Module: Statistiques inférentielles. Enoncés des exercices. Version du 9 octobre 2014

Dimension: px
Commencer à balayer dès la page:

Download "Module: Statistiques inférentielles. Enoncés des exercices. Version du 9 octobre 2014"

Transcription

1 Module: Statistiques inférentielles Enoncés des exercices Version du 9 octobre 2014 Université Paul Sabatier - Toulouse 3 IUT de Toulouse 3 A Département GEA PONSAN Clement Rau clement.rau@iut-tlse3.fr

2 1 Variables aléatoires Exercice 1 Le tableau de la loi de probabilité d un dé truqué à six faces est : i p i Soit les événements A = {i, i 4}; B = {i, i 4}; C = {i, i < 4}. Calculer P[A], P[B], P[C]; P[A B]; P[A C]; P[B C]. Exercice 2 Soit X une variable aléatoire dont la loi de probabilité est donnée par 1. Calculer l espérance et la variance de X. x P X (x) Déterminer et représenter la fonction de répartition de X 3. Calculer les probabilités P [X < 4], P [X > 2], P [3 < X 4.5], P [2 X < 4], P [2 < X < 4]. 4. Soit Y = 3X 5. Calculer E(Y ) et V ar(y ). Exercice 3 On joue avec deux dés à quatre faces. Sur le premier dé, les faces portent les numéros 1, 2, 3 et 3. Sur le deuxième dé, les faces portent les numéros 1, 2, 2 et 2. Deux règles du jeu sont possibles : 1. La partie coûte 1 euro. On lance les deux dés. (a) Si la somme est 2, on gagne 6 euros, (b) Si la somme est 3 ou 4, on gagne 2 euros, (c) Si la somme est 5, on ne gagne rien. 2. La partie coûte 10 euros. On lance les deux dés. (a) Si la somme est 2, on gagne 60 euros, (b) Si la somme est 3 ou 4, on gagne 12 euros, (c) Si la somme est 5, on ne gagne rien. En étudiant l espérance et l écart-type de chacun de ces jeux, trouver lequel est le plus intéressant. Exercice 4 Une loterie comporte 20 billets dont 2 gagnants, l un pour un lot de 100 euros et l autre pour un lot de 60 euros. On a acheté 3 billets. 1. Calculer les probabilités suivantes en supposant tous les tirages équiprobable : A : gagner les 2 lots B : gagner le lot de 100 euros seulement C : gagner le lot de 60 euros seulement D : ne rien gagner 2

3 2. Déterminer la loi de probabilités de la variable aléatoire X qui à tout ensemble de trois billets associe la somme gagnée. 3. Calculer E(X) 4. Le prix de vente du billet étant fixé à E(X)/3, vérifier que la vente des 20 billets permet d obtenir la somme mise en jeu. Exercice 5 Trois urnes U 1, U 2, U 3 contiennent chacune 10 boules supposées indiscernables numérotées de 1 à 10. On tire une boule dans chacune des urnes et on suppose les tirages indépendants. 1. Quelle hypothèse peut-on faire sur les tirages grâce à l indiscernabilité? Donner alors la probabilité d obtenir un 2 à chaque tirage. 2. Soit X la variable aléatoire qui compte le nombre de 5 obtenus lors de cette épreuve de 3 tirages. (a) Exprimer les événements élémentaires de X en fonction des événements A i : Le tirage dans l urne U i donne un 5 (i = 1, 2, 3). (b) Donner la loi de X. (c) Calculer l espérance et la variance de X (en présentant vos calculs sous forme fractionnaire) (d) Donner la fonction de répartition de X et la courbe cumulative associée. (e) Indiquez comment retrouver P[X 2], P[X = 2] puis P[1 < X 2] à l aide de la fonction de répartition. Exercice 6 Soit X et Y deux variables aléatoires à valeurs dans { 1, 0, +1}. La loi du couple (X, Y ) est donnée par le tableau suivant : 1. Donner les lois marginales de X et de Y. 2. Calculer la covariance du couple (X, Y ). 3. X et Y sont elles indépendantes? X Y /5 0 1/5 0 1/15 1/15 1/15 1 1/5 0 1/5 Exercice 7 Dans un atelier textile, la température exprimée en Farenheit, ne s écarte jamais de plus de 2 degrés de 62 degrés. Plus précisément, la température est une variable aléatoire F de distribution : 1. Calculer l espérance et la variance de F. f P(F = f)

