EVALUATION DES TESTS DE DIAGNOSTIC. Vray M Institut Pasteur 1

Dimension: px
Commencer à balayer dès la page:

Download "EVALUATION DES TESTS DE DIAGNOSTIC. Vray M Institut Pasteur 1"

Transcription

1 EVALUATION DES TESTS DE DIAGNOSTIC Vray M Institut Pasteur 1

2 Plan de la présentation Introduction Définition Dépistage, D Diagnostique Les ¾ phases de développement d d un d test Phases 1, 2, 3 et 4 Les indices de performances Reproductibilité (Indice Kappa de Cohen, diagramme de Bland et Altman, CCI) Validité (Se, Sp,, VPP, VPN, LR+, LR-) Courbes Roc Les principaux biais Vray M Institut Pasteur 2

3 Les critères res diagnostiques Ce sont des marqueurs dont les résultats permettent d orienter la décision médicale Deux niveaux: Les tests de dépistage Les tests de diagnostic Comprennent Test médical, m signes cliniques, critères res bactériens, images radiologiques, tests biochimiques.. Vray M Institut Pasteur 3

4 Un test peut être très s simple par exemple une culture bactérienne pour évaluer une infection Ou plus compliqué par exemple un score clinique à partir d un d questionnaire ou la séquence de procédures spécifiques selon un protocole Vray M Institut Pasteur 4

5 Dépistage et diagnostic Dépistage Diagnostic exposition Phase pré-clinique Phase clinique Complications Vray M Institut Pasteur 5

6 Diagnostic et DépistageD Le diagnostic se distingue du dépistage par une caractéristique ristique fondamentale : La motivation de l examenl Réalisé en raison de l él état clinique (sujet malade) diagnostic Réalisé indépendamment de l él état clinique (sujet apparemment sain) dépistage Vray M Institut Pasteur 6

7 Spécificit cificité des tests de «dépistage» S appliquent à des sujets sains Sur une large échelle Doivent être non invasifs (sans danger et facile à administrer) et peu chers En général, g ils sont suivis par d autres d tests avant de prendre la décision d de traiter Le traitement avant les symptômes doit avoir une meilleure efficacité comparée à un traitement donné après s le début d des symptômes : dépistage d cancer col utérin, cancer du poumon? Vray M Institut Pasteur 7

8 Dépistage versus Diagnostic Intérêt de tester des populations saines pour traiter précocement Ex: Cancer du sein et mammographie Cholestérol rolémie et HTA pour maladies CV Maladies infectieuses avec traitement disponible (avantage individuel et collectif) Vray M Institut Pasteur 8

9 L évaluation statistique est identique que ce soit pour un Test de «dépistage» ou un Test de «diagnostic» Vray M Institut Pasteur 9

10 Critères res pour un test médical m «intéressant» Il doit y avoir un bénéfice b à diagnostiquer la maladie Avant de mettre en place un test il y a des critères res à vérifier La maladie doit être grave conséquences sur la survie ou La qualité de vie La maladie doit être «importante» prévalence élevée e dans la population ciblée e ou contexte épidémique La maladie peut être traitée (guérison ou ralentissement) Vray M Institut Pasteur 10

11 Si le traitement existe, les malades y ont accès (PED) Définir le bénéficeb apporté par le test au patient Le test ne doit pas être douloureux (bénéfices > inconvénients: nients: coût, déplacement, d inconfort moral, physique etc..) Evaluer comment le test va s intégrer dans la prise en charge de la maladie Le test doit être performant permet de bien classer les sujets en Malades et Non malades Eviter les faux Positifs traités à tort Eviter les faux Négatifs N non traités à tort Vray M Institut Pasteur 11

12 Les 3/4 phases de développement d un d test diagnostique Vray M Institut Pasteur 12

13 La phase I (proof-of of-concept) L objectif de cette phase exploratoire est de vérifier v que les résultats r du test sont différents chez les malades et les non malades (conditions «de laboratoire») Vérification du «mécanisme» d action Test dans conditions différentes (températures, humidité..), conditions de recueil Test chez sujets ou échantillons différents (différents niveaux de sévérité de maladie ou de quantité de bactéries ries.) y compris des sujets non malades mais avec des symptômes proches de ceux des sujets malades Test de la reproductibilité Vray M Institut Pasteur 13

14 Exemple: Bandelettes pour diagnostiquer des shigelles à partir de selles - Vérifier - bandelettes + dans prélèvements contenant des shigelles - Bandelettes - dans prélèvements sans shigelles - Définir les conditions de recueil des selles (délai de recueil et conditions de stérilit rilité..) - Vérifier délai d et conditions de lecture (mode d emploi) d - Vérifier la reproductibilité de la lecture (utiliser 2 bandelettes, lues par deux lecteurs différents) - Faire varier les conditions de stockage des bandelettes (humidité,, température) Vray M Institut Pasteur 14

15 Cette phase permet de savoir si le test semble suffisamment «fiable» pour pouvoir être utilisé dans les conditions souhaitées Une bonne reproductibilité est nécessaire n Vray M Institut Pasteur 15

16 La phase II (Etude cas-témoins) L objectif de cette phase de validation est de montrer que - la probabilité d avoir un résultat r + est supérieure chez les malades - la probabilité d avoir un résultat r est supérieure chez les non malades Validité du test dans conditions contrôlées ( conditions de terrain) - Sélectionner les cas et les témoins, t les évaluateurs (médecins, infirmiers, radiologues..) qui peuvent différer du terrain - Définir dans un PROTOCOLE les conditions d utilisation d du test (en essayant d éd éviter les biais) - Tester différentes conditions de recueil (températures, humidité..) - Estimer le % de faux positifs et de faux négatifs n (calcul du NSN et estimations des valeurs acceptables) - Pour les tests quantitatifs,, définir d le cut-off (Courbes( Roc), identifier les facteurs ayant un impact sur le test (ou ceux qui le rendent ininterpr nterprétable) table) Vray M Institut Pasteur 16

17 Les études de phases I et II sont des études rétrospectives réalisées uniquement dans un but de recherche Le statut du malade est détermind terminé avant par d autres d moyens Vray M Institut Pasteur 17

18 La phase III (Etude prospective) Objectif principal: Déterminer les performances du test dans les conditions oùo il sera utilisé vérifier que chez les patients chez lesquels il est cliniquement pertinent, les résultats r du test permettent de distinguer les malades des non malades Les performances pourront être comparées à celles d autres d tests Réalisée e dans les conditions pratiques d utilisation d du test S adresse à des sujets dont on ne connaît t pas à l avance l él état (Malade ou Non Malade) Vray M Institut Pasteur 18

19 Phase IV? Idéalement, il est intéressant de comparer, par un essai randomisé,, l impact l de l introductionl du test par rapport à une prise en charge sans test, dans la pratique courante, sur des critères res de morbi-mortalit mortalité (qualité de vie) et de coûts Permet de savoir si les sujets «testés» se «portent mieux» que les sujets «non testés» Vray M Institut Pasteur 19

20 Relation entre le Taux de peptide natriurétique tique (PN) et hypertrophie ventriculaire gauche (HVG) Phase I Les patients avec une HVG ont-ils des concentrations de PN supérieures à celles observées es chez des sujets normaux? PN (pg( pg/ml) Patients HVG + Patients HVG - médiane range ( ) 909.0) ( ) Vray M Institut Pasteur 20

21 Relation entre le Taux de peptide natriurétique tique (PN) et hypertrophie ventriculaire gauche (HVG) Phase II Les patients avec des concentrations de PN élevées es ont ils plus souvent une HVG que ceux avec des concentrations faibles? PN (pg( pg/ml) Cas (Avec HVG) Témoins T (Sans HVG) Valeurs élevéeses n=39 n=2 Valeurs normales n=1 n=25 Se= = 98% (87-100) VPP=95% (84-99) Sp= = 92% (77-98) VPN=95% (84-99) LR+= = 13 ( ) 50.0) LR-= = 0.03 ( ) 0.19) Vray M Institut Pasteur 21

22 Relation entre le Taux de peptide natriurétique tique (PN) et hypertrophie ventriculaire gauche (HVG) Phase III Parmi les sujets chez qui une suspicion clinique de HVG existe, les taux de PN sont-ils différents entre ceux qui ont une HVG (Echo) et ceux qui n en n n ont n pas? PN (pg( pg/ml) Valeurs élevées es (>=18) n=35 Valeurs normales (<18) n=5 Sujets HVG + Sujets HVG - n=35 n=57 n=5 n=29 Se = 88% (74-94) VPP=38% (29-48) Sp = 34% (25-44) VPN=85% (70-94) LR+= = 1.3 ( ) 1.6) LR- = 0.4 ( ) 0.9) Vray M Institut Pasteur 22

23 Relation entre le Taux de peptide natriurétique tique (PN) et hypertrophie ventriculaire gauche (HVG) Phase IV Les sujets chez qui une suspicion clinique de HVG existe et chez qui un dosage de PN a été réalisé ont - ils «un meilleur état de santé» que les sujets qui n ont n pas été testés s? Vray M Institut Pasteur 23

24 Indices de performances Reproductibilité Validité (Accuracy) Vray M Institut Pasteur 24

25 Protocole pour évaluer la reproductibilité de la mesure Définir la population à analyser : représenter toute l él étendue des mesures Au moins 2 répétitionsr Résultats indépendants (évaluation( en insu) Vray M Institut Pasteur 25

26 Type de critères res 1) Variable discrète (2 ou K classes) Coefficient Kappa de Cohen 2) Variable quantitative Diagramme de Bland et Altman et CV ou CCI Vray M Institut Pasteur 26

