Exercices - Nombres complexes : corrigé. Formes algébriques et trigonométriques, module et argument



Documents pareils
NOMBRES COMPLEXES. Exercice 1 :

Représentation géométrique d un nombre complexe

Rappels et compléments, première partie : Nombres complexes et applications à la géométrie

Exercices - Polynômes : corrigé. Opérations sur les polynômes

Correction du Baccalauréat S Amérique du Nord mai 2007

Baccalauréat S Nombres complexes Index des exercices sur les complexes de septembre 1999 à juin 2012 Tapuscrit : DENIS VERGÈS

1 radian. De même, la longueur d un arc de cercle de rayon R et dont l angle au centre a pour mesure α radians est α R. R AB =R.

Nombres complexes. cours, exercices corrigés, programmation

4. NOMBRES COMPLEXES ET TRIGONOMÉTRIE

LE PRODUIT SCALAIRE ( En première S )

Corrigé du baccalauréat S Pondichéry 12 avril 2007

Angles orientés et trigonométrie

Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé

Corrigé du baccalauréat S Asie 21 juin 2010

I. Polynômes de Tchebychev

Pour l épreuve d algèbre, les calculatrices sont interdites.

Correction du baccalauréat S Liban juin 2007

1S Modèles de rédaction Enoncés

Cours de mathématiques Première année. Exo7

Quelques contrôle de Première S

Cours arithmétique et groupes. Licence première année, premier semestre

TOUT CE QU IL FAUT SAVOIR POUR LE BREVET

I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES

Angles orientés et fonctions circulaires ( En première S )

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer

Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en Énoncé.

Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes.

Si deux droites sont parallèles à une même troisième. alors les deux droites sont parallèles entre elles. alors

5 ème Chapitre 4 Triangles

Introduction. Mathématiques Quantiques Discrètes

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable

Cours d Analyse. Fonctions de plusieurs variables

Correction de l examen de la première session

Planche n o 22. Fonctions de plusieurs variables. Corrigé

Fonctions de plusieurs variables

Exprimer ce coefficient de proportionnalité sous forme de pourcentage : 3,5 %

Chapitre 2. Matrices

DOCM Solutions officielles = n 2 10.

Mathématiques Algèbre et géométrie

Construction d un cercle tangent à deux cercles donnés.

Exo7. Matrice d une application linéaire. Corrections d Arnaud Bodin.

Limites finies en un point

3 Approximation de solutions d équations

Probabilités sur un univers fini

Mesure d angles et trigonométrie

De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que

Correction : E = Soit E = -1,6. F = 12 Soit F = y = 11. et G = -2z + 4y G = 2 6 = 3 G = G =

Mathématiques I Section Architecture, EPFL

Capes Première épreuve

Introduction à l étude des Corps Finis

Exo7. Limites de fonctions. 1 Théorie. 2 Calculs

Continuité en un point

La géométrie du triangle III IV - V Cercles remarquables - Lieux géométriques - Relations métriques

PROBLEME(12) Première partie : Peinture des murs et du plafond.

AC AB. A B C x 1. x + 1. d où. Avec un calcul vu au lycée, on démontre que cette solution admet deux solutions dont une seule nous intéresse : x =

Développements limités usuels en 0

Durée de L épreuve : 2 heures. Barème : Exercice n 4 : 1 ) 1 point 2 ) 2 points 3 ) 1 point

DURÉE DU JOUR EN FONCTION DE LA DATE ET DE LA LATITUDE

Chapitre 0 Introduction à la cinématique

Géométrie dans l espace Produit scalaire et équations

CONJUGUÉ D'UN POINT PAR RAPPORT À UN TRIANGLE

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours.

Mais comment on fait pour...

Items étudiés dans le CHAPITRE N5. 7 et 9 p 129 D14 Déterminer par le calcul l'antécédent d'un nombre par une fonction linéaire

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

Cours 02 : Problème général de la programmation linéaire

Chapitre 11. Séries de Fourier. Nous supposons connues les formules donnant les coefficients de Fourier d une fonction 2 - périodique :

Cours d Analyse I et II

Exo7. Calculs de déterminants. Fiche corrigée par Arnaud Bodin. Exercice 1 Calculer les déterminants des matrices suivantes : Exercice 2.

