Énoncés des exercices

Documents pareils
Limites finies en un point

NOMBRES COMPLEXES. Exercice 1 :

INTRODUCTION. 1 k 2. k=1

Exo7. Limites de fonctions. 1 Théorie. 2 Calculs

Développements limités usuels en 0

Développements limités, équivalents et calculs de limites

Exercices - Nombres complexes : corrigé. Formes algébriques et trigonométriques, module et argument

Problèmes de Mathématiques Filtres et ultrafiltres

Chapitre 6. Fonction réelle d une variable réelle

Développements limités. Notion de développement limité

Comparaison de fonctions Développements limités. Chapitre 10

Chapitre 3. Quelques fonctions usuelles. 1 Fonctions logarithme et exponentielle. 1.1 La fonction logarithme

Dérivation : cours. Dérivation dans R

I. Polynômes de Tchebychev

Pour l épreuve d algèbre, les calculatrices sont interdites.

Image d un intervalle par une fonction continue

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours.

EXERCICE 4 (7 points ) (Commun à tous les candidats)

Première partie. Préliminaires : noyaux itérés. MPSI B 6 juin 2015

Continuité en un point

Correction de l examen de la première session

Mesure d angles et trigonométrie

Exercices - Polynômes : corrigé. Opérations sur les polynômes

Chapitre 1 : Évolution COURS

Les travaux doivent être remis sous forme papier.

CCP PSI Mathématiques 1 : un corrigé

Représentation géométrique d un nombre complexe

Continuité et dérivabilité d une fonction

Planche n o 22. Fonctions de plusieurs variables. Corrigé

Mathématiques I Section Architecture, EPFL

Cours de mathématiques Première année. Exo7

Théorème du point fixe - Théorème de l inversion locale

La maison Ecole d ' Amortissement d un emprunt Classe de terminale ES. Ce qui est demandé. Les étapes du travail

O, i, ) ln x. (ln x)2

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer

Rappels et compléments, première partie : Nombres complexes et applications à la géométrie

III- Raisonnement par récurrence

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable

Cours d Analyse I et II

DÉRIVÉES. I Nombre dérivé - Tangente. Exercice 01 (voir réponses et correction) ( voir animation )

spé MP POLYCOPIÉ D EXERCICES

Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures)

Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé

Mathématiques Algèbre et géométrie

UEO11 COURS/TD 1. nombres entiers et réels codés en mémoire centrale. Caractères alphabétiques et caractères spéciaux.

Taux d évolution moyen.

Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre

Correction du Baccalauréat S Amérique du Nord mai 2007

Cours3. Applications continues et homéomorphismes. 1 Rappel sur les images réciproques

Probabilités conditionnelles Exercices corrigés

Capes Première épreuve

Dérivation : Résumé de cours et méthodes

Cours arithmétique et groupes. Licence première année, premier semestre

Nombres complexes. cours, exercices corrigés, programmation

Exercice 1 Trouver l équation du plan tangent pour chaque surface ci-dessous, au point (x 0,y 0,z 0 ) donné :

La fonction exponentielle

Problème 1 : applications du plan affine

I. Ensemble de définition d'une fonction

Dérivées d ordres supérieurs. Application à l étude d extrema.

Commun à tous les candidats

CHAPITRE IV Oscillations libres des systèmes à plusieurs degrés de liberté

Fonctions de deux variables. Mai 2011

Chapitre 0 Introduction à la cinématique

Quelques contrôle de Première S

BACCALAURÉAT GÉNÉRAL SESSION 2012 OBLIGATOIRE MATHÉMATIQUES. Série S. Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE

LE PRODUIT SCALAIRE ( En première S )

4. NOMBRES COMPLEXES ET TRIGONOMÉTRIE

Exo7. Matrice d une application linéaire. Corrections d Arnaud Bodin.

Développements limités

De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que

Fonctions Analytiques

Exprimer ce coefficient de proportionnalité sous forme de pourcentage : 3,5 %

= 1 si n = m& où n et m sont souvent des indices entiers, par exemple, n, m = 0, 1, 2, 3, 4... En fait,! n m

Intégration et probabilités TD1 Espaces mesurés

Intégration et probabilités TD1 Espaces mesurés Corrigé

Raisonnement par récurrence Suites numériques

Probabilités sur un univers fini

Correction du baccalauréat ES/L Métropole 20 juin 2014

Correction du baccalauréat S Liban juin 2007

aux différences est appelé équation aux différences d ordre n en forme normale.

Exercices Corrigés Premières notions sur les espaces vectoriels

Caractéristiques des ondes

G.P. DNS02 Septembre Réfraction...1 I.Préliminaires...1 II.Première partie...1 III.Deuxième partie...3. Réfraction

Continuité d une fonction de plusieurs variables

FONCTION EXPONENTIELLE ( ) 2 = 0.