27 Critères res qualitatifs Coefficient Kappa de Cohen Vray M Institut Pasteur 27

28 Le coefficient Kappa L accord observé entre des jugements qualitatifs, résulte r de la somme d une d composante «aléatoire» et d une d composante d accord «véritable» Le coefficient Kappa propose de chiffrer l intensité ou la qualité de l accord l réel r entre des jugements qualitatifs appariés Vray M Institut Pasteur 28

29 Accord entre 2 évaluations (Exemple : N= 81 sujets évalués) + Evaluation 2-32 (15.95) 2 Evaluation (18.05) 6 (22.05) 41 (24.95) Po = (32+41) / 81 = 0.9 Pe = ( ) / 81 = 0.5 Kappa = SE kappa = P o P 1 P e e o n (1 P = P (1 P ) e o ) (1 P e ) = 0.8 = 0.07 Po = 0.9 IC = Kappa ± SE 95% kappa Pe = 0.5 (chance) Po Pe = 0.4 IC 95 % = 0.8 ± = 0.8 ± Pe = 0.5 Vray M Institut Pasteur 29

30 Il exprime une différence relative entre la proportion d accord observée Po et la proportion d accord d aléatoire atoire Pe (la valeur attendue sous HO d indépendance des jugements) divisée e par la quantité disponible au-del delà de l accord l aléatoire atoire K est un pourcentage de l accord l maximum corrigé de ce qu il serait sous le simple effet du hasard Le coefficient Kappa est un nombre réel, r sans dimension, compris entre -11 et +1 Chi-2 2 de Mac Nemar (qui teste s il y a concordance) n est pas approprié dans ce contexte Utilisation du Kappa pour évaluer la reproductibilité mais aussi la validité (quand le test et le Gold standard ont le même nombre de catégories, notamment 2) Vray M Institut Pasteur 30

31 Concordance et Kappa «Valeurs de référencer rence» (Landis-Koch, 1977) Kappa peut être testé (Ho: Kappa= 0) mais ce test a peu d intd intérêt en pratique: le kappa s utilise s davantage comme un indicateur descriptif de concordance Vray M Institut Pasteur 31

32 Concordance et Kappa Cas à K 2 2 catégories Lecture du frottis cervico-utérin chez 761 sujets, méthode Papanicolaou (J. Coste et al, BMJ 2003) Po= = 0.79 Pe= = Kappa= 1 Po P Pe e = = Vray M Institut Pasteur 32

33 Concordance et Kappa: Les deux paradoxes Dépendance lourde de Kappa vis-à-vis de la fréquence (biais de prévalence = PI) ) des réponses r positives (plus une catégorie est rare, plus le kappa est bas) Problème du biais (BI) lorsque les 2 observateurs Diffèrent dans leur jugement Vray M Institut Pasteur 33

34 Exemple (1/2) : Problème de prévalence (PI) Tableau 1 Tableau 2 Clinicien 1 Clinicien Clinicien Clinicien Kappa = 0.7 Kappa = 0.32 A concordance constante (ici 85%), le Kappa est d autant plus grand que le pourcentage de diagnostics positifs (ou négatifs) parmi les concordants est proche de 50% Déséquilibre entre les taux de concordance + et - Kappa diminue Vray M Institut Pasteur 34

35 Exemple (2/2): Biais d interprétationtation entre lecteurs Tableau 1 Tableau 2 Clinicien 1 Clinicien Clinicien Clinicien Kappa = 0.13 Kappa = 0.26 Dans le tableau 1, les deux cliniciens portent le diagnostic avec une fréquence proche (70% pour le clinicien 1 et 60% pour le clinicien 2) Dans le tableau 2, le clinicien 1 porte le diagnostic dans 30% des cas contre 60% pour le clinicien 2. Le Kappa est plus élevé dans le tableau 2 alors que les cliniciens sont le plus en désaccord. Vray M Institut Pasteur 35

36 Conclusions Calculer Kappa, BI, PI Si BI important il faut essayer de comprendre pourquoi les 2 lecteurs ne cotent pas de la même façon Si PI important et BI faible il est nécessaire n de fournir les valeurs de concordances positives et négatives P neg et P pos Ces données sont particulièrement rement importantes quand on veut comparer les résultats r de plusieurs études Vray M Institut Pasteur 36

37 Critères res quantitatifs Diagramme de Bland et Altman Coefficient de corrélation intra- classe (CCI) Vray M Institut Pasteur 37

38 Résultats de la régression linéaire Y b Y b Pente = 1 Surestimation systématique d amplitude b X Pente = 1 Sous estimation systématique d amplitude b X Y X Pente 1 Surestimation jusqu à un seuil Sous estimation à partir d un seuil Vray M Institut Pasteur 38

39 Une pente = 1 et/ou un coefficient de corrélation entre les deux séries de mesures (x et y) permet de juger d une liaison entre les deux méthodes Les deux méthodes mesurant (a priori) la même chose, on doit observer une liaison Mais ne renseigne pas sur la qualité des deux mesures (ne quantifie pas les écarts entre les 2 méthodes) Vray M Institut Pasteur 39

40 Etape 2 : Méthode de Altman & Bland Etude du nuage de points avec en abscisse : la moyenne des 2 mesures (x+y)/2 en ordonnée : la différence des 2 mesures (x-y) Cette méthode fait l hypothèse que les différences sont distribuées normalement : d : moyenne des différence (x-y) s d : écart-type des différences (x-y) Compare les différences observées à la distribution statistique attendue Condition d application : nombre de mesures par méthodes n 30 Vray M Institut Pasteur 40

41 Les différentes étapes Y a-t-il une liaison entre les deux mesures? Coefficient de corrélation Oui Y a-t-il concordance? Y a-t-il indépendance entre la variabilité et le niveau de la mesure? Non Fin d analyse Diagramme de Bland & Altman Oui Coefficient de Corrélation IntraClasse (CCI) Non Coefficient de variation Vray M Institut Pasteur 41

42 Différence (x-y) d s d d 0 Valeurs moyennes (x+y)/2 d s d Comment juger si la nouvelle méthode est acceptable? C est-à-dire peut remplacer l ancienne, ou si les 2 lecteurs donnent les mêmes résultats - La différence entre les méthodes n augmente pas lorsque les valeurs augmentent (ou diminuent) - La différence entre deux mesures est peu éloignée de la moyenne Vray M Institut Pasteur 42

43 Différence (x-y) Différence (x-y) d d 0 0 (x+y)/2 (x+y)/2 Indépendance entre la variabilité et le niveau de la mesure Dépendance entre la variabilité et le niveau de la mesure (effet entonnoir) Vray M Institut Pasteur 43

44 Spécificité de la Reproductibilité d une mesure continue Pour vérifier la reproductibilité d une mesure, on répète la mesure ( 2) sur les mêmes échantillons : - les mesures doivent être indépendantes (TAS) - éviter les facteurs liés à l ordre Vérification de la cohérence en utilisant une régression linéaire : pente = 1 (coefficient de corrélation élevé) doit être observé(e), mais ne renseigne pas sur la reproductibilité Coefficient de corrélation intra-classe (>0.9) ou Coefficient de variation (<0.1) Vray M Institut Pasteur 44

45 Validité d un test par rapport à un Gold Standard Vray M Institut Pasteur 45

46 Définition du Gold Standard Caractéristiques des critères permettant d affirmer l existence d une maladie Un critère indiscutable: tuberculose et BK? Tuberculose et IDR+? Critères histo-pathologiques à partir de Biopsies Vray M Institut Pasteur 46

47 Difficultés s du Gold Standard Pas de gold standard : aucun critère vraiment satisfaisant Ex= test rapide de bandelettes pour diagnostiquer shigelles chez enfants atteints de diarrhée sévère (Coproculture peu sensible, PCR non spécifique) Quand un nouveau test ferait mieux que le standard actuel Ex: bandelettes plus sensibles si lues rapidement Un gold standard ne doit comporter dans sa définition, ni le signe, ni le résultat du test dont on évalue les propriétés diagnostiques Vray M Institut Pasteur 47

48 Le test Les critères de positivité d un test doivent être connus précisément Décrire les conditions dans lesquelles ils sont mesurés et les règles de conclusion Exemples Utilisation d une bandelette pour diagnostiquer des shigelles dans les selles lecture dans les 15 minutes Mesure de la glycémie: à jeun, post prandiale Examen direct BK (conditions de lecture : nombre de champs microscopiques?) Vray M Institut Pasteur 48

49 Evaluation d un d nouveau test diagnostic et critères res de performances On peut distinguer - Les tests binaires (oui/non ou positif/négatif ou présent/absent) Ex: Présence de sang dans les urines, sérologie s VIH positive ou négative, BAAR + ou - Les tests quantitatifs: variable continue avec un seuil Ex: bilirubinémie, cholestérol rolémie, taux de PSA,, FibroScan - Les réponses r ordinales Ex: degré de fibrose sur une lame de biopsie, images radiologiques, échelle de BIRADS sur la mammographie analyse peut être abordée e comme du quantitatif En fonction du critère, re, la méthodologie m d éd évaluation sera différente Vray M Institut Pasteur 49

50 Expressions des résultats r d une d évaluation Signe binaire : Sensibilité,, spécificit cificité Signe avec valeur continue : Courbes ROC Vray M Institut Pasteur 50

51 Cas des variables binaires Vray M Institut Pasteur 51

52 Expression des résultats Résultat test + Statut malade M+ Vrai Positif VP non malade M- Faux positif FP test - Faux Négatif FN Vrai Négatif VN On distingue 4 types de sujets -Les vrais positifs (VP) -Les faux positifs (FP) -Les varis négatifs (VN) -Les faux négatifs (FN) Vray M Institut Pasteur 52