Séquence 2. Repérage dans le plan Équations de droites. Sommaire

Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications

Probabilités sur un univers fini

L ALGORITHMIQUE. Algorithme

Baccalauréat L spécialité, Métropole et Réunion, 19 juin 2009 Corrigé.

Le théorème de Thalès et sa réciproque

Fonctions de plusieurs variables

Calcul intégral élémentaire en plusieurs variables

I. Ensemble de définition d'une fonction

La médiatrice d un segment

Définition 0,752 = 0,7 + 0,05 + 0,002 SYSTÈMES DE NUMÉRATION POSITIONNELS =

Séquence 10. Géométrie dans l espace. Sommaire

STATIQUE GRAPHIQUE ET STATIQUE ANALYTIQUE

Structures algébriques

8.1 Généralités sur les fonctions de plusieurs variables réelles. f : R 2 R (x, y) 1 x 2 y 2

Développements limités

Image d un intervalle par une fonction continue

Deux disques dans un carré

Activités numériques [13 Points]

COURS EULER: PROGRAMME DE LA PREMIÈRE ANNÉE

avec des nombres entiers

aux différences est appelé équation aux différences d ordre n en forme normale.

III- Raisonnement par récurrence

Vecteurs. I Translation. 1. Définition :

Méthodes de quadrature. Polytech Paris-UPMC. - p. 1/48

Fonctions de deux variables. Mai 2011

Polynômes à plusieurs variables. Résultant

Développements limités, équivalents et calculs de limites

Calcul différentiel sur R n Première partie

Chapitre 3. Quelques fonctions usuelles. 1 Fonctions logarithme et exponentielle. 1.1 La fonction logarithme

Dérivation : cours. Dérivation dans R

Transcription:

Formes algébriques et trigonométriques, module et argument Exercice - - L/Math Sup - On multiplie le dénominateur par sa quantité conjuguée, et on obtient : Z = 4 i 3 + i 3 i 3 = 4 i 3 + 3 = + i 3. Pour mettre sous forme trigonométrique, on met le module en facteur : Z = + 3 =, d où Z = 3 + = e iπ/3. Pour calculer Z 3, on utilise cette dernière forme et il vient Z 3 = 3 e 3iπ/3 = 8. Exercice - - L/Math Sup - On a, en factorisant par l angle moitié et en utilisant les formules d Euler, + e iθ = cosθ/e iθ/. On en déduit que + z = cosθ/ > 0 car θ/ ]0, π/[, puis qu un argument de + z est θ/. Pour l autre complexe, on commence par transformer son écriture en remarquant qu il s agit du début d une somme géométrique. Puisque e iθ, on a + z + z = z3 z = e3iθ e iθ. En raisonnant comme précédemment, on trouve + z + z = e3iθ/ i sin3θ/ e iθ/ i sinθ/ = sin3θ/ sinθ/ eiθ. Il faut maintenant faire attention aux signes! Si θ ]0, π/3[, alors sin3θ// sinθ/ > 0, et donc le module de + z + z est bien, son argument est θ. sin3θ/ sinθ/ Si θ = π/3, + z + z = 0, de module nul et d argument non défini. Si θ ]π/3, π[, alors sin3θ// sinθ/ < 0, et donc on doit écrire + z + z = sin3θ/ sinθ/ eiθ = sin3θ/ sinθ/ eiθ+π. Le module dans ce cas est donc sin3θ/ sinθ/, et l argument, modulo π, est θ + π. http://www.bibmath.net

