Vecteurs. I Translation. 1. Définition :



Documents pareils
Cours d Analyse. Fonctions de plusieurs variables

1 radian. De même, la longueur d un arc de cercle de rayon R et dont l angle au centre a pour mesure α radians est α R. R AB =R.

Représentation géométrique d un nombre complexe

1S Modèles de rédaction Enoncés

Baccalauréat S Nombres complexes Index des exercices sur les complexes de septembre 1999 à juin 2012 Tapuscrit : DENIS VERGÈS

CONJUGUÉ D'UN POINT PAR RAPPORT À UN TRIANGLE

Si deux droites sont parallèles à une même troisième. alors les deux droites sont parallèles entre elles. alors

Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes.

Angles orientés et trigonométrie

Corrigé du baccalauréat S Pondichéry 12 avril 2007

5 ème Chapitre 4 Triangles

Deux disques dans un carré

Chapitre 2 : Vecteurs

Equations cartésiennes d une droite

Le théorème de Thalès et sa réciproque

Les droites (d 1 ) et (d 2 ) sont sécantes en A Le point A est le point d intersection des 2 droites

Exercices - Nombres complexes : corrigé. Formes algébriques et trigonométriques, module et argument

Séquence 10. Géométrie dans l espace. Sommaire

PROBLEME(12) Première partie : Peinture des murs et du plafond.

Correction : E = Soit E = -1,6. F = 12 Soit F = y = 11. et G = -2z + 4y G = 2 6 = 3 G = G =

Rappels et compléments, première partie : Nombres complexes et applications à la géométrie

Quelques contrôle de Première S

Corrigé du baccalauréat S Asie 21 juin 2010

Première partie. Préliminaires : noyaux itérés. MPSI B 6 juin 2015

Eté LIVRET de RÉVISIONS en MATHÉMATIQUES

I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES

TOUT CE QU IL FAUT SAVOIR POUR LE BREVET

Les chaînes de caractères

Si un quadrilatère a. Si un quadrilatère a. Si un quadrilatère a. Si un quadrilatère a. ses côtés opposés. ses côtés opposés de. deux côtés opposés

Sommaire de la séquence 10

LE PROCESSUS ( la machine) la fonction f. ( On lit : «fonction f qui à x associe f (x)» )

Nombres complexes. cours, exercices corrigés, programmation

Correction du baccalauréat S Liban juin 2007

Géométrie dans l espace

Séquence 2. Repérage dans le plan Équations de droites. Sommaire

Exo7. Calculs de déterminants. Fiche corrigée par Arnaud Bodin. Exercice 1 Calculer les déterminants des matrices suivantes : Exercice 2.

Correction du Baccalauréat S Amérique du Nord mai 2007

COURS EULER: PROGRAMME DE LA PREMIÈRE ANNÉE

Cours de Mécanique du point matériel

STATIQUE GRAPHIQUE ET STATIQUE ANALYTIQUE

point On obtient ainsi le ou les points d inter- entre deux objets».

Géométrie dans l espace Produit scalaire et équations

Problèmes de dénombrement.

Construction d un cercle tangent à deux cercles donnés.

Architecture des ordinateurs TD1 - Portes logiques et premiers circuits

Durée de L épreuve : 2 heures. Barème : Exercice n 4 : 1 ) 1 point 2 ) 2 points 3 ) 1 point

Thème 17: Optimisation

Représentation des Nombres

IFT2880 Organisation des ordinateurs et systèmes

Baccalauréat L spécialité, Métropole et Réunion, 19 juin 2009 Corrigé.

TRANSLATION ET VECTEURS

Devoir 2 avec une figure en annexe, à renvoyer complétée. Corrigés d exercices sections 3 à 6. Liste des exos recommandés :

Développer, factoriser pour résoudre

Développement décimal d un réel

EXAMEN : CAP ADAL SESSION 2011 N du sujet : SPECIALITE : CEB - GEPER SUJET SECTEUR : FOLIO : 1/6 EPREUVE : EG2 (MATH-SCIENCES)

MAT2027 Activités sur Geogebra

Structures algébriques

Chap 8 - TEMPS & RELATIVITE RESTREINTE

La géométrie du triangle III IV - V Cercles remarquables - Lieux géométriques - Relations métriques

Le contexte. Le questionnement du P.E.R. :