53 Qualités intrinsèques : sensibilité et spécificité M+ M- T + VP FP T - FN VN Sensibilité : probabilité d obtenir un test positif quand le sujet est malade Valeur comprise entre 0 et 1 Se = P (T+ / M+) = VP / VP+FN => c est l aptitude d un test à identifier correctement les individus malades grâce à une réponse positive Vray M Institut Pasteur 53

54 Qualités intrinsèques : sensibilité et spécificité M+ M- T + VP FP T - FN VN Spécificité : probabilité d obtenir un test négatif quand le sujet est non malade Valeur comprise entre 0 et 1 Sp = P (T- / M- ) = VN / VN+FP => c est l aptitude d un test à identifier correctement les individus non malades grâce à une réponse négative Vray M Institut Pasteur 54

55 ex : on souhaite déterminer la sensibilité et la spécificité d un nouveau test de dépistage d une maladie sujets ont été soumis au test de référence (Gold Standard) supposé parfait : 900 ont fourni une réponse négative et 100 une réponse positive. Parmi les 100 sujets à réponse positive, 90 répondent positivement au nouveau test, et parmi le 900 à réponse négative, 30 ont donné une réponse positive au nouveau test. référence référence + - T Se = 90/100 = 0,90 Sp = 870/900 = 0,97 T Vray M Institut Pasteur 55

56 Se calculée sur une population composée exclusivement de sujets malades => Se ne varie donc pas en fonction de la prévalence de la maladie Sp calculée sur une population composée exclusivement de sujets non malades => Sp ne varie donc pas en fonction de la prévalence de la maladie Pour un test donné : Se et Sp ne dépendent pas de la prévalence de la maladie => qualités «intrinsèques» = dépendant uniquement de facteurs internes (caractéristiques du test ) Vray M Institut Pasteur 56

57 Relativité de la sensibilité et de la spécificité M+ M VP FP Seuil 1 Seuil 2 Seuil 3 FN VN Se = 0,55 Sp = 0,95 Se = 0,80 Sp = 0,75 Se = 1 Sp = 0,50 FN Se FP Sp Vray M Institut Pasteur 57

58 Ex: dépistage d cancer du sein HIP Breast Cancer Screening Project femmes âgées de 40 à 64 ans Ex. physique + mammo. + - Cancer du sein (biopsie ou aspiration) Sensibilité: : 132/177 = 75% Spécificit cificité: : 63650/64633 = 99% (Shapiro S et al., Am J Epidemiol, 1974) Vray M Institut Pasteur 58

59 Equilibre entre sensibilité et spécificit cificité On peut parfois être amené à faire des tests en séquence: s Test rapide pour le VIH qui a une très s grande sensibilité,, mais dont la spécificit cificité n est pas parfaite. Un test très s spécifique, mais plus complexe (type Western blot), pour ceux qui ont un résultat positif sur le premier test. Vray M Institut Pasteur 59

60 Equilibre entre sensibilité et spécificit cificité Selon les cas, on pourra être amené à privilégier une sensibilité ou une spécificit cificité élevée La sensibilité sera privilégi giée dans les cas suivants: Maladie grave (on ne veut pas laisser passer un cas) Maladie transmissible Quand les investigations qui découleront d du dépistage d sont sans danger et peu coûteuses (confirmation d une d hypertension artérielle) rielle) La spécificit cificité sera privilégi giée dans les cas suivants: Quand les investigations qui découleront d du dépistage d sont dangereuses ou coûteuses (angiographie par cathétérisation risation, MDR et traitement) Vray M Institut Pasteur 60

61 Qualités extrinsèques : Valeur Prédictive Positive (VPP) Valeur Prédictive Négative (VPN) M+ M- T + VP FP T - FN VN VPP = P (M+/T+) = VP / VP+FP probabilité que l individu soit malade quand le test est positif Valeur comprise entre 0 et 1 Vray M Institut Pasteur 61

62 Qualités extrinsèques : Valeur Prédictive Positive (VPP) Valeur Prédictive Négative (VPN) M+ M- T + VP FP T - FN VN VPN = P (M-/T-) = VN / VN+FN probabilité que l individu soit non malade quand le test est négatif Valeur comprise entre 0 et 1 Vray M Institut Pasteur 62

63 Suite de l exemple précèdent référence + référence - T T VPP = 90/120 = 0,75 VPN = 870/880 = 0,99 Vray M Institut Pasteur 63

64 VPP et VPN Fonction de Se et Sp du test et de la prévalence de la maladie dans la zone où est employé le test VPP = VP / (VP + FP) et VPN = VN / (VN + FN) M+ M- T + VP FP T - FN VN lorsque Se et Sp sont fixées : si p => VP deviennent majoritaires/fp => VPP => FN deviennent majoritaires/vn => VPN si p => VP deviennent minoritaires/fp => VPP => FN deviennent minoritaires/vn => VPN Vray M Institut Pasteur 64

65 Conséquences sur l interprétation des résultats En milieu où prévalence élevée: grande confiance / résultat positif (VPP) confiance plus limitée / résultat négatif (VPN) En milieu où prévalence faible: grande confiance / résultat négatif (VPN) confiance plus limitée / résultat positif (VPP) Vray M Institut Pasteur 65

66 Un même test effectué sur 1000 sujets dans 2 zones différentes (A et B) Zone A M+ M- Zone B M+ M- T T T T Quelles sont les qualités intrinsèques de ce test? Zone A : Se = 190/200 = 95% Sp = 720/800 = 90% Zone B : Se = 19/20 = 95% Sp = 882/980 = 90% Quelle est la prévalence de la maladie dans chaque zone? Que conclure si le test est +? Si le test est -? Zone A => p = 20% Zone B => p = 2% Zone A => VPP = 190/270 = 70% Zone B => VPP = 19/117 = 16% Zone A => VPN = 720/730 = 98.6% Zone B => VPN = 882/883 = 99.8% Vray M Institut Pasteur 66

67 En résumé : La VPP dépend, notamment de la spécificité du test, mais surtout de la prévalence de la maladie (plus la maladie est rare, plus la VPP est faible). La VPN dépend, notamment de la sensibilité du test, mais surtout de la prévalence de la maladie (plus la maladie et rare, plus la VPN est élevée). Vray M Institut Pasteur 67

68 Intervalles de confiance (IC) Par convention, intervalle de confiance à 95% IC 95% (Se) = IC 95% (Sp) = Se Sp ± 1.96 ± 1.96 ( Se (1 Se) m ( Sp (1 Sp) n m= nombre de malades n= nombre de non-malades Vray M Institut Pasteur 68

69 Calcul du nombre de sujets nécessairen Cette formule peut être utilisée e pour calculer le nombre de sujets nécessaire n dans une étude en définissant: d - La Se et la Sp attendues - La précision désird sirée e de ces deux estimateurs n = p q Avec p = Se ou Sp q = 1-p Et = la précision Vray M Institut Pasteur 69

70 Malades/Total Se (%) IC 95 % 10/20 90 % / % / % Plus le n est grand, plus l IC est étroit Vray M Institut Pasteur 70

71 Indices de synthèse se Visent à établir la valeur d'un test Exactitude (e) Test de Youden (j) Rapport de vraisemblance (LR+ et LR-) Vray M Institut Pasteur 71

72 Exactitude Malades Sains Test + Test - VP FN FP VN Exactitude = Sujets Bien classés = (VP+VN) / (VP+VN+FP+FN) % résultats exacts, VP et VN par rapport à la cohorte Varie de 0 à 1 1 correspondant à une absence de FP et de FN Un tirage au sort correspond à 0,5 Vray M Institut Pasteur 72

73 Indice de Youden (J) Addition des 2 qualités du test : Se et Sp J (en %)= Se +Sp-100 Varie de 1 à 1 0 pas d orientation diagnostique Cet indice est peu utilisé Vray M Institut Pasteur 73

74 Rapport de vraisemblance positif (Likelihood ratio, LR, en anglais) Définition: rapport de la probabilité d un test positif chez les malades comparés s aux non malades Probabilité d un test positif chez les malades: sensibilité (Se) Probabilité d un test positif chez les non malades: 1-1 spécificit cificité (Sp) Rapport de vraisemblance positif: Se / (1-Sp Sp) Vray M Institut Pasteur 74

75 Rapport de vraisemblance positif Intérêt: (suite) Intègre à la fois les notions de sensibilité et spécificit cificité Indépendant de la prévalence de la maladie. Permet de calculer la probabilité d être malade chez les sujets ayant un test positif en fonction de la prévalence de la maladie dans la population d éd étude Un test «intéressant» a un rapport de vraisemblance positif > 9 (correspond par exemple à une sensibilité et spécificit cificité de 90%). Vray M Institut Pasteur 75

76 Rapport de vraisemblance (exemple) Maladie + - Se = 180 / 200 = 90% Test Sp = 1719/1800 = 95,5% LR+ = Se/(1-Sp) = 0,9 / (0,045) = 20 Vray M Institut Pasteur 76

77 Nomogramme de Fagan Pre-test odds X LR = post-test odds Prévalence de la maladie dans la population p = 0,10 LR = 20 Pre-test odds = p / (1-p) = 0,1/(1-0,1) = 0,11 Post-test odds = 0,11X 20 = 2,2 Probabilité d être malade (VPP) = post-test odds / (1 + post-test odds) = 2,2/(1+2,2) = 0,69 Vray M Institut Pasteur 77 (Deeks & Altman, BMJ, 2004)