Exercice 3 - - L/Math Sup - On commence par passer par la forme trigonométrique : + i 3 = + i 3 i On en déduit que + i 3 i i = eiπ/3 e iπ/4 = e i7π/. 0 = 0 e i 40π = 0 e i 70π 6 = 0 e i 5π 3 = 9 i 3. Exercice 4 - - L/Math Sup - On commence par écrire + i 3 sous forme trigonométrique : En prenant la puissance n-ième, on trouve + i 3 = e iπ/3. + i 3 n = n e inπ/3. Ceci est un réel positif si et seulement si sinnπ/3 = 0 et cosnπ/3 0. Or, sinnπ/3 = 0 si et seulement si n = 3k, k Z. Mais, pour ces valeurs de n, on a cosnπ/3 = coskπ, et ceci est positif si et seulement si k est pair. Ainsi, les entiers qui conviennent sont les multiples de 6. Exercice 5 - - L/Math Sup - On écrit z = e iθ, z = e iθ et on utilise les formules d Euler en mettant en facteur e i θ+θ en facteur au numérateur et au dénominateur. Il vient z + z + zz = eiθ + e iθ + e iθ+θ On obtient bien un nombre réel, de module θ θ ei + e = e i θ+θ + e = cos θ θ. cos cos θ+θ θ θ cos θ+θ. θ θ i θ+θ i Exercice 6 - - L/Math Sup - On peut faire un raisonnement algébrique, en posant z = x+iy et en calculant effectivement les deux modules. Voici un raisonnement plus géométrique. Soit A le point d affixe i, B le point d affixe i, et M le point d affixe z. Alors z i est la longueur AM, z + i est la longueur BM, et la condition recherchée est AM = BM, c est-à-dire M est sur la médiatrice de [AB], soit encore M sur l axe réel, soit z réel. http://www.bibmath.net

Exercice 7 - - L/Math Sup - De z = z, on tire que z =, donc que z =, c est-à-dire que z = e iθ, où θ [0, π[. Calculons maintenant le module de z. On écrit z = e iθ = e iθ/ e iθ/ e iθ/ = i sinθ/e iθ/. Le module de z vaut donc si et seulement si sinθ/ = /. L équation sinθ/ = /, avec θ [0, π[ donne θ = π/3 ou θ = 5π/3. L équation sinθ/ = / avec θ [0, π[ n a pas de solutions. L ensemble des solutions est donc {e iπ/3, e iπ/3 }. Exercice 8 - Automorphisme du disque - L/Math Sup -. Il suffit de développer les modules au carré. Précisément, on a : z a āz = āz z a āz = āz a z a z z a + āz + a z āz = a z z a āz = a z āz.. On commence par remarquer que : z a āz z a āz. Ensuite, on a d après la question précédente z a āz = a z āz. Ainsi, on a l équivalence : z a āz a z āz 0. Or, a 0 et āz 0. On a donc la propriété voulue si et seulement si z 0 z. Exercice 9 - Homographie - L/Math Sup - Supposons d abord que z =. Alors z s écrit z = e iθ, avec θ R\πZ. On peut alors écrire : + z z = + eiθ e iθ = eiθ/ e iθ/ + e iθ/ e iθ/ e iθ/ e iθ/ = cosθ/ i sinθ/ = icosθ/ sinθ/ qui est bien un élément de ir. Remarquons que l on a le droit d effectuer ce calcul car sinθ/ ne s annule pas. http://www.bibmath.net 3

Réciproquement, supposons que +z z = ia, avec a un réel. On va exprimer z en fonction de a, puis calculer son module. Il vient : + z z On en déduit que = ia + z = ia z z + ia = + ia z = + ia + ia. ce qui prouve la réciproque. + ia + a + ia = =, + a Exercice 0 - Somme et différence - L/Math Sup - L idée est de passer au carré, et de développer. z + z = z z z + z = z z z + z + Rezz = z + z Rezz. En simplifiant par les termes égaux, ceci est donc équivalent à Rezz = 0. Or, zz = ρρ e iθ θ. Ceci a une partie réelle nulle si et seulement si cosθ θ = 0, c est-à-dire si et seulement si θ = θ + π [π]. Exercice - Égalité dans l inégalité triangulaire - L/Math Sup - On va prouver que la propriété est vraie si et seulement s il existe des réels positifs λ i tels que z i = λ i z. Un sens est facile. En effet, si z i = λ i z, alors z + + z n = z + λ + + λ n = z + λ z + + λ n z = z + + z n. Réciproquement, on va prouver par récurrence sur n que si z + + z n = z + + z n, alors il existe des réels positifs λ i, i n tels que z i = λ i z. On commence par traiter le cas n =, et on suppose que z + z = z + z. Notons u = z /z. Alors on a + u = + u, et en écrivant u = x + iy, on obtient + u = + x + y = + u + x et + u = + u + u. On a donc x = u, ce qui entraine que y = 0 et que u est un réel positif. Le cas n = est donc prouvé. Supposons maintenant la propriété prouvée au rang n et prouvons-la au rang n. On commence par remarquer que z + + z n = z + + z n. En effet, si on avait z + + z n < z + + z n, on aurait aussi z + + z n z + + z n + z n < z + + z n + z n, ce qui contredit l hypothèse initiale. Par hypothèse de récurrence, on sait que pour i {,..., n }, il existe λ i > 0 tel que z i = λ i z. Mais alors il vient z + + z n = + + λ n z + z n = + + λ n z + z n. On applique alors le cas n =, et on trouve que z n = µ n + + λ n z avec µ n > 0. On a le résultat voulu, quitte à poser λ n = µ n + + λ n. http://www.bibmath.net 4

