Processus et martingales en temps continu



Documents pareils
Chapitre 3 : Fonctions d une variable réelle (1)

1 Mesure et intégrale

Etude de la fonction ζ de Riemann

Limites des Suites numériques

. (b) Si (u n ) est une suite géométrique de raison q, q 1, on obtient : N N, S N = 1 qn+1. n+1 1 S N = 1 1

Intégration et probabilités ENS Paris, TD (20)13 Lois des grands nombres, théorème central limite. Corrigé :

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable

Suites et séries de fonctions

[ édité le 10 juillet 2014 Enoncés 1. Exercice 6 [ ] [correction] Si n est un entier 2, le rationnel H n =

Séries réelles ou complexes

CHAPITRE 2 SÉRIES ENTIÈRES

x +1 + ln. Donner la valeur exacte affichée par cet algorithme lorsque l utilisateur entre la valeur n =3.

Comportement d'une suite

STATISTIQUE : TESTS D HYPOTHESES

Exercice I ( non spé ) 1/ u 1 = u / Soit P la propriété : u n + 4. > 0 pour n 1. P est vraie au rang 1 car u 1

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable

14 Chapitre 14. Théorème du point fixe

Introduction : Mesures et espaces de probabilités

Les Nombres Parfaits.

Séquence 5. La fonction logarithme népérien. Sommaire

4 Approximation des fonctions

Convergences 2/2 - le théorème du point fixe - Page 1 sur 9

PROMENADE ALÉATOIRE : Chaînes de Markov et martingales

Processus géométrique généralisé et applications en fiabilité

Chaînes de Markov. Arthur Charpentier

FEUILLE D EXERCICES 17 - PROBABILITÉS SUR UN UNIVERS FINI

STATISTIQUE AVANCÉE : MÉTHODES

Exo7. Déterminants. = 4(b + c)(c + a)(a + b). c + a c + b 2c Correction. b + a 2b b + c. Exercice 2 ** X a b c a X c b b c X a c b a X

20. Algorithmique & Mathématiques

Dénombrement. Introduction. 1 Cardinaux d'ensembles nis. ECE3 Lycée Carnot. 12 novembre Quelques dénitions

Deuxième partie : LES CONTRATS D ASSURANCE VIE CLASSIQUES

Cours de Statistiques inférentielles

Des résultats d irrationalité pour deux fonctions particulières

Cours 5 : ESTIMATION PONCTUELLE

Exercices de mathématiques

Groupe orthogonal d'un espace vectoriel euclidien de dimension 2, de dimension 3

Statistique descriptive bidimensionnelle

Probabilités et statistique pour le CAPES

TRANSFERT DE CHARGE DANS UN RÉSEAU DE PROCESSEURS TOTALEMENT CONNECTÉS (*) par Maryse BÉGUIN ( 1 )

II LES PROPRIETES DES ESTIMATEURS MCO 1. Rappel : M1 LA REGRESSION : HYPOTHESES ET TESTS Avril 2009

UV SQ 20. Automne Responsable d Rémy Garandel ( m.-el. remy.garandel@utbm.fr ) page 1

EXERCICES : DÉNOMBREMENT

Baccalauréat S Asie 19 juin 2014 Corrigé

Séries numériques. Chap. 02 : cours complet.

Dénombrement. Chapitre Enoncés des exercices

Université Pierre et Marie Curie. Biostatistique PACES - UE

Statistique Numérique et Analyse des Données

RESOLUTION DES FLOW SHOP STOCHASTIQUES PAR LES ORDRES STOCHASTIQUES. DERBALA Ali *)

Chapitre 3 : Transistor bipolaire à jonction

Contribution à la théorie des entiers friables

LES ÉCLIPSES. Éclipser signifie «cacher». Vus depuis la Terre, deux corps célestes peuvent être éclipsés : la Lune et le Soleil.

16.1 Convergence simple et convergence uniforme. une suite de fonctions de I dans R ou C.

MESURE DE L'INFORMATION

capital en fin d'année 1 C 0 + T C 0 = C 0 (1 + T) = C 0 r en posant r = 1 + T 2 C 0 r + C 0 r T = C 0 r (1 + T) = C 0 r 2 3 C 0 r 3...

DETERMINANTS. a b et a'

Chap. 6 : Les principaux crédits de trésorerie et leur comptabilisation

3. Conditionnement P (B)

Chap. 6 : Les principaux crédits de trésorerie et leur comptabilisation

Principes et Méthodes Statistiques

55 - EXEMPLES D UTILISATION DU TABLEUR.

SÉRIES STATISTIQUES À DEUX VARIABLES

Régulation analogique industrielle ESTF- G.Thermique

2 ième partie : MATHÉMATIQUES FINANCIÈRES

c. Calcul pour une évolution d une proportion entre deux années non consécutives

La tarification hospitalière : de l enveloppe globale à la concurrence par comparaison

Terminale S. Terminale S 1 F. Laroche

Solutions particulières d une équation différentielle...

