Ingénierie d aide à la décision

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Ingénierie d aide à la décision"

Transcription

1 Ingénierie d aide à la décision Maria Malek 1 er septembre Objectifs et débouchés Nous proposons dans cette option deux grands axes pour l aide à la décision : 1. La recherche opérationnelle ; 2. L exploration de données. La Recherche Opérationnelle nous permet de proposer des méthodes scientifiques, combinant techniques de développement informatique, outils mathématiques, processus de modélisation et connaissance du Génie Industriel, afin de traiter des problèmes d optimisation, d aide à la décision et d évaluation de performances liées aux organisations et procédés du monde réel. Les principales applications concernent les transports, l aide à la mobilité, les télécommunications, les systèmes de production, les procédés industriels. Les outils et modèles associés sont ceux du développement informatique (technologies objet, systèmes d information, outils de simulation, bibliothèques d optimisation ou de gestion de contraintes, etc.), de l optimisation continue ou combinatoire (graphes, ordonnancement, complexité algorithmique, approximation, etc.), de la programmation mathématique (programmation linéaire, entière, mixte, quadratique, convexe, etc.), du calcul stochastique (files d attente, stratégies dans l incertain, etc.), de l aide à la décision (optimisation multi-critère, théorie des jeux, modélisation micro-économique, etc.). L exploration de données a pour but la découverte d informations intéressantes, utiles dans les très grandes bases de données. L énorme croissance de la taille des bases de données scientifiques et commerciales actuellement disponibles, ainsi que la croissance aussi rapide des performances des ordinateurs nécessitent des outils de traitement adaptés et performants. Le domaine de la fouille de données proposent des méthodes et des techniques mathématiques adaptées pour la résolution de ces classes de problèmes. Elles permettent de définir la précision de l énoncé de l objectif poursuivi (e.g. le critère de classification ou la mesure de discrimination) ainsi que la formulation des contraintes imposées à la solution (e.g. trouver une partition, un recouvrement ou une hiérarchie). Nous mettons en œuvre ainsi, des outils mathématiques puissants pour construire des algorithmes très performants. 1

2 1.1 Débouchés Professionnels 1.1 Débouchés Professionnels L objectif principal est de former des scientifiques possédant une connaissance solide sur les techniques avancées de l exploration des données ainsi que la recherche opérationnelle. Les compétences de ces scientifiques, peuvent être utilisées tout à la fois en recherche et développement ou en étude dans de nombreux secteurs d activités. Les diplômés peuvent être employés comme directeurs de projets, concepteurs d outils logiciels spécialisés, ingénieurs de recherche et de développement, ou consultants dans certains secteurs : Aéronautique, Automobile, Énergie, Laboratoires, Banques, Assurances, Informatique d applications et de services. 1.2 Métiers Les métiers pratiqués seront : Ingénieurs employés par des éditeurs de logiciels, des SSII, et des services internes à de grandes entreprises. Ingénieurs des entreprises, concepteurs ou utilisateurs d outils de calcul, d évaluation de performances, d aide à la décision, de prévision. Ingénieurs de recherche et de développement, directeurs de projets en informatique ou consultants. 1.3 Entreprises concernés Entreprises Editeurs de logiciels : SAS,Ilog, BO, Oracle,etc. SSII : Cap Gemini, Sopra, Unilog,etc. Services internes de grandes entreprises : Secteur Manufacturier, Transports, Télécommunications, Secteur pétrolier, etc. Entreprises françaises qui ont un pôle R&D en RO : Airfrance SNCF EDF/GDF France Telecom Bouygues Bouygues Telecom Amadeus 2 La recherche opérationnelle Le Recherche Opérationnelle (RO) est la discipline des méthodes scientifiques utilisables pour élaborer de meilleures décisions. Elle permet de rationaliser, de simuler et d optimiser l architecture et le fonctionnement des systèmes de production ou d organisation. La RO propose des modèles pour analyser des situations complexes et permet aux décideurs de faire les choix les plus efficaces grâce à : une meilleure compréhension des problèmes, 2

3 2.1 Cours fondamentaux une vision complète des données, la considération de toutes les solutions possibles, des prédictions prudentes de résultats incluant une évaluation des risques, des outils et des méthodes modernes d aide à la décision. Les apports de la RO très utiles dans les domaines les plus divers : de l organisation des lignes de production de véhicules à la planification des missions spatiales, de l optimisation des portefeuilles bancaires, etc. 2.1 Cours fondamentaux 1. Programmation linéaire - 20H. 2. Théorie de la complexité - 15H. 3. Modèles décisionnels - 20H. 4. Programmation par contraintes et ordonnancement - 30H. 5. Modélisation de préférences - aide multicritère à la décision - 30H. 6. Théorie de graphes et application - 30H Programmation linéaire - 20H Objectif Des problèmes concrets issus de domaines divers peuvent être formulés comme des programmes linéaires. Le but de ce cours est d étudier la modélisation et les méthodes de résolution de ces problèmes, basées sur la programmation linéaire et la programmation en nombres entiers. 1. Méthode du simplexe, méthode révisée du simplexe. 2. Dualité, méthode duale du simplexe, interprétation économique. 3. Modèles de programmes en nombres entiers, méthode par séparation et évaluation. 4. Relations min-max, séparation et optimisation, méthode de coupes Théorie de la complexité - 15H Objectif Les différentes classes de complexité des problèmes d optimisation combinatoire sont présentées. Les différents types d algorithmes approchés pour résoudre les problèmes ainsi que les liens entre complexité et approximation seront également étudiés. 1. Performance d un algorithme approché, algorithmes gourmands, schémas d approximation, 2. Classes de problèmes. 3

4 2.2 Cours spécialisés & Applications Modèles décisionnels - 20H Objectif Le modèles de comportement décisionnel, individuel et collectif de la RO et de l la sont présentés, ainsi que les outils d analyse Programmation par contraintes et ordonnancement - 30H. Objectif Les modèles et Les méthodes utilisés en pratique pour résoudre des problèmes d ordonnancement d ateliers et de services sont étudiés. 1. Modélisation et résolution de problèmes à l aide de la programmation par contraintes. 2. Types de contraintes, principaux algorithmes et heuristiques de résolution. 3. La fonction ordonnancement en entreprise 4. Procédures par séparation et évaluation : application au problème d ordonnancement à cheminements multiples. 5. Modélisation mathématique et ordonnancement : application à des problèmes d emploi du temps Modélisation de préférences - aide multicritère à la décision - 30H. 1. Concepts fondamentaux en modélisation des préférences et aide multicritère à la décision. 2. Théorie du choix social, procédures de vote, résultats fondamentaux. 3. Désagrégation dans le cadre du critère unique de synthèse et des méthodes de comparaison par paires. 4. Mesurage, théorie de la signifiance. 5. Prise en compte de données ordinales, qualitatives. 6. Optimisation combinatoire multicritère, approximation de l ensemble des solutions efficaces Théorie de graphes et application - 30H 1. Graphes : concepts de théorie des graphes, 2. Etude approfondie de problèmes classiques de cheminement, arbre, flot, couplage,etc. 3. Extensions k-meilleures solutions et multi-objectifs de certains de ces problèmes. 4. etc. 2.2 Cours spécialisés & Applications 1. Prise de décision et incertitude - 20H 2. Méthodologies et application en décision - 20H 4