78 Rapport de vraisemblance négatif Définition: rapport de la probabilité d un test négatif chez les malades comparés aux non malades Probabilité d un test négatif chez les malades: 1- sensibilité (Se) Probabilité d un test négatif chez les non malades: Spécificité (Sp) Rapport de vraisemblance négatif: (1-Se) / Sp Un test intéressant à un rapport de vraisemblance négatif < 0,1. Vray M Institut Pasteur 78

79 Cas d un d signe avec des valeurs quantitatives Vray M Institut Pasteur 79

80 Les courbes ROC Lorsqu un un test a des valeurs continues, il existe de nombreuses valeurs Se/Sp Sp important d avoir d tous les spectres des valeurs du test et de ne pas se limiter à certaines valeurs, ou intervalles même si le but final est de définir d un seuil (cut( cut-off) qui présente le meilleur rapport Se/Sp Sp (celui qui nous intéresse et qui dépend d du contexte) La courbe ROC permet d avoir d le tracé des Se et Sp correspondant à toutes les valeurs du test Vray M Institut Pasteur 80

81 Construction de la courbe ROC On porte - en abscisse, la variable «1 spécificit cificité» = faux positifs parmi les non-malades - en ordonnée la sensibilité = les vrais positifs parmi les malades Un seuil est idéal s il s permet de séparer s totalement les positifs des négatifs, n sans faux positifs ni faux négatifsn Vray M Institut Pasteur 81

82 Sensibilité (Vrais positifs) Spécificité (Faux positifs) Vray M Institut Pasteur 82

83 1 0.8 Seuil =0.6 M+ M- p 1 > S VP FP p 1 S FN VN Seuil 0.2 Sensibilité Seuil =0.4 Seuil =0.2 M+ M- p 1 > S VP FP p 1 S FN VN M+ M- Seuil p 1 > S VP FP p 1 S FN VN Seuil Spécificit cificité (taux de faux positifs) Vray M Institut Pasteur 83

84 Construction de la courbe ROC Sensibilité 1 0 A Diagonale passant par 0 test non informatif Un test est d autant meilleur que sa courbe se situera près du point A et loin de la diagonale Minimiser la distance par rapport au point idéal A Se = Sp = 1 1- Spécificit cificité (taux de faux positifs) Vray M Institut Pasteur 84

85 On calcule AUC= Aire sous courbe (avec IC 95% ) Plus AUC proche de 1 plus le test est performant Vray M Institut Pasteur 85

86 Avantages des COURBES ROC - Simple et facilement compréhensible graphiquement - Tient compte de l ensemble l des valeurs du test (ne nécessite pas le choix arbitraire d un d seuil) - Totalement indépendante de la prévalence de la maladie dans l él échantillon - Permet une comparaison directe visuelle de plusieurs tests sur une même échelle (+ tests pour comparer AUC) - on peut calculer l IC 95% de l AUCl AUC.. La borne inférieure ne doit pas comprendre 0.5 pour que le test ait un intérêt Vray M Institut Pasteur 86

87 Les principaux biais Vray M Institut Pasteur 87

88 Definitions Erreur systematique (Biais) : erreur de raisonnement ou de procédure amenant à une représentation faussée de la réalité. Un biais revêt un caractère systématique et altère l estimation dans un sens donné. Erreur aleatoire : non imputable à une cause décelable et due au hasard. Elle aboutit à une perte de précision de l estimation mais non à sa déviation systématique dans un sens donné. Vray M Institut Pasteur 88

89 6) Sources de BIAIS. A) Intégrit grité des tests (Integrity( test) B) Le biais de vérification v (Verification( bias) C) Erreurs sur la référence r rence (Errors( in the reference) D) Le biais de recrutement (Spectrum bias) E) Le biais d interprd interprétation tation (Test interpretation bias) F) Les tests ininterprétables tables (Unsatisfactory( tests) G) Le biais d extrapolation d (Extrapolation bias) H) Le biais d incorporation d (Incorporation bias) + biais spécifiques des études de dépistaged I) Le biais du temps d avance d au diagnostic (Lead( Time Bias) J) Le biais de lenteur d éd évolution (Length( Time Bias) K) Le biais de sur-diagnostic (Diagnostic Bias) L) Le bais de sélection s (Selection( Bias) Vray M Institut Pasteur 89

Principe d évaluation des tests diagnostiques

Principe d évaluation des tests diagnostiques Principe d évaluation des tests diagnostiques Dr Sandra DAVID TCHOUDA Cellule d évaluation médico-économique des innovation, CHUG sdavidtchouda@chu-grenoble.fr Plan Objectif et contexte de ces études visant

Plus en détail

Evalua&on tests diagnos&ques. Arnaud Fontanet

Evalua&on tests diagnos&ques. Arnaud Fontanet Evalua&on tests diagnos&ques Arnaud Fontanet Résultats d un test diagnos&que Maladie «Gold standard» Test expérimental + a b a+b - c d c+d a+c b+d Evaluation tests diagnostiques. Arnaud Fontanet 2 Résultats

Plus en détail

TUTORAT UE 4 2014-2015 Biostatistiques Séance n 6 Semaine du 03/11/2014

TUTORAT UE 4 2014-2015 Biostatistiques Séance n 6 Semaine du 03/11/2014 TUTORAT UE 4 2014-2015 Biostatistiques Séance n 6 Semaine du 03/11/2014 Epidémiologie Mme Fabbro-Peray Séance préparée par les tuteurs du TSN QCM n 1 : Choisir la ou les proposition(s) exacte(s). A. Parmi

Plus en détail

Item 169 : Évaluation thérapeutique et niveau de preuve

Item 169 : Évaluation thérapeutique et niveau de preuve Item 169 : Évaluation thérapeutique et niveau de preuve COFER, Collège Français des Enseignants en Rhumatologie Date de création du document 2010-2011 Table des matières ENC :...3 SPECIFIQUE :...3 I Différentes

Plus en détail

Chapitre 1 Evaluation des caractéristiques d un test diagnostique. José LABARERE

Chapitre 1 Evaluation des caractéristiques d un test diagnostique. José LABARERE UE4 : Biostatistiques Chapitre 1 Evaluation des caractéristiques d un test diagnostique José LABARERE Année universitaire 2011/2012 Université Joseph Fourier de Grenoble - Tous droits réservés. lan I.

Plus en détail

Principe d un test statistique

Principe d un test statistique Biostatistiques Principe d un test statistique Professeur Jean-Luc BOSSON PCEM2 - Année universitaire 2012/2013 Faculté de Médecine de Grenoble (UJF) - Tous droits réservés. Objectifs pédagogiques Comprendre

Plus en détail

La survie nette actuelle à long terme Qualités de sept méthodes d estimation

La survie nette actuelle à long terme Qualités de sept méthodes d estimation La survie nette actuelle à long terme Qualités de sept méthodes d estimation PAR Alireza MOGHADDAM TUTEUR : Guy HÉDELIN Laboratoire d Épidémiologie et de Santé publique, EA 80 Faculté de Médecine de Strasbourg

Plus en détail

MASTER 2 : Pharmacologie Clinique et Développement Thérapeutique. Evaluation de nouvelles drogues Critères de jugement clinique

MASTER 2 : Pharmacologie Clinique et Développement Thérapeutique. Evaluation de nouvelles drogues Critères de jugement clinique MASTER 2 : Pharmacologie Clinique et Développement Thérapeutique Evaluation de nouvelles drogues Critères de jugement clinique Jean-Marie BOHER, PhD, Institut Paoli-Calmettes, Marseille Novembre 2011 Typologie

Plus en détail

Le programme national de dépistage systématique du cancer du sein a été établi par

Le programme national de dépistage systématique du cancer du sein a été établi par Dépistage organisé du cancer du sein : le cahier des charges et son bilan après deux ans du Plan cancer Breast cancer screening: the protocol and its evaluation two years after the national plan for cancer

Plus en détail

Évaluation du risque cardiovasculaire dans le contexte de l hypertension artérielle et de son traitement

Évaluation du risque cardiovasculaire dans le contexte de l hypertension artérielle et de son traitement Évaluation du risque cardiovasculaire dans le contexte de l hypertension artérielle et de son traitement DIU HTA François Gueyffier Service de pharmacologie clinique UMR CNRS 5558 CIC 201, LYON francois.gueyffier@chu-lyon.fr

Plus en détail

Document d orientation sur les allégations issues d essais de non-infériorité

Document d orientation sur les allégations issues d essais de non-infériorité Document d orientation sur les allégations issues d essais de non-infériorité Février 2013 1 Liste de contrôle des essais de non-infériorité N o Liste de contrôle (les clients peuvent se servir de cette

Plus en détail

METHODOLOGIE GENERALE DE LA RECHERCHE EPIDEMIOLOGIQUE : LES ENQUETES EPIDEMIOLOGIQUES

METHODOLOGIE GENERALE DE LA RECHERCHE EPIDEMIOLOGIQUE : LES ENQUETES EPIDEMIOLOGIQUES Enseignement du Deuxième Cycle des Etudes Médicales Faculté de Médecine de Toulouse Purpan et Toulouse Rangueil Module I «Apprentissage de l exercice médical» Coordonnateurs Pr Alain Grand Pr Daniel Rougé

Plus en détail

Points méthodologiques Adapter les méthodes statistiques aux Big Data

Points méthodologiques Adapter les méthodes statistiques aux Big Data Points méthodologiques Adapter les méthodes statistiques aux Big Data I. Répétition de tests et inflation du risque alpha II. Significativité ou taille de l effet? 2012-12-03 Biomédecine quantitative 36