Le Sphinx. Enquêtes, Sondages. Analyse de données. Internet :

Consolidation. C r é e r un nouveau classeur. Créer un groupe de travail. Saisir des données dans un groupe

POLITIQUE ECONOMIQUE ET DEVELOPPEMENT

UNIVERSITE MONTESQUIEU BORDEAUX IV. Année universitaire Semestre 2. Prévisions Financières. Travaux Dirigés - Séances n 4

Chap. 5 : Les intérêts (Les calculs financiers)

Polynésie Septembre Exercice On peut traiter la question 4 sans avoir traité les questions précédentes.

Chapitre 2 SONDAGE ALEATOIRE SIMPLE OU A PROBABILITES EGALES. 2.1 DEFINITIONS 2.2 SONDAGE ALEATOIRE SIMPLE SANS REMISE (PESR) 2.2.

Télé OPTIK. Plus spectaculaire que jamais.

Intégrales généralisées

4. Martingales à temps discret

Formation d un ester à partir d un acide et d un alcool

PROBLEMES DIOPTIMISATION EN NOMBRES ENTIERS J. L. NICOLAS

La France, à l écoute des entreprises innovantes, propose le meilleur crédit d impôt recherche d Europe

Théorie de la Mesure et Intégration

INTRODUCTION AUX MATRICES ALÉATOIRES. par. Djalil Chafaï

Filtrage stochastique non linéaire par la théorie de représentation des martingales

Modèles à Événements Discrets. Réseaux de Petri Stochastiques

Calcul fonctionnel holomorphe dans les algèbres de Banach

Sommes de signaux : Décomposition de Fourier Spectre ondes stationnaires et résonance

Initiation à l analyse factorielle des correspondances

Module 3 : Inversion de matrices

RESOLUTION PAR LA METHODE DE NORTON, MILLMAN ET KENNELY

Intégration et probabilités TD1 Espaces mesurés

LE PRINCIPE DU RAISONNEMENT PAR RÉCURRENCE

Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques.

Les algorithmes de tri

Équation de Langevin avec petites perturbations browniennes ou

RÈGLES ORDINALES : UNE GÉNÉRALISATION DES RÈGLES D'ASSOCIATION

Calcul Stochastique pour la finance. Romuald ELIE

Statistiques appliquées à la gestion Cours d analyse de donnés Master 1

Intégration et probabilités TD1 Espaces mesurés Corrigé

Université Victor Segalen Bordeaux 2 Institut de Santé Publique, d Épidémiologie et de Développement (ISPED) Campus Numérique SEME

Réseaux d ondelettes et réseaux de neurones pour la modélisation statique et dynamique de processus

Transcription:

Chapitre 3 Processus et martigales e temps cotiu 1 Quelques rappels sur les martigales e temps discret (voir [4]) O cosidère u espace filtré (Ω, F, (F ) 0, IP). O ote F = 0 F. Défiitio 1.1 Ue suite de variables (M ) 0 est dite adaptée à (F ) 0 si pour tout 0, M est F -mesurable. Ue suite de variables (M ) 0 est ue (F ) 0 -sousmartigale discrète si elle est adaptée et si pour tout 0, M L 1 et M E[M +1 F ]. Ue suite de variables (M ) 0 est ue (F ) 0 -surmartigale discrète si elle est adaptée et si pour tout 0, M L 1 et M E[M +1 F ]. Ue suite de variables (M ) 0 est ue (F ) 0 -martigale discrète si elle est adaptée et si pour tout 0, M L 1 et M = E[M +1 F ]. Exemple 1.2 Soit Z L 1, alors M = E[Z F ] est ue (F ) 0 -martigale. Propositio 1.3 Iégalité de Jese coditioelle Soit M L 1 (F), G ue sous-tribu de F et ϕ ue foctio covexe telle que ϕ(m) L 1 (F), alors ϕ (E[M G]) E [ϕ(m) G]. Coséquece 1.4 Si (M ) 0 est ue (F ) 0 -sousmartigale, alors (M + ) 0 est ue (F ) 0 - sousmartigale. Rappel : x + = x 0. Propositio 1.5 Si (M ) 0 est ue (F ) 0 -martigale et ϕ ue foctio covexe, telle que 0, ϕ(m ) L 1. Alors (ϕ(m )) 0 est ue (F ) 0 -sousmartigale. 27

