Chapitre 3 Processus et martigales e temps cotiu 1 Quelques rappels sur les martigales e temps discret (voir [4]) O cosidère u espace filtré (Ω, F, (F ) 0, IP). O ote F = 0 F. Défiitio 1.1 Ue suite de variables (M ) 0 est dite adaptée à (F ) 0 si pour tout 0, M est F -mesurable. Ue suite de variables (M ) 0 est ue (F ) 0 -sousmartigale discrète si elle est adaptée et si pour tout 0, M L 1 et M E[M +1 F ]. Ue suite de variables (M ) 0 est ue (F ) 0 -surmartigale discrète si elle est adaptée et si pour tout 0, M L 1 et M E[M +1 F ]. Ue suite de variables (M ) 0 est ue (F ) 0 -martigale discrète si elle est adaptée et si pour tout 0, M L 1 et M = E[M +1 F ]. Exemple 1.2 Soit Z L 1, alors M = E[Z F ] est ue (F ) 0 -martigale. Propositio 1.3 Iégalité de Jese coditioelle Soit M L 1 (F), G ue sous-tribu de F et ϕ ue foctio covexe telle que ϕ(m) L 1 (F), alors ϕ (E[M G]) E [ϕ(m) G]. Coséquece 1.4 Si (M ) 0 est ue (F ) 0 -sousmartigale, alors (M + ) 0 est ue (F ) 0 - sousmartigale. Rappel : x + = x 0. Propositio 1.5 Si (M ) 0 est ue (F ) 0 -martigale et ϕ ue foctio covexe, telle que 0, ϕ(m ) L 1. Alors (ϕ(m )) 0 est ue (F ) 0 -sousmartigale. 27
28 1.1 Martigales et temps d arrêt Défiitio 1.6 Ue v.a. T à valeurs das [0, + ] est u (F ) 0 -temps d arrêt si 0 {T = } F. O défiit la tribu F T la tribu des évéemets atérieurs à T F T = {Λ F : Λ {T = } F 0}. Propositio 1.7 1. Soit (M ) 0 ue (F ) 0 -martigale (sur ou sous) et T u (F ) 0 - temps d arrêt. Alors (M T ) 0 ue (F ) 0 -martigale (sur ou sous), où M T = M T. 2. Si Y L 1, alors E[Y F T ] = IN E[Y F ]I T =. Preuve. 1. M T = M I T + M T I T < est bie F -mesurable et das L 1 et E[M+1 F T ] = E[M +1 F ]I T +1 + M T I T <+1 = M T 2. Soit Z L (F T ), alors ZI T = est ue v.a. F -mesurable et E[Y Z] = E[Y ZI T = ] = E Z I T = E[Y F ]. IN IN Théorème 1.8 Théorème d arrêt Soit (M ) 0 est ue (F ) 0 -martigale (sur ou sous). Soit T et S deux (F ) 0 -temps d arrêt avec S T et T boré. Alors E[M T F S ] = M S (resp. et ). Preuve. Supposos que S T. Si S = p est détermiiste. Supposos T boré par K. (M T ) 0 est ue martigale, doc pour p E[M T F p ] = M T p = M p. Pour K, o a M T = M T et doc E[M T F p ] = M p. Si S est aléatoire, E[M T F S ] = E[M T F ]I S= = M I S= = M S. 1.2 Iégalités importates Propositio 1.9 Lemme Maximal Soit C > 0. Si (M ) 0 est ue sousmartigale, alors P (sup Si (M ) 0 est ue martigale, alors P (sup Si (M ) 0 est ue surmartigale positive, alors M C) 1 C sup E[M + ]. M C) 1 C sup E[ M ]. P (sup M C) 1 C E[M 0].