Plus en détail

Intérêt diagnostic du dosage de la CRP et de la leucocyte-estérase dans le liquide articulaire d une prothèse de genou infectée

Intérêt diagnostic du dosage de la CRP et de la leucocyte-estérase dans le liquide articulaire d une prothèse de genou infectée Intérêt diagnostic du dosage de la CRP et de la leucocyte-estérase dans le liquide articulaire d une prothèse de genou infectée C. Rondé-Oustau, JY. Jenny,J.Sibilia, J. Gaudias, C. Boéri, M. Antoni Hôpitaux

Plus en détail

La régression logistique. Par Sonia NEJI et Anne-Hélène JIGOREL

La régression logistique. Par Sonia NEJI et Anne-Hélène JIGOREL La régression logistique Par Sonia NEJI et Anne-Hélène JIGOREL Introduction La régression logistique s applique au cas où: Y est qualitative à 2 modalités Xk qualitatives ou quantitatives Le plus souvent

Plus en détail

Études épidémiologiques analytiques et biais

Études épidémiologiques analytiques et biais Master 1 «Conception, évaluation et gestion des essais thérapeutiques» Études épidémiologiques analytiques et biais Roxane Schaub Médecin de santé publique Octobre 2013 1 Objectifs pédagogiques Connaitre

Plus en détail

DASES Réseau tuberculose 10 janvier 2006

DASES Réseau tuberculose 10 janvier 2006 DASES Réseau tuberculose 10 janvier 2006 Place des Nouveaux Tests de Dosage de L INTERFERON GAMMA dans le diagnostic de la Tuberculose Fadi ANTOUN, Cellule Tuberculose DASES Le Quotidien du Médecin 2005

Plus en détail

Séance 8 : Régression Logistique

Séance 8 : Régression Logistique Séance 8 : Régression Logistique Sommaire Proc LOGISTIC : Régression logistique... 2 Exemple commenté : Achat en (t+1) à partir du sexe et du chiffre d affaires de la période précédente. 4 La régression

Plus en détail

Docteur José LABARERE

Docteur José LABARERE UE7 - Santé Société Humanité Risques sanitaires Chapitre 3 : Epidémiologie étiologique Docteur José LABARERE Année universitaire 2010/2011 Université Joseph Fourier de Grenoble - Tous droits réservés.

Plus en détail

ÉTAT DES LIEUX. Niveau de preuve et gradation des recommandations de bonne pratique

ÉTAT DES LIEUX. Niveau de preuve et gradation des recommandations de bonne pratique ÉTAT DES LIEUX Niveau de preuve et gradation des recommandations de bonne pratique Avril 2013 Les recommandations et leur synthèse sont téléchargeables sur www.has-sante.fr Haute Autorité de Santé Service

Plus en détail

Tableau 1 : Structure du tableau des données individuelles. INDIV B i1 1 i2 2 i3 2 i4 1 i5 2 i6 2 i7 1 i8 1

Tableau 1 : Structure du tableau des données individuelles. INDIV B i1 1 i2 2 i3 2 i4 1 i5 2 i6 2 i7 1 i8 1 UN GROUPE D INDIVIDUS Un groupe d individus décrit par une variable qualitative binaire DÉCRIT PAR UNE VARIABLE QUALITATIVE BINAIRE ANALYSER UN SOUS-GROUPE COMPARER UN SOUS-GROUPE À UNE RÉFÉRENCE Mots-clés

Plus en détail

ELABORATION DU PLAN DE MONITORING ADAPTE POUR UNE RECHERCHE BIOMEDICALE A PROMOTION INSTITUTIONNELLE

ELABORATION DU PLAN DE MONITORING ADAPTE POUR UNE RECHERCHE BIOMEDICALE A PROMOTION INSTITUTIONNELLE Référence HCL : Titre de l étude : ELABORATION DU PLAN DE MONITORING ADAPTE POUR UNE RECHERCHE BIOMEDICALE A PROMOTION INSTITUTIONNELLE Investigateur Coordonnateur : Méthode. Définition du niveau de risque

Plus en détail

Relation entre deux variables : estimation de la corrélation linéaire

Relation entre deux variables : estimation de la corrélation linéaire CHAPITRE 3 Relation entre deux variables : estimation de la corrélation linéaire Parmi les analyses statistiques descriptives, l une d entre elles est particulièrement utilisée pour mettre en évidence

Plus en détail

Objectifs pédagogiques Lecture critique d article

Objectifs pédagogiques Lecture critique d article Objectifs pédagogiques Lecture critique d article groupe V Evaluer les applications cliniques Evaluer les applications cliniques 21 ) Discuter la ou les décisions médicales auxquelles peuvent conduire

Plus en détail

23. Interprétation clinique des mesures de l effet traitement

23. Interprétation clinique des mesures de l effet traitement 23. Interprétation clinique des mesures de l effet traitement 23.1. Critères de jugement binaires Plusieurs mesures (indices) sont utilisables pour quantifier l effet traitement lors de l utilisation d

Plus en détail

Evaluation d un appareil quantitatif ultrasonore utilisant des matrices (Beam scanner):précision standardisée

Evaluation d un appareil quantitatif ultrasonore utilisant des matrices (Beam scanner):précision standardisée Evaluation d un appareil quantitatif ultrasonore utilisant des matrices (Beam scanner):précision standardisée M-A Gomez, M Nasser-Eddin, M Defontaine, B Giraudeau, F Jacquot, F Patat INTRODUCTION L ostéoporose

Plus en détail

Chapitre 3 : Principe des tests statistiques d hypothèse. José LABARERE

Chapitre 3 : Principe des tests statistiques d hypothèse. José LABARERE UE4 : Biostatistiques Chapitre 3 : Principe des tests statistiques d hypothèse José LABARERE Année universitaire 2010/2011 Université Joseph Fourier de Grenoble - Tous droits réservés. Plan I. Introduction

Plus en détail

Feuille 6 : Tests. Peut-on dire que l usine a respecté ses engagements? Faire un test d hypothèses pour y répondre.

Feuille 6 : Tests. Peut-on dire que l usine a respecté ses engagements? Faire un test d hypothèses pour y répondre. Université de Nantes Année 2013-2014 L3 Maths-Eco Feuille 6 : Tests Exercice 1 On cherche à connaître la température d ébullition µ, en degrés Celsius, d un certain liquide. On effectue 16 expériences

Plus en détail

GRILLE SCORE LOGISTIQUE ET IMPACT

GRILLE SCORE LOGISTIQUE ET IMPACT Direction de la Politique Médicale (DPM) Formulaire Département de la Recherche clinique et du Développement (DRCD) GRILLE SCORE LOGISTIQUE ET IMPACT Méthode. Définition du niveau de risque de la recherche

Plus en détail

Analyse de survie : comment gérer les données censurées?

Analyse de survie : comment gérer les données censurées? Mémento biostatistique Analyse de survie : comment gérer les données censurées? Méthode de Kaplan-Meier C. Alberti 1, J.-F. Timsit 2, S. Chevret 3 1 Centre d Epidémiologie Clinique, Hôpital Robert Debré,

Plus en détail

Lecture critique d article. Bio statistiques. Dr MARC CUGGIA MCU-PH Laboratoire d informatique médicale EA-3888

Lecture critique d article. Bio statistiques. Dr MARC CUGGIA MCU-PH Laboratoire d informatique médicale EA-3888 Lecture critique d article Rappels Bio statistiques Dr MARC CUGGIA MCU-PH Laboratoire d informatique médicale EA-3888 Plan du cours Rappels fondamentaux Statistiques descriptives Notions de tests statistiques

Plus en détail

LA NOTATION STATISTIQUE DES EMPRUNTEURS OU «SCORING»

LA NOTATION STATISTIQUE DES EMPRUNTEURS OU «SCORING» LA NOTATION STATISTIQUE DES EMPRUNTEURS OU «SCORING» Gilbert Saporta Professeur de Statistique Appliquée Conservatoire National des Arts et Métiers Dans leur quasi totalité, les banques et organismes financiers

Plus en détail

Diagnostic des Hépatites virales B et C. P. Trimoulet Laboratoire de Virologie, CHU de Bordeaux

Diagnostic des Hépatites virales B et C. P. Trimoulet Laboratoire de Virologie, CHU de Bordeaux Diagnostic des Hépatites virales B et C P. Trimoulet Laboratoire de Virologie, CHU de Bordeaux Diagnostic VHC Dépistage: pourquoi? Maladie fréquente (Ac anti VHC chez 0,84% de la population soit 367 055

Plus en détail

Tests de comparaison de moyennes. Dr Sahar BAYAT MASTER 1 année 2009-2010 UE «Introduction à la biostatistique»

Tests de comparaison de moyennes. Dr Sahar BAYAT MASTER 1 année 2009-2010 UE «Introduction à la biostatistique» Tests de comparaison de moyennes Dr Sahar BAYAT MASTER 1 année 2009-2010 UE «Introduction à la biostatistique» Test de Z ou de l écart réduit Le test de Z : comparer des paramètres en testant leurs différences

Plus en détail

PROGRAMME (Susceptible de modifications)

PROGRAMME (Susceptible de modifications) Page 1 sur 8 PROGRAMME (Susceptible de modifications) Partie 1 : Méthodes des revues systématiques Mercredi 29 mai 2013 Introduction, présentation du cours et des participants Rappel des principes et des

Plus en détail

Table des matières. PREMIÈRE PARTIE Étapes initiales des études marketing 7

Table des matières. PREMIÈRE PARTIE Étapes initiales des études marketing 7 Table des matières Préface Public 1 Structure de l ouvrage 1 Caractéristiques de l ouvrage 3 Contenu 3 Pédagogie 4 Remarques sur l adaptation française 4 Ressources numériques 5 Biographie 6 PREMIÈRE PARTIE