5 2.2.1 Prise de décision et incertitude - 20H 1. Rappel de la théorie des probabilités, Bayes, arbres de décision. 2. Modèles non classiques de l incertain. 3. Théorie de la décision qualitative ; 4. Réseaux bayésiens. 5. Applications Méthodologies et application en décision - 20H Objectif Le but étant de se familiariser avec des outils (programmation et manipulation de logiciels) nécessaires à la résolution sur machine des problèmes de taille réelle. Ce module est également l occasion de sensibiliser à la diversité des applications possibles. 3 L exploration des données Nous nous intéressons aux classes de problèmes suivants : La discrimination ou classification supervisée : il s agit de construire une fonction qui sépare au mieux les bonnes et les mauvaises entités d un ensemble donné, et classifie aussi correctement que possible de nouvelles entités. La classification automatique ou classification non supervisée : il s agit de trouver des sous-ensembles d un ensemble d entités donné qui soient homogènes (selon un critère de similarité) et bien séparés. Découvertes de relations : étant donné un ensemble d entités et des mesures ou observations faites sur ces entités, il s agit de trouver des relations satisfaites entre la plus grande part, d entre elles. Analyse de réseaux sociaux : étant donné un ensemble d acteurs ainsi que les relations entre eux, il s agit de découvrir les rôles associés aux acteurs, d établir les communautés au sein du réseau, etc. 3.1 Cours fondamentaux 1. Fouilles de données (Data Mining) & Application - 20H 2. Apprentissage statistique - 30H. 3. Réseaux de neurones - 30H. 4. Apprentissage automatique - 30H. 5

6 3.1 Cours fondamentaux Analyse statistique des données - 30H 1. Description unidimensionnelle de données, Médiane, Moyenne, Mode, Étendue, Intervalle interquartile, Variance et écart-type ; 2. Description bi-dimensionnelle et mesures de liaison entre variables, Coefficient de corrélation, Matrice de corrélation ; 3. Description multi-dimensionnelle de données, Analyse en composantes principales, Analyse discriminante, Analyse des correspondances, Analyse des données temporelles et évolutives Fouilles de données (Data Mining) - 20H Objectif L objectif de ce cours est de présenter les algorithmes de fouille de données et d extraction de connaissances. Une méthodologie de comparaison entre les différentes techniques est développée. 1. Introduction aux fouilles de données 2. Techniques de l extraction de connaissances à partir de données (a) Apprentissage supervisé Arbre de décision et régression. Bayésien naif. Réseaux bayésiens. (b) Apprentissage non supervisé Règle d associations et motifs fréquents. Classification ascendante hiérarchique. 3. Application : Web Mining Apprentissage statistique - 30H 1. Estimation à partir de données, 2. Minimisation du risque empirique (ERM), Consistance de l approche ERM, Dimension VC, 3. Minimisation du risque structurel (SRM), 4. Machines à Vecteurs de Support (SVM), hyperplan séparateur optimal, cas non séparable, SVM comme classificateur, SVM multi-classes, SVM comme régresseur, 5. Modèles stochastiques, propriétés de Markov, modèles de Markov cachés (HMM), apprentissage. 6

7 3.2 Différents types de fouilles de données Réseaux de neurones - 30H 1. Introduction aux Réseaux de Neurones et au logiciel SNNS. 2. Aspects Formel des Réseaux de Neurones. Régression Linéaire. 3. Perceptron : Perceptron multi-couches. 4. Les Réseaux RBF. 5. Adaline et Perceptron multi-couches. 6. Réseaux récurrents. 7. Adaptative Resonance Theorie. 8. Architecture de Hopfield. Architecture de Kohonen 9. Projet. Méthodes et moyens pédagogiques et projet. Logiciel de simulation SNNS. Cours magistraux, travaux dirigés, travaux pratiques Apprentissage automatique - 30H 1. Méthodes symboliques : Formulation d un problème d apprentissage symbolique, Les solutions dans un espace partiellement ordonné : l espace des versions, Elimination des candidats, Extension au cas des données incomplètes, Biais de langage, Critères de préférence d une solution : recherche heuristique d une meilleure solution. Méthodes descendantes et opérateurs de spécialisation, Méthodes ascendantes et opérateurs de généralisation, Utilisation de connaissances et réduction de l espace de recherche. Représentations en logique de prédicats : la programmation logique inductive, Apprentissage explicatif/descriptif, Apprentissage de prédicats (FOIL). 2. Méthodes sub-symboliques : Les algorithmes génétiques. Les systèmes classifieurs. Apprentissage par renforcement et planification. 3.2 Différents types de fouilles de données 1. Fouille de données textuelles - 15H. 2. Fouille de données visuelles - 15H. 3. Analyse de réseaux sociaux - 30H. 7

8 3.3 Outils & Applications Fouille de données textuelles - 20H 1. Choix des unités de décompte, segmentation et numérisation d un texte, fréquence, 2. mesures de la richesse du vocabulaire, les segments répétés, recherche de co-occurrences, 3. classification des éléments d un tableau lexical, classification des fichiers d enquêtes, 4. typologies, visualisation, séries textuelles chronologiques, analyse des correspondances textuelle, analyse discriminante textuelle Fouille de données visuelles - 20H 1. Acquisition et restitution de données visuelles, 2. Méthodes de base du traitement de données visuelles statiques, échantillonnage bi-dimensionnel, quantification, transformation de Fourier, filtrage et pré-traitement, 3. Restauration, Réduction de redondance, compression, compactage, 4. Extraction de contour, Segmentation, Reconnaissance d objets, Indexation et recherche par le contenu Analyse de réseaux sociaux - 30H 1. Fondements : Acteurs, Relations, Représentation par graphes et/ou matrices. 2. Exemple : le petit monde, les communautés sur internet, etc. 3. Calculs en analyse de réseaux sociaux : Centralité de degré, Centralité d intermédiarité, Centralité de Proximité. Centralité de prestige, Centralisation de pouvoir. Clustering coefficient, Degré de cohésion, Degré de densité. Longueur du chemin, Radiality, Reach. Équivalence structurale, Trou structural, Multiplexité. 3.3 Outils & Applications 1. Visualisation des données - 30H. 2. E-Commerce & CRM (Customer Relations Management)- 30H Visualisation des données - 30H 1. Outils élémentaires de visualisation en statistique descriptive, données numériques, données symboliques, données complexes ; 2. cartes factorielles, représentation de graphes, représentation tridimensionnelle ; 3. utilisation de techniques de réalité virtuelle pour la fouille de données. 8