Le mouvemet Browie e tat que processus de Markov 29 Preuve. 1. O cosidère le temps d arrêt T = if{ 0 : M C}. O pose τ = T, d où CI {T } M τ + car C > 0. O utilise alors le théorème d arrêt (pour la sous-martigale (M + ) avec S = τ et T = ), C IP(T ) E[M τ + ] E[M + ]. et o fait +. Comme IP(T < ) = P (sup M C), o a le résultat. 2. M et M sot des sousmartigales. 3. De même o a CI {T } M τ et par le théorème d arrêt E[M τ ] E[M 0 ]. Propositio 1.10 Iégalité du ombre de motées 1. Soit (M ) 0 est ue surmartigale et m M a,b () le ombre de motées de a à b effectuées par M avat l istat. Alors E[m M a,b()] 1 b a E[(M a) ]. 2. Soit (M ) 0 est ue sousmartigale et m M a,b () le ombre de descetes de b à a effectuées par M avat l istat. Alors E[m M a,b()] 1 b a E[(M b) + ]. Preuve. O remarque que 2. implique 1. car M est ue sousmartigale et m M a,b () = m M b, a (). Prouvos 2. O décrit les périodes de descete avec la suite croissate de temps d arrêt suivats : T 0 = 0, T 1 = if{ 0 : M > b}, T 2 = if{ T 1 : M < a},..., T 2p 1 = if{ T 2p 2 : M > b}, T 2p = if{ T 2p 1 : M < a},... Pour tout p, M T2p 1 b est ue sousmartigale, positive sur {T 2p 1 }. O a doc Par coséquet, 0 E[(M T2p 1 b)i T2p 1 ] E[(M T2p b)i T2p 1 ] (Théorème d arrêt) E[(M T2p b)i T2p ] + E[(M b)i T2p 1 <T 2p ] (a b) IP(T 2p ) + E[(M b) + I T2p 1 <T 2p ] (b a) p IP(m M a,b () p) p E[(M b) + I T2p 1 <T 2p ] c est à dire (b a)e[m M a,b ()] E[(M b) + ]. Propositio 1.11 Iégalité de Doob Soit (M ) 0 est ue martigale (ou sousmartigale positive), p, q > 1 tels que 1 = 1 p + 1 q. Alors sup M p q sup M p, N N où. p est la orme L p. Preuve. Il suffit de motrer que si X, Y sot deux v.a. positives telles que C > 0 C IP(Y C) E[XI Y C ] alors p, q > 1 tels que 1 = 1 p + 1 q Y p q X p.
30 E effet, car si M martigale alors M est ue sousmartigale positive, il doc suffit d utiliser le résultat avec Y = sup N M et X = M. Si f est ue foctio positive croissate càd telle que f(0) = 0, alors Y E[f(Y )] = E[X 0 1 z df(z)] E preat, f(y) = y p, o obtiet le résultat. 1.3 Théorèmes de covergece Défiitio 1.12 Ue famille de v.a. (X i ) i I est dite uiformémet itégrable (U.I.) si lim sup E[ X i I a + Xi >a] = 0. i I Exemple 1.13 1. Si i I, X i X avec X L 1, la famille (X i ) i I est uiformémet itégrable. Par coséquet, ue suite borée est U.I. 2. Si p > 1, sup i I E[ X i p ] <, la famille (X i ) i I est uiformémet itégrable. Preuve. 1. E[ X i I Xi >a] E[XI X>a ] et comme X L 1, o a bie lim a + E[XI X>a] = 0. 2. E[ X i I Xi >a] E[ X i p ] 1/p IP( X i > a) 1/q E[ X i p ]/a p/q. Théorème 1.14 Soit (X ) 0 ue suite de v.a. et X L 1. X L 1 X ssi X proba X et (X ) 0 U.I. Covergece p.s. Théorème 1.15 Soit (M ) 0 ue sous-martigale à valeurs das IR telle que sup E[M + ] <, alors il existe M L 1 telle que M + M ps. Preuve. Le ombre de descetes vérifie E[m M a,b (IN)] <, doc mm a,b (IN) < p.s. Soit N l esemble de mesure sur lequel m M a,b ( ) = pour tout a, b Q. Soit ω / N. Si M t(ω) e coverge pas, alors il existe a, b Q : lim if M t (ω) < a < b < lim sup M t (ω). Cotradictio, doc la martigale coverge p.s.. Notos M sa limite. Par ailleurs, comme M = 2M + M et E[M 0 ] E[M ], o a E[ M ] 2E[M + ] E[M 0 ] Doc sup E[ M ] <. D après le lemme de Fatou, E[ M ] lim if E[ M ] sup E[ M ] <. Doc M L 1.