Plus en détail

LIGNES DIRECTRICES POUR LA SURVEILLANCE DE LA PERFORMANCE DES PROGRAMMES DE DÉPISTAGE DU CANCER DU SEIN TROISIÈME ÉDITION

LIGNES DIRECTRICES POUR LA SURVEILLANCE DE LA PERFORMANCE DES PROGRAMMES DE DÉPISTAGE DU CANCER DU SEIN TROISIÈME ÉDITION Rapport du Groupe de travail sur les indicateurs d évaluation LIGNES DIRECTRICES POUR LA SURVEILLANCE DE LA PERFORMANCE DES PROGRAMMES DE DÉPISTAGE DU CANCER DU SEIN TROISIÈME ÉDITION Agence de la santé

Plus en détail

Que faire devant un résultat positif, négatif ou indéterminé? Elisabeth Bouvet Atelier IGRA VIH JNI Tours 13 Juin 2012

Que faire devant un résultat positif, négatif ou indéterminé? Elisabeth Bouvet Atelier IGRA VIH JNI Tours 13 Juin 2012 Que faire devant un résultat positif, négatif ou indéterminé? Elisabeth Bouvet Atelier IGRA VIH JNI Tours 13 Juin 2012 Conclusions provisoires rapport du HCSP juillet 2011 Valeur prédictive positive des

Plus en détail

Le Data Mining au service du Scoring ou notation statistique des emprunteurs!

Le Data Mining au service du Scoring ou notation statistique des emprunteurs! France Le Data Mining au service du Scoring ou notation statistique des emprunteurs! Comme le rappelle la CNIL dans sa délibération n 88-083 du 5 Juillet 1988 portant adoption d une recommandation relative

Plus en détail

Docteur José LABARERE

Docteur José LABARERE UE7 - Santé Société Humanité Risques sanitaires Chapitre 1 : Epidémiologie descriptive Docteur José LABARERE Année universitaire 2011/2012 Université Joseph Fourier de Grenoble - Tous droits réservés.

Plus en détail

GUIDE DE LECTURE CRITIQUE D'UN ARTICLE MEDICAL ORIGINAL (LCA)

GUIDE DE LECTURE CRITIQUE D'UN ARTICLE MEDICAL ORIGINAL (LCA) GUIDE DE LECTURE CRITIQUE D'UN ARTICLE MEDICAL ORIGINAL (LCA) Coordinateurs : B. GOICHOT et N. MEYER Faculté de Médecine de Strasbourg Septembre 2011 PLAN L épreuve de lecture critique d article original

Plus en détail

ÉVALUATION DE LA PERSONNE ATTEINTE D HYPERTENSION ARTÉRIELLE

ÉVALUATION DE LA PERSONNE ATTEINTE D HYPERTENSION ARTÉRIELLE ÉVALUATION DE LA PERSONNE ATTEINTE D HYPERTENSION ARTÉRIELLE PRISE EN CHARGE SYSTÉMATISÉE DES PERSONNES ATTEINTES D HYPERTENSION ARTÉRIELLE SOCIÉTÉ QUÉBÉCOISE D HYPERTENSION ARTÉRIELLE 23 ÉVALUATION DE

Plus en détail

GUIDE DU DATA MINER. Scoring - Modélisation. Data Management, Data Mining, Text Mining

GUIDE DU DATA MINER. Scoring - Modélisation. Data Management, Data Mining, Text Mining GUIDE DU DATA MINER Scoring - Modélisation Data Management, Data Mining, Text Mining 1 Guide du Data Miner Scoring - Modélisation Le logiciel décrit dans le manuel est diffusé dans le cadre d un accord

Plus en détail

Chapitre 3. Les distributions à deux variables

Chapitre 3. Les distributions à deux variables Chapitre 3. Les distributions à deux variables Jean-François Coeurjolly http://www-ljk.imag.fr/membres/jean-francois.coeurjolly/ Laboratoire Jean Kuntzmann (LJK), Grenoble University 1 Distributions conditionnelles

Plus en détail

Méthodes d évaluation médico-économique

Méthodes d évaluation médico-économique Chapitre 3 : Méthodes d évaluation médico-économique Professeur Georges WEIL UE7 - Santé Société Humanité Année universitaire 2011/2012 Université Joseph Fourier de Grenoble - Tous droits réservés. Sommaire

Plus en détail

TEST DE DÉTECTION DE LA PRODUCTION D INTERFÉRON γ POUR LE DIAGNOSTIC DES INFECTIONS TUBERCULEUSES

TEST DE DÉTECTION DE LA PRODUCTION D INTERFÉRON γ POUR LE DIAGNOSTIC DES INFECTIONS TUBERCULEUSES TEST DE DÉTECTION DE LA PRODUCTION D INTERFÉRON γ POUR LE DIAGNOSTIC DES INFECTIONS TUBERCULEUSES Classement NABM : non inscrit code : non codé DÉCEMBRE 2006 Service évaluation des actes professionnels

Plus en détail

Diagnostic prénatal non invasif : Du GénotypageRhésus Fœtal au Diagnostic de la Trisomie 21

Diagnostic prénatal non invasif : Du GénotypageRhésus Fœtal au Diagnostic de la Trisomie 21 Diagnostic prénatal non invasif : Du GénotypageRhésus Fœtal au Diagnostic de la Trisomie 21 Dr. A. Levy-Mozziconacci UniteFonctionnelle de Biologie Materno-Fœtale et Centre de Médecine Fœtale, APHM, AMU,

Plus en détail

LECTURE CRITIQUE 1 ER PAS

LECTURE CRITIQUE 1 ER PAS 1 LECTURE CRITIQUE D UN ARTICLE SCIENTIFIQUE 1 ER PAS FORUM PCI 20,05,14 MJ Thévenin / Inf. EPIAS/ SMPH BUTS ET ORGANISATION DE LA PRÉSENTATION Utiliser une grille de lecture critique d un article Comprendre

Plus en détail

Programme «maladie» - Partie II «Objectifs / Résultats» Objectif n 2 : développer la prévention

Programme «maladie» - Partie II «Objectifs / Résultats» Objectif n 2 : développer la prévention Programme «maladie» - Partie II «Objectifs / Résultats» Objectif n 2 : développer la prévention Indicateur n 2-3 : Indicateurs sur le dépistage du cancer 1 er sous-indicateur : taux de participation au

Plus en détail

Chapitre 6 Test de comparaison de pourcentages χ². José LABARERE

Chapitre 6 Test de comparaison de pourcentages χ². José LABARERE UE4 : Biostatistiques Chapitre 6 Test de comparaison de pourcentages χ² José LABARERE Année universitaire 2010/2011 Université Joseph Fourier de Grenoble - Tous droits réservés. Plan I. Nature des variables

Plus en détail

ÉVALUATION CRITIQUE : FICHE DE TRAVAIL 1

ÉVALUATION CRITIQUE : FICHE DE TRAVAIL 1 ÉVALUATION CRITIQUE : FICHE DE TRAVAIL 1 ARTICLE SUR LA THÉRAPEUTIQUE pour les résidents Cette fiche de travail devrait accompagner le Formulaire de soumission remis à votre superviseur. Elle s inspire

Plus en détail

LIGNES DIRECTRICES CLINIQUES TOUT AU LONG DU CONTINUUM DE SOINS : Objectif de ce chapitre. 6.1 Introduction 86

LIGNES DIRECTRICES CLINIQUES TOUT AU LONG DU CONTINUUM DE SOINS : Objectif de ce chapitre. 6.1 Introduction 86 LIGNES DIRECTRICES CLINIQUES TOUT AU LONG DU CONTINUUM DE SOINS : ÉTABLISSEMENT DE LIENS ENTRE LES PERSONNES CHEZ QUI UN DIAGNOSTIC D INFECTION À VIH A ÉTÉ POSÉ ET LES SERVICES DE SOINS ET DE TRAITEMENT

Plus en détail

CONTROVERSE : IDR OU QUANTIFERON LORS D'UN CONTAGE EN EHPAD?

CONTROVERSE : IDR OU QUANTIFERON LORS D'UN CONTAGE EN EHPAD? CONTROVERSE : IDR OU QUANTIFERON LORS D'UN CONTAGE EN EHPAD? Hélène MANGEARD François MALADRY Tuberculose : infection mycobactérienne Infection mycobactérienne chronique (M. Tuberculosis ++ ou bacille

Plus en détail

Introduction à l approche bootstrap

Introduction à l approche bootstrap Introduction à l approche bootstrap Irène Buvat U494 INSERM buvat@imedjussieufr 25 septembre 2000 Introduction à l approche bootstrap - Irène Buvat - 21/9/00-1 Plan du cours Qu est-ce que le bootstrap?