Equations et racines n-ièmes Exercice - Exponentielle - L/Math Sup - Posons z = a + ib, a, b R. Alors e z = e a e ib. Ceci nous incite à mettre 3 3 3i sous forme trigonométrique. On obtient 3 3 3i = 7 + 9 = 6. Il vient 3 3 3i = 6 3 i = 6e iπ/6. On obtient alors exp a = 6 et b = iπ/6 + kπ, k Z. Les solutions de l équation sont donc les nombres complexes ln6 + i π 6 + kπ, k Z. Exercice 3 - Racine carrée d un nombre complexe - L/Math Sup - La méthode est toujours la même. On pose z = a + ib, de sorte que z = a b + iab. L équation z = 3 + 4i est donc équivalente à { a b = 3 ab = 4 On peut ajouter une troisième équation en remarquant que z = 3 + 4i a + b = 3 + 6 = 5. On trouve alors a = 8, soit a = ± et b =, soit b = ±. L équation ab = 4 oblige a et b à avoir même signe, et donc les deux solutions sont + i et i. Pour l équation z = 8 6i, on peut suivre une méthode exactement identique, et les solutions sont cette fois 3 i et 3 + i. Exercice 4 - Racine carré de deux façons - L/Math Sup - Soit w = a + ib tel que w = Z. On obtient le système Il vient a = a b = 3 ab = a + b = 3 + i[=. 3+ et b = 3. Puisque a et b ont le même signe, les solutions sont donc 3 3 + + w = + i 3 et w = Pour la résolution sous forme trigonométrique, on remarque que 3 Z = + i = e iπ/6. Les racines carrées de Z sont donc w = e iπ/ et w = e iπ/. i 3. http://www.bibmath.net 5

Comme les deux calculs donnent le même résultat, en identifiant les parties réelles, on trouve : 3 π + cos =, d où on tire : 3 π cos = + 6 + =. 4 Exercice 5 - Équations du second degré - L/Math Sup -. Le discriminant de cette équation du second degré vaut : = i 4 + i = 8i. Une racine carré de est donnée par δ = i e iπ/4 = + i. En appliquant les formules du cours, on trouve que les racines sont : i + i = + i et i + i =.. Le discriminant de cette équation du second degré est : = 4i 3 4ii 5 = 4i 3. On en cherche une racine carrée sous la forme δ = a + ib. Calculant δ, et utilisant aussi la relation δ = 4i 3 = 5, on trouve le système : a b = 3 ab = 4 a + b = 5 On en déduit que δ = i est solution de δ = l autre solution est + i. Utilisant les formules du cours, les racines de l équation initiale sont donc : 4i + 3 + i i = 3 i et 4i + 3 + i i = i. 3. Le discriminant de cette équation vaut 7 + i 4 + 3i = i. Une racine carré de ce discriminant est + i. Les racines de l équation sont donc : 7 + i i = 3 et 7 + i + + i = 4 + i. Exercice 6 - Racines n-ièmes - L/Math Sup - C est du cours! http://www.bibmath.net 6