Probabilités sur un univers fini

CHAPITRE 10. Jacobien, changement de coordonnées.

Introduction à l étude des Corps Finis

Chapitre 2 Le problème de l unicité des solutions

Cours de Mécanique du point matériel

Partie 1 - Séquence 3 Original d une fonction

Mais comment on fait pour...

Cours de mathématiques

Corrigé des TD 1 à 5

chapitre 4 Nombres de Catalan

EXERCICES - ANALYSE GÉNÉRALE

Université Paris-Dauphine DUMI2E 1ère année, Applications

Equations différentielles linéaires à coefficients constants

OLYMPIADES ACADEMIQUES DE MATHEMATIQUES. 15 mars 2006 CLASSE DE PREMIERE ES, GMF

Fonctions de plusieurs variables et applications pour l ingénieur

Transcription:

Énoncés Énoncés des eercices Eercice [ Indication ] [ Correction ] Calculer la dérivée n-ième de f n ( = n ln, avec n Eercice 2 [ Indication ] [ Correction ] Calculer la dérivée n-ième de f( = sin( cos α e sin α On proposera deu démonstrations différentes Eercice 3 [ Indication ] [ Correction ] On pose y( = arctan Montrer que y (n ( = (n! cos n y sin(ny + n π 2 Eercice 4 [ Indication ] [ Correction ] Calculer les zéros de la dérivée n-ième de f( = + 2 Eercice 5 [ Indication ] [ Correction ] Pour tout entier naturel n, établir que dn d n ] n+/2 dn+ [(4 d n+ e = e Page Jean-Michel Ferrard wwwklubprepanet c EduKlub SA Fichier généré pour Visiteur (, le 04/0/207

Indications, résultats Indications ou résultats Indication pour l eercice [ Retour à l énoncé ] On a f n+ ( = f n ( Montrer par récurrence que f n (n ( s écrit sous la forme a n Vérifier que a n+ = na n pour tout n En déduire f (n n ( = Indication pour l eercice 2 [ Retour à l énoncé ] (n! Première méthode : remarquer que f ( = sin(α + sin α e cos α Prouver par récurrence que f (n ( = sin(nα + sin α e cos α Deuième méthode : remarquer que f( = Im g( avec g( = e ω et ω = e iα Indication pour l eercice 3 [ Retour à l énoncé ] Procéder par récurrence sur n, en remarquant d abord que y = cos 2 y Indication pour l eercice 4 [ Retour à l énoncé ] Remarquer que f( = ( + i( i = i ( 2 + i i En déduire f (n ( = i( n n!(( i n+ ( + i n+ 2( 2 + n+ Chercher ensuite les zéros du polynôme P n ( = ( i n+ ( + i n+ On trouve n solutions distinctes : les k = cotan θ k, avec avec θ k = Indication pour l eercice 5 [ Retour à l énoncé ] Poser y = e, z n = (4 n+/2 y (n+, puis établir z (n n kπ n + = y par récurrence Pour celà, montrer que 4y + 2y y = 0, égalité qu on dérivera n fois En déduire z + 2z 0 2y = 0 et pour n : z n+ + (4n + 2z n 4z n = 0 Enfin, dériver n + fois l égalité précédente et k n Page 2 Jean-Michel Ferrard wwwklubprepanet c EduKlub SA Fichier généré pour Visiteur (, le 04/0/207

des eercices Corrigé de l eercice [ Retour à l énoncé ] On vérifie que f ( = (ln = et f 2 ( = ( ln = ( + ln = Montrons par récurrence que pour tout n, il eiste a n IR tel que g n ( = f n (n ( = a n C est vrai si n = Supposons que ce le soit pour un entier n fié Alors : g n+ ( = f (n+ n+ ( = (f n ( (n+ ( = f n (n+ ( + (n + f n (n ( = g n( + (n + g n ( = a n + (n + a n = na n Ainsi il eiste a n+ tel que g n+ ( = f (n+ n+ ( = a n+, avec a n+ = na n Cela prouve la propriété au rang n + et achève la récurrence De plus la relation a n+ = na n et l égalité a = donnent n, a n = (n! Conclusion : pour tout n, on a f (n n ( = Corrigé de l eercice 2 [ Retour à l énoncé ] On calcule la dérivée première de f : (n! f ( = ((sin α cos( sin α + (cos α sin( sin α e cos α = sin(α + sin α e cos α Montrons que pour tout entier n, on a f (n ( = sin(nα + sin α e cos α La propriété est vraie pour n = 0 et n = Supposons qu elle le soit pour un entier n 0 donné On en déduit : f (n+ ( = d d (sin(nα + sin α e cos α = ((sin α cos(nα + sin α + (cos α sin(nα + sin α e cos α = sin((n + α + sin α e cos α ce qui prouve la propriété au rang n + et achève la récurrence Il y a une autre démonstration, qui utilise les fonctions à valeurs complees On a en effet f( = Im g( avec g( = e i sin α e cos α = e ω avec ω = e iα On a alors, pour tout n, g (n ( = ω n e ω = e inα e ω = ep(i(nα + cos α e cos α On en déduit, pour tout n de IN : f (n ( = Im g (n ( = Im (ep(i(nα + cos α e cos α = sin(nα + sin α e cos α Page 3 Jean-Michel Ferrard wwwklubprepanet c EduKlub SA Fichier généré pour Visiteur (, le 04/0/207