9 3.3 Outils & Applications E-Commerce & CRM (Customer Relations Management) - 30H 1. Cycle de vie du client : Prospect, Réactive, Client active, etc. 2. Techniques de Fouilles de données (analyse de logs) pour : Déterminer le profil utilisateur pour un cycle de vie données. Comparer les profils similaires afin d en conclure des comportements similaires. Intégration des techniques des réseaux sociaux pour la découverte de communautés. 9

Vous trouvez plus d information sur AREL. ainsi que sur : http://www.eisti.fr/ mma/html-iad/iad.html

Vous trouvez plus d information sur AREL. ainsi que sur : http://www.eisti.fr/ mma/html-iad/iad.html ainsi que sur : http://www.eisti.fr/ mma/html-iad/iad.html Option Deux thèmes : La recherche opérationnelle : Traiter des problèmes d optimisation, d aide à la décision et d évaluation de performances

Plus en détail

Ingénierie de Systèmes Intelligents

Ingénierie de Systèmes Intelligents Ingénierie de Systèmes Intelligents p. 1/? Ingénierie de Systèmes Intelligents Maria Malek maria.malek@eisti.fr Ecole Internationale des Sciences de Traitement de l Information (EISTI) http://www.eisti.fr/

Plus en détail

Formation Actuaire Data-Scientist PROGRAMME

Formation Actuaire Data-Scientist PROGRAMME Formation Actuaire Data-Scientist PROGRAMME 15 Septembre 2014 Arthur Charpentier, Romuald Élie & Jérémie Jakubowicz 15914 Programme Séance inaugurale : révolu-on numérique besoins des entreprises cadre

Plus en détail

Ingénierie d Aide à la Décision

Ingénierie d Aide à la Décision Ingénierie d Aide à la Décision p. 1/1 Ingénierie d Aide à la Décision Maria Malek, Hervé de Milleville Ecole Internationale des Sciences de Traitement de l Information (EISTI) http://www.eisti.fr/ mma/html-iad/iad.html

Plus en détail

4.2 Unités d enseignement du M1

4.2 Unités d enseignement du M1 88 CHAPITRE 4. DESCRIPTION DES UNITÉS D ENSEIGNEMENT 4.2 Unités d enseignement du M1 Tous les cours sont de 6 ECTS. Modélisation, optimisation et complexité des algorithmes (code RCP106) Objectif : Présenter

Plus en détail

GPA759 RÉSEAUX DE NEURONES ET INTELLIGENCE ARTIFICIELLE Préalable(s) : Aucun PLAN DE COURS SESSION AUTOMNE 2013

GPA759 RÉSEAUX DE NEURONES ET INTELLIGENCE ARTIFICIELLE Préalable(s) : Aucun PLAN DE COURS SESSION AUTOMNE 2013 École de technologie supérieure Département de génie de la production automatisée Responsable(s) du cours : Crédits : Richard Lepage, ing., Ph.D. GPA759 RÉSEAUX DE NEURONES ET INTELLIGENCE ARTIFICIELLE

Plus en détail

Outils Statistiques du Data Mining

Outils Statistiques du Data Mining Outils Statistiques du Data Mining Pr Roch Giorgi roch.giorgi@univ-amu.fr SESSTIM, Faculté de Médecine, Aix-Marseille Université, Marseille, France http://sesstim-orspaca.org http://optim-sesstim.univ-amu.fr

Plus en détail

Introduction au datamining

Introduction au datamining Introduction au datamining Patrick Naïm janvier 2005 Définition Définition Historique Mot utilisé au départ par les statisticiens Le mot indiquait une utilisation intensive des données conduisant à des

Plus en détail

Programme détaillé des enseignements

Programme détaillé des enseignements Programme détaillé des enseignements SEMESTRE S1 STATISTIQUES Méthodes d'estimation ponctuelle (méthodes des moments, du maximum de vraisemblances, bayésienne) et par intervalles de confiance. Statistiques

Plus en détail

Intelligence Artificielle et Systèmes Multi-Agents. Badr Benmammar bbm@badr-benmammar.com

Intelligence Artificielle et Systèmes Multi-Agents. Badr Benmammar bbm@badr-benmammar.com Intelligence Artificielle et Systèmes Multi-Agents Badr Benmammar bbm@badr-benmammar.com Plan La première partie : L intelligence artificielle (IA) Définition de l intelligence artificielle (IA) Domaines

Plus en détail

Pour un socle de la licence de MATHEMATIQUES

Pour un socle de la licence de MATHEMATIQUES Pour un socle de la licence de MATHEMATIQUES Société Mathématique de France Société de Mathématiques Appliquées et Industrielles Société Française de Statistique Contexte général Afin d éviter de trop

Plus en détail

Filière Data Mining (Fouille de données) Pierre Morizet-Mahoudeaux

Filière Data Mining (Fouille de données) Pierre Morizet-Mahoudeaux Filière Data Mining (Fouille de données) Pierre Morizet-Mahoudeaux Plan Objectifs Débouchés Formation UVs spécifiques UVs connexes Enseignants et partenaires Structure générale des études à l UTC Règlement

Plus en détail

Filière Data Mining (Fouille de données) Pierre Morizet-Mahoudeaux

Filière Data Mining (Fouille de données) Pierre Morizet-Mahoudeaux Filière Data Mining (Fouille de données) Pierre Morizet-Mahoudeaux Plan Motivations Débouchés Formation UVs spécifiques UVs connexes Enseignants et partenaires Motivations de la filière fouille de données

Plus en détail

Support Vector Machines

Support Vector Machines Support Vector Machines Séparateurs à vaste marge Arnaud Revel revel.arnaud@gmail.com Plan 1 Introduction 2 Formalisation 3 Utilisation des noyaux 4 Cas multi-classes 5 Applications des SVM 6 Bibliographie

Plus en détail

Initiation à la fouille de données et à l apprentissage automatiq

Initiation à la fouille de données et à l apprentissage automatiq Initiation à la fouille de données et à l apprentissage automatique 1 Laboratoire d Informatique Fondamentale de Marseille Université de Provence christophe.magnan@lif.univ-mrs.fr www.lif.univ-mrs.fr/

Plus en détail

Statistique et analyse de données pour l assureur : des outils pour la gestion des risques et le marketing

Statistique et analyse de données pour l assureur : des outils pour la gestion des risques et le marketing Statistique et analyse de données pour l assureur : des outils pour la gestion des risques et le marketing Gilbert Saporta Chaire de Statistique Appliquée, CNAM ActuariaCnam, 31 mai 2012 1 L approche statistique

Plus en détail

1 Objectif de la formation MASTER PROFESSIONNEL (1 ANNEE) 2 Poursuite d étude. 3-Moyens mis en œuvre. 4- Conditions d'admission

1 Objectif de la formation MASTER PROFESSIONNEL (1 ANNEE) 2 Poursuite d étude. 3-Moyens mis en œuvre. 4- Conditions d'admission MASTER PROFESSIONNEL (1 ANNEE) INFORMATIQUE, STATISTIQUE, MATHEMATIQUES APPLIQUEES A LA GESTION DE PRODUCTION 2009-2010 Département de mathématiques et informatique UFR Sciences, Espaces et Sociétés Université

Plus en détail

Motivation : pourquoi exploration de données? Nous nous noyons dans les données, mais manquons cruellement de connaissances

Motivation : pourquoi exploration de données? Nous nous noyons dans les données, mais manquons cruellement de connaissances 1 Introduction Définition et motivations Tâches de data mining (fouille de données, exploration de données) Techniques et algorithmes Exemples et applications 1 Motivation : pourquoi exploration de données?