4 2. On a décidé de lire la température sur l échelle des degrés Celcius qui satisfait C = 5 9 (F 32). Quelle est l espérance et la variance de la température exprimée en degrés Celcius? Exercice 8 On jette 2 dès et on note respectivement X 1 et X 2 les variables aléatoires numéro de la face supérieure du dès 1 et 2. On pose Z = max(x 1, X 2 ). Déterminer la loi de Z, E(Z) et V ar(z). 2 Les lois de probabilités discrètes Exercice 1 Une urne contient des boules blanches et des boules noires. La proportion de blanches est p. Les tirages se font avec remise ainsi la proportion de boules blanches ne changent jamais. 1. Soit Y la v.a qui vaut 1, si on tire une boule blanche et 0 sinon. Loi de Y? E(Y )? 2. Soit X la v.a indiquant le nombre de boules noires tirées sur 5 tirages. Quelles sont l espérance et la variance de cette variable? Exercice 2 Un automobiliste rencontre sur son trajet 5 feux de circulation tricolores. Pour chacun de ces feux, le rouge dure 15 secondes, l orange 5 secondes et le vert 40 secondes. Les 5 feux ne sont pas synchronisés et l on suppose que les aléas de la circulation sont tels que l état d un feu devant lequel se présente l automobile ne dépend pas de l état des autres feux rencontrés. 1. L automobile se présente devant un feu. Quelle est la probabilité que ce feu soit vert? 2. Quelle est la probabilité que sur son trajet, l automobile rencontre exactement 3 feux verts sur les 5 feux rencontrés? 3. Soit X la variable aléatoire correspondant au nombre de feux verts rencontrés sur le trajet. Quelle est sa loi de probabilité et son espérance? Exercice 3 Pour aller à son lycée à vélo, un élève rencontre 6 feux. L état de chaque feu est indépendant des autres et la probabilité qu un feu soit vert est 2/3. Un feu orange ou rouge, fait perdre 1 minute 30 secondes à l élève. Le lycée est situé à 3km du domicile et l élève roule à 15km/h entre les feux. Soit X le nombre de feux verts rencontrés sur le trajet et T le temps mis par l élève pour rejoindre le lycée. 1. Loi de X? 2. Exprimer T en fonction de X. En déduire E(T ). 3. L élève part 17 minutes avant le début des cours. Est il raisonnable de penser qu il arrivera à l heure? Quelle est la probabilité pour qu il arrive en retard en cours? Exercice 4 En 2011, un organisme de sondage indique que 65% des entreprises d un certain département ont dégagé un bénéfice supérieur à euros. On considère 300 entreprises de ce département. 1. Quel est l ordre de grandeur du nombre d entreprises ayant dégagé un bénéfice supérieur à euros parmi ces 300 entreprises? 4