Le mouvemet Browie e tat que processus de Markov 31 Covergece e moyee Théorème 1.16 Soit (M ) 0 ue martigale. Il y a équivalece etre les propriétés suivates : 1. Z L 1 tel que IN M = E[Z F ], 2. (M ) 0 est U.I., 3. (M ) 0 coverge das L 1. O a alors Z = M, la martigale est dite fermée, i.e. (M ) est ue martigale. IN Preuve. 1 2 : Par Jese E[ M I M >a] E[ Z I M >a]. Comme Z L 1, la suite ( Z I M >a) est U.I. (Voir l exemple 1.13-1), doc (M ) 0 est U.I. 2 3 : D après le théorème précédet, o a M coverge p.s. vers M, doc coverge das L 1 car U.I. 3 1 : O a M = E[M +p F ] pour tout p 0. Comme l espérace coditioelle est cotiue sur L 1, e faisat tedre p +, d où le résultat. Corollaire 1.17 Soit (M ) ue sous-martigale idexée par IN ou Z, i.e. F F +1 et M = E[M +1 F ] pour 0. Alors M coverge quad p.s. et das L 1. Par coséquet, (M ) sous martigale. IN Preuve. E effet, pour tout 0, E[X + ] E[X 0 + ] <. Il y a doc covergece p.s. Par ailleurs, M E[M 0 F ] pour tout 0. La sous-martigale est doc U.I. Propositio 1.18 Soit (M ) 0 ue surmartigale positive, alors (M ) 0 coverge p.s. et das L 1 vers M et (M ) est ue surmartigale. IN 2 Processus e temps cotiu Soit (Ω, F, (F t ) t 0, IP) u espace probabilisé filtré. Défiitio 2.1 Soit X = (X t, t 0) u processus défii sur (Ω, F, (F t ) t 0, IP). Le processus X est dit mesurable si l applicatio X : [0, [ Ω (E, E) (t, ω) X t (ω) est mesurable par rapport à B([0, [) F. Le processus X est dit adapté si t 0 X t est F t -mesurable. Le processus X est dit progressivemet mesurable (ou progressif) si t 0 l applicatio X : [0, t] Ω E est mesurable par rapport à la tribu B([0, t]) F t. (s, ω) X s (ω) Défiitio 2.2 Soit X = (X t, t 0) u processus. La filtratio aturelle de X est défiie par Ft X = σ(x s, 0 s t). Remarque 2.3 1. Si (F X t ) t 0 est la filtratio aturelle de X alors X est adapté à (F X t ) t 0. 2. U processus progressif est adapté (la réciproque est fausse).
32 3. U processus mesurable et adapté admet ue versio progressivemet mesurable (Théorème de Chug et Doob (1965), voir [4]). Exemple 2.4 1. Cosidéros ue suite de temps 0 < t 1 <... < t, et h 1,..., h des v.a. telles que i h i est F ti -mesurable. O pose t 0 = 0 et t +1 = +. Les processus suivats X = h i I [ti,t i+1[ et Y = h 0 I {0} + h i I ]ti,t i+1] sot progressivemet mesurables. i=0 2. Si la filtratio est complète, u processus X adapté dot les trajectoires sot cotiues à gauche (càg) est progessivemet mesurable. Preuve. 1. Regardoc le premier processus, l étude du secod est similaire. Soit B E, où E tribu sur E, o a {(s, ω) [0, t] Ω : X t (ω) B} = Doc X est progressivemet mesurable. i=0 [t i, t i+1 [ [0, t] {ω Ω : h i (ω) B} i=0 B([0, t]) F t. 2. O approche le processus X par Xt = X k2 sur t [k2, (k+1)2 [, k {0,..., 2 1}. Le processus X est progressivemet mesurable et comme X est càg, t 0, p.s. Xt X t. Doc X est progressif. + Propositio 2.5 Soit X u processus adapté et cotiu à droite (càd) alors X est progressif. Preuve. O défiit Xt = X (k+1)2 sur t [k2, (k+1)2 [. Le processus X est (F t+2 ) t 0 - progressif et comme X est càd t 0, p.s. Xt X t. + O fixe t 0 et o défiit maiteat X s = Xs I s<t 2 + X t I s=t. Ce processus est mesurable par rapport à B([0, t]) F t. Par ailleurs, quad +, Xs X s pour s t. Doc la restrictio de X à [0, t] est mesurable par rapport à B([0, t]) F t, i.e. X est progressif. Propositio 2.6 Soit X u processus progressif et T u (F t ) t 0 -temps d arrêt. Alors X T I {T < } est F T -mesurable. Preuve. Supposos T fii. O fixe t 0, X [0,t] est B([0, t]) F t -mesurable et T I {T t} est F t -mesurable. Par compositio, X T I {T t} est F t -mesurable. Doc X T est F T -mesurable. Propriété 2.7 Les lois fiis dimesioelles caractériset la loi d u processus. 3 Martigales e temps cotiu Soit (Ω, F, (F t ) t 0, IP) u espace probabilisé filtré. 3.1 Défiitio et exemples Défiitio 3.1 Soit M u processus adapté avec t 0, M t L 1. O dit que - M est ue (F t ) t 0 -sousmartigale si M t E[X t+s F t ] pour tout t, s 0. - M est ue (F t ) t 0 -surmartigale si M t E[M t+s F t ] pour tout t, s 0. - M est ue (F t ) t 0 -martigale si M t = E[M t+s F t ] pour tout t, s 0.
