVE-PERSONNE ORIOR MISE EN SITUATION.

LÈVE-PERSONNE ORIOR MISE EN SITUATION. LÈVE-PERSONNE ORIOR MISE EN SITUATION. Le lève-personne ORIOR permet de transférer en toute sécurité dans le cadre d un usage domestique une personne à mobilité réduite d un support à un autre, d un lit

Plus en détail

ENERGETIQUE. Référence au programme S.T.I Référence au module 4- Energétique et dynamique. Module 14 15 : :Energétique 4-1 Energétique

ENERGETIQUE. Référence au programme S.T.I Référence au module 4- Energétique et dynamique. Module 14 15 : :Energétique 4-1 Energétique ENERGETIQUE ET DYNAMIQUE ENERGETIQUE Mécanique Référence au programme S.T.I Référence au module 4- Energétique et dynamique. Module 14 15 : :Energétique 4-1 Energétique 1- Objectifs de la séquence : Calculer

Plus en détail

TUTORIAL 1 ETUDE D UN MODELE SIMPLIFIE DE PORTIQUE PLAN ARTICULE

TUTORIAL 1 ETUDE D UN MODELE SIMPLIFIE DE PORTIQUE PLAN ARTICULE TUTORIAL 1 ETUDE D UN MODELE SIMPLIFIE DE PORTIQUE PLAN ARTICULE L'objectif de ce tutorial est de décrire les différentes étapes dans CASTOR Concept / FEM permettant d'effectuer l'analyse statique d'une

Plus en détail

CABLECAM de HYMATOM. Figure 1 : Schéma du système câblecam et détail du moufle vu de dessus.

CABLECAM de HYMATOM. Figure 1 : Schéma du système câblecam et détail du moufle vu de dessus. CABLECAM de HYMATOM La société Hymatom conçoit et fabrique des systèmes de vidéosurveillance. Le système câblecam (figure 1) est composé d un chariot mobile sur quatre roues posé sur deux câbles porteurs

Plus en détail

4XDOLILFDWLRQ H[SpULPHQWDOH GH OD PRGpOLVDWLRQ WKHUPLTXH GH OD ERvWH JpQpULTXH 83

4XDOLILFDWLRQ H[SpULPHQWDOH GH OD PRGpOLVDWLRQ WKHUPLTXH GH OD ERvWH JpQpULTXH 83 &KDSLWUH 4XDOLILFDWLRQ H[SpULPHQWDOH GH OD PRGpOLVDWLRQ WKHUPLTXHGHODERvWHJpQpULTXH,QWURGXFWLRQ Un modèle thermique nodal de la boîte générique, correspondant au banc d essais, a été réalisé. Des modèles

Plus en détail

Utiliser les propriétés Savoir réduire un radical savoir +,-,x,: Utiliser les propriétés des puissances Calculer avec des puissances

Utiliser les propriétés Savoir réduire un radical savoir +,-,x,: Utiliser les propriétés des puissances Calculer avec des puissances ARITHMETIQUE 1 C B A Numération Ecrire en lettres et en chiffres Poser des questions fermées autour d un document simple (message, consigne, planning ) Connaître le système décimal Déterminer la position

Plus en détail

Chapitre 1 Cinématique du point matériel

Chapitre 1 Cinématique du point matériel Chapitre 1 Cinématique du point matériel 7 1.1. Introduction 1.1.1. Domaine d étude Le programme de mécanique de math sup se limite à l étude de la mécanique classique. Sont exclus : la relativité et la

Plus en détail

Fonctions de plusieurs variables

Fonctions de plusieurs variables Module : Analyse 03 Chapitre 00 : Fonctions de plusieurs variables Généralités et Rappels des notions topologiques dans : Qu est- ce que?: Mathématiquement, n étant un entier non nul, on définit comme

Plus en détail

Manuel d utilisation MJ519 Table élévatrice hydraulique mobile de style à ciseau 300 kg (660 lb)

Manuel d utilisation MJ519 Table élévatrice hydraulique mobile de style à ciseau 300 kg (660 lb) Manuel d utilisation MJ59 Table élévatrice hydraulique mobile de style à ciseau 300 kg (660 lb) AVERTISSEMENT! Lisez ce manuel d utilisation attentivement et comprenez parfaitement les instructions d opération.