Plus en détail

Annexe 4 Programmes des classes préparatoires aux Grandes Ecoles

Annexe 4 Programmes des classes préparatoires aux Grandes Ecoles Annexe 4 Programmes des classes préparatoires aux Grandes Ecoles Filière : scientifique Voie : Technologie et biologie (TB) Discipline : Informatique Première et seconde années Programme d informatique

Plus en détail

De la donnée à la décision. Sofian MAABOUT LaBRI. Université Bordeaux 1

De la donnée à la décision. Sofian MAABOUT LaBRI. Université Bordeaux 1 De la donnée à la décision Sofian MAABOUT LaBRI. Université Bordeaux 1 1 Décider c est choisir, parmi plusieurs actes possibles, celui qui apparaît comme le plus pertinent pour atteindre un résultat envisagé,

Plus en détail

- Mobiliser les résultats sur le second degré dans le cadre de la résolution d un problème.

- Mobiliser les résultats sur le second degré dans le cadre de la résolution d un problème. Mathématiques - classe de 1ère des séries STI2D et STL. 1. Analyse On dote les élèves d outils mathématiques permettant de traiter des problèmes relevant de la modélisation de phénomènes continus ou discrets.

Plus en détail

Le parcours pédagogique Sage Business Intelligence. Utilisateur Niv I BO XI 3.0 WebI pour Sage 1000 2 jours

Le parcours pédagogique Sage Business Intelligence. Utilisateur Niv I BO XI 3.0 WebI pour Sage 1000 2 jours Vous êtes Consultant, Chef de Projets, Directeur des Systèmes d Information, Directeur Administratif et Financier, Optez pour les «formations Produits» Nous vous proposons des formations vous permettant

Plus en détail

Objectif du groupe GT1.1 Fusion de Données

Objectif du groupe GT1.1 Fusion de Données Objectif du groupe GT1.1 Fusion de Données Le groupe travaille dans trois directions Le vocabulaire (piloté par ADVITAM et l aide de SITE) L état de l art (piloté par SYROKKO) Deux applications illustratives

Plus en détail

Programme «Responsable en logistique de Distribution» Titre de l ISLT inscrit au RNCP de niveau 2

Programme «Responsable en logistique de Distribution» Titre de l ISLT inscrit au RNCP de niveau 2 Programme «Responsable en logistique de Distribution» Titre de l ISLT inscrit au RNCP de niveau 2 INSTITUT NEMO 36-38 AVENUE PIERRE BROSSOLETTE 92240 MALAKOFF 1 Public visé Tout public, titulaire d un

Plus en détail

Organisé par StatSoft France et animé par Dr Diego Kuonen, expert en techniques de data mining.

Organisé par StatSoft France et animé par Dr Diego Kuonen, expert en techniques de data mining. 2 jours : Mardi 15 et mercredi 16 novembre 2005 de 9 heures 30 à 17 heures 30 Organisé par StatSoft France et animé par Dr Diego Kuonen, expert en techniques de data mining. Madame, Monsieur, On parle

Plus en détail

DATA MINING 2 Réseaux de Neurones, Mélanges de classifieurs, SVM avancé

DATA MINING 2 Réseaux de Neurones, Mélanges de classifieurs, SVM avancé I. Réseau Artificiel de Neurones 1. Neurone 2. Type de réseaux Feedforward Couches successives Récurrents Boucles de rétroaction Exemples de choix pour la fonction : suivant une loi de probabilité Carte

Plus en détail

Le programme de mathématiques Classes de première STI2D STL

Le programme de mathématiques Classes de première STI2D STL Journée de l inspection 15 avril 2011 - Lycée F. BUISSON 18 avril 2011 - Lycée J. ALGOUD 21 avril 2011 - Lycée L. ARMAND Le programme de mathématiques Classes de première STI2D STL Déroulement de la journée

Plus en détail

Ingénierie de Systèmes Intelligents

Ingénierie de Systèmes Intelligents Ingénierie de Systèmes Intelligents p. 1/ Ingénierie de Systèmes Intelligents Application : Web Intelligent Maria Malek EISTI Ingénierie de Systèmes Intelligents p. 2/ Objectif Traitement Intelligent des

Plus en détail

SEMESTRE S1. Intitulé et descriptif des U.E. Coef Crédits Discipline A : Mathématiques Mathématiques Outils mathématiques Discipline B :

SEMESTRE S1. Intitulé et descriptif des U.E. Coef Crédits Discipline A : Mathématiques Mathématiques Outils mathématiques Discipline B : SEMESTRE S Intitulé et descriptif des U.E. Coef Crédits Discipline A : Mathématiques Mathématiques Discipline B : 0 0 Biologie Biologie Chimie Chimie Géologie Géologie Informatique Informatique Physique

Plus en détail

Introduction au Data-Mining

Introduction au Data-Mining Introduction au Data-Mining Alain Rakotomamonjy - Gilles Gasso. INSA Rouen -Département ASI Laboratoire PSI Introduction au Data-Mining p. 1/25 Data-Mining : Kèkecé? Traduction : Fouille de données. Terme

Plus en détail

Première STMG1 2014-2015 progression. - 1. Séquence : Proportion d une sous population dans une population.

Première STMG1 2014-2015 progression. - 1. Séquence : Proportion d une sous population dans une population. Première STMG1 2014-2015 progression. - 1 Table des matières Fil rouge. 3 Axes du programme. 3 Séquence : Proportion d une sous population dans une population. 3 Information chiffrée : connaître et exploiter

Plus en détail

Discrétisation et génération de hiérarchies de concepts

Discrétisation et génération de hiérarchies de concepts Prétraitement des données 1 Pourquoi prétraiter les données? Nettoyage des données Intégration et transformation Réduction des données Discrétisation et génération de hiérarchies de g concepts Pourquoi

Plus en détail

Méthodes de DM pour la GRC dans les banques

Méthodes de DM pour la GRC dans les banques Techniques de DM pour la GRC dans les banques Page 21 III.1 Introduction Avant de chercher des techniques à appliquer dans la gestion des relations avec les clients. Il faut étudier les données des clients

Plus en détail

Table des matières. PREMIÈRE PARTIE Étapes initiales des études marketing 7

Table des matières. PREMIÈRE PARTIE Étapes initiales des études marketing 7 Table des matières Préface Public 1 Structure de l ouvrage 1 Caractéristiques de l ouvrage 3 Contenu 3 Pédagogie 4 Remarques sur l adaptation française 4 Ressources numériques 5 Biographie 6 PREMIÈRE PARTIE

Plus en détail

TABLEAU D EQUIVALENCE DE MODULES

TABLEAU D EQUIVALENCE DE MODULES Licence Fondamentale Sciences de Gestion 1 er Cycle Sciences de Gestion et Etudes Comptables UEF 1 Introduction à la Gestion I Comptabilité Financière I I Microéconomie Micro-économie I ou II Mathématique

Plus en détail

[Aucun étudiant ne. sera autorisé à passer les examens sans la présentation de sa carte d'étudiant.].