. On a i = e iπ/, et donc z 5 = i = e iπ/ on obtient 5 racines distinctes pour k = 0,..., 4.. On a On en déduit que Finalement, 3. On a z 6 = z = e ikπ 5 iπ 0, k Z; + i 3 3 = + i = e iπ/3. 4 + i 3 = e iπ/3 = e iπ/3. 4 + i 3 z = /6 e ikπ 3 + π 9, k Z. + i 3 4 + i = 4 L équation qu on doit résoudre est donc : z 5 = 3 e i 5π 6 4 + i 3 + i π 3 4 = 3 ei e i π 4. z 5 =. 3/5 e iπ/6 On en déduit que les solutions sont les complexes de la forme z = 3/5 e i π 6 + ikπ 5, k Z. Exercice 7 - Qui se ramènent aux puissances... - L/Math Sup -. n est pas solution, et l équation est donc équivalente à z + 5 =. z Posons w = z+ w+ z, c est-à-dire z = w. On a w5 = si et seulement s il existe k {0,..., 4} tel que w = e ikπ/5. On a donc z = eikπ/5 + e ikπ/5. On peut encore simplifier en utilisant les formules d Euler : De même, on trouve exp ikπ 5 + = exp ikπ 5 + exp 0 = exp ikπ 5 exp ikπ 5 = exp ikπ 5 coskπ/5. kπ exp 5 = i exp + exp ikπ 5 ikπ sinkπ/5. 5 L ensemble des solutions est donc { icotankπ/5; k = 0,..., 4}. http://www.bibmath.net 7

. Puisque z = z, on a z n = et donc z =. On peut donc poser z = e iθ et l équation devient e inθ = e iθ e in+θ = θ = ikπ/n +, k {0,..., n }. 3. Posons w = z+ z. L équation devient w3 + w 3 e iπ/6+kπ/3, k = 0,..., 5. = 0, soit w 6 = = e iπ. Ses racines sont On retrouve alors z car z = w+ w. Pour k = ou k = 4, on trouve z = ±i. Pour les autres valeurs de k, on trouve z = ±i ± 3. 4. Remarquons que z = n est pas racine de l équation. On reconnait alors le début de la somme géométrique de raison z. L équation est donc équivalente à z 5 + z = 0 z 5 = = e iπ. Les solutions sont donc les complexes de la forme e i +kπ 5, k = 0,..., 5. 5. On commence par écrire : + z + + z n + z n = + z + + z n + z + + z n. On reconnait deux sommes géométriques de raison z. Comme z = n est pas solution de l équation, celle-ci est équivalente à z n z + z zn+ z = 0 z n + z z n+ = 0 + z z n = 0. Les solutions sont donc z = et les racines n-ièmes de l unité, excepté. Autrement dit, et e ikπ/n, k =,..., n. 6. Remarquons d abord que z = i n est pas solution de l équation. Ainsi, l équation est équivalente à z + i n =. z i Ceci est équivalent à dire qu il existe k {0,..., n } tel que z + i z i = ω k, en notant ω k = e ikπ/n. Pour k = 0, ω k = et l équation z+i z i Sinon, pour k =,..., n, on obtient les solutions = n a pas de solutions. z k = i ω k + ω k. Exercice 8 - Degré plus grand! - L/Math Sup - http://www.bibmath.net 8

. On commence par poser u = z 4, et l équation devient iu +iu++i = 0. Son discriminant est = 4i + i = 3 4i. On cherche une racine carrée δ de en posant δ = a + ib, en utilisant δ = et δ = = 5, et on trouve qu une des deux racines est δ = i. Les racines de l équation iu + iu + = 0 sont donc les complexes u = i + i i = i et u = i + i i = i. Reste à résoudre les équations z 4 = u et z 4 = u. Pour cela, on pose z = re iθ et on remarque que u = e iπ/ et que u = e i5π/4. On en déduit z 4 = e iπ/ z = e iπ/8+kπ/, k = 0,..., 3; z 4 = e i5π/4 z = /8 e i5π/6+kπ/, k = 0,..., 3.. Soit x une racine réelle, ie 4ix 3 ++3ix 5+4ix+3 7i = 0. Partie réelle et partie imaginaire du membre de gauche doivent être nulles, on obtient donc après identification : { x 5x + 3 = 0 4x 3 + 6x 4x = 0. Il est facile de résoudre la première équation et de vérifier si on obtient une racine de l autre équation. On trouve que 3/ est racine. On factorise alors le polynôme par z 3/, et on trouve par exemple en procédant par identification : 4iz 3 + + 3iz 5 + 4iz + 3 7i = z 3/ 4iz + + 6iz + + 7i. Reste à résoudre ensuite l équation : dont les solutions sont + 3 i et i. 4iz + + 6iz + + 7i = 0 Exercice 9 - Somme et puissances de racines n-iemes - L/Math Sup -. Les racines n-ièmes de l unité sont les complexes ω k, avec k = 0,..., n. Leur produit vaut donc : n ω k n = ω k = ω nn / = e iπn = n résultat qu on vérifie facilement pour n =,, 3, 4.. On a ici une somme géométrique de raison ω p. Si p est un multiple de n, la raison est donc égale à, et la somme fait n. Sinon, on a puisque ω n =. n ω kp = ωnp ω = 0 http://www.bibmath.net 9