Plus en détail

XXXX F16D ACCOUPLEMENTS POUR LA TRANSMISSION DES MOUVEMENTS DE ROTATION; EMBRAYAGES; FREINS [2]

XXXX F16D ACCOUPLEMENTS POUR LA TRANSMISSION DES MOUVEMENTS DE ROTATION; EMBRAYAGES; FREINS [2] XXXX F16D F16D F16 ÉLÉMENTS OU ENSEMBLES DE TECHNOLOGIE; MESURES GÉNÉRALES POUR ASSURER LE BON FONCTIONNEMENT DES MACHINES OU INSTALLATIONS; ISOLATION THERMIQUE EN GÉNÉRAL F16D XXXX F16D ACCOUPLEMENTS

Plus en détail

Initiation aux Sciences de l Ingénieur LIVRET DE SECONDE

Initiation aux Sciences de l Ingénieur LIVRET DE SECONDE Etablissement : NOM : Classe :. Année scolaire : 20.. / 20 Initiation aux Sciences de l Ingénieur LIVRET DE SECONDE N fiche Savoirs Compétences Supports d apprentissage (à compléter) Validation (par l

Plus en détail

Statique des systèmes de solides. 1 Deux exemples d illustration 2 1.1 Système de freinage du TGV 1... 2 1.2 Micro-compresseur...

Statique des systèmes de solides. 1 Deux exemples d illustration 2 1.1 Système de freinage du TGV 1... 2 1.2 Micro-compresseur... Statique des systèmes de solides Table des matières 1 Deux exemples d illustration 2 1.1 Système de freinage du TGV 1............................ 2 1.2 Micro-compresseur..................................

Plus en détail

Vis à billes de précision à filets rectifiés

Vis à billes de précision à filets rectifiés sommaire Calculs : - Capacités de charges / Durée de vie - Vitesse et charges moyennes 26 - Rendement / Puissance motrice - Vitesse critique / Flambage 27 - Précharge / Rigidité 28 Exemples de calcul 29

Plus en détail

DS SCIENCES PHYSIQUES MATHSPÉ

DS SCIENCES PHYSIQUES MATHSPÉ DS SCIENCES PHYSIQUES MATHSPÉ calculatrice: autorisée durée: 4 heures Sujet Jouets...2 I.Voiture avec volant d'inertie réservoir d'énergie cinétique...2 A.Préliminaire...3 B.Phase 1...3 C.Phase 2...4 D.Phase

Plus en détail

SCIENCES INDUSTRIELLES POUR L INGÉNIEUR. Partie I - Analyse système

SCIENCES INDUSTRIELLES POUR L INGÉNIEUR. Partie I - Analyse système SCIENCES INDUSTRIELLES POUR L INGÉNIEUR COMPORTEMENT DYNAMIQUE D UN VEHICULE AUTO-BALANCÉ DE TYPE SEGWAY Partie I - Analyse système Poignée directionnelle Barre d appui Plate-forme Photographies 1 Le support

Plus en détail

VERROU ELECTRIQUE 2 POINTS VEAPH Série 8404 - POSE MECANIQUE

VERROU ELECTRIQUE 2 POINTS VEAPH Série 8404 - POSE MECANIQUE VERROU ELECTRIQUE 2 POINTS VEAPH Série 8404 - POSE MECANIQUE Réf..279.97.0 Ind A MAIN DU VERROU VEAPH. Le produit est livré en configuration usine main droite, selon votre cas de montage, adapter la configuration

Plus en détail

I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES

I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES Théorème - Définition Soit un cercle (O,R) et un point. Une droite passant par coupe le cercle en deux points A et

Plus en détail

Un partenaire Un partenaire solide

Un partenaire Un partenaire solide Un partenaire Un partenaire solide Le groupe IMO dont le siège se situe à Gremsdorf dans la région de Nuremberg vous propose plus de 16 années d expérience et d innovations dans le domaine de la fabrication