28 1.1 Martigales et temps d arrêt Défiitio 1.6 Ue v.a. T à valeurs das [0, + ] est u (F ) 0 -temps d arrêt si 0 {T = } F. O défiit la tribu F T la tribu des évéemets atérieurs à T F T = {Λ F : Λ {T = } F 0}. Propositio 1.7 1. Soit (M ) 0 ue (F ) 0 -martigale (sur ou sous) et T u (F ) 0 - temps d arrêt. Alors (M T ) 0 ue (F ) 0 -martigale (sur ou sous), où M T = M T. 2. Si Y L 1, alors E[Y F T ] = IN E[Y F ]I T =. Preuve. 1. M T = M I T + M T I T < est bie F -mesurable et das L 1 et E[M+1 F T ] = E[M +1 F ]I T +1 + M T I T <+1 = M T 2. Soit Z L (F T ), alors ZI T = est ue v.a. F -mesurable et E[Y Z] = E[Y ZI T = ] = E Z I T = E[Y F ]. IN IN Théorème 1.8 Théorème d arrêt Soit (M ) 0 est ue (F ) 0 -martigale (sur ou sous). Soit T et S deux (F ) 0 -temps d arrêt avec S T et T boré. Alors E[M T F S ] = M S (resp. et ). Preuve. Supposos que S T. Si S = p est détermiiste. Supposos T boré par K. (M T ) 0 est ue martigale, doc pour p E[M T F p ] = M T p = M p. Pour K, o a M T = M T et doc E[M T F p ] = M p. Si S est aléatoire, E[M T F S ] = E[M T F ]I S= = M I S= = M S. 1.2 Iégalités importates Propositio 1.9 Lemme Maximal Soit C > 0. Si (M ) 0 est ue sousmartigale, alors P (sup Si (M ) 0 est ue martigale, alors P (sup Si (M ) 0 est ue surmartigale positive, alors M C) 1 C sup E[M + ]. M C) 1 C sup E[ M ]. P (sup M C) 1 C E[M 0].

Le mouvemet Browie e tat que processus de Markov 29 Preuve. 1. O cosidère le temps d arrêt T = if{ 0 : M C}. O pose τ = T, d où CI {T } M τ + car C > 0. O utilise alors le théorème d arrêt (pour la sous-martigale (M + ) avec S = τ et T = ), C IP(T ) E[M τ + ] E[M + ]. et o fait +. Comme IP(T < ) = P (sup M C), o a le résultat. 2. M et M sot des sousmartigales. 3. De même o a CI {T } M τ et par le théorème d arrêt E[M τ ] E[M 0 ]. Propositio 1.10 Iégalité du ombre de motées 1. Soit (M ) 0 est ue surmartigale et m M a,b () le ombre de motées de a à b effectuées par M avat l istat. Alors E[m M a,b()] 1 b a E[(M a) ]. 2. Soit (M ) 0 est ue sousmartigale et m M a,b () le ombre de descetes de b à a effectuées par M avat l istat. Alors E[m M a,b()] 1 b a E[(M b) + ]. Preuve. O remarque que 2. implique 1. car M est ue sousmartigale et m M a,b () = m M b, a (). Prouvos 2. O décrit les périodes de descete avec la suite croissate de temps d arrêt suivats : T 0 = 0, T 1 = if{ 0 : M > b}, T 2 = if{ T 1 : M < a},..., T 2p 1 = if{ T 2p 2 : M > b}, T 2p = if{ T 2p 1 : M < a},... Pour tout p, M T2p 1 b est ue sousmartigale, positive sur {T 2p 1 }. O a doc Par coséquet, 0 E[(M T2p 1 b)i T2p 1 ] E[(M T2p b)i T2p 1 ] (Théorème d arrêt) E[(M T2p b)i T2p ] + E[(M b)i T2p 1 <T 2p ] (a b) IP(T 2p ) + E[(M b) + I T2p 1 <T 2p ] (b a) p IP(m M a,b () p) p E[(M b) + I T2p 1 <T 2p ] c est à dire (b a)e[m M a,b ()] E[(M b) + ]. Propositio 1.11 Iégalité de Doob Soit (M ) 0 est ue martigale (ou sousmartigale positive), p, q > 1 tels que 1 = 1 p + 1 q. Alors sup M p q sup M p, N N où. p est la orme L p. Preuve. Il suffit de motrer que si X, Y sot deux v.a. positives telles que C > 0 C IP(Y C) E[XI Y C ] alors p, q > 1 tels que 1 = 1 p + 1 q Y p q X p.