[Aucun étudiant ne. sera autorisé à passer les examens sans la présentation de sa carte d'étudiant.]. [Aucun étudiant ne sera autorisé à passer les examens sans la présentation de sa carte d'étudiant.]. 1 ère Année 1 ère Année Licence Appliquée en Informatique de Gestion Mercredi 11/06/2014 Jeudi 12/06/2014

Plus en détail

SYLLABUS SEMESTRE 9 Année 2011-2012

SYLLABUS SEMESTRE 9 Année 2011-2012 SYLLABUS SEMESTRE 9 2011-2012 Parcours S2I «Systèmes d Information et Informatique» François Brucker Tel.: 04 91 05 43 95 E-mail : francois.brucker@centrale-marseille.fr PROGRAMME Nb heures élèves (hors

Plus en détail

MATHEMATIQUES ET SCIENCES POUR L INGENIEUR

MATHEMATIQUES ET SCIENCES POUR L INGENIEUR MASTER SCIENCES, TECHNOLOGIES, SANTE / STAPS MATHEMATIQUES ET SCIENCES POUR L INGENIEUR Spécialité Ingénierie Numérique, Signal-Image et Informatique Industrielle (INS3I) www.univ-littoral.fr OBJECTIFS

Plus en détail

UNIVERSITÉ DE MONTRÉAL DÉPARTEMENT DE SOCIOLOGIE ************* Cours de niveau gradué en méthodes quantitatives *************

UNIVERSITÉ DE MONTRÉAL DÉPARTEMENT DE SOCIOLOGIE ************* Cours de niveau gradué en méthodes quantitatives ************* ************* Cours de niveau gradué en méthodes quantitatives ************* SOL 6210 - Analyse quantitative avancée Le séminaire d analyse quantitative avancée se donne en classe une fois par année. Chaque

Plus en détail

Managements des risques industriels : quelques verrous scientifiques et techniques à résoudre pour le futur. Le point de vue d'un industriel.

Managements des risques industriels : quelques verrous scientifiques et techniques à résoudre pour le futur. Le point de vue d'un industriel. Managements des risques industriels : quelques verrous scientifiques et techniques à résoudre pour le futur. Le point de vue d'un industriel. Workshop du GIS 3SGS Reims, 29 septembre 2010 Sommaire Missions

Plus en détail

Analyse multivariée approfondie

Analyse multivariée approfondie Analyse multivariée approfondie Enseignants: NIANG N. et RUSSOLILLIO G. Maître de conférences Statistique Appliquée Laboratoire CEDRIC CNAM http://www.cnam.fr et d autres intervenants extérieurs au Cnam

Plus en détail

PROJET DE SPÉCIALITÉ DU MASTER DE MATHÉMATIQUES. MODÉLISATION MATHÉMATIQUE & ANALYSE STATISTIQUE

PROJET DE SPÉCIALITÉ DU MASTER DE MATHÉMATIQUES. MODÉLISATION MATHÉMATIQUE & ANALYSE STATISTIQUE PROJET DE SPÉCIALITÉ DU MASTER DE MATHÉMATIQUES. MODÉLISATION MATHÉMATIQUE & ANALYSE STATISTIQUE Porteurs du projet Marc Arnaudon, professeur des universités, responsable des relations avec les entreprises.

Plus en détail

Master ISI 2010-2011. Data Mining Recherche des sous-ensembles fréquents

Master ISI 2010-2011. Data Mining Recherche des sous-ensembles fréquents Master ISI 2010-2011 Data Mining Recherche des sous-ensembles fréquents Yves Lechevallier INRIA-Rocquencourt E_mail : Yves.Lechevallier@inria.fr 1 Processus Data Mining Phase A : Entrepôt de données Entrepôt

Plus en détail

Clermont Ferrand - Janvier 2003

Clermont Ferrand - Janvier 2003 DISDAMIN: Algorithmes de Data Mining Distribués Valerie FIOLET (1,2) - Bernard TOURSEL (1) 1 Equipe PALOMA - LIFL - USTL - LILLE (FRANCE) 2 Service Informatique - UMH - MONS (BELGIUM) Clermont Ferrand

Plus en détail

DUT Statistique et Traitement Informatique des Données (S.T.I.D.)

DUT Statistique et Traitement Informatique des Données (S.T.I.D.) UNIVERSITÉ DE LILLE 2 IUT DE ROUBAIX DÉPARTEMENT STATISTIQUE ET TRAITEMENT INFORMATIQUE DES DONNÉES DUT Statistique et Traitement Informatique des Données OBJECTIFS : (S.T.I.D.) Il s agit d une formation

Plus en détail

Introduction aux Support Vector Machines (SVM)

Introduction aux Support Vector Machines (SVM) Introduction aux Support Vector Machines (SVM) Olivier Bousquet Centre de Mathématiques Appliquées Ecole Polytechnique, Palaiseau Orsay, 15 Novembre 2001 But de l exposé 2 Présenter les SVM Encourager

Plus en détail

Table des matières I La programmation linéaire en variables continues 1 Présentation 3 1 Les bases de la programmation linéaire 5 1.1 Formulation d'un problème de programmation linéaire........... 5 1.2

Plus en détail

UE 8 Systèmes d information de gestion Le programme

UE 8 Systèmes d information de gestion Le programme UE 8 Systèmes d information de gestion Le programme Légende : Modifications de l arrêté du 8 mars 2010 Suppressions de l arrêté du 8 mars 2010 Partie inchangée par rapport au programme antérieur Indications

Plus en détail

WEKA : c est quoi? Brigitte Bigi. 15 février 2011. LPL - Équipe C3I. Brigitte Bigi (LPL - Équipe C3I) WEKA : c est quoi? 15 février 2011 1 / 32

WEKA : c est quoi? Brigitte Bigi. 15 février 2011. LPL - Équipe C3I. Brigitte Bigi (LPL - Équipe C3I) WEKA : c est quoi? 15 février 2011 1 / 32 WEKA : c est quoi? Brigitte Bigi LPL - Équipe C3I 15 février 2011 Brigitte Bigi (LPL - Équipe C3I) WEKA : c est quoi? 15 février 2011 1 / 32 Introduction 1 Introduction 2 Classification supervisée 3 WEKA

Plus en détail

Fondements et étapes du processus de recherche, 3 e édition

Fondements et étapes du processus de recherche, 3 e édition Fondements et étapes du processus de recherche, 3 e édition Nouveauté Méthodes quantitatives et qualitatives Prix : 81,95 $ Auteurs : Marie-Fabienne Fortin, Johanne Gagnon ISBN13 : 9782765050063 Nombre