Plus en détail

BACCALAURÉAT GÉNÉRAL SÉRIE SCIENTIFIQUE

BACCALAURÉAT GÉNÉRAL SÉRIE SCIENTIFIQUE BACCALAURÉAT GÉNÉRAL SÉRIE SCIENTIFIQUE Épreuve de sciences de l ingénieur Session 2013 Durée de l épreuve : 4 heures Coefficient 4,5 pour les candidats ayant choisi un enseignement de spécialité autre

Plus en détail

Épreuve E5 : Conception détaillée. Sous-épreuve E51 : Conception détaillée d une chaîne fonctionnelle

Épreuve E5 : Conception détaillée. Sous-épreuve E51 : Conception détaillée d une chaîne fonctionnelle BTS Conception et Réalisation de Systèmes Automatiques Épreuve E5 : Conception détaillée Sous-épreuve E51 : Conception détaillée d une chaîne fonctionnelle Session 2013 Durée : 4 h Coefficient : 3 Matériel

Plus en détail

Quelles sont les éléments de stockage de nos trois objets techniques?

Quelles sont les éléments de stockage de nos trois objets techniques? 1. Expérience Que se passe-t-il quand j ouvre l orifice du ballon? Quelles sont les éléments de stockage de nos trois objets techniques? C19 : Identifier les éléments de stockage, des 3 objets techniques.

Plus en détail

Programme de mathématiques TSI1

Programme de mathématiques TSI1 Programme de mathématiques TSI1 1. PROGRAMME DE DÉBUT D ANNÉE I. Nombres complexes et géométrie élémentaire 1. Nombres complexes 1 2. Géométrie élémentaire du plan 3 3. Géométrie élémentaire de l espace

Plus en détail

AUTOMATISME DE PORTE DE GARAGE

AUTOMATISME DE PORTE DE GARAGE BACCALAURÉAT SCIENCES ET TECHNOLOGIES INDUSTRIELLES Spécialité génie électronique Session 2007 Étude des systèmes techniques industriels Durée : 6 heures coefficient : 8 AUTOMATISME DE PORTE DE GARAGE

Plus en détail

Mathématiques et petites voitures

Mathématiques et petites voitures Mathématiques et petites voitures Thomas Lefebvre 10 avril 2015 Résumé Ce document présente diérentes applications des mathématiques dans le domaine du slot-racing. Table des matières 1 Périmètre et circuit

Plus en détail

Les véhicules La chaîne cinématique

Les véhicules La chaîne cinématique Un peu d histoire 1862 : M. BEAU DE ROCHAS invente le cycle à 4 temps 1864 : premier moteur à 4 temps, par M.OTTO 1870 : industrialisation de la voiture 1881 : première voiture électrique par M. JEANTAUD

Plus en détail

(51) Int Cl.: B23P 19/00 (2006.01) B23P 19/04 (2006.01) F01L 1/053 (2006.01)

(51) Int Cl.: B23P 19/00 (2006.01) B23P 19/04 (2006.01) F01L 1/053 (2006.01) (19) (12) DEMANDE DE BREVET EUROPEEN (11) EP 1 886 760 A1 (43) Date de publication: 13.02.2008 Bulletin 2008/07 (21) Numéro de dépôt: 0711197.6 (1) Int Cl.: B23P 19/00 (2006.01) B23P 19/04 (2006.01) F01L

Plus en détail

FICHES D AIDE POUR L UTILISATION DU LOGICIEL

FICHES D AIDE POUR L UTILISATION DU LOGICIEL FICHES D AIDE POUR L UTILISATION DU LOGICIEL MECA 3D Travailler avec Méca 3D Effectuer un calcul mécanique Simuler le mouvement d un mécanisme Afficher une courbe de résultats Ajouter un effort (force

Plus en détail

Distributeur de carburant GPL

Distributeur de carburant GPL BACCALAUREAT GENERAL Session 2002 Série S Sciences de l Ingénieur ETUDE D UN SYSTEME PLURITECHNIQUE Coefficient : 6 Durée de l épreuve : 4 heures Sont autorisés les calculatrices électroniques et le matériel