30 E effet, car si M martigale alors M est ue sousmartigale positive, il doc suffit d utiliser le résultat avec Y = sup N M et X = M. Si f est ue foctio positive croissate càd telle que f(0) = 0, alors Y E[f(Y )] = E[X 0 1 z df(z)] E preat, f(y) = y p, o obtiet le résultat. 1.3 Théorèmes de covergece Défiitio 1.12 Ue famille de v.a. (X i ) i I est dite uiformémet itégrable (U.I.) si lim sup E[ X i I a + Xi >a] = 0. i I Exemple 1.13 1. Si i I, X i X avec X L 1, la famille (X i ) i I est uiformémet itégrable. Par coséquet, ue suite borée est U.I. 2. Si p > 1, sup i I E[ X i p ] <, la famille (X i ) i I est uiformémet itégrable. Preuve. 1. E[ X i I Xi >a] E[XI X>a ] et comme X L 1, o a bie lim a + E[XI X>a] = 0. 2. E[ X i I Xi >a] E[ X i p ] 1/p IP( X i > a) 1/q E[ X i p ]/a p/q. Théorème 1.14 Soit (X ) 0 ue suite de v.a. et X L 1. X L 1 X ssi X proba X et (X ) 0 U.I. Covergece p.s. Théorème 1.15 Soit (M ) 0 ue sous-martigale à valeurs das IR telle que sup E[M + ] <, alors il existe M L 1 telle que M + M ps. Preuve. Le ombre de descetes vérifie E[m M a,b (IN)] <, doc mm a,b (IN) < p.s. Soit N l esemble de mesure sur lequel m M a,b ( ) = pour tout a, b Q. Soit ω / N. Si M t(ω) e coverge pas, alors il existe a, b Q : lim if M t (ω) < a < b < lim sup M t (ω). Cotradictio, doc la martigale coverge p.s.. Notos M sa limite. Par ailleurs, comme M = 2M + M et E[M 0 ] E[M ], o a E[ M ] 2E[M + ] E[M 0 ] Doc sup E[ M ] <. D après le lemme de Fatou, E[ M ] lim if E[ M ] sup E[ M ] <. Doc M L 1.

Le mouvemet Browie e tat que processus de Markov 31 Covergece e moyee Théorème 1.16 Soit (M ) 0 ue martigale. Il y a équivalece etre les propriétés suivates : 1. Z L 1 tel que IN M = E[Z F ], 2. (M ) 0 est U.I., 3. (M ) 0 coverge das L 1. O a alors Z = M, la martigale est dite fermée, i.e. (M ) est ue martigale. IN Preuve. 1 2 : Par Jese E[ M I M >a] E[ Z I M >a]. Comme Z L 1, la suite ( Z I M >a) est U.I. (Voir l exemple 1.13-1), doc (M ) 0 est U.I. 2 3 : D après le théorème précédet, o a M coverge p.s. vers M, doc coverge das L 1 car U.I. 3 1 : O a M = E[M +p F ] pour tout p 0. Comme l espérace coditioelle est cotiue sur L 1, e faisat tedre p +, d où le résultat. Corollaire 1.17 Soit (M ) ue sous-martigale idexée par IN ou Z, i.e. F F +1 et M = E[M +1 F ] pour 0. Alors M coverge quad p.s. et das L 1. Par coséquet, (M ) sous martigale. IN Preuve. E effet, pour tout 0, E[X + ] E[X 0 + ] <. Il y a doc covergece p.s. Par ailleurs, M E[M 0 F ] pour tout 0. La sous-martigale est doc U.I. Propositio 1.18 Soit (M ) 0 ue surmartigale positive, alors (M ) 0 coverge p.s. et das L 1 vers M et (M ) est ue surmartigale. IN 2 Processus e temps cotiu Soit (Ω, F, (F t ) t 0, IP) u espace probabilisé filtré. Défiitio 2.1 Soit X = (X t, t 0) u processus défii sur (Ω, F, (F t ) t 0, IP). Le processus X est dit mesurable si l applicatio X : [0, [ Ω (E, E) (t, ω) X t (ω) est mesurable par rapport à B([0, [) F. Le processus X est dit adapté si t 0 X t est F t -mesurable. Le processus X est dit progressivemet mesurable (ou progressif) si t 0 l applicatio X : [0, t] Ω E est mesurable par rapport à la tribu B([0, t]) F t. (s, ω) X s (ω) Défiitio 2.2 Soit X = (X t, t 0) u processus. La filtratio aturelle de X est défiie par Ft X = σ(x s, 0 s t). Remarque 2.3 1. Si (F X t ) t 0 est la filtratio aturelle de X alors X est adapté à (F X t ) t 0. 2. U processus progressif est adapté (la réciproque est fausse).