5 2. Soit Z la v.a indiquant le nombre d entreprises (sur les 300 choisies) ayant un bénéfice supérieur à euros. Donner la valeur littérale de P(Z = 195). Calculer E(Z). Exercice 5 On joue à pile ou face. Si on obtient pile, on gagne 1 euro. Si on obtient face, on perd 1 euro. On considère une série de 10 lancers. 1. Si la pièce est non truquée (la probabilité d avoir pile et la probabilité d avoir face est la même) : (a) Quelle est la probabilité de gagner 10 euros? (b) Quelle est l espérance de gain? 2. Si la pièce est légérement truquée et tombe sur face dans 60% des cas (a) Quelle est la probabilité de gagner 10 euros? (b) Quelle est l espérance de gain? Exercice 6 On lance 10 fois un dé. Quelle est la probabilité d avoir 4 fois le 1? Exercice 7 Une urne contient 100 boules dont une rouge. 1. On effectue n tirages indépendants avec remise. Quelle est la probabilité d obtenir au moins une fois la boule rouge? 2. Combien de tirages indépendants (n) doit-on effectuer pour que cette probabilité soit au moins 0.95? 3. Comparer avec l approximation par une loi de Poisson judicieusement choisie. Exercice 8 Dans un atelier, le nombre d accidents au cours d une année est une v.a qui suit une loi de Poisson de paramètre 5. Calculer la probabilité des événements suivants : 1. Il n y a pas d accidents au cours d une année 2. Il y a exactement 4 accidents au cours de l année 3. Il a plus de 6 accidents au cours de l année Exercice 9 Dans une fabrication en série, 8% des articles présentent des défauts. Quelle est la probabilités pour que dans un contrôle portant sur 40 articles, il y ait 4 articles défectueux? Quelle est la probabilité pour qu il y ait 4 articles défectueux au plus? Quelle est la probabilités pour qu il y ait 6 articles défectueux sur un lot de 100? Exercice 10 Dans un texte de 1000 lignes on trouve en moyenne 25 erreurs typographiques. Quelle est la probabilité de trouver moins de 4 fautes dans un texte de 100 lignes? Exercice 11 On considère 4 lettres et 4 enveloppes correspondantes. On met au hasard les 4 lettres dans les enveloppes et on définit une variable aléatoire X comme étant le nombre de lettres qui atteindront leur destinataire. Calculer E(X). 5

6 Exercice 12 On considère un ascenseur qui dessert k étages d un immeuble, avec n personnes qui rentrent dans cet ascenseur vide au rez de chaussée. On suppose que chacune de ces personnes, indépendamment des autres, a une probabilités uniforme 1/k de sortir à l un ou l autre des étages et on suppose également que personne ne rentre dans l ascenseur à un étage au dessus du rez de chaussée. 1. Soit j un étage entre 1 et k. Quelle est la probabilité que l ascenseur s arrête à l étage j? 2. Quelle est l espérance du nombre d arrêts de l ascenseur? Exercice 13 On suppose que sur 1000 personnes voyageant par chemin de fer à un instant donné, il y a en moyenne 1 médecin. On suppose que le nombre aléatoire de médecins dans un train suit une loi de Poisson. Quelle est la probabilité de ne trouver aucun médecin? Un médecin? Deux médecins? Cinq médecins? 3 Approximation de lois Exercice 1 On suppose que le pourcentage moyen de gauchers est de 1%. Soit X la variable aléatoire prenant comme valeurs le nombre de gauchers dans un échantillon de 200 personnes choisies au hasard. Montrer que la loi de X est pratiquement une loi de Poisson dont on précisera la moyenne et la variance. Quelle est la probabilité pour qu il y ait moins de 4 gauchers dans l échantillon? Exercice 2 Si une personne sur 80 est centenaire, calculer la probabilité qu il y ait au moins un centenaire dans un groupe de 100 personnes prises au hasard? 4 Loi à densité Exercice 1 0 si x < 0 On donne f(x) = a si 0 x 1 0 si 1 < x 1. Calculer a pour que f soit une densité d une variable aléatoire X à valeur dans R. 2. Déterminer la fonction de répartition de X 3. Calculer E(X) et Var(X). Exercice 2 Soit f la fonction définie par f(x) = 1. Montrer que f est une densité d une variable X. 2. Déterminer la fonction de répartition F. 0 si x < x si 1 x 0 1 x si 0 x 1 0 si 1 < x 6