Plus en détail

SOUS EPREUVE E51 MODELISATION ET COMPORTEMENT DES PRODUITS INDUSTRIELS

SOUS EPREUVE E51 MODELISATION ET COMPORTEMENT DES PRODUITS INDUSTRIELS BREVET DE TECHNICIEN SUPERIEUR CONCEPTION DE PRODUITS INDUSTRIELS SESSION 214 ETUDE DE PRODUITS INDUSTRIELS SOUS EPREUVE E51 MODELISATION ET COMPORTEMENT DES PRODUITS INDUSTRIELS Durée : 4 heures Aucun

Plus en détail

BACCALAURÉAT GÉNÉRAL SÉRIE SCIENTIFIQUE

BACCALAURÉAT GÉNÉRAL SÉRIE SCIENTIFIQUE BACCALAURÉAT GÉNÉRAL SÉRIE SCIENTIFIQUE ÉPREUVE DE SCIENCES DE L INGÉNIEUR ÉPREUVE DU VENDREDI 20 JUIN 2014 Session 2014 Durée de l épreuve : 4 heures Coefficient 4,5 pour les candidats ayant choisi un

Plus en détail

Moto électrique Quantya'"

Moto électrique Quantya' BACCALAURÉAT TECHNOLOGIQUE SÉRIE SCIENCES ET TECHNIQUES INDUSTRIELLES GÉNIE ÉLECTROTECHNIQUE SESSION 2009 Épreuve: étude des constructions Durée : 4 heures Coefficient: 6 Moto électrique Quantya'" AUCUN

Plus en détail

avec E qui ne dépend que de la fréquence de rotation.

avec E qui ne dépend que de la fréquence de rotation. Comment régler la vitesse d un moteur électrique?. Comment régler la vitesse d un moteur à courant continu? Capacités Connaissances Exemples d activités Connaître le modèle équivalent simplifié de l induit

Plus en détail

Chapitre 2 : Caractéristiques du mouvement d un solide

Chapitre 2 : Caractéristiques du mouvement d un solide Chapitre 2 : Caractéristiques du mouvement d un solide I Rappels : Référentiel : Le mouvement d un corps est décris par rapport à un corps de référence et dépend du choix de ce corps. Ce corps de référence

Plus en détail

Mouvement et vitesse . A A B

Mouvement et vitesse . A A B Chapitre 1 Mouvement et vitesse I/ Caractère relatif d'un mouvement Le mouvement d'un objet est décrit par rapport à un autre objet qui sert de référence ( le référentiel) exemple : assis dans une voiture

Plus en détail

ANALYSE FONCTIONNELLE INTERNE DEVOIR LIBRE

ANALYSE FONCTIONNELLE INTERNE DEVOIR LIBRE I INTRODUCTION : 1) Citer la fonction globale des systèmes suivants : Scooter : Marteau : Grille pain : Téléphone portable : Agrafeuse : 2) De quelle famille font partie les systèmes suivants? DM Etude

Plus en détail

Banc d études des structures Etude de résistances de matériaux (RDM) et structures mécaniques

Banc d études des structures Etude de résistances de matériaux (RDM) et structures mécaniques Banc d études des structures Etude de résistances de matériaux (RDM) et structures mécaniques Descriptif du support pédagogique Le banc d essais des structures permet de réaliser des essais et des études

Plus en détail

Induction électromagnétique

Induction électromagnétique Induction électromagnétique Sommaire I) Théorie de l induction électromagnétique..2 A. Introduction 2 B. Notion de force électromotrice 3 C. Loi de Faraday..5 D. Quelques applications.7 Spire circulaire

Plus en détail

Géométrie en trois dimensions

Géométrie en trois dimensions 1 Géométrie en trois dimensions Il s agit de visualiser des objets en trois dimensions sur un plan, pour nous l écran de l ordinateur. Pour ce faire, nous allons simplifier les choses au maximum. Nous

Plus en détail

NOTIONS ÉLEMENTAIRES SUR LES PNEUS

NOTIONS ÉLEMENTAIRES SUR LES PNEUS CE QU IL Y A DANS UN PNEU CEINTURES BANDE DE ROULEMENT ISOLANT DE NAPPES CARCASSE À ARCEAUX DROITS GARNITURE INTÉRIEURE CARCASSE TRINGLE FLANC La GARNITURE INTÉRIEURE du pneu maintient l air dans le pneu.