32 3. U processus mesurable et adapté admet ue versio progressivemet mesurable (Théorème de Chug et Doob (1965), voir [4]). Exemple 2.4 1. Cosidéros ue suite de temps 0 < t 1 <... < t, et h 1,..., h des v.a. telles que i h i est F ti -mesurable. O pose t 0 = 0 et t +1 = +. Les processus suivats X = h i I [ti,t i+1[ et Y = h 0 I {0} + h i I ]ti,t i+1] sot progressivemet mesurables. i=0 2. Si la filtratio est complète, u processus X adapté dot les trajectoires sot cotiues à gauche (càg) est progessivemet mesurable. Preuve. 1. Regardoc le premier processus, l étude du secod est similaire. Soit B E, où E tribu sur E, o a {(s, ω) [0, t] Ω : X t (ω) B} = Doc X est progressivemet mesurable. i=0 [t i, t i+1 [ [0, t] {ω Ω : h i (ω) B} i=0 B([0, t]) F t. 2. O approche le processus X par Xt = X k2 sur t [k2, (k+1)2 [, k {0,..., 2 1}. Le processus X est progressivemet mesurable et comme X est càg, t 0, p.s. Xt X t. Doc X est progressif. + Propositio 2.5 Soit X u processus adapté et cotiu à droite (càd) alors X est progressif. Preuve. O défiit Xt = X (k+1)2 sur t [k2, (k+1)2 [. Le processus X est (F t+2 ) t 0 - progressif et comme X est càd t 0, p.s. Xt X t. + O fixe t 0 et o défiit maiteat X s = Xs I s<t 2 + X t I s=t. Ce processus est mesurable par rapport à B([0, t]) F t. Par ailleurs, quad +, Xs X s pour s t. Doc la restrictio de X à [0, t] est mesurable par rapport à B([0, t]) F t, i.e. X est progressif. Propositio 2.6 Soit X u processus progressif et T u (F t ) t 0 -temps d arrêt. Alors X T I {T < } est F T -mesurable. Preuve. Supposos T fii. O fixe t 0, X [0,t] est B([0, t]) F t -mesurable et T I {T t} est F t -mesurable. Par compositio, X T I {T t} est F t -mesurable. Doc X T est F T -mesurable. Propriété 2.7 Les lois fiis dimesioelles caractériset la loi d u processus. 3 Martigales e temps cotiu Soit (Ω, F, (F t ) t 0, IP) u espace probabilisé filtré. 3.1 Défiitio et exemples Défiitio 3.1 Soit M u processus adapté avec t 0, M t L 1. O dit que - M est ue (F t ) t 0 -sousmartigale si M t E[X t+s F t ] pour tout t, s 0. - M est ue (F t ) t 0 -surmartigale si M t E[M t+s F t ] pour tout t, s 0. - M est ue (F t ) t 0 -martigale si M t = E[M t+s F t ] pour tout t, s 0.

Le mouvemet Browie e tat que processus de Markov 33 Exemple 3.2 Exemple importat de Martigale. Soit Z L 1 ue variable aléatoire. Alors M = (M t, t 0) avec M t = E[Z F t ] est ue martigale. Exemple 3.3 Soir B u mouvemet browie et (F B t ) t 0 sa filtratio aturelle. 1. B est ue (F B t ) t 0 -martigale. 2. (B 2 t t, t 0) est ue (F B t ) t 0 -martigale. 3. (exp(ab t a2 2 t), t 0) est ue (F B t ) t 0 -martigale, pour a IR. Elle est appelée martigale expoetielle associée au Browie. Exemple 3.4 Si X est u processus à accroissemet idépedats avec X t L 1 pour tout t 0 et (F t ) t 0 sa filtratio aturelle. Alors (X t E[X t ], t 0) est ue (Ft X ) t 0 -martigale. Remarque 3.5 Soit M et N deux martigales idépedates telles que t 0 M t, N t L 2. O ote (F t ) t 0 la filtratio aturelle de (M, N). Alors MN = (M t N t, t 0) est ue (F t ) t 0 -martigale. Si o a juste M t et N t idépedates pour tout t 0, le résultat est faux e gééral. Preuve. Par Cauchy-Schwartz, o a bie t 0 M t N t L 1. Soiet t, s 0 et Y F t telle que Y = Y 1 Y 2 avec Y 1 σ(m s, s t) et Y 2 σ(n s, s t). Alors E[M t+s N t+s Y ] = E[M t+s Y 1 ]E[N t+s Y 2 ] par idépedace = E[M t Y 1 ]E[N t Y 2 ] car M etn martigales = E[M t N t Y ] par idépedace. Soit E = {Y L (F t ) : E[M t+s N t+s Y ] = E[M t N t Y ]}. C est u espace vectoriel qui cotiet les costates et stable par covergece mootoe. Les variables de la forme Y 1 Y 2 avec Y 1 σ(m s, s t) et Y 2 σ(n s, s t) egedret L (F t ), d où le résultat. 3.2 Premières propriétés Soit D u esemble déombrable dese de IR +. Par exemple, l esemble des dyadiques D = D avec D = {k2, k IN}. Propositio 3.6 Iégalité Maximale Soit M ue (F t ) t 0 -martigale. Alors pour tout C > 0 P ( sup s [0,t] D Si de plus M a des trajectoires càd, M s C) 1 C sup E[ M s ]. 0 s t P ( sup M s C) 1 s [0,t] C sup E[ M s ]. 0 s t Preuve. O utilise l iégalité Maximale pour des martigales discrètes. O a P ( sup M s C) 1 s [0,t] D C sup s [0,t] D E[ M s ] 1 C sup E[ M s ] 0 s t O obtiet le résultat par covergece mootoe quad +. Par ailleurs, lorsque M est càd sup s [0,t] D M s = sup s [0,t] M s.