Plus en détail

Introduction au Data-Mining

Introduction au Data-Mining Introduction au Data-Mining Gilles Gasso, Stéphane Canu INSA Rouen -Département ASI Laboratoire LITIS 8 septembre 205. Ce cours est librement inspiré du cours DM de Alain Rakotomamonjy Gilles Gasso, Stéphane

Plus en détail

Intérêt du découpage en sous-bandes pour l analyse spectrale

Intérêt du découpage en sous-bandes pour l analyse spectrale Intérêt du découpage en sous-bandes pour l analyse spectrale David BONACCI Institut National Polytechnique de Toulouse (INP) École Nationale Supérieure d Électrotechnique, d Électronique, d Informatique,

Plus en détail

Offre de formation de troisième cycle (LMD)

Offre de formation de troisième cycle (LMD) Offre de formation de troisième cycle (LMD) (Arrêté n 250 du 28 juillet 2009, fixant l organisation de la formation de troisième en vue de l obtention du diplôme de doctorat) Etablissement Faculté / Institut

Plus en détail

Ingénierie d Aide à la Décision. Ecole Internationale des Sciences de Traitement de l Information (EISTI) mma/html-iad/iad.

Ingénierie d Aide à la Décision. Ecole Internationale des Sciences de Traitement de l Information (EISTI)  mma/html-iad/iad. Ingénierie d Aide à la Décision p. 1/1 Ingénierie d Aide à la Décision Ecole Internationale des Sciences de Traitement de l Information (EISTI) http://www.eisti.fr/ mma/html-iad/iad.html Ingénierie d Aide

Plus en détail

Méthodes avancées en décision

Méthodes avancées en décision Méthodes avancées en décision Support vector machines - Chapitre 2 - Principes MRE et MRS Principe MRE. Il s agit de minimiser la fonctionnelle de risque 1 P e (d) = y d(x;w, b) p(x, y) dxdy. 2 La densité

Plus en détail

L approche Bases de données

L approche Bases de données L approche Bases de données Cours: BD. Avancées Année: 2005/2006 Par: Dr B. Belattar (Univ. Batna Algérie) I- : Mise à niveau 1 Cours: BDD. Année: 2013/2014 Ens. S. MEDILEH (Univ. El-Oued) L approche Base

Plus en détail

Ecole Nationale des Sciences de l Informatique Université de la Manouba Janvier 2012 Programmes d enseignement

Ecole Nationale des Sciences de l Informatique Université de la Manouba Janvier 2012 Programmes d enseignement Ecole Nationale des Sciences de l Informatique Université de la Manouba Janvier 2012 Programmes d enseignement II1 - Premier semestre de la première année (S1) Module Crédits Nombre d heures Cours intégrés

Plus en détail

Les mathématiques en IUT

Les mathématiques en IUT . Plan de la présentation Les mathématiques en IUT Gérard GRÉGOIRE 1, Jean-Claude ORIOL 2 1 Département STID, IUT2 Grenoble 2 Département STID, IUT Lumière Lyon-Bron Conseil scientifique IREM Vendredi

Plus en détail

Master. en sciences et technologies mention mathématiques et applications

Master. en sciences et technologies mention mathématiques et applications Master en sciences et technologies mention mathématiques et applications master mathématiques et applications Contacts Nicolas Lerner lerner@math.jussieu.fr www.master.math.upmc.fr Master sciences et technologies

Plus en détail

COURS DE STATISTIQUES (24h)

COURS DE STATISTIQUES (24h) COURS DE STATISTIQUES (24h) Introduction Statistiques descriptives (4 h) Rappels de Probabilités (4 h) Echantillonnage(4 h) Estimation ponctuelle (6 h) Introduction aux tests (6 h) Qu est-ce que la statistique?

Plus en détail

Organisation du parcours M2 IR Les unités d enseignements (UE) affichées dans la partie tronc commun sont toutes obligatoires, ainsi que le stage et

Organisation du parcours M2 IR Les unités d enseignements (UE) affichées dans la partie tronc commun sont toutes obligatoires, ainsi que le stage et Organisation du parcours M2 IR Les unités d enseignements (UE) affichées dans la partie tronc commun sont toutes obligatoires, ainsi que le stage et l'anglais. L'étudiant a le choix entre deux filières

Plus en détail

Apprentissage Automatique

Apprentissage Automatique Apprentissage Automatique Introduction-I jean-francois.bonastre@univ-avignon.fr www.lia.univ-avignon.fr Définition? (Wikipedia) L'apprentissage automatique (machine-learning en anglais) est un des champs

Plus en détail

Master Informatique Aix-Marseille Université

Master Informatique Aix-Marseille Université Aix-Marseille Université http://masterinfo.univ-mrs.fr/ Département Informatique et Interactions UFR Sciences Laboratoire d Informatique Fondamentale Laboratoire des Sciences de l Information et des Systèmes

Plus en détail

Ma Licence à l ESTIM

Ma Licence à l ESTIM Ministère de l Enseignement Supérieur et de la Recherche Scientifique L Ecole Supérieure des Technologies d Informatique et de Management Ma Licence à l ESTIM Livret des études Année universitaire 2010-2011

Plus en détail

Heuristique et métaheuristique. 8. Optimisation combinatoire et métaheuristiques. Optimisation combinatoire. Problème du voyageur de commerce

Heuristique et métaheuristique. 8. Optimisation combinatoire et métaheuristiques. Optimisation combinatoire. Problème du voyageur de commerce Heuristique et métaheuristique IFT1575 Modèles de recherche opérationnelle (RO) 8. Optimisation combinatoire et métaheuristiques Un algorithme heuristique permet d identifier au moins une solution réalisable

Plus en détail

Le management de projet

Le management de projet OBJECTIFS Être capable de planifier, évaluer, planifier, organiser, démarrer, piloter, évaluer un projet simple Être capable de résoudre des problèmes d'optimisation dans les domaines de la logistique

Plus en détail

Hélène Desmier ab, Pascale Kuntz a & Ivan Kojadinovic a. Pauc, 44306 Nantes. {prenom.nom}@polytech.univ-nantes.fr

Hélène Desmier ab, Pascale Kuntz a & Ivan Kojadinovic a. Pauc, 44306 Nantes. {prenom.nom}@polytech.univ-nantes.fr Une classification hiérarchique de variables discrètes basée sur l information mutuelle en pré-traitement d un algorithme de sélection de variables pertinentes. Hélène Desmier ab, Pascale Kuntz a & Ivan

Plus en détail

Formation Actuaire Data-Scientist 4 JUILLET 2014

Formation Actuaire Data-Scientist 4 JUILLET 2014 Formation Actuaire Data-Scientist 4 JUILLET 2014 Objectifs de la formation Initier les participants aux méthodologies statistiques et informatiques en lien avec la manipulation de données massives. Sensibiliser

Plus en détail

Programme des épreuves des concours externes de recrutement des personnels techniques et administratifs de recherche et de formation

Programme des épreuves des concours externes de recrutement des personnels techniques et administratifs de recherche et de formation Programme des épreuves des concours externes de recrutement des personnels E1 RECRUTEMENT DES ASSISTANTS INGENIEURS DE RECHERCHE ET DE FORMATION...2 E1.1 Gestionnaire de base de données...2 E1.2 Développeur

Plus en détail

Filière Fouille de Données et Décisionnel FDD (Data Mining) Pierre Morizet-Mahoudeaux www.hds.utc.fr/~pmorizet pierre.morizet@utc.