7 3. Calculer E(X) et Var(X). 4. Pour k > 0, montrer que P( X > k) 1 6k 2. Exercice 3 Inégalités de Bienaymé Tchebychev Soit X une v.a de densité f. Montrer que pour tout λ > 0, P( X E(X) λ) V ar(x) λ 2. Remarque 1 Ce type d inégalité n est pas propre aux lois à densité. Exo : l écrire pour une loi discréte. Exercice 4 Soit X une v.a suivant une loi uniforme sur [0; 1]. On pose Y = 2 ln(1 X). 1. Rappeler la valeur de P(X a) suivant les valeurs de a. 2. Expliquer rapidement pourquoi Y est une v.a. Préciser les valeurs que peut prendre Y 3. Calculer alors P(Y t) en fonction de t. 4. Soit h une densité de Y. A l aide de la question précédente, que doit vérifier h? Calculer h. Exercice 5 Soient X et Y deux v.a independantes, qui suivent une loi uniforme sur [0; 1]. On pose U = max(x, Y ) et Y = min(x, Y ). 1. U et V sont elles des v.a. Préciser les valeurs qu elles peuvent prendre. 2. Calculer P(U t) et P(V t) en fonction de t. 3. Soit h U [resp. h V ] une densité de U [resp. de V ]. A l aide de la question précédente, donner une expression de h U et de h V. 4. Faire le même travail avec W = min(x, 1 X). 5 La loi Normale Exercice 1 Sachant que X suit une loi N (0; 1) calculer à l aide de la table : 1. P(X < 0, 82) ; P(X < 0, 5) ; P(X > 1, 42) ; P(X < 1, 32) ; P(X > 2, 24) ; P( 1 < X < 1) ; P( 1, 5 < X < 2, 35) 2. Dans chacun des cas, calculer a sachant que X suit une N (0; 1) P(X < a) = 0, 8238 ; P(X > a) = 0, 0632 ; P(X < a) = 0, Exercice 2 La variable aléatoire X suit une loi normale N (18; 2.5). Calculer les probabilités suivantes : P(X < 17) ; P(X > 20) ; P(16 < X < 19.5). Exercice 3 X suit une loi N (68; 15). Déterminer a tel que P(X < a) = 0, Exercice 4 Soit X une variable aléatoire normale N (4; 3). Calculer les probabilités P(3 < X < 6) et P(X > 10). 7

8 Exercice 5 Soit X une variable aléatoire telle que N ( 1.7; 0.65). Calculer la probabilité P(X < 0)? Pour quelle valeur de λ a t-on P( X < λ) = 0.75? Exercice 6 Déterminer les paramètres (espérance et écart type) d une loi normale dont une variable aléatoire X qui suit cette loi, vérifie P(X < 12) = 0, 9772 et P(X < 5) = 0, Exercice 7 Dans une population masculine, la taille X suit une variable aléatoire normale N (172 cm; 3 cm). Dans une population féminine comparable, la taille Y suit également un loi normale N (166 cm; 6 cm). 1. Y a t il plus d hommes ou de femmes qui mesurent plus de 184 cm? 2. Quelle est la probabilité qu une femme mesure plus de 184 cm, sachant qu elle mesure plus de 180 cm? Exercice 8 Pour un échantillon de 300 individus sains, on a etudié la glycémie. On a constaté que 20% des glycémie sont inférieures à 0,82 g/l et que 30% des glycémies sont supérieures à 0,98 g/l. Dans ces conditions et en supposant que la glycémie suit une loi normale, déterminer la moyenne et l écart type de cette loi. Exercice 9 Une usine fabrique des billes de diamètre théorique 8 mm. Les erreurs d usinage provoquent une variation du diamètre qui est une variable aléatoire normale N (0 mm; mm). Lors du contrôle de fabrication on met au rebut les billes qui passent à travers une bague de diamètre 7,98 mm ainsi que celles qui ne passent pas à travers une bague de diamètre 8,02 mm. Quelle est la proportion des billes qui seront rejetées? Exercice 10 On tire 400 fois à pile ou face avec une pièce de monnaie non biaisée. Soit X le nombre de pile. 1. Indiquer la loi de X. 2. Calculer E(X) et Var(X). 3. On souhaite approximer la loi de X par une loi normale. Est ce légitime? Quels paramètres doit on choisir pour déterminer cette loi normale? 4. Calculer P(X > 220) et P(180 < X < 220). 5. Déterminer un intervalle [a; b] centrée en E(X) tel que P(a < X < b) = Calculer P(X = 220) et P(X = 190) Exercice 11 Soit X N (0; 1) et soit Y = X. Déterminer la loi de Y. Exercice 12 Sachant que la répartition des quotients intellectuels (QI), rapport entre l âge mental et l âge réel, d une personne est une loi normale N (0, 90; 0, 40). 1. Calculer la probabilité à 0,0001 près, qu une personne prise au hasard (a) ait un QI inférieur à 1 (b) ait un QI inférieur à 0,1 (c) ait un QI supérieur à 1,4 8