Plus en détail

Cas clinique Enquête autour d un cas IDR vs IGRA Pr Emmanuel Bergot

Cas clinique Enquête autour d un cas IDR vs IGRA Pr Emmanuel Bergot Cas clinique Enquête autour d un cas IDR vs IGRA Pr Emmanuel Bergot Service de Pneumologie, CHU Côte de Nacre Centre de compétence régionale de l HTAP UMR INSERM 1086 «Cancers et Préventions», Université

Plus en détail

Tests de détection de la production d Interferon gamma pour le diagnostic des infections tuberculeuses

Tests de détection de la production d Interferon gamma pour le diagnostic des infections tuberculeuses Tests de détection de la production d Interferon gamma pour le diagnostic des infections tuberculeuses Recommandations de l HAS Lille le 23 Octobre 2007 Tuberculose infection et tuberculose-maladie Contact

Plus en détail

Essais cliniques de phase 0 : état de la littérature 2006-2009

Essais cliniques de phase 0 : état de la littérature 2006-2009 17 èmes Journées des Statisticiens des Centres de Lutte contre le Cancer 4 ème Conférence Francophone d Epidémiologie Clinique Essais cliniques de phase 0 : état de la littérature 2006-2009 Q Picat, N

Plus en détail

STRATÉGIE DE DIAGNOSTIC PRÉCOCE DU MÉLANOME RECOMMANDATION EN SANTÉ PUBLIQUE

STRATÉGIE DE DIAGNOSTIC PRÉCOCE DU MÉLANOME RECOMMANDATION EN SANTÉ PUBLIQUE STRATÉGIE DE DIAGNOSTIC PRÉCOCE DU MÉLANOME RECOMMANDATION EN SANTÉ PUBLIQUE Service évaluation médico-économique et santé publique Octobre 2006 SYNTHÈSE ET PERSPECTIVES État de la question Le mélanome

Plus en détail

Evaluation générale de la qualité des données par âge et sexe

Evaluation générale de la qualité des données par âge et sexe Analyse démographique pour la prise des décisions. Tendances, et inégalités de mortalité et de fécondité en Afrique francophone : les outils en ligne de l UNFPA / UIESP pour l'estimation démographique.

Plus en détail

UFR de Sciences Economiques Année 2008-2009 TESTS PARAMÉTRIQUES

UFR de Sciences Economiques Année 2008-2009 TESTS PARAMÉTRIQUES Université Paris 13 Cours de Statistiques et Econométrie I UFR de Sciences Economiques Année 2008-2009 Licence de Sciences Economiques L3 Premier semestre TESTS PARAMÉTRIQUES Remarque: les exercices 2,

Plus en détail

Incertitude et variabilité : la nécessité de les intégrer dans les modèles

Incertitude et variabilité : la nécessité de les intégrer dans les modèles Incertitude et variabilité : la nécessité de les intégrer dans les modèles M. L. Delignette-Muller Laboratoire de Biométrie et Biologie Evolutive VetAgro Sup - Université de Lyon - CNRS UMR 5558 24 novembre

Plus en détail

OUTIL D'EVALUATION DU TEMPS ARC / CHEF DE PROJET PROMOTEUR REQUIS POUR UNE RECHERCHE BIOMEDICALE V 2.3 DE L OUTIL NOTICE D UTILISATION

OUTIL D'EVALUATION DU TEMPS ARC / CHEF DE PROJET PROMOTEUR REQUIS POUR UNE RECHERCHE BIOMEDICALE V 2.3 DE L OUTIL NOTICE D UTILISATION OUTIL D'EVALUATION DU TEMPS ARC / CHEF DE PROJET PROMOTEUR REQUIS POUR UNE RECHERCHE BIOMEDICALE V 2.3 DE L OUTIL NOTICE D UTILISATION i) Contexte :... - 2 - ii) But de l outil :... - 2 - iii) Fonctionnement

Plus en détail

I - CLASSIFICATION DU DIABETE SUCRE

I - CLASSIFICATION DU DIABETE SUCRE I - CLASSIFICATION DU DIABETE SUCRE 1- Définition : Le diabète sucré se définit par une élévation anormale et chronique de la glycémie. Cette anomalie est commune à tous les types de diabète sucré, mais

Plus en détail

Analyses de Variance à un ou plusieurs facteurs Régressions Analyse de Covariance Modèles Linéaires Généralisés

Analyses de Variance à un ou plusieurs facteurs Régressions Analyse de Covariance Modèles Linéaires Généralisés Analyses de Variance à un ou plusieurs facteurs Régressions Analyse de Covariance Modèles Linéaires Généralisés Professeur Patrice Francour francour@unice.fr Une grande partie des illustrations viennent

Plus en détail

Best of Hépatologie 2010. Dr Anais VALLET-PICHARD Hépatologie Hôpital Cochin

Best of Hépatologie 2010. Dr Anais VALLET-PICHARD Hépatologie Hôpital Cochin Best of Hépatologie 2010 Dr Anais VALLET-PICHARD Hépatologie Hôpital Cochin Evaluation de la fibrose Analyse des échecs de l élastométrie impulsionnelle Castera L et al. Hepatology 2010;51 (3): 828-35

Plus en détail

Chapitre 3 : INFERENCE

Chapitre 3 : INFERENCE Chapitre 3 : INFERENCE 3.1 L ÉCHANTILLONNAGE 3.1.1 Introduction 3.1.2 L échantillonnage aléatoire 3.1.3 Estimation ponctuelle 3.1.4 Distributions d échantillonnage 3.1.5 Intervalles de probabilité L échantillonnage

Plus en détail

Séminaire du Pôle Santé

Séminaire du Pôle Santé 1 Séminaire du Pôle Santé Les télésoins à domicile au Québec représentent-ils une solution économiquement viable? Guy Paré, Ph.D., MSRC Titulaire de la Chaire de recherche du Canada en technologies de

Plus en détail

VI. Tests non paramétriques sur un échantillon

VI. Tests non paramétriques sur un échantillon VI. Tests non paramétriques sur un échantillon Le modèle n est pas un modèle paramétrique «TESTS du CHI-DEUX» : VI.1. Test d ajustement à une loi donnée VI.. Test d indépendance de deux facteurs 96 Différentes

Plus en détail

PLACE DES DOSAGES DES APOLIPOPROTEINES A1 ET B

PLACE DES DOSAGES DES APOLIPOPROTEINES A1 ET B PLACE DES DOSAGES DES APOLIPOPROTEINES A1 ET B DANS LE BILAN LIPIDIQUE TEXTE COURT SEPTEMBRE 2008 Service évaluation des actes professionnels 2 avenue du Stade de France 93218 Saint-Denis La Plaine CEDEX

Plus en détail

ESSAIS EXPLORATOIRES (PHASE 0-2) H.MRABTI, H.ERRIHANI Service d oncologie médicale Institut national d oncologie Rabat

ESSAIS EXPLORATOIRES (PHASE 0-2) H.MRABTI, H.ERRIHANI Service d oncologie médicale Institut national d oncologie Rabat ESSAIS EXPLORATOIRES (PHASE 0-2) H.MRABTI, H.ERRIHANI Service d oncologie médicale Institut national d oncologie Rabat Etapes de développement d un médicament en oncologie Essais pré-cliniques (activité,

Plus en détail

Impact d un déménagement de service sur la satisfaction relative au soins

Impact d un déménagement de service sur la satisfaction relative au soins Impact d un déménagement de service sur la satisfaction relative au soins MONTPELLIER JOURNEES DE MEDECINE PERINATALE 19 OCTOBRE 2012 Bénédicte Belgacem SANTE PUBLIQUE CHU Clermont-Fd PEPRADE La satisfaction

Plus en détail

Exploration d une anomalie lipidique (EAL) en 2015: Place du dosage de l Apo A et de l Apo B

Exploration d une anomalie lipidique (EAL) en 2015: Place du dosage de l Apo A et de l Apo B Exploration d une anomalie lipidique (EAL) en 2015: Place du dosage de l Apo A et de l Apo B Nabiha KAMAL Laboratoire de Biochimie Faculté de Médecine et de Pharmacie de Casablanca CHU Ibn Rochd de Casablanca

Plus en détail

Diagnostic microbiologique au cabinet médical et au laboratoire Nadia Liassine. 2013 - Diagnostic Microbiologique - page 1

Diagnostic microbiologique au cabinet médical et au laboratoire Nadia Liassine. 2013 - Diagnostic Microbiologique - page 1 Diagnostic microbiologique au cabinet médical et au laboratoire Nadia Liassine 2013 - Diagnostic Microbiologique - page 1 Tests rapides - définitions TDR Tests de Diagnostic Rapide. TROD Tests Rapides

Plus en détail

Critères de Choix d une Echelle de Qualité De Vie. Etudes cliniques dans l autisme. Introduction

Critères de Choix d une Echelle de Qualité De Vie. Etudes cliniques dans l autisme. Introduction Critères de Choix d une Echelle de Qualité De Vie Etudes cliniques dans l autisme Marie-Christine Picot Congrès Epsylon 5 avril 2013 Introduction Mesurer la Qualité de Vie liée à la Santé : Evaluer les

Plus en détail

HENDRICH FALL RISK MODEL (HFRM)

HENDRICH FALL RISK MODEL (HFRM) HENDRICH FALL RISK MODEL (HFRM) Hendrich, A. L., Bender, P. S., & Nyhuis, A. (2003). Validation of the Hendrich II Fall Risk Model: a large concurrent case/control study of hospitalized patients. Appl.Nurs

Plus en détail

Dépistage du cancer du poumon:

Dépistage du cancer du poumon: Dépistage du cancer du poumon: les enjeux Colloque de l Escalade Genève, 5 décembre 2012 Thierry Rochat, Service de Pneumologie, HUG Le cancer bronchique c est déprimant Lors du diagnostic du ca bronchique

Plus en détail

Normalité des rendements?