3. On développe la puissance à l intérieur de la somme en utilisant la formule du binôme de Newton, et on trouve : n + ω k n = = n n n ω kj p p=0 n n On utilise le résultat de la question précédente, qui nous dit que la somme n ωkp sera non-nulle si et seulement si p = 0 ou n, auquel la cas la somme fait n. Puisque n+n = n, on obtient le résultat attendu. Application au calcul de sommes et à la trigonométrie p=0 n p ω kp. Exercice 0 - Linéariser - L/Math Sup - On écrit : e cos 5 ix + e ix 5 x = = e 5ix + 5e i3x + 0e ix + 0e ix + 5e i3x + e i5x 3 Le même raisonnement donne = 6 cos5x + 5 cos3x + 0 cos x. Pour la dernière expression, on procède ainsi : cos x sin 3 x = sin 5 x = 6 sin5x 5 sin3x + 0 sinx. e ix + e ix e ix e ix i 3 = eix + + e ix e3ix 3e ix + 3e ix e 3ix 4 8i = e5ix e 3ix e ix + e ix + e 3ix e 5ix = 3i i sin5x i sin3x 4i sinx 3i = 6 sin5x + 6 sin3x + 8 sinx. Exercice - Sommes trigonométriques - L/Math Sup - http://www.bibmath.net 0

. On a : n n n n cosx + ky = R e ix e iky k k n = R e ix n e iy k n k k = R e ix + e iy n = R e ix e iny/ e iy/ + e iy/ n = R e ix+ny/ cosy/ n = n cosx + ny/ cos n y/.. On utilise S + it qui se calcule comme une somme géométrique : On distingue deux cas : Si x = 0 [π], alors eix Si x 0 [π], alors cos x S + it = n e ikx n cos x k = e ix cos x k. =, et S + it = n +. On en déduit S = n + et T = 0. n+ S + it = eix cos x eix cos x = cos x n cos xn+ e ixn+ cos x e ix = cos x n cosn+ x cos n + x i sin n + x i sinx = sin n + x icosn+ cos n x sinx + x cos n + x cos n. x sin x On en déduit S = sin n + x cos n x sinx et T = cosn+ x cos n + x cos n. x sin x 3. D n est une somme géométrique, de premier terme e inx et de raison e ix. On obtient donc D n = e inx + e in+x/ e ix = eix/ e ix/ e in+/x e in+/x e ix/ e ix/. On en déduit que D n = sin n + x. sinx/ Pour calculer K n, une méthode légèrement différente de celle de la question précédente est d écrire que sin n + x = Im e in+/x, puis d utiliser une somme géométrique. http://www.bibmath.net

On a en effet : K n = = = = n sinx/ Im e ik+/x n sinx/ Im e ix/ e ikx sinx/ Im sinx/ Im = sin n + x/ sin. x/ ix/ ein+x/ e e ix e ix/ ein+x/ sinn + x/ e ix/ sinx/ Exercice - Somme de modules - L/Math Sup - Soit k {0, n } et soit ω k = e ikπ/n. Alors ω k = e ikπ/n e i0 = sinkπ/n en factorisant par l angle moitié. De plus, pour k {0,..., n }, kπ/n [0, π] et le sinus est positif. On en déduit z U n z = n = Im sinkπ/n n e ikπ/n = 4Im e iπ/n = 4Im i sinπ/ne iπ/n ie iπ/n = Im sinπ/n = cosπ/n sinπ/n. Exercice 3 - Calcul d un cosinus - L/Math Sup - La somme des racines 5 ièmes de l unité est nulle. On a donc Or, + e iπ/5 + e i4π/5 + e i6π/5 + e i8π/5 = 0. e i8π/5 = e iπ/5 et e 4iπ/5 = e 6iπ/5. Utilisant les formules d Euler, on en déduit que + cosπ/5 + cos4π/5 = 0. http://www.bibmath.net