9 (d) ait un QI compris entre 0,8 et 1,3 2. En déduire le nombre de personnes dans un village de 1000 habitants (a) ayant un QI inférieur à 1 (b) ayant un QI inférieur à 0,1 (c) ayant un QI supérieur à 1,4 (d) ayant un QI compris entre 0,8 et 1,3 Exercice 13 On estime que le temps nécessaire à un étudiant pour terminer une épreuve d examen est une variable normale N ( 90; 45 2). 240 candidats se présentent à cet examen 1. Combien d étudiants termineront l épreuve en moins de deux heures? 2. Quelle devrait être la durée de l épreuve si l on souhaite que 200 étudiants puissent terminer l épreuve? Exercice 14 L éclairage d une commune est assuré par 2000 lampes dont la durée de vie moyenne est 1000 heures. Les tests réalisés pour obtenir cette espérance de vie ont montré que la durée de vie des lampes suivait une loi normale d écart-type estimé à 200 heures. Les services d entretien de la commune ont besoin pour leur gestion de connaître 1. Le nombre de lampes hors d usage au bout de 700 heures. 2. Le nombre de lampes à remplacer entre la 900e et la 1300e heure. 3. Le nombre d heures qui se seront écoulées pour que 10 % des lampes soient hors d usage? 6 Théorème central limite Exercice 1 On lance un dè n fois et on considère la variable aléatoire N=nombre de six. A partir de quelle valeur de n aura-t-on 9 chances sur 10 d avoir N n 1 6 < 0, 01? Exercice 2 Un restaurant peut servir 75 repas. La pratique montre que 20% des clients ayant réservé ne viennent pas. 1. Le restaurateur accepte 90 réservations. Quelle est la probabilité qu il se présente plus de 50 clients? 2. Combien le restaurateur doit-il accepter de réservations pour avoir une probabilité supérieure ou égale à 0,9 de pouvoir servir tous les clients qui se présenteront? Exercice 3 Une société de transport souhaite lutter contre la fraude et effectue pour cela des contrôles des titres de transport. Julie utilise ce transport tous les matins. Elle a une probabilité p = 0, 08 d être contrôler. Elle effectue 600 voyages par an. On appelle C la v.a égale au nombre de contrôle effectués sur une année. 9