Le mouvemet Browie e tat que processus de Markov 33 Exemple 3.2 Exemple importat de Martigale. Soit Z L 1 ue variable aléatoire. Alors M = (M t, t 0) avec M t = E[Z F t ] est ue martigale. Exemple 3.3 Soir B u mouvemet browie et (F B t ) t 0 sa filtratio aturelle. 1. B est ue (F B t ) t 0 -martigale. 2. (B 2 t t, t 0) est ue (F B t ) t 0 -martigale. 3. (exp(ab t a2 2 t), t 0) est ue (F B t ) t 0 -martigale, pour a IR. Elle est appelée martigale expoetielle associée au Browie. Exemple 3.4 Si X est u processus à accroissemet idépedats avec X t L 1 pour tout t 0 et (F t ) t 0 sa filtratio aturelle. Alors (X t E[X t ], t 0) est ue (Ft X ) t 0 -martigale. Remarque 3.5 Soit M et N deux martigales idépedates telles que t 0 M t, N t L 2. O ote (F t ) t 0 la filtratio aturelle de (M, N). Alors MN = (M t N t, t 0) est ue (F t ) t 0 -martigale. Si o a juste M t et N t idépedates pour tout t 0, le résultat est faux e gééral. Preuve. Par Cauchy-Schwartz, o a bie t 0 M t N t L 1. Soiet t, s 0 et Y F t telle que Y = Y 1 Y 2 avec Y 1 σ(m s, s t) et Y 2 σ(n s, s t). Alors E[M t+s N t+s Y ] = E[M t+s Y 1 ]E[N t+s Y 2 ] par idépedace = E[M t Y 1 ]E[N t Y 2 ] car M etn martigales = E[M t N t Y ] par idépedace. Soit E = {Y L (F t ) : E[M t+s N t+s Y ] = E[M t N t Y ]}. C est u espace vectoriel qui cotiet les costates et stable par covergece mootoe. Les variables de la forme Y 1 Y 2 avec Y 1 σ(m s, s t) et Y 2 σ(n s, s t) egedret L (F t ), d où le résultat. 3.2 Premières propriétés Soit D u esemble déombrable dese de IR +. Par exemple, l esemble des dyadiques D = D avec D = {k2, k IN}. Propositio 3.6 Iégalité Maximale Soit M ue (F t ) t 0 -martigale. Alors pour tout C > 0 P ( sup s [0,t] D Si de plus M a des trajectoires càd, M s C) 1 C sup E[ M s ]. 0 s t P ( sup M s C) 1 s [0,t] C sup E[ M s ]. 0 s t Preuve. O utilise l iégalité Maximale pour des martigales discrètes. O a P ( sup M s C) 1 s [0,t] D C sup s [0,t] D E[ M s ] 1 C sup E[ M s ] 0 s t O obtiet le résultat par covergece mootoe quad +. Par ailleurs, lorsque M est càd sup s [0,t] D M s = sup s [0,t] M s.