34 Propositio 3.7 Iégalité de Doob Soit M ue (F t ) t 0 -martigale (ou sousmartigale positive), p, q > 1 tels que 1 = 1 p + 1 q. Alors Si de plus M a des trajectoires càd, sup M s p q sup M s p. s [0,t] D s [0,t] sup M s p q sup M s p. s [0,t] s [0,t] Théorème 3.8 Régularisatio de surmartigales Soit (Ω, F, (F t ) t 0, IP) u espace probabilisé filtré, avec (F t ) t 0 satisfaisat aux coditios habituelles (i.e. complète et cotiue à droite). Soit M ue (F t ) t 0 -surmartigale telle que t E[M t ] soit càd. Alors il existe ue versio M de M telle que i) p.s. t M t est cotiue à droite avec des limites à gauche (càdlàg) ii) M est ue (F t ) t 0 -surmartigale. Remarque 3.9 1. Si M est ue martigale alors so espérace est costate, doc cotiue. 2. Si M est ue sousmartigale, alors M est ue surmartigale! Preuve. O cosidère u esemble déombrable dese D de [0, + [. O va motrer le lemme suivat Lemme 3.10 Soit (Ω, F, (F t ) t 0, IP) u espace probabilisé filtré et M ue (F t ) t 0 -surmartigale. Alors avec probabilité 1 o a i) t 0 M t + = s lim M s existe, aisi que M t = lim M s, t,s D s t,s D ii) t 0 M t E[M t + F t ], avec égalité dès que la foctio s E[M s ] est cotiue à droite (ce qui est le cas des martigales car l espérace est costate). E particulier, o a M t + L 1. iii) (M t +, t 0) est ue (F t +) t 0 surmartigale. E effet, pour prouver le théorème à partir du lemme, il suffit juste de défiir M t = lim M s. s t,s D C est bie ue versio de M, car si l espérace est càd, o a M t = E[ M t F t ] et comme la filtratio est càd F t + = F t, Mt est doc F t -mesurable. De plus, M est ue (Ft ) t 0 surmartigale càdlàg. Preuve du Lemme. i) Existece de limites à gauche et à droite D après l iégalité maximale, pour N IN o a sup s [0,N] D M s <. Soiet a, b Q et m M a,b (t) le ombre de motées de M le log de D de a à b avat l istat t. E utilisat le résultat sur les surmartigales à temps discrèt, o obtiet E[m M a,b(t)] 1 b a sup E[ M s a ]. 0 s t E particulier, m M a,b (t) < p.s. E utilisat la même démostratio que celle du Théorème 1.15, o obtiet que p.s. M admet des limites à gauche et à droite e tout t 0 le log de D. ii) Motros que t 0 M t E[M t + F t ]. Soit t 0 fixé et (t ) ue suite décroissate de D qui coverge vers t. O a M t M t + p.s. O ote G p = F t p et N p = M t p pour p 0. Alors N est ue (G p ) p 0 -surmartigale sur IN. Doc elle coverge das L 1 d après le Corollaire 1.17. Doc M t M t + das L 1, d où X t + L 1 et comme 0 M t E[M t F t ] et par passage à la limite M t E[M t + F t ] p.s. O a égalité si l espérace est cotiue à droite, car alors E[M t ] = lim E[M t ] = lim E[E[M t F t ]] = E[M t +]. + +