10 1. Quelle est la loi de C? 2. A l aide d une approximation de la loi de C, calculer la probabilité que Julie soit contrôlée entre 40 et 50 fois dans l année. 3. Sachant que le prix d un ticket est 1, 2 euros et que le prix de l amende est 20 euros, quelle est la probabilité que Julie soit perdante en n achetant jamais de tickets? Exercice 4 On suppose que la durée de vie d une ampoule électrique est une v.a qui suit une loi exponentielle de paramètre λ = 0, h 1. Si l on remplace une ampoule par une ampoule semblable dès qu elle claque, quelle est la probabilité qu au bout de heures, l ampoule en fonctionnement soit au moins la dixième? Exercice 5 Un joueur lance une pièce équilibrée : lorsqu il obtient pile, il gagne 100 Euros, lorsqu il obtient face, il perd 100 Euros. Estimer le nombre maximal de lancers à effectuer pour que ce joueur ait plus de 95 chances sur 100 de perdre au plus 2000 Euros. Exercice 6 On lance 3600 fois un dè. Evaluer la probabilité que le nombre d apparitions du 1 soit compris entre 540 et 660. Exercice 7 Gestion de stock Un fabricant souhaite lancer une nouvelle console de jeu pour Noël. Les études marketing montrent que parmi les 2000 joueurs de la région, 40% ont déclaré avoir l intention d acheter le jeu. On appelle X, la v.a égale au nombre de personnes allant effectivement achetés le jeu. 1. Quelle est la loi de X? 2. En approximant la loi de X par une loi normale dont on précisera les caractéristiques, déterminer le stock que doit avoir le magasin pour que la probabilité de rupture de stock soit inférieure à 0, 1. 7 Estimation, intervalles de confiance Exercice 1 Avant le second tour d une élection, opposant les candidats D et G, un institut de sondage interroge au hasard 1000 personnes dans la rue. On note p la proportion d électeurs décidés à voter pour G dans la population totale et on suppose l échantillon de personnes intérrogées représentatif. Dans l échantillon sondé, cette proportion est égale à 0, Peut on proposer un intervalle de confiance pour p avec un risque d erreur de 5%. (on pourra utiliser l inégalité de Bien aymé ou le TCL) 2. Combien de personnes faut-il interroger pour donner une fourchette à 1% avec un seuil de 95%? Exercice 2 Une société s occupe de la saisie informatique de documents. Pour chaque document, une première saisie est retournée pour vérification au client correspondant. Pour chaque document, le délai de retour de la première saisie vers le client est fixé à deux semaines. On appelle p la probabilité qu une saisie choisie au hasard soit effectivement retournée 10

11 au client dans le délai fixé. On note X n, la v.a qui a tout échantillon de n saisies choisies au hasard, associe le nombre de saisies pour lesquelles le délai n est pas respecté. 1. Pour estimer p, on effectue une étude statistique. Sur 1250 saisies, 1122 ont été réalisées dans le délai imparti. Proposez une estimation de p à l aide d un intervalle de confiance au niveau 95%. On suppose dans la suite de l exercie que p = 0, 9 2. Quelle est la loi de X n? 3. Quel est le nombre moyen de saisies pour lesquelles le délai n est pas respecté? 4. Dans cette question uniquement n = 20, calculer P(X 20 = 2). 5. Soit Y la v.a qui, à une saisie choisie au hasard, associe le nombre d erreurs détectées dans cette saisie. On admet que Y N (30; 8). L entreprise veut signer une charte qualité qui stipule qu elle garantie au client qu au moins 99% des saisies comporte moins de m fautes. Déterminer le plus petit entier m qui rende l engagement de l entreprise réaliste. Exercice 3 Discrimination L entreprise M.E.C emploie 1350 salariés, dont 560 sont des femmes. Dans une entreprise de 1350 salariés ne faisant pas de discrimination au sexe à l embauche, donner un intervalle de la proportion de femmes au seuil de 95%. Peut-on raisonnablement dire que l entreprise M.E.C respecte la parité? Exercice 4 Afin de mieux gérer les demandes de crédits de clients, un directeur d agence bancaire réalise une étude relative à la durée de traitement des dossiers, supposée suivre une loi normale. Les données sont résumées ci-dessous : Durée de traitement (min) Effectif Calculer la moyenne et l écart-type des durées de traitement des dossiers de cet échantillon. 2. Construire des estimations par intervalles de confiances de la moyenne m et l écart-type σ des durées de traitement des dossiers, au seuil de confiance 90%. Exercice 5 La confiserie Yabon développe de nouveaux bonbons à faible teneur en sucre afin de ménager les dents de ses clients. Le taux de sucre dans les nouveaux bonbons est supposé être distribué selon une loi normale de variance σ 2. Pour pouvoir commercialiser ses nouveaux bonbons sous le label SYMPADENTS, la confiserie Yabon doit s assurer que la variabilité du taux de sucre dans ses bonbons est comprise entre 8 et 12. Alors, son responsable contrôle qualité a prélevé un échantillon aléatoire de taille 20 dans un lot de bonbons, et a relevé une variabilité s 2 = 10 du taux de sucre dans l échantillon. 1. Donnez un intervalle de confiance au niveau α = 5% de la variabilité du taux de sucre à l aide de cette mesure. 2. Selon vous, le responsable contrôle qualité peut-il afficher au niveau α = 5% le label SYM- PADENTS? 11