34 Propositio 3.7 Iégalité de Doob Soit M ue (F t ) t 0 -martigale (ou sousmartigale positive), p, q > 1 tels que 1 = 1 p + 1 q. Alors Si de plus M a des trajectoires càd, sup M s p q sup M s p. s [0,t] D s [0,t] sup M s p q sup M s p. s [0,t] s [0,t] Théorème 3.8 Régularisatio de surmartigales Soit (Ω, F, (F t ) t 0, IP) u espace probabilisé filtré, avec (F t ) t 0 satisfaisat aux coditios habituelles (i.e. complète et cotiue à droite). Soit M ue (F t ) t 0 -surmartigale telle que t E[M t ] soit càd. Alors il existe ue versio M de M telle que i) p.s. t M t est cotiue à droite avec des limites à gauche (càdlàg) ii) M est ue (F t ) t 0 -surmartigale. Remarque 3.9 1. Si M est ue martigale alors so espérace est costate, doc cotiue. 2. Si M est ue sousmartigale, alors M est ue surmartigale! Preuve. O cosidère u esemble déombrable dese D de [0, + [. O va motrer le lemme suivat Lemme 3.10 Soit (Ω, F, (F t ) t 0, IP) u espace probabilisé filtré et M ue (F t ) t 0 -surmartigale. Alors avec probabilité 1 o a i) t 0 M t + = s lim M s existe, aisi que M t = lim M s, t,s D s t,s D ii) t 0 M t E[M t + F t ], avec égalité dès que la foctio s E[M s ] est cotiue à droite (ce qui est le cas des martigales car l espérace est costate). E particulier, o a M t + L 1. iii) (M t +, t 0) est ue (F t +) t 0 surmartigale. E effet, pour prouver le théorème à partir du lemme, il suffit juste de défiir M t = lim M s. s t,s D C est bie ue versio de M, car si l espérace est càd, o a M t = E[ M t F t ] et comme la filtratio est càd F t + = F t, Mt est doc F t -mesurable. De plus, M est ue (Ft ) t 0 surmartigale càdlàg. Preuve du Lemme. i) Existece de limites à gauche et à droite D après l iégalité maximale, pour N IN o a sup s [0,N] D M s <. Soiet a, b Q et m M a,b (t) le ombre de motées de M le log de D de a à b avat l istat t. E utilisat le résultat sur les surmartigales à temps discrèt, o obtiet E[m M a,b(t)] 1 b a sup E[ M s a ]. 0 s t E particulier, m M a,b (t) < p.s. E utilisat la même démostratio que celle du Théorème 1.15, o obtiet que p.s. M admet des limites à gauche et à droite e tout t 0 le log de D. ii) Motros que t 0 M t E[M t + F t ]. Soit t 0 fixé et (t ) ue suite décroissate de D qui coverge vers t. O a M t M t + p.s. O ote G p = F t p et N p = M t p pour p 0. Alors N est ue (G p ) p 0 -surmartigale sur IN. Doc elle coverge das L 1 d après le Corollaire 1.17. Doc M t M t + das L 1, d où X t + L 1 et comme 0 M t E[M t F t ] et par passage à la limite M t E[M t + F t ] p.s. O a égalité si l espérace est cotiue à droite, car alors E[M t ] = lim E[M t ] = lim E[E[M t F t ]] = E[M t +]. + +
Le mouvemet Browie e tat que processus de Markov 35 iii) (M t +, t 0) est ue (F t +) t 0 surmartigale. Comme M t est F t -mesurable, M t + est F t +-mesurable. Soit t, s 0, il existe (u ) suite de décroissate de D covergeat vers t + s. Soit 0 < ε < s fixé. Alors E[M (t+s) + F t+ε ] = lim + E[M u F t+ε ] M t+ε O choisir alors (ε ) 0 décroissate vers 0 telle que t+ε D. E utilisat ecore le Corollaire 1.17 à N p = E[M (t+s) + F t+ε p ] pour p 0, o a lim E[M (t+s) + F t+ε ] = E[M (t+s) + F t+ε ] = E[M (t+s) + F t +] p.s. et das L 1. + 0 Comme M t+ε M t + p.s., le résultat est prouvé. 3.3 Covergece des martigales cotiues Théorème 3.11 Soit M ue (F t ) t 0 -sous martigale cotiue à droite, avec. sup t 0 E[M + t ] <. Alors M t coverge p.s. quad t +. O ote M sa limite. O a de plus M L 1. Remarque 3.12 E gééral la covergece a pas lieu das L 1. Preuve. Pour tout a < b le ombre de motée de a à b le log des dyadiques est fii p.s. car E[m M a,b(t)] 1 b a sup E[(M s a) ]. O fait tedre t + et doc E[m M a,b ( )] <. La suite de la preuve est la même que das le cas discret. s t Défiitio 3.13 O dit qu u processus X est uiformémet itégrable si lim sup E[ X t I a + Xt >a] = 0. O dit qu ue martigale M est fermée s il existe ue v.a. Z L 1 telle que t 0 t 0 M t = E[Z F t ] p.s.. Théorème 3.14 Soir M ue martigale càd. Il y a équivalece etre les propriétés suivates : 1. M est ue martigale fermée, 2. M est uiformémet itégrable, 3. il existe M L 1 telle que lim t + M t = M p.s. et das L 1. O a alors que p.s. M t = E[M F t ]. Preuve. Même preuve que das le cas discret. 3.4 Théorème d arrêt Théorème 3.15 Soit M ue (F t ) t 0 -martigale (sur ou sous) càd fermée. O ote M sa limite. Soit T u (F t ) t 0 -temps d arrêt. O pose M T = M sur {T = }. Alors E[M F T ] = M T p.s. (resp et ) et le processus arrêté M T = (M T t, t 0) est ecore ue martigale uiformémet itégrable de valeur termiale M T. E particulier, E[M T ] = E[M 0 ] = E[M ].