Le mouvemet Browie e tat que processus de Markov 35 iii) (M t +, t 0) est ue (F t +) t 0 surmartigale. Comme M t est F t -mesurable, M t + est F t +-mesurable. Soit t, s 0, il existe (u ) suite de décroissate de D covergeat vers t + s. Soit 0 < ε < s fixé. Alors E[M (t+s) + F t+ε ] = lim + E[M u F t+ε ] M t+ε O choisir alors (ε ) 0 décroissate vers 0 telle que t+ε D. E utilisat ecore le Corollaire 1.17 à N p = E[M (t+s) + F t+ε p ] pour p 0, o a lim E[M (t+s) + F t+ε ] = E[M (t+s) + F t+ε ] = E[M (t+s) + F t +] p.s. et das L 1. + 0 Comme M t+ε M t + p.s., le résultat est prouvé. 3.3 Covergece des martigales cotiues Théorème 3.11 Soit M ue (F t ) t 0 -sous martigale cotiue à droite, avec. sup t 0 E[M + t ] <. Alors M t coverge p.s. quad t +. O ote M sa limite. O a de plus M L 1. Remarque 3.12 E gééral la covergece a pas lieu das L 1. Preuve. Pour tout a < b le ombre de motée de a à b le log des dyadiques est fii p.s. car E[m M a,b(t)] 1 b a sup E[(M s a) ]. O fait tedre t + et doc E[m M a,b ( )] <. La suite de la preuve est la même que das le cas discret. s t Défiitio 3.13 O dit qu u processus X est uiformémet itégrable si lim sup E[ X t I a + Xt >a] = 0. O dit qu ue martigale M est fermée s il existe ue v.a. Z L 1 telle que t 0 t 0 M t = E[Z F t ] p.s.. Théorème 3.14 Soir M ue martigale càd. Il y a équivalece etre les propriétés suivates : 1. M est ue martigale fermée, 2. M est uiformémet itégrable, 3. il existe M L 1 telle que lim t + M t = M p.s. et das L 1. O a alors que p.s. M t = E[M F t ]. Preuve. Même preuve que das le cas discret. 3.4 Théorème d arrêt Théorème 3.15 Soit M ue (F t ) t 0 -martigale (sur ou sous) càd fermée. O ote M sa limite. Soit T u (F t ) t 0 -temps d arrêt. O pose M T = M sur {T = }. Alors E[M F T ] = M T p.s. (resp et ) et le processus arrêté M T = (M T t, t 0) est ecore ue martigale uiformémet itégrable de valeur termiale M T. E particulier, E[M T ] = E[M 0 ] = E[M ].

36 Preuve. Évidet. i) T détermiiste. ii) T temps d arrêt simple. O ote t 0, t 1,... les valeurs prises par T. O a M T = M t sur {T = t }. Par ailleurs, M T est F T -mesurable car M est càd, d où progressivemet mesurable. Soit Λ F T. Par Fubii, o a E[M I Λ ] = E[M I Λ I T =t ] = E[M t I Λ I T =t ] = E[M T I Λ ] Doc E[M F T ] = M T. ii) Cas gééral. Il existe ue suite décroissate de t.a. simples T qui coverge p.s. vers T. O a E[M F T ] = M T, d où E[M F T ] = E[M T F T ] (e effet F T F T ). Par ailleurs, M T coverge vers M T, car les trajectoires sot càd. Motros que cette covergece a lieu das L 1. Notos pour p 0 G p = F T p. O a G p G p+1. Notos N p = M T p. Alors N est ue (G p ) p 0 -martigale idexée par IN (car la suite de t.a. est décroissate). Elle coverge doc das L 1 d après le Corollaire 1.17. Par coséquet, M T coverge vers M T das L 1 et doc E[M F T ] = M T. Remarque 3.16 Sous les hypothèses du théorème, o a E[M T F t ] = M t T. Remarque 3.17 1. Le théorème s applique aux (sur ou sous) martigales càd borées. 2. Si T est boré, il suffit de supposer la martigale M càd. (E effet, si T 1, M t = E[M 1 F t ] doc fermée sur l itervalle de temps [0, 1].) Attetio : Le théorème e s applique que lorsque la martigale est fermée ou le temps d arrêt boré. E effet si B est u mouvemet browie (c est bie ue martigale), e posat T a = if{t 0 : B t = a}, o a B Ta = a et E[B 0 ] = 0 a = E[B Ta ] pour a > 0. Corollaire 3.18 Si M est ue (sur ou sous) martigale càd fermée et T, S deux temps d arrêt avec S T, alors M T L 1 et E[M T F S ] = M S (resp et ). Si T et S sot deux t.a. borés il suffit de supposer M martigale càd. 4 Processus de Poisso Le processus de Poisso est utilisé par exemple pour modéliser les files d attete comme les arrivées des appels téléphoiques à u cetral. Défiitio 4.1 soit λ > 0 et (S ) 1 ue suite de v.a. idépedates de loi expoetielle E(λ). O pose T = S 1 +... + S. O défiit alors le processus de comptage N = (N t, t 0) à valeurs das IN { } N t = 1 I {T t}. Ce processus est appelé processus de Poisso d itesité λ. Défiitio 4.2 O défiit (Ft N ) t 0 la filtratio aturelle complétée du processus de Poisso.