Angles orientés et fonctions circulaires ( En première S )

Brevet 2007 L intégrale d avril 2007 à mars 2008

Items étudiés dans le CHAPITRE N5. 7 et 9 p 129 D14 Déterminer par le calcul l'antécédent d'un nombre par une fonction linéaire

Plan du cours : électricité 1

Chapitre 0 Introduction à la cinématique

Problème 1 : applications du plan affine

Corrigés Exercices Page 1

Exprimer ce coefficient de proportionnalité sous forme de pourcentage : 3,5 %

2.4 Représentation graphique, tableau de Karnaugh

t 100. = 8 ; le pourcentage de réduction est : 8 % 1 t Le pourcentage d'évolution (appelé aussi taux d'évolution) est le nombre :

Algèbre binaire et Circuits logiques ( )

AC AB. A B C x 1. x + 1. d où. Avec un calcul vu au lycée, on démontre que cette solution admet deux solutions dont une seule nous intéresse : x =

Sommaire de la séquence 8

Limitations of the Playstation 3 for High Performance Cluster Computing

Les Angles. I) Angles complémentaires, angles supplémentaires. 1) Angles complémentaires. 2 Angles supplémentaires. a) Définition.

Livret de liaison Seconde - Première S

Exercice 6 Associer chaque expression de gauche à sa forme réduite (à droite) :

Priorités de calcul :

LE PRODUIT SCALAIRE ( En première S )

Notion de fonction. Série 1 : Tableaux de données. Série 2 : Graphiques. Série 3 : Formules. Série 4 : Synthèse

Manuel de l utilisateur

Exo7. Matrice d une application linéaire. Corrections d Arnaud Bodin.

Introduction au maillage pour le calcul scientifique

INFORMATIONS DIVERSES

LA PHYSIQUE DES MATERIAUX. Chapitre 1 LES RESEAUX DIRECT ET RECIPROQUE

PROPORTIONNALITÉ LES ÉCHELLES. Dossier n 2 Juin Conçu et réalisé par : Marie-Christine LIEFOOGHE Bruno VANBAELINGHEM Annie VANDERSTRAELE

Planche n o 22. Fonctions de plusieurs variables. Corrigé

Chapitre. Conquérant est une toile de 1930 qui se trouve au Centre Paul Klee à Berne (Suisse). Paul Klee (1879-

Le théorème de Perron-Frobenius, les chaines de Markov et un célèbre moteur de recherche

MATHEMATIQUES GRANDEURS ET MESURES

1/24. I passer d un problème exprimé en français à la réalisation d un. I expressions arithmétiques. I structures de contrôle (tests, boucles)

NOTATIONS PRÉLIMINAIRES

Logiciel de Base. I. Représentation des nombres

OLYMPIADES ACADEMIQUES DE MATHEMATIQUES. 15 mars 2006 CLASSE DE PREMIERE ES, GMF

Le produit semi-direct

Chapitre 3. Mesures stationnaires. et théorèmes de convergence

315 et 495 sont dans la table de 5. 5 est un diviseur commun. Leur PGCD n est pas 1. Il ne sont pas premiers entre eux

Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en Énoncé.

chapitre 4 Nombres de Catalan

De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que

Transcription:

Vecteurs I Translation Soit A et B deux points du plan. On appelle translation qui transforme A en B la transformation du plan qui a tout point M associe le point M tel que [AM ] et [BM] aient le même milieu Le point M est unique, il est l image de M par la translation. Le point M est l antécédent de M par cette translation. Par une translation tout point du plan a un unique antécédent. ABM M est un parallélogramme. Cas particulier : Si les points A, B et M sont alignés, le parallélogramme est aplati. 2. Caractéristiques d une translation : La translation qui transforme A en B est caractérisée (définie) par trois renseignements : La direction donnée par la droite (AB). La droite (MM ) a la même direction que (est parallèle à) la droite (AB) Le sens de A vers B. On va de M vers M dans le même sens que de A vers B. La longueur AB. MM = AB. 3. Image d un polygone par une translation : Image du polygone ABCD par la translation qui transforme A en A. 1