36 Preuve. Évidet. i) T détermiiste. ii) T temps d arrêt simple. O ote t 0, t 1,... les valeurs prises par T. O a M T = M t sur {T = t }. Par ailleurs, M T est F T -mesurable car M est càd, d où progressivemet mesurable. Soit Λ F T. Par Fubii, o a E[M I Λ ] = E[M I Λ I T =t ] = E[M t I Λ I T =t ] = E[M T I Λ ] Doc E[M F T ] = M T. ii) Cas gééral. Il existe ue suite décroissate de t.a. simples T qui coverge p.s. vers T. O a E[M F T ] = M T, d où E[M F T ] = E[M T F T ] (e effet F T F T ). Par ailleurs, M T coverge vers M T, car les trajectoires sot càd. Motros que cette covergece a lieu das L 1. Notos pour p 0 G p = F T p. O a G p G p+1. Notos N p = M T p. Alors N est ue (G p ) p 0 -martigale idexée par IN (car la suite de t.a. est décroissate). Elle coverge doc das L 1 d après le Corollaire 1.17. Par coséquet, M T coverge vers M T das L 1 et doc E[M F T ] = M T. Remarque 3.16 Sous les hypothèses du théorème, o a E[M T F t ] = M t T. Remarque 3.17 1. Le théorème s applique aux (sur ou sous) martigales càd borées. 2. Si T est boré, il suffit de supposer la martigale M càd. (E effet, si T 1, M t = E[M 1 F t ] doc fermée sur l itervalle de temps [0, 1].) Attetio : Le théorème e s applique que lorsque la martigale est fermée ou le temps d arrêt boré. E effet si B est u mouvemet browie (c est bie ue martigale), e posat T a = if{t 0 : B t = a}, o a B Ta = a et E[B 0 ] = 0 a = E[B Ta ] pour a > 0. Corollaire 3.18 Si M est ue (sur ou sous) martigale càd fermée et T, S deux temps d arrêt avec S T, alors M T L 1 et E[M T F S ] = M S (resp et ). Si T et S sot deux t.a. borés il suffit de supposer M martigale càd. 4 Processus de Poisso Le processus de Poisso est utilisé par exemple pour modéliser les files d attete comme les arrivées des appels téléphoiques à u cetral. Défiitio 4.1 soit λ > 0 et (S ) 1 ue suite de v.a. idépedates de loi expoetielle E(λ). O pose T = S 1 +... + S. O défiit alors le processus de comptage N = (N t, t 0) à valeurs das IN { } N t = 1 I {T t}. Ce processus est appelé processus de Poisso d itesité λ. Défiitio 4.2 O défiit (Ft N ) t 0 la filtratio aturelle complétée du processus de Poisso.