Or, ce qui donne cos4π/5 = cos π/5, 4 cos π/5 + cosπ/5 = 0. cosπ/5 est donc une racine de l équation 4X + X = 0. Le discriminant de ce polynôme du second degré est = 0, et ses racines sont x = 5 4 Puisque cosπ/5 > 0, on en déduit que et x = + 5. 4 cosπ/5 = + 5. 4 Exercice 4 - Un calcul d intégrale - L/Math Sup - On linéarise les fonctions trigonométriques à l aide des nombres complexes : e cos 4 t sin it + e it 4 e it e it t = i = 6 e i4t + 4e it + 6 + 4e it + e i4t e it + e it On en déduit : π/ 0 = 6 e i6t + e i4t + e it 4 + e it + e i4t + e i6t = cos6t + cos4t + cost. 5 cos 4 t sin t = 5 = π 3. π 0 cos 6t + cos 4t + cos t dt Nombres complexes et géométrie Exercice 5 - Similitude - L/Math Sup - L application de la forme z az +b est une similitude directe. Cherchons son centre qui est le point invariant, c est-à-dire le point vérifiant z = + i 3z + 3 i. On trouve z = + i, le centre de la similitude est donc le point A,. On a de plus + i 3 3 = + i = e iπ/3. Le rapport de la similitude est donc égal à, et l angle à π/3. Exercice 6 - Lieux géométriques - L/Math Sup - http://www.bibmath.net 3

. Factorisons par + i dans le module. On trouve : + i z i + i =. Puisque + i = et i +i = + i, ceci est équivalent à z + i =. Ainsi, l ensemble des points M correspondants est le cercle de centre le point A, et de rayon.. On sait que les points I, M et M sont alignés si et seulement si IM, IM = 0[π] ou M = I ou M = I. En termes de nombres complexes, ceci se traduit par iz i arg = 0 [π] ou z = i ou iz = i. z i Introduisons le point A d affixe. Alors, ceci devient π z + arg = 0 [π] ou M = I ou M = A z i IM, AM = π [π] ou M = I ou M = A IM AM ou M = I ou M = A. Les points M solutions sont donc les points du cercle de diamètre [AI]. Puisque M est image de M par rotation de centre O et d angle π/, les points M correspondants sont sur l image de ce cercle par cette rotation. 3. Notons A d affixe et I d affixe i. La question s écrit encore z z i = ia, avec a R, c est-à-dire que les vecteurs AM et IM sont orthogonaux. Autrement dit, la condition est vérifiée si et seulement si M appartient au cercle de diamètre [AI], excepté I on doit avoir z i pour définir le quotient. 4. On va d abord supposer que z 0,, pour que les trois points M, P, Q soient distincts et qu on soit sûr d avoir affaire à un vrai triangle. On va utiliser la condition suivante : soit Aa, Bb et Cc. Les droites AB et AC sont perpendiculaires si et seulement si m R, On distingue alors trois cas : c a c a b a = mi Re = 0. b a http://www.bibmath.net 4