Filière Fouille de Données et Décisionnel FDD (Data Mining) Pierre Morizet-Mahoudeaux www.hds.utc.fr/~pmorizet pierre.morizet@utc. Filière Fouille de Données et Décisionnel FDD (Data Mining) Pierre Morizet-Mahoudeaux www.hds.utc.fr/~pmorizet pierre.morizet@utc.fr Plan Motivations Débouchés Formation UVs spécifiques UVs connexes Enseignants

Plus en détail

Apprentissage statistique Stratégie du Data-Mining

Apprentissage statistique Stratégie du Data-Mining Apprentissage statistique Stratégie du Data-Mining Hélène Milhem Institut de Mathématiques de Toulouse, INSA Toulouse, France IUP SID, 2011-2012 H. Milhem (IMT, INSA Toulouse) Apprentissage statistique

Plus en détail

Programme de la licence informatique, université de Caen http://www.info.unicaen.fr

Programme de la licence informatique, université de Caen http://www.info.unicaen.fr Programme de la licence informatique, université de Caen http://www.info.unicaen.fr Unité Systèmes d'information CM : 45h - TD : 60h - TP : 12h - Coeff 2 Systèmes de Gestion de Bases de Données Modéliser

Plus en détail

Domaine de Formation : Sciences et Technologies Mention : Informatique Spécialité : Informatique de Gestion

Domaine de Formation : Sciences et Technologies Mention : Informatique Spécialité : Informatique de Gestion LICENCE FONDAMENTALE INFORMATIQUE DE GESTION Domaine de Formation : Sciences et Technologies Mention : Informatique Spécialité : Informatique de Gestion I. Présentation de la licence Le but de la Licence

Plus en détail

Stages 2015-2016 ISOFT : 25 ANS DE RECHERCHE EN INFORMATIQUE DECISIONNELLE ET. Contact : Mme Lapedra, stage@isoft.fr ANALYSE DE DONNEES

Stages 2015-2016 ISOFT : 25 ANS DE RECHERCHE EN INFORMATIQUE DECISIONNELLE ET. Contact : Mme Lapedra, stage@isoft.fr ANALYSE DE DONNEES Stages 2015-2016 Contact : Mme Lapedra, stage@isoft.fr ISOFT : 25 ANS DE RECHERCHE EN INFORMATIQUE DECISIONNELLE ET ANALYSE DE DONNEES ISoft est un concepteur-éditeur de logiciels spécialisé dans la recherche

Plus en détail

Analyse Quantitative et Qualitative de données textuelles. Normand Péladeau, Ph.D. Président Recherches Provalis

Analyse Quantitative et Qualitative de données textuelles. Normand Péladeau, Ph.D. Président Recherches Provalis Analyse Quantitative et Qualitative de données textuelles Normand Péladeau, Ph.D. Président Recherches Provalis Les Produits de Recherches Provalis SIMSTAT (1989) Analyses Statistiques Simstat v2.5 Les

Plus en détail

Fouille de Données et Media Sociaux Cours 2 Master DAC Data Science UPMC - LIP6

Fouille de Données et Media Sociaux Cours 2 Master DAC Data Science UPMC - LIP6 Fouille de Données et Media Sociaux Cours 2 Master DAC Data Science UPMC - LIP6 Ludovic Denoyer 21 septembre 2015 Ludovic Denoyer () FDMS 21 septembre 2015 1 / 1 Contexte Observation La plupart des bonnes

Plus en détail

Axe MSA Bilan scientifique et perspectives. ENSM.SE L. Carraro - 17 décembre 07

Axe MSA Bilan scientifique et perspectives. ENSM.SE L. Carraro - 17 décembre 07 Axe MSA Bilan scientifique et perspectives ENSM.SE L. Carraro - 17 décembre 07 17 décembre 07 2 Plan Compétences acquises domaines scientifiques compétences transverses Domaines ou activités accessibles

Plus en détail

Programme des épreuves des concours externes de recrutement des personnels techniques et administratifs de recherche et de formation

Programme des épreuves des concours externes de recrutement des personnels techniques et administratifs de recherche et de formation Programme des épreuves des concours externes de recrutement des personnels D1 RECRUTEMENT DES ASSISTANTS INGÉNIEURS...2 D1.1 Assistant cartographe (nouveau programme)...2 D1.2 Assistant en production et

Plus en détail

PROGRAMME DETAILLE. Parcours en première année en apprentissage. Travail personnel. 4 24 12 24 CC + ET réseaux

PROGRAMME DETAILLE. Parcours en première année en apprentissage. Travail personnel. 4 24 12 24 CC + ET réseaux PROGRAMME DETAILLE du Master IRS Parcours en première année en apprentissage Unités d Enseignement (UE) 1 er semestre ECTS Charge de travail de l'étudiant Travail personnel Modalités de contrôle des connaissances

Plus en détail

Analyse des réseaux sociaux et apprentissage

Analyse des réseaux sociaux et apprentissage Analyse des réseaux sociaux et apprentissage Emmanuel Viennet Laboratoire de Traitement et Transport de l Information Université Paris 13 - Sorbonne Paris Cité Réseaux sociaux? Réseaux sociaux? Analyse

Plus en détail

IHEC CARTHAGE. de l ouverture sur l environnement

IHEC CARTHAGE. de l ouverture sur l environnement LICENCES IHEC Directeur Directrice des études Directrice des stages et de l ouverture sur l environnement Slim KHALBOUS slim.khalbous@gnet.tn Salma DAMAK salmadamak@yahoo.fr Fatma KILANI fatmakilanihec@gmail.com

Plus en détail

Programme détaillé BTS INFORMATIQUE DE GESTION DIPLÔME D ETAT. Objectifs de la formation. Les métiers. Durée de la formation

Programme détaillé BTS INFORMATIQUE DE GESTION DIPLÔME D ETAT. Objectifs de la formation. Les métiers. Durée de la formation Objectifs de la formation Les inscriptions sont réservées aux élèves de niveau BAC ou plus, et sont ouvertes dans la mesure des places disponibles. Le Brevet de Technicien Supérieur d Informatique de Gestion

Plus en détail

L analyse d images regroupe plusieurs disciplines que l on classe en deux catégories :

L analyse d images regroupe plusieurs disciplines que l on classe en deux catégories : La vision nous permet de percevoir et d interpreter le monde qui nous entoure. La vision artificielle a pour but de reproduire certaines fonctionnalités de la vision humaine au travers de l analyse d images.