Le mouvemet Browie e tat que processus de Markov 37 Remarque 4.3 O peut aussi écrire le processus sous la forme N t = sup{ 0 : T t}. Iversemet, o remarque que T est u (F N t ) t 0 -temps d arrêt, T = if{t 0 : N t = }. Si t > s, o a N t N s = 1 I {s<t t}. Théorème 4.4 U processus X à accroisssemets idépedats et statioaires (PAIS) càd vérifie la propriété de Markov forte. Preuve. Voir Chapitre 2, Théorème 2.10. Défiitio 4.5 équivalete du Processus de Poisso. U processus de Poisso N = (N t, t 0) d itesité λ est u processus de comptage càd tel que i) N(0) = 0 ii) N est u processus à accroisssemets idépedats et statioaires. iii) pour tout t 0, N(t) suit la loi de Poisso P(λt). Preuve. Soit N u processus de Poisso au ses de la Défiitio 4.1. O a bie N(0) = 0. Soiet 0 t 1 < t 2 <... < t, alors N(t + s) N(t) = 1 I {t<t t+s}. Comme {N t = k} = {S 1 +... + S k t < S 1 +... + S k+1 } si k 1,..., k IN, e posat K i = k 1 +... + k i o a alors IP(N t1 = k 1, N t2 N t1 = k 2,..., N t N t 1 = k ) = IP(N t1 = k 1, N t2 = k 2 + k 1,..., N t = K ) = IP(S 1 +... + S K1 t 1 < S 1 +... + S K1+1, S 1 +... + S K2 t 2 < = S 1 +... + S K2+1,..., S 1 +... + S K t < S 1 +... + S K+1)... λ K+1 e P K+1 i=1 s i I {S1+...+S Ki t i<s 1+...+S Ki +1}ds 1... ds K+1 IR+ i=1 O coclut après quelques calculs horribles...(voir par exemple [2]) Vérifios maiteat que N(t) P(λt). Comme T suit la loi Gamma(, λ), pour 1 IP(N t = ) = IP(T t) IP(T +1 t) t ( ) λ = e λs ( 1)! s 1 λ+1 s ds! 0 λt (λt) = e! Pour = 0, IP(N t = ) = IP(S 1 > t) = e λt. Soit N u processus de Poisso au ses de la Défiitio 4.5. U tel processus vérifie la propriété de Markov forte. Posos T = if{t 0 : N t = }. Pour tout 0, T < p.s. car pour tout t 0 N(t) suit la loi de PoissoP(λt). O défiit S 1 = T 1 et S +1 = T +1 T.
38 Motros que S 1 suit la loi expoetielle : IP(S 1 > t + s) = IP(N t+s = 0) = IP(N t = 0, N t+s = 0) = IP(N t = 0) IP(N t+s N t = 0) = IP(N t = 0) IP(N s = 0) IP(S 1 > t + s) = IP(S 1 > t) IP(S 1 > s) cqfd. Comme T est u (Ft N ) t 0 -temps d arrêt, les variables S i = T i T i 1 sot FT N -mesurable, pour i. Motros que S +1 est idépedate de FT N et à même loi que S 1. O remarque que T +1 = if{t T : N t = + 1} Loi = T + if{t 0 : Ñ t = 1} où Ñ est u processus de Poisso idépedat de FT N, N état u PAIS. Par coséquet IP(S +1 > t FT N ) = IP(T +1 T > t FT N ) = IP(S 1 > t) Coséquece 4.6 Soit N u processus de Poisso. N est u PAIS càd qui vérifie la propriété de Markov forte : Soit T u (Ft N ) t 0 -temps d arrêt fii p.s.. O ote N le processus défiit pour s 0 par N s = N T +s N T. Alors le processus N est idépedat de FT N et a même loi que N. Théorème 4.7 soit N u processus de Poisso d itesité λ. Alors les processus suivats sot des martigales : i) Ñ = (N t λt, t 0), ii) ((N t λt) 2 λt, t 0). Ñ est appelé processus de Poisso compesé. Preuve. O utilise le fait que N u est PAIS (voir les exemples de martigale liés au Browie). Remarque 4.8 O peut voir le processus de Poisso comme ue mesure aléatoire sur (IR, B(IR)) : la mesure de l itervalle [s, t] est N(]s, t]) = N t N s. Remarque 4.9 Le mouvemet browie et le processus de Poisso fot partie d ue classe plus grade de processus : les processus de Lévy (processus càd à accroissemets idépedats et statioaires).
Bibliographie [1] Jea-Fraçois Le Gall. Itroductio au mouvemet browie. Gazette des Mathématicies, 40, 1989. [2] Domiique Foata et Aimé Fuchs. Processus stochastiques. Duod, 1998. [3] Daiel Revuz et Marc Yor. Cotiuous martigales ad browia motio. Spriger, 1991. [4] Claude Dellacherie et Paul-Adré Meyer. Probabilités et potetiels. Herma, 1975. [5] Ioais Karatzas et Steve E. Shreve. Spriger, 1991. [6] Hui-Hsiug Kuo. Itroductio to stochastic itegratio. Spriger, 2006. [7] Edward Nelso. Dyamical theories of Browia motio. http ://www.math.priceto.edu / elso/books/bmotio.pdf. [8] Philip Protter. Stochastic itegratio ad differetial equatios. Spriger, 1995. 39
40