II Vecteurs Un couple (A, B) de deux points distinct du plan définit un vecteur noté ÄAB caractérisé par : Une direction celle de la droite (AB) Un sens de A vers B Une longueur (ou norme) AB. A est l origine et B l extrémité du vecteur. Par convention le vecteur ÄAA est le vecteur nul, il est noté ÄAA = Å0. Il a une longueur nulle pas de direction ni de sens. On peut appeler la translation qui transforme A en B, translation de vecteur u = AB et on peut la note t Ä AB. La translation de vecteur nul est appelée identité, Tout point du plan a lui-même pour image, les points sont invariants. 2. Egalité de deux vecteurs : Deux vecteurs ÄAB et ÄCD sont égaux s ils définissent la même translation. Ils ont même direction, même sens et même norme ou longueur. On pourra noter ÄAB = ÄCD = Åu AB = CD = Åu (seule écriture possible pour la norme d un vecteur nommé par une lettre. 3. Propriétés : Propriété 1 : ÄAB = ÄCD équivaut à «[AD] et [CB] on le même milieu. Propriété 2 : ÄAB = ÄCD équivaut à «ABDC est un parallélogramme. Propriété 3 : Si ÄAB=ÄCD alors (AB)//(CD) et AB = CD. (pourquoi pas équivaut à?) Propriété 4 : Soit Åu un vecteur, donné du plan, pour tout point M du plan il existe un point unique N tel que ÄMN = Åu 2

III Composée de deux translations. Somme de vecteurs La somme de deux vecteurs Åu et Åv est le vecteur Åw qui caractérise la translation résultant la composition de la translations de vecteur Åu suivi de la translation de vecteur Åv, noté Åw = Åu+Åv. 2. Construction : Relation de Chasles ÄAB = Åu et ÄBC = Åv ÄAB+ÄBC = ÄAC ÄAC = Åu + Åv Åw = Åu + Åv Règle du parallélogramme ÄAB = Åu et ÄAD= Åv ÄAB+ÄAD = ÄAC C étant le quatrième sommet du parallélogramme ABCD. Åw = Åu + Åv 4. Propriétés : Pour tous vecteurs Åu, Åv, Åw du plan on a : Åu + Åv = Åv + Åu Åu + Å0 = Å0 + Åu = Åu (Åu + Åv) + Åw = Åu + (Åv + Åw) = Åu + Åv + Åw 3

5. Vecteurs opposés : On appelle vecteurs opposés deux vecteurs dont la somme est le vecteur nul. Ils ont donc la même direction, la même longueur et un sens contraire. Notation Åu + Åv = Å0 ñ Åu = - Åv. Soustraire un vecteur c est ajouter son opposé. IV Multiplication d un vecteur par un nombre réel Soit Åu= ÄAB un vecteur et k un nombre réel, le produit du vecteur Åu par le nombre réel k est le vecteur Åv = ÄCD avec ÄCD = k ÄAB, ou Åv = k Åu, tel que : Si Åu = Å0 ou k =0 alors Åv = Å0. Si Åu Å0 et k 0 alors Åu et Åv ont : la même direction si k > 0 le même sens et CD = k AB. kåu = k Åu si k < 0 un sens contraire et CD = k AB. kåu = - k Åu 2. Propriétés admises: Le produit du vecteur Åu par un nombre réel k est le vecteur Å0 si et seulement si Åu = Å0 ou k = 0 donc k u = 0 k = 0 ou u = 0 pour tous vecteurs Åu et Åv, et tous nombres réels a et b : a( Åu + Åv) = a Åu + a Åv et (a+b) Åu = k Åu + b Åu 4

V Vecteurs colinéaires Deux vecteurs Åu et Åv non nuls sont colinéaires si et seulement si il existe un nombre réel k tel que Åv = k Åu. Les vecteurs Åu et Åv ont alors la même direction. Par convention le vecteur nul Å0 est colinéaire à tous les vecteurs. 2. Vecteur directeur d une droite : Soit une droite (d), un vecteur Åu non nul. Le vecteur Åu est un vecteur directeur de la droite (d) si et seulement si pour tous points A et B distincts de (d), les vecteurs ÄAB et Åu sont colinéaires. 3. Propriétés : Deux droites (AB) et (CD) sont parallèles si et seulement si les vecteurs ÄAB et ÄCD sont colinéaires donc il existe un réel k tel que ÄCD = k ÄAB. Trois points A, B, distincts, et M sont alignés si et seulement si les vecteurs ÄAB et ÄAM sont colinéaires donc il existe un réel k tel que ÄAM = k ÄAB. 5