Le mouvemet Browie e tat que processus de Markov 37 Remarque 4.3 O peut aussi écrire le processus sous la forme N t = sup{ 0 : T t}. Iversemet, o remarque que T est u (F N t ) t 0 -temps d arrêt, T = if{t 0 : N t = }. Si t > s, o a N t N s = 1 I {s<t t}. Théorème 4.4 U processus X à accroisssemets idépedats et statioaires (PAIS) càd vérifie la propriété de Markov forte. Preuve. Voir Chapitre 2, Théorème 2.10. Défiitio 4.5 équivalete du Processus de Poisso. U processus de Poisso N = (N t, t 0) d itesité λ est u processus de comptage càd tel que i) N(0) = 0 ii) N est u processus à accroisssemets idépedats et statioaires. iii) pour tout t 0, N(t) suit la loi de Poisso P(λt). Preuve. Soit N u processus de Poisso au ses de la Défiitio 4.1. O a bie N(0) = 0. Soiet 0 t 1 < t 2 <... < t, alors N(t + s) N(t) = 1 I {t<t t+s}. Comme {N t = k} = {S 1 +... + S k t < S 1 +... + S k+1 } si k 1,..., k IN, e posat K i = k 1 +... + k i o a alors IP(N t1 = k 1, N t2 N t1 = k 2,..., N t N t 1 = k ) = IP(N t1 = k 1, N t2 = k 2 + k 1,..., N t = K ) = IP(S 1 +... + S K1 t 1 < S 1 +... + S K1+1, S 1 +... + S K2 t 2 < = S 1 +... + S K2+1,..., S 1 +... + S K t < S 1 +... + S K+1)... λ K+1 e P K+1 i=1 s i I {S1+...+S Ki t i<s 1+...+S Ki +1}ds 1... ds K+1 IR+ i=1 O coclut après quelques calculs horribles...(voir par exemple [2]) Vérifios maiteat que N(t) P(λt). Comme T suit la loi Gamma(, λ), pour 1 IP(N t = ) = IP(T t) IP(T +1 t) t ( ) λ = e λs ( 1)! s 1 λ+1 s ds! 0 λt (λt) = e! Pour = 0, IP(N t = ) = IP(S 1 > t) = e λt. Soit N u processus de Poisso au ses de la Défiitio 4.5. U tel processus vérifie la propriété de Markov forte. Posos T = if{t 0 : N t = }. Pour tout 0, T < p.s. car pour tout t 0 N(t) suit la loi de PoissoP(λt). O défiit S 1 = T 1 et S +1 = T +1 T.

38 Motros que S 1 suit la loi expoetielle : IP(S 1 > t + s) = IP(N t+s = 0) = IP(N t = 0, N t+s = 0) = IP(N t = 0) IP(N t+s N t = 0) = IP(N t = 0) IP(N s = 0) IP(S 1 > t + s) = IP(S 1 > t) IP(S 1 > s) cqfd. Comme T est u (Ft N ) t 0 -temps d arrêt, les variables S i = T i T i 1 sot FT N -mesurable, pour i. Motros que S +1 est idépedate de FT N et à même loi que S 1. O remarque que T +1 = if{t T : N t = + 1} Loi = T + if{t 0 : Ñ t = 1} où Ñ est u processus de Poisso idépedat de FT N, N état u PAIS. Par coséquet IP(S +1 > t FT N ) = IP(T +1 T > t FT N ) = IP(S 1 > t) Coséquece 4.6 Soit N u processus de Poisso. N est u PAIS càd qui vérifie la propriété de Markov forte : Soit T u (Ft N ) t 0 -temps d arrêt fii p.s.. O ote N le processus défiit pour s 0 par N s = N T +s N T. Alors le processus N est idépedat de FT N et a même loi que N. Théorème 4.7 soit N u processus de Poisso d itesité λ. Alors les processus suivats sot des martigales : i) Ñ = (N t λt, t 0), ii) ((N t λt) 2 λt, t 0). Ñ est appelé processus de Poisso compesé. Preuve. O utilise le fait que N u est PAIS (voir les exemples de martigale liés au Browie). Remarque 4.8 O peut voir le processus de Poisso comme ue mesure aléatoire sur (IR, B(IR)) : la mesure de l itervalle [s, t] est N(]s, t]) = N t N s. Remarque 4.9 Le mouvemet browie et le processus de Poisso fot partie d ue classe plus grade de processus : les processus de Lévy (processus càd à accroissemets idépedats et statioaires).

Bibliographie [1] Jea-Fraçois Le Gall. Itroductio au mouvemet browie. Gazette des Mathématicies, 40, 1989. [2] Domiique Foata et Aimé Fuchs. Processus stochastiques. Duod, 1998. [3] Daiel Revuz et Marc Yor. Cotiuous martigales ad browia motio. Spriger, 1991. [4] Claude Dellacherie et Paul-Adré Meyer. Probabilités et potetiels. Herma, 1975. [5] Ioais Karatzas et Steve E. Shreve. Spriger, 1991. [6] Hui-Hsiug Kuo. Itroductio to stochastic itegratio. Spriger, 2006. [7] Edward Nelso. Dyamical theories of Browia motio. http ://www.math.priceto.edu / elso/books/bmotio.pdf. [8] Philip Protter. Stochastic itegratio ad differetial equatios. Spriger, 1995. 39

40