Plus en détail

Press book. Cadreuse ACMA de rambardes d escalier

Press book. Cadreuse ACMA de rambardes d escalier Cadreuse ACMA de rambardes d escalier Vue d ensemble. Vue de détail de la machine avec ses taquets de positionnement des balustres pour assemblage par tourillons. Auto-centrage des 2 poutres de serrage

Plus en détail

PRINCIPE DE FONCTIONNEMENT DU MOTEUR 4 TEMPS

PRINCIPE DE FONCTIONNEMENT DU MOTEUR 4 TEMPS PRINCIPE DE FONCTIONNEMENT DU MOTEUR 4 TEMPS I:PRINCIPE DE BASE. 1-1:Situation problème. Lorsque nous voulons déplacer un véhicule manuellement, il est plus facile de le déplacer en créant une force sur

Plus en détail

LA PHYSIQUE DES MATERIAUX. Chapitre 1 LES RESEAUX DIRECT ET RECIPROQUE

LA PHYSIQUE DES MATERIAUX. Chapitre 1 LES RESEAUX DIRECT ET RECIPROQUE LA PHYSIQUE DES MATERIAUX Chapitre 1 LES RESEAUX DIRECT ET RECIPROQUE Pr. A. Belayachi Université Mohammed V Agdal Faculté des Sciences Rabat Département de Physique - L.P.M belayach@fsr.ac.ma 1 1.Le réseau

Plus en détail

Cercle trigonométrique et mesures d angles

Cercle trigonométrique et mesures d angles Cercle trigonométrique et mesures d angles I) Le cercle trigonométrique Définition : Le cercle trigonométrique de centre O est un cercle qui a pour rayon 1 et qui est muni d un sens direct : le sens inverse

Plus en détail

T.I.P.E. Optimisation d un. moteur

T.I.P.E. Optimisation d un. moteur LEPLOMB Romain Année universitaire 2004-2005 LE ROI Gautier VERNIER Marine Groupe Sup B, C, D Professeur accompagnateur : M. Guerrier T.I.P.E Optimisation d un moteur 1 1. Présentation du fonctionnement

Plus en détail

UNITE DE PREPARATION DE MEMBRANES DE PILE A COMBUSTIBLE

UNITE DE PREPARATION DE MEMBRANES DE PILE A COMBUSTIBLE REPUBLIQUE TUNISIENNE MINISTERE DE L EDUCATION EXAMEN DU BACCALAUREAT SESSION DE JUIN 2011 Constitution du sujet : Un dossier technique : Pages 1/6 2/6 3/6 4/6 5/6 et 6/6. Des feuilles réponses : Pages

Plus en détail

Int. Cl.4: E 05 B 5/00. Q) Demandeur: REGIE NATIONALE DES USINES RENAULT Boîte postale 103 8-10 avenue Emile Zola F-92109 Boulogne-Billancourt(FR)

Int. Cl.4: E 05 B 5/00. Q) Demandeur: REGIE NATIONALE DES USINES RENAULT Boîte postale 103 8-10 avenue Emile Zola F-92109 Boulogne-Billancourt(FR) à Europâisches Patentamt European Patent Office Office européen des brevets Numéro de publication: 0 181 262 A2 DEMANDE DE BREVET EUROPEEN Numéro de dépôt: 85402119.3 Int. Cl.4: E 05 B 5/00 Date de dépôt:

Plus en détail

Généralités. Aperçu. Introduction. Précision. Instruction de montage. Lubrification. Conception. Produits. Guides à brides FNS. Guides standards GNS

Généralités. Aperçu. Introduction. Précision. Instruction de montage. Lubrification. Conception. Produits. Guides à brides FNS. Guides standards GNS Généralités Aperçu Introduction Précision Instruction de montage Lubrification Conception page............................. 4............................. 5............................. 6.............................