Plus en détail

Table des Matières. Table des Figures 7. Introduction Générale 9. Chapitre 1 - Langages de description d architectures matérielles hybrides 23

Table des Matières. Table des Figures 7. Introduction Générale 9. Chapitre 1 - Langages de description d architectures matérielles hybrides 23 Table des Figures 7 Introduction Générale 9 1. Outils et plate-formes de construction d application 9 2. Intégration de paradigmes de conception dans le cycle de vie 10 2.1. Equilibrage de charge et équilibrage

Plus en détail

Devenir chef de projet

Devenir chef de projet Durée : 24 jours 168 h OBJECTIFS La formation conduit le stagiaire à pouvoir occuper un poste de chef de projet. Interface avec la direction, il évalue, planifie et organise le projet. Puis il le démarre

Plus en détail

Base de données. Objectifs du cours 2014-05-20 COURS 01 INTRODUCTION AUX BASES DE DONNÉES

Base de données. Objectifs du cours 2014-05-20 COURS 01 INTRODUCTION AUX BASES DE DONNÉES 1 Base de données COURS 01 INTRODUCTION AUX BASES DE DONNÉES Objectifs du cours 2 Introduction aux bases de données relationnelles (BDR). Trois volets seront couverts : la modélisation; le langage d exploitation;

Plus en détail

Le Data Mining Techniques pour exploiter l information. Auteur : Dan Noël Date : 24.04.2009

Le Data Mining Techniques pour exploiter l information. Auteur : Dan Noël Date : 24.04.2009 Le Data Mining Techniques pour exploiter l information Auteur : Dan Noël Date : 24.04.2009 Agenda de la présentation du 26.03.2009 Concept de Data Mining ou qu est-ce que le Data Mining Déroulement d un

Plus en détail

LICENCE. Mention Mathématiques. BAC + 1 2 3 4 5 Domaine :

LICENCE. Mention Mathématiques. BAC + 1 2 3 4 5 Domaine : LICENCE 2013-2014 Mention 1. Editorial du responsable La licence de mathématiques est une filière interdisciplinaire à dominante mathématique. Elle propose une formation générale en mathématiques, indispensable

Plus en détail

Calendrier des examens - Session de contrôle Juin 2015 1 ère Année Licence Appliquée en Informatique de Gestion

Calendrier des examens - Session de contrôle Juin 2015 1 ère Année Licence Appliquée en Informatique de Gestion 1 ère Année 1 ère Année Licence Appliquée en Informatique de Gestion LUNDI 08/06/2015 MARDI 09/06/2015 MERCREDI 10/06/2015 JEUDI 11/06/2015 VENDREDI 12/06/2015 SAMEDI 13/06/2015 LUNDI 15/06/2015 MARDI

Plus en détail

Atelier «Très Haute Résolution Spatiale» Outils pour la reconnaissance des formes

Atelier «Très Haute Résolution Spatiale» Outils pour la reconnaissance des formes CNES Paris - 22/05/2003 Atelier «Très Haute Résolution Spatiale» Outils pour la reconnaissance des formes Michel DHOME LASMEA UMR 6602CNRS/UBP Clermont-Ferrand Etat de l art (communauté vision artificielle)

Plus en détail

Classification par des méthodes de data mining. Yawo Eli Amesefe Guillaume Cernier Christophe Labrousse

Classification par des méthodes de data mining. Yawo Eli Amesefe Guillaume Cernier Christophe Labrousse Classification par des méthodes de data mining Yawo Eli Amesefe Guillaume Cernier Christophe Labrousse Plan: Le processus métier Présentation des 3 méthodes étudiées: Arbres de décision Machines à vecteurs

Plus en détail

Les sections 6 et 7. du ComitéNational de la RechercheScientifique

Les sections 6 et 7. du ComitéNational de la RechercheScientifique Les sections 6 et 7 du ComitéNational de la RechercheScientifique (CoNRS) Frédérique Bassino et Michèle Basseville Plan Le comité national Les missions des sections Les sections 6 et 7 Le comiténational

Plus en détail

Agenda de la présentation

Agenda de la présentation Le Data Mining Techniques pour exploiter l information Dan Noël 1 Agenda de la présentation Concept de Data Mining ou qu est-ce que le Data Mining Déroulement d un projet de Data Mining Place du Data Mining

Plus en détail

M2, spécialité Ingénierie Mathématique Laboratoire de Mathématiques Jean Leray Département de Mathématiques Université de Nantes. Programme 2013-2014

M2, spécialité Ingénierie Mathématique Laboratoire de Mathématiques Jean Leray Département de Mathématiques Université de Nantes. Programme 2013-2014 M2, spécialité Ingénierie Mathématique Laboratoire de Mathématiques Jean Leray Département de Mathématiques Université de Nantes Programme 2013-2014 Contact : master-pro@math.univ-nantes.fr Option : CS

Plus en détail

Présentation de l épreuve

Présentation de l épreuve MÉTHODO Présentation de l épreuve 1. Programme de l arrêté du 22 décembre 2006 DURÉE DE L ENSEIGNEMENT ÉPREUVE N 11 CONTRÔLE DE GESTION (à titre indicatif) : 210 heures 18 crédits européens 1. Positionnement

Plus en détail

Concours interne de l agrégation du second degré. Section économie et gestion. Programme de la session 2013

Concours interne de l agrégation du second degré. Section économie et gestion. Programme de la session 2013 Concours interne de l agrégation du second degré Concours interne d accès à l échelle de rémunération des professeurs agrégés dans les établissements d enseignement privés sous contrat du second degré

Plus en détail

MTH8442 Ordonnancement de Plan production. (3-0-6) 3 cr

MTH8442 Ordonnancement de Plan production. (3-0-6) 3 cr MTH8442 Ordonnancement de Plan production de cours Automne 2008 (3-0-6) 3 cr Michel Gamache Local A-305.29 340-4711 poste 5920 michel.gamache@polymtl.ca François Soumis Local A-520.15 340-4711 poste 6044

Plus en détail

TABLE DES MATIÈRES CHAPITRE

TABLE DES MATIÈRES CHAPITRE TABLE DES MATIÈRES CHAPITRE 1 Le pilotage de la performance... 17 I. Du contrôle au pilotage de la performance... 17 A. Le contrôle de gestion traditionnel... 17 B. Le pilotage de la performance... 19

Plus en détail

MANAGEMENT DES SYSTEMES D INFORMATION ET DE PRODUCTION MSIP

MANAGEMENT DES SYSTEMES D INFORMATION ET DE PRODUCTION MSIP MANAGEMENT DES SYSTEMES D INFORMATION ET DE PRODUCTION MSIP METHODES & CONCEPTS POUR UNE INGENIERIE INNOVANTE Ecole Nationale Supérieure des Mines de Rabat Département INFORMATIQUE www.enim.ac.ma MANAGEMENT

Plus en détail