12 3. L échantillon est maintenant de taille 401, et on trouve une variabilité de 10, 6. Donnez un intervalle de confiance au même niveau de seuil. Exercice 6 Intervalle de confiance à l aide d une approximation Poissonnienne Afin de mieux satisfaire leurs clients, une grande société fournisseur d accès internet fait des statistiques sur le nombre d appels reçus en hotline, elle pourra ainsi évaluer le temps d attente pour le client et le nombre d employés à mettre au standard. Les résultats de l enquête portent sur 200 séquences consécutives de une minute, durant lesquelles le nombre d appels moyen a été de 3 appels par minute. Pour simplifier, on supposera qu il y a au plus un appel par unité de temps qui est la seconde. 1. Quelle est la loi de probabilité du nombre d appels reçus en 4 minutes? 2. Montrer que l on peut approcher cette loi par une loi de Poisson. 3. En déduire un intervalle de confiance pour le nombre moyen d appels en 4 minutes (au seuil 5%). 4. Donnez un intervalle de confiance à l aide du Théorème central limite. Comparez. 8 Tests statistiques paramétriques Exercice 1 On suppose que moins de 20% de tous les travailleurs sont prêts à moins travailler et à être moins payés pour avoir plus de loisirs personnels. Un sondage aux USA révéle que sur un échantillon de taille 596, 83 personnes étaient prêtes à travailler moins pour un salaire moins important afin d avoir plus de loisirs personnels. Notons p la vraie proportion de travailleurs prêts à moins travailler et à être moins payés pour avoir plus de loisirs personnels. 1. Testez l hypothèse H 0 :<< p = 20% >> contre H 1 :<< p < 20% >> au niveau α = 0, Donnez un intervalle de confiance à 95% pour la vraie proportion p. Exercice 2 Un comptable pense que les problèmes de liquidité d une entreprise sont une conséquence directe de l encaissement lent des comptes fournisseurs. Le comptable prétend qu au moins 70% des comptes fournisseurs datent de plus de deux mois. Un échantillon de 120 comptes fournisseurs a révélé que 88 dataient de plus de deux mois. 1. Quelle est l estimation ponctuelle de la proportion p de comptes fournisseurs datant de plus de deux mois. 2. Testez l affirmation du comptable au niveau α = 1%. 3. Donnez un intervalle de confiance à 99% pour la vraie proportion p de comptes fournisseurs datant de plus de deux mois. Exercice 3 Dans une entreprise de conditionnement de colis, chaque employé est supposé, s occuper de 45 colis par jours. Le chef de service soupçonne un employé Mr Slow, de travailler lentement et il effectue quelques mesures à son insu. Il note, sur une période de 15 jours, le nombre de colis qu il traite quotidiennement. Il obtient les résultats suivants : 44, 38, 45, 46, 34, 39, 43, 40, 44, 48, 46, 41, 43, 44, 39. Peut on considèrer que Mr Slow, est plus lent que ses collègues de travail (au risque 5%). (On supposera que le nombre de colis traités par un employé suit une loi normale) 12