Plus en détail

TP 7 : oscillateur de torsion

TP 7 : oscillateur de torsion TP 7 : oscillateur de torsion Objectif : étude des oscillations libres et forcées d un pendule de torsion 1 Principe général 1.1 Définition Un pendule de torsion est constitué par un fil large (métallique)

Plus en détail

BALTIC Jusuf ETTIGHOFFER Loïc ROUZIER Ghislain. Course en Cours L optimisation des performances des voitures

BALTIC Jusuf ETTIGHOFFER Loïc ROUZIER Ghislain. Course en Cours L optimisation des performances des voitures BALTIC Jusuf ETTIGHOFFER Loïc ROUZIER Ghislain Course en Cours L optimisation des performances des voitures Introduction Objectifs du cours Ce cours fournit le savoir-faire et les quelques notions théoriques

Plus en détail

CONCOURS COMMUNS POLYTECHNIQUES

CONCOURS COMMUNS POLYTECHNIQUES CONCOURS COMMUNS POLYTECHNIQUES SYSTÈME DE LEVAGE À MULTIPLES COLONNES Les sociétés de transports publics des grandes agglomérations gèrent des réseaux comportant des bus et/ou des tramways. Ces sociétés

Plus en détail

Etude du SIMULATEUR DE VOL «FLY-HO»

Etude du SIMULATEUR DE VOL «FLY-HO» ECOLE NATIONALE DE L AVIATION CIVILE Session 212 CONCOURS DE RECRUTEMENT D ELEVES INGENIEURS DU CONTROLE DE LA NAVIGATION AERIENNE Epreuve optionnelle obligatoire de SCIENCES INDUSTRIELLES POUR L INGENIEUR

Plus en détail

LA FORCE CENTRIFUGE. En effet, cette force tend à expulser les voitures en dehors d un virage serré.

LA FORCE CENTRIFUGE. En effet, cette force tend à expulser les voitures en dehors d un virage serré. LA ORCE CENTRIUGE Introduction La force centrifuge est assez connue du public, elle fait d ailleurs l objet d une question pouvant être posée pour l obtention du permis de conduire. En effet, cette force

Plus en détail

BACCALAURÉAT GÉNÉRAL SÉRIE SCIENTIFIQUE

BACCALAURÉAT GÉNÉRAL SÉRIE SCIENTIFIQUE BACCALAURÉAT GÉNÉRAL SÉRIE SCIENTIFIQUE ÉPREUVE DE SCIENCES DE L INGÉNIEUR Session 2014 Durée de l épreuve : 4 heures Coefficient 4,5 pour les candidats ayant choisi un enseignement de spécialité autre

Plus en détail

LA PUISSANCE DES MOTEURS. Avez-vous déjà feuilleté le catalogue d un grand constructeur automobile?

LA PUISSANCE DES MOTEURS. Avez-vous déjà feuilleté le catalogue d un grand constructeur automobile? LA PUISSANCE DES MOTEURS Avez-vous déjà feuilleté le catalogue d un grand constructeur automobile? Chaque modèle y est décliné en plusieurs versions, les différences portant essentiellement sur la puissance

Plus en détail

Sujet proposé par Yves M. LEROY. Cet examen se compose d un exercice et de deux problèmes. Ces trois parties sont indépendantes.

Sujet proposé par Yves M. LEROY. Cet examen se compose d un exercice et de deux problèmes. Ces trois parties sont indépendantes. Promotion X 004 COURS D ANALYSE DES STRUCTURES MÉCANIQUES PAR LA MÉTHODE DES ELEMENTS FINIS (MEC 568) contrôle non classant (7 mars 007, heures) Documents autorisés : polycopié ; documents et notes de

Plus en détail

Oscillations libres des systèmes à deux degrés de liberté

Oscillations libres des systèmes à deux degrés de liberté Chapitre 4 Oscillations libres des systèmes à deux degrés de liberté 4.1 Introduction Les systèmes qui nécessitent deux coordonnées indépendantes pour spécifier leurs positions sont appelés systèmes à

Plus en détail

L univers des produits MEYLE. La gamme complète. Un seul fournisseur.