Normalité des rendements? Normalité des rendements? Daniel Herlemont 31 mars 2011 Table des matières 1 Introduction 1 2 Test de Normalité des rendements 2 3 Graphiques quantile-quantile 2 4 Estimation par maximum de vraisemblance

Plus en détail

Statistiques Descriptives à une dimension

Statistiques Descriptives à une dimension I. Introduction et Définitions 1. Introduction La statistique est une science qui a pour objectif de recueillir et de traiter les informations, souvent en très grand nombre. Elle regroupe l ensemble des

Plus en détail

Une variable binaire prédictrice (VI) et une variable binaire observée (VD) (Comparaison de pourcentages sur 2 groupes indépendants)

Une variable binaire prédictrice (VI) et une variable binaire observée (VD) (Comparaison de pourcentages sur 2 groupes indépendants) CIVILITE-SES.doc - 1 - Une variable binaire prédictrice (VI) et une variable binaire observée (VD) (Comparaison de pourcentages sur 2 groupes indépendants) 1 PRÉSENTATION DU DOSSIER CIVILITE On s intéresse

Plus en détail

RÉFÉRENTIEL D AUTO-ÉVALUATION DES PRATIQUES EN RHUMATOLOGIE

RÉFÉRENTIEL D AUTO-ÉVALUATION DES PRATIQUES EN RHUMATOLOGIE RÉFÉRENTIEL D AUTO-ÉVALUATION DES PRATIQUES EN RHUMATOLOGIE Diagnostic de l ostéoporose en rhumatologie chez les femmes ménopausées Juillet 2004 I. PROMOTEURS Société de rhumatologie de l'ouest (SRO) Société

Plus en détail

Mortalité observée et mortalité attendue au cours de la vague de chaleur de juillet 2006 en France métropolitaine

Mortalité observée et mortalité attendue au cours de la vague de chaleur de juillet 2006 en France métropolitaine Mortalité observée et mortalité attendue au cours de la vague de chaleur de uillet en France métropolitaine FOUILLET A 1, REY G 1, JOUGLA E, HÉMON D 1 1 Inserm, U75, Villeuif, France. Inserm CépiDc, IFR9,

Plus en détail

Chapitre 1. L algorithme génétique

Chapitre 1. L algorithme génétique Chapitre 1 L algorithme génétique L algorithme génétique (AG) est un algorithme de recherche basé sur les mécanismes de la sélection naturelle et de la génétique. Il combine une stratégie de survie des

Plus en détail

Quantification en tomographie d émission

Quantification en tomographie d émission Quantification en tomographie d émission Irène Buvat Imagerie et Modélisation en Neurobiologie et Cancérologie UMR 8165 CNRS - Paris 7 - Paris 11 buvat@imnc.in2p3.fr http://www.guillemet.org/irene Séminaire

Plus en détail

RADAR : REPÉRER LES SIGNES DU DELIRIUM ET D UNE PERTURBATION DE L ÉTAT MENTAL EN 7 SECONDES

RADAR : REPÉRER LES SIGNES DU DELIRIUM ET D UNE PERTURBATION DE L ÉTAT MENTAL EN 7 SECONDES RADAR : REPÉRER LES SIGNES DU DELIRIUM ET D UNE PERTURBATION DE L ÉTAT MENTAL EN 7 SECONDES Philippe Voyer, inf., PhD I Université Laval I Centre d excellence sur le vieillissement de Québec-Unité de recherche

Plus en détail

Hépatite C une maladie silencieuse..

Hépatite C une maladie silencieuse.. Hépatite C une maladie silencieuse.. F. Bally Centre de Maladies Infectieuses et Epidémiologie Institut Central des Hôpitaux Valaisans Histoire Années 70 Hépatite non-a-non-b = hépatite post-transfusionelle

Plus en détail

Tests rapides de dépistage

Tests rapides de dépistage Tests rapides de dépistage Maladies infectieuses Marqueurs cardiaques Marqueurs de tumeurs Grossesse Rhumatologie Allergies Drogues > Pour un diagnostic rapide et économique > Résultats exacts et fiables

Plus en détail

Brock. Rapport supérieur

Brock. Rapport supérieur Simplification du processus de demande d aide financière dans les établissementss : Étude de cas à l Université Brock Rapport préparé par Higher Education Strategy Associates et Canadian Education Project

Plus en détail

Tests de détection de l interféron γ et dépistage des infections tuberculeuses chez les personnels de santé

Tests de détection de l interféron γ et dépistage des infections tuberculeuses chez les personnels de santé Tests de détection de l interféron γ et dépistage des infections tuberculeuses chez les personnels de santé Réunion GERES du 6 juillet 2007 : D Abiteboul,, E Bouvet, A Buonaccorsi,, G Carcelain,, M Domart-Rançon,

Plus en détail

ÉPIDEMIOLOGIE DU SIDA ET DE L INFECTION À VIH EN BELGIQUE

ÉPIDEMIOLOGIE DU SIDA ET DE L INFECTION À VIH EN BELGIQUE Service maladies infectieuses dans la population générale ÉPIDEMIOLOGIE DU SIDA ET DE L INFECTION À VIH EN BELGIQUE Situation au 31 décembre ÉPIDEMIOLOGIE DU SIDA ET DE L INFECTION À VIH EN BELGIQUE Ce

Plus en détail

L influence de la musique sur les capacités cognitives et les apprentissages des élèves en maternelle et au cours préparatoire

L influence de la musique sur les capacités cognitives et les apprentissages des élèves en maternelle et au cours préparatoire L influence de la musique sur les capacités cognitives et les apprentissages des élèves en maternelle et au cours préparatoire Note de synthèse Juillet 2012 Aurélie Lecoq et Bruno Suchaut IREDU-CNRS et

Plus en détail

Exploitation et analyse des données appliquées aux techniques d enquête par sondage. Introduction.

Exploitation et analyse des données appliquées aux techniques d enquête par sondage. Introduction. Exploitation et analyse des données appliquées aux techniques d enquête par sondage. Introduction. Etudes et traitements statistiques des données : le cas illustratif de la démarche par sondage INTRODUCTION

Plus en détail

JORF n 0266 du 17 novembre 2010. Texte n 19

JORF n 0266 du 17 novembre 2010. Texte n 19 Le 6 juillet 2011 JORF n 0266 du 17 novembre 2010 Texte n 19 ARRETE Arrêté du 9 novembre 2010 fixant les conditions de réalisation des tests rapides d orientation diagnostique de l infection à virus de

Plus en détail

Le dépistage du cancer de la prostate. une décision qui VOUS appartient!

Le dépistage du cancer de la prostate. une décision qui VOUS appartient! Le dépistage du cancer de la prostate une décision qui VOUS appartient! Il existe un test de dépistage du cancer de la prostate depuis plusieurs années. Ce test, appelé dosage de l antigène prostatique

Plus en détail

Le dépistage des cancers

Le dépistage des cancers Le dépistage des cancers G R A N D P U B L I C Octobre 2009 Le dépistage des cancers Détecter tôt certains cancers permet de les traiter mieux, c'est-à-dire de proposer des traitements moins lourds, et

Plus en détail

Directives CHS PP D 05/2013. Chiffres-clés déterminants et autres renseignements devant être fournis par les fondations de placement

Directives CHS PP D 05/2013. Chiffres-clés déterminants et autres renseignements devant être fournis par les fondations de placement français Commission de haute surveillance de la prévoyance professionnelle CHS PP Directives CHS PP D 05/2013 Chiffres-clés déterminants et autres renseignements devant être fournis par les fondations

Plus en détail

Apport d un nouveau test Interféron Gamma

Apport d un nouveau test Interféron Gamma Apport d un nouveau test Interféron Gamma Dr D. Bonnet Service de maladies infectieuses Bichat Claude bernard Tuberculose 1/3 population mondiale infectée par BK Primo infection asymptomatique 90% des

Plus en détail

Méthode automatisée de dosage colorimétrique du dioxyde de soufre total dans les vins

Méthode automatisée de dosage colorimétrique du dioxyde de soufre total dans les vins Méthode automatisée de dosage colorimétrique du dioxyde de soufre total dans les vins Marc DUBERNET* et Françoise GRASSET* Laboratoire DUBERNET - 9, quai d Alsace - 11100 Narbonne France 1. Objet Méthode

Plus en détail

BERTHIER E, CHRISTIANO M, PHILIPPE M O, IEHL J, TATARU N, DECAVEL P, VUILLIER F, ELISEEF A, MOULIN T. Introduction (1). Contexte de l étude

BERTHIER E, CHRISTIANO M, PHILIPPE M O, IEHL J, TATARU N, DECAVEL P, VUILLIER F, ELISEEF A, MOULIN T. Introduction (1). Contexte de l étude REPRODUCTIBILITE INTEROBSERVATEUR DU TEST «NIHSS» (National Institutes of Heath Stroke Scale) RÉALISÉ PAR VIDÉOCONFÉRENCE : EXPÉRIENCE DU RÉSEAU DES URGENCES NEUROLOGIQUES (RUN) BERTHIER E, CHRISTIANO

Plus en détail

ASPECT ECHOGRAPHIQUE NORMAL DE LA CAVITE UTERINE APRES IVG. Dr D. Tasias Département de gynécologie, d'obstétrique et de stérilité

ASPECT ECHOGRAPHIQUE NORMAL DE LA CAVITE UTERINE APRES IVG. Dr D. Tasias Département de gynécologie, d'obstétrique et de stérilité Hôpitaux Universitaires de Genève ASPECT ECHOGRAPHIQUE NORMAL DE LA CAVITE UTERINE APRES IVG Dr D. Tasias Département de gynécologie, d'obstétrique et de stérilité Introduction (1) L IVG chirurgicale est

Plus en détail

Essais précoces non comparatifs : principes et calcul du nombre de sujets nécessaire

Essais précoces non comparatifs : principes et calcul du nombre de sujets nécessaire Essais précoces non comparatifs : principes et calcul du nombre de sujets nécessaire Sylvie CHABAUD Direction de la Recherche Clinique et de l Innovation : Centre Léon Bérard - Lyon Unité de Biostatistique

Plus en détail