Corrigé de l eercice 3 [ Retour à l énoncé ] On procède par récurrence sur l entier n Pour n =, on a : (n! cos n y sin(ny + n π 2 = cos y sin(y + π 2 = cos2 y = La propriété est donc vraie pour n = + tan 2 y = + = 2 y ( Supposons qu elle le soit au rang n fié On a alors : y (n+ ( = (n! d d (cos n y sin(ny + n π 2 = (n! y ( ( n sin y sin(ny + n π 2 + n cos y cos(ny + nπ 2 cos (n (y = n! cos 2 (y (cos((n + y + n π 2 cos (n (y = n! cos (n+ (y sin((n + y + (n + π 2 Ce qui établit la propriété au rang n + et achève la récurrence Corrigé de l eercice 4 [ Retour à l énoncé ] On utilise une décomposition en éléments simples dans lc(x Pour tout de IR, on a On sait que la dérivée n-ième de f (n ( = i( n n! ( 2 + = 2 ( + i( i = i 2 ( + i n+ ( i n+ ( + i i + α est ( n n! On en déduit : ( + α n+ = i( n n!(( i n+ ( + i n+ 2( 2 + n+ Les zéros de f (n ( sont donc ceu du polynôme P n ( = ( i n+ ( + i n+ On note w k = ep 2iθ k, avec θ k = kπ, avec 0 k n n + Les ω k sont les n + racines (n + -ièmes de l unité (en particulier z 0 = On rappelle que pour tout u, v dans lc, on a u n+ = v n+ k {0,, n}, u = ω k v Pour tout z de lc, on peut donc écrire : P n (z = 0 (z i n+ = (z + i n+ k {0,, n}, z i = ω k (z + i k {,, n}, z = i + ω k ω k = i + e2iθk e 2iθ k Les θ k forment une suite strictement croissante de ]0, π[ = i 2 cos θ k 2i sin θ k = cotan θ k Ainsi f (n possède n zéros distincts sur IR qui sont les k = cotan θ k, avec k n Page 4 Jean-Michel Ferrard wwwklubprepanet c EduKlub SA Fichier généré pour Visiteur (, le 04/0/207

Corrigé de l eercice 5 [ Retour à l énoncé ] On pose y = e, et z n = (4 n+/2 y (n+ On trouve tout d abord y = y 2 puis y = y 2 y 4 = y 4 y 2 On en déduit l égalité 4y + 2y y = 0 On dérive n fois l égalité précédente On trouve 4y (n+2 + 4ny (n+ + 2y (n+ y (n = 0 donc 4y (n+2 + (4n + 2y (n+ y (n = 0 On multiplie membre à membre par (4 n+/2 On trouve (4 n+3/2 y (n+2 + (4n + 2(4 n+/2 y (n+ 4(4 n /2 y (n = 0 { z + 2z 0 2 y = 0 si n = 0 Autrement dit : z n+ + (4n + 2z n 4z n = 0 si n On dérive n + fois la dernière égalité Pour tout n, on pose Z n = z (n n On trouve z (n+ n+ + (4n + 2z n (n+ 4z (n+ n 4(n + z (n n = 0 Autrement dit Z n+ + (4n + 2Z n 4Z n 4(n + Z n = 0 Il reste à montrer que Z n = y et pour cela on procède par récurrence sur n Tout d abord Z 0 = z 0 = 2 y ( qui est bien égal à y D autre part Z = z = (8 y et on sait que y = y 2 y 4 On en déduit 8 y = 4y 2y puis (8 y = 4y + 2y = y Ainsi la propriété est vraie au rangs n = 0 et n = Supposons qu elle le soit au rangs n et n (n donné Ainsi Z n = Z n = y Alors Z n+ + (4n + 2Z n 4Z n 4(n + Z n = 0 devient Z n+ = 4y + 2y = y Cela établit la propriété au rang n + et achève la récurrence Page 5 Jean-Michel Ferrard wwwklubprepanet c EduKlub SA Fichier généré pour Visiteur (, le 04/0/207