L univers des produits MEYLE. La gamme complète. Un seul fournisseur. L univers des produits MEYLE. La gamme complète. Un seul fournisseur. 2 3 L EXPÉRIENCE. L INNOVATION. LE SERVICE. MEYLE et MEYLE-HD sont des marques de Wulf Gaertner Autoparts AG. S appuyant sur plus de

Plus en détail

Précisions pour calculer et choisir le ressort à gaz approprié

Précisions pour calculer et choisir le ressort à gaz approprié Précisions pour calculer et choisir le ressort à gaz approprié ICTTO vous propose pour chaque application le ressort à gaz adéquat. uivant les instructions vous allez choisir le type de ressort à gaz,

Plus en détail

Force de serrage 123 N.. 21800 N. Pince de préhension parallèle à 2 doigts PGN-plus 160 avec doigts de préhension spécifiques à la pièce à manipuler

Force de serrage 123 N.. 21800 N. Pince de préhension parallèle à 2 doigts PGN-plus 160 avec doigts de préhension spécifiques à la pièce à manipuler PGN-plus Tailles 40.. 380 Poids 0.08 kg.. 39.5 kg Force de serrage 123 N.. 21800 N Course par doigt 2 mm.. 45 mm Poids de pièce recommandé 0.62 kg.. 80.5 kg Exemple d application Poste de chargement de

Plus en détail

document proposé sur le site «Sciences Physiques en BTS» : http://nicole.cortial.net BTS AVA 2015

document proposé sur le site «Sciences Physiques en BTS» : http://nicole.cortial.net BTS AVA 2015 BT V 2015 (envoyé par Frédéric COTTI - Professeur d Electrotechnique au Lycée Régional La Floride Marseille) Document 1 - Etiquette énergie Partie 1 : Voiture à faible consommation - Une étiquette pour

Plus en détail

Glissière linéaire à rouleaux

Glissière linéaire à rouleaux LRX Guidage linéaire Introduction Rail de guidage Joint Graisseur Corps Rouleaux cylindriques Joint Cage Couvercle d extrémité Les guides linéaires à rouleaux de la série LRX offrent une haute fiabilité

Plus en détail

SCIENCES INDUSTRIELLES (S.I.)

SCIENCES INDUSTRIELLES (S.I.) SESSION 2014 PSISI07 EPREUVE SPECIFIQUE - FILIERE PSI " SCIENCES INDUSTRIELLES (S.I.) Durée : 4 heures " N.B. : Le candidat attachera la plus grande importance à la clarté, à la précision et à la concision

Plus en détail

Information. BASES LITTERAIRES Etre capable de répondre à une question du type «la valeur trouvée respecte t-elle le cahier des charges?

Information. BASES LITTERAIRES Etre capable de répondre à une question du type «la valeur trouvée respecte t-elle le cahier des charges? Compétences générales Avoir des piles neuves, ou récentes dans sa machine à calculer. Etre capable de retrouver instantanément une info dans sa machine. Prendre une bouteille d eau. Prendre CNI + convocation.

Plus en détail

ANALYSE CATIA V5. 14/02/2011 Daniel Geffroy IUT GMP Le Mans

ANALYSE CATIA V5. 14/02/2011 Daniel Geffroy IUT GMP Le Mans ANALYSE CATIA V5 1 GSA Generative Structural Analysis 2 Modèle géométrique volumique Post traitement Pré traitement Maillage Conditions aux limites 3 Ouverture du module Choix du type d analyse 4 Calcul

Plus en détail

Essais de charge sur plaque

Essais de charge sur plaque Page No.: 1 L essai de charge sur plaque est exécuté entre autres dans des galeries d exploration ou dans des puits, mais il peut aussi être exécuté à la surface en appliquant un poids mort ou en chargeant