a le triangle est rectangle en M. Ceci est équivalent à z 3 z Re z = 0 Rez + = 0 Rez =. z Les points M solutions sont alors ceux de la droite d équation x =. b le triangle est rectangle en P. Ceci est équivalent à z 3 z Re z z = 0 Rez = 0. Les points M solutions sont alors ceux de la droite d équation x = 0. c le triangle est rectangle en Q. Ceci est équivalent à z z 3 z + Re z z 3 = 0 Re = 0. z Notons D d affixe - et O d affixe 0. On obtient que les droites DM et OM sont orthogonales, c est-à-dire que M décrit le cercle de diamètre [OD]. Exercice 7 - Points à coordonnées entières - L/Math Sup - On note a = x + iy et b = x + iy les affixes respectives de A et B. Par hypothèse, x, x, y et y sont des entiers. Puisque ABCD est un carré, D est l image de B par la rotation de centre A et d angle π/. Traduit en termes de nombres complexes, si d est l affixe de D, ceci signifie que d a = ib a = d = a + ib a = x + iy + i x x + iy y = x + y y + iy + x x. Ainsi, les coordonnées de D sont bien des entiers. Pour prouver que les coordonnées de C sont des entiers, on procède de la même façon, en utilisant cette fois le fait que C est l image de A dans la rotation de centre D et d angle π/. Imaginons maintenant que ABC soit un triangle équilatéral dont les trois sommets sont à coordonnées entières, et gardons les notations précédentes. Alors, C, d affixe c = x + iy est l image de B par la rotation de centre A et d angle π/3. Autrement dit, 3 x c a = e iπ/3 b a = c = x + iy + + i x + iy y. On développe, et après calcul, on trouve que c = x + x x 3y y + i y + y y 3x x +. Pour que la partie réelle de c soit un entier, il est nécessaire que y = y et pour que la partie imaginaire de c soit nulle, il est nécessaire que x = x. Finalement, ceci entraine A = B, c est-à-dire que le triangle est réduit à un point! Exercice 8 - Triangle équilatéral - L/Math Sup - http://www.bibmath.net 5

. C est l image de B par la rotation de centre A et d angle π/3. On a donc c a b a = eiπ/3 = j c a + j b j a = 0. Or, + j = j et en multipliant par j, on obtient le résultat voulu.. Quitte à échanger les rôles de B et C, on peut toujours supposer que le triangle est direct, c est-à-dire que l angle AB, AC est dans ]0, π[. Notons AC B, BA C et CB A les triangles équilatéraux directs obtenus. Soient aussi a, b, c les affixes respectives de A, B et C. Alors, par la question précédente, on a les 3 équations : a + jc + j b = 0 b + ja + j c = 0 c + jb + j a = 0. Soit E, F, G les centres de gravité respectifs de AC B, BAC et CB A, d affixe respectives e = 3 a + c + b, f = 3 b + a + c et g = 3 c + b + a. D après la question précédente, il suffit de prouver que e + jf + j g = 0. Or, 3e + jf + j g = a + c + b + jb + ja + jc + j c + j b + j a. Or, c = j a b, ja = b j c et j b = jc a, ce qui prouve bien que e+jf +j g = 0. Le triangle EF G est équilatéral direct. Exercice 9 - Triangle équilatéral - L/Math Sup - Le triangle est équilatéral si et seulement si c est-à-dire si et seulement si z 3 z = e iπ/3 z z ou z 3 z = e iπ/3 z z, z 3 + e iπ/3 z e iπ/3 = 0 ou z 3 + e iπ/3 z e iπ/3 = 0. Ceci est encore équivalent à dire que le produit de ces deux quantités est nul, c est-à-dire à z 3 + e iπ/3 z e iπ/3 z z 3 + e iπ/3 z e iπ/3 z = 0. En développant ce produit, on trouve exactement la condition demandée. Exercice 30 - A partir des racines n-ièmes - L/Math Sup - Posons a = e iθ. Alors les racines de z n = sont données par z k = e ikπ+θ/n, k = 0,..., n. Factorisant par l angle moitié et utilisant les formules d Euler, on a kπ + θ + z k = cos e ikπ+θ/n n soit kπ + θ kπ + θ + z k n = n cos n e ikπ+θ/ = n cos n e ikπ+θ/. n n Tous les points d affixe + z k n sont donc situés sur la droite qui fait un angle θ/ avec l axe des abscisses. http://www.bibmath.net 6

Exercice 3 - Alignement de puissances - L/Math Sup - On commence par étudier les cas où deux de ces points sont confondus. L équation z = z a pour solution z = et z = 0. L équation z = z 4 a pour solutions z = 0 et z =, j, j. L équation z = z 4 a pour solutions z = 0, i, i. On suppose désormais que z est différent des nombres précédemment trouvés, et on remarque que les points sont alignés si et seulement si z 4 z arg z = 0 [π] z4 z z z z R. Or, en notant z = x + iy, on a z 4 z z z = zz z + z + = z + z + = x y + x + + iyx +. zz Ainsi, on en déduit que, dans ce cas, les points z, z et z 4 sont alignés si et seulement si y = 0 ou x = /, c est-à-dire si et seulement si z est réel ou sa partie réelle vaut /. http://www.bibmath.net 7