Plus en détail

Calcul intégral élémentaire en plusieurs variables

Calcul intégral élémentaire en plusieurs variables Calcul intégral élémentaire en plusieurs variables PC*2 2 septembre 2009 Avant-propos À part le théorème de Fubini qui sera démontré dans le cours sur les intégrales à paramètres et qui ne semble pas explicitement

Plus en détail

F411 - Courbes Paramétrées, Polaires

F411 - Courbes Paramétrées, Polaires 1/43 Courbes Paramétrées Courbes polaires Longueur d un arc, Courbure F411 - Courbes Paramétrées, Polaires Michel Fournié michel.fournie@iut-tlse3.fr http://www.math.univ-toulouse.fr/ fournie/ Année 2012/2013

Plus en détail

TOUT CE QU IL FAUT SAVOIR POUR LE BREVET

TOUT CE QU IL FAUT SAVOIR POUR LE BREVET TOUT E QU IL FUT SVOIR POUR LE REVET NUMERIQUE / FONTIONS eci n est qu un rappel de tout ce qu il faut savoir en maths pour le brevet. I- Opérations sur les nombres et les fractions : Les priorités par

Plus en détail

Thème 12: Généralités sur les fonctions

Thème 12: Généralités sur les fonctions GÉNÉRALITÉS SUR LES FONCTIONS 69 Thème 12: Généralités sur les fonctions 12.1 Introduction Qu est-ce qu une fonction? Une fonction est une sorte de "machine". On choisit dans un ensemble de départ A un

Plus en détail

Utilisation du logiciel Cabri 3D de géométrie dans l espace (*)

Utilisation du logiciel Cabri 3D de géométrie dans l espace (*) Dans nos classes 645 Utilisation du logiciel Cabri 3D de géométrie dans l espace (*) Jean-Jacques Dahan(**) Historiquement, la géométrie dynamique plane trouve ses racines chez les grands géomètres de

Plus en détail

Principes de la Mécanique

Principes de la Mécanique Chapitre 1 Principes de la Mécanique L expérience a montré que tous les phénomènes observés dans la nature obéissent à des lois bien déterminées. Ces lois peuvent être, en plus, déterministes ou indéterministes.

Plus en détail

Correction du Baccalauréat S Amérique du Nord mai 2007

Correction du Baccalauréat S Amérique du Nord mai 2007 Correction du Baccalauréat S Amérique du Nord mai 7 EXERCICE points. Le plan (P) a une pour équation cartésienne : x+y z+ =. Les coordonnées de H vérifient cette équation donc H appartient à (P) et A n

Plus en détail

CAP RÉPARATION DES CARROSSERIES

CAP RÉPARATION DES CARROSSERIES CAP RÉPARATION DES CARROSSERIES EP1 Analyse d une situation professionnelle CORRIGÉ MISE EN SITUATION Vous travaillez dans une concession automobile. Votre chef d équipe vous confie la réparation d une

Plus en détail

GUIDE D UTILISATION «MECA PRO» Etude de l équilibre d un solide soumis à trois forces

GUIDE D UTILISATION «MECA PRO» Etude de l équilibre d un solide soumis à trois forces GUIDE D UTILISATION «MECA PRO» Etude de l équilibre d un solide soumis à trois forces Etude de l équilibre d un solide soumis à trois forces non parallèles Si un solide soumis à l'action de 3 forces A

Plus en détail

PROGRAMME DE TRAVAIL INTERNE

PROGRAMME DE TRAVAIL INTERNE Version 2.0 1/8 Semestre 1 Physique 120 périodes selon OrFo AAF4.1 Mécanique 20 AAF4.1.1 Cinématique Calculer des mouvements uniformes, rectilignes et circulaires Expliquer l'accélération gravitationnelle

Plus en détail

Modules de processus à CN. Des modules de processus haute performance pour les tâches de fabrication, d assemblage et d usinage

Modules de processus à CN. Des modules de processus haute performance pour les tâches de fabrication, d assemblage et d usinage Modules de processus à CN Des modules de processus haute performance pour les tâches de fabrication, d assemblage et d usinage Une parfaite interaction Amenage du produit, taraudage par déformation, assemblage

Plus en détail