13 Exercice 4 Une machine fabrique des pièces dont la longueur suit une loi normale N (µ; σ),où µ et σ sont inconnus. Pour tester l hypothèse H 0 := µ = 100 cm contre H 1 := µ 100 cm au risque 5%, on préléve : 1. un échantillon de taille n = 10 et on obtient une moyenne m = 99 cm et un écart-type s = 2 cm. Doit on rejeter H 0? 2. un échantillon de taille n = 50 et on obtient une moyenne m = 99 cm et un écart-type s = 2 cm. Doit on rejeter H 0? Exercice 5 Une nouvelle machine dans un procédé de fabrication Un expert prétend qu en introduisant un nouveau type de machine dans un procédé de fabrication, il peut considérablement diminuer le temps requis pour la production. Si le temps de production n est pas réduit d au moins 8%, la direction de l usine estime qu en raison des frais d amortissement, elle ne pourra retenir ce procédé. Lors de six expériences, le temps de production a pu être réduit de 8, 4% en moyenne, avec un écart-type de 0, 32%. Tester au seuil 5%, l hypothèse selon laquelle le procédé doit être retenu. Exercice 6 Filles et garçons : égaux dès la naissance? Un échantillon de naissances est composé de garçons et de filles. Tester, au seuil 5%, l équirépartition des genres à la naissance. 9 Tests statistiques de comparaison Exercice 1 Comparaison variances et moyennes de deux échantillons Pour comparer l influence du climat sur le nombre de retard dans une entreprise, on considère des entreprises situées dans deux régions A et B (avec un climat différent) et on note sur une année le nombre de retards de chaque entreprises dans chaque région. On obtient : Région A (9 entreprises) Région B (8 entreprises) On admet que les v.a X A et X B, désignant respectivement les nombres de retard sur une année dans la région A et B, suivent des lois normales. 1. Montrer qu il n y a pas lieu de penser que X A et X B aient des variances différentes (au seuil 5%). Par la suite, on notera σ 2 cette valeur commune. 2. Estimer σ 2 par intervalles de confiance au seuil 95% 3. Montrer que la région A est plus propice à la ponctualité. Exercice 2 Comparaison de moyennes sur échantillons appariés 13

14 Une société de location de voitures met en place une expérience afin de décider si deux types de pneus sont différents ou non. Onze voitures sont conduites sur un parcours précis avec des pneus de type A. Ceux si sont alors remplacés par des pneus de type B et les voitures sont de nouveau conduites sur le même parcours. Les consommations de carburant en litres/100km des voitures, pour chacun des deux types de pneus A et B, sont des v.a notées X A et X B, et sont supposées suivre des lois normales. L expérience donne les résultats suivants : Voiture Conso X A 4,2 4,7 6,6 7 6,7 4,5 5,7 6 7,4 4,9 6,1 X B 4,1 4,9 6,2 6,9 6,8 4,4 5,7 5,8 6,9 4,9 6 Au niveau de signification 5%, quelle conclusion peut-on retenir? Exercice 3 Une firme étudie l influence d une interruption de travail permettant de prendre un café, sur la productivité de ses ouvriers. Ayant choisi 5 ouvriers au hasard, on mesure leur productivité durant deux jours, le premier sans interruption, le deuxième avec interruption. Quel test faut-il utiliser pour tester l hypothèse selon laquelle une interruption améliore en moyenne la productivité, au niveau de probabilité de 0.05, (en supposant la productivité est mesurable par un nombre qui suit une loi normale). 10 Test du χ 2 Sauf indication contraire, on effectura les tests au risque 5%. Exercice 1 Un jeune homme desoeuvré se poste à la sortie d une cinéma et observe quels types de films ont vus les garçons et les filles. Il obtient le tableau suivant : Type de film Sexe Aventures Sentimental Garçon Fille Peut on considérer que les garçons et les filles ont la même attitude vis à vis des deux types de films? Exercice 2 Un épidémiologiste veut montrer que le mois de naissance influe sur l occurence d une maladie M. Pour le démontrer, il considère un échantillon de patients atteints de la maladie M et note 14

15 leur mois de naissance. Il obtient le tableau suivant, Mois de naissance Effectif Janvier 108 Février 103 Mars 100 Avril 96 Mai 95 Juin 102 Juillet 98 Août 103 Septembre 97 Octobre 91 Novembre 110 Décembre 85 En négligeant les différences de durée entre les mois, que vous inspirent ces données? Exercice 3 On cherche à comparer les distributions des groupes sanguins dans trois pays P 1, P 2 et P 3. Dans ce but, on tire au sort un échantillon de 100 individus dans chaque pays et on relève sur chaque individu son groupe sanguin. On obtient : Groupe sanguin Pays A B 0 AB P P P A la vue des ces données, peut on considèrer que la distribution des groupes sanguin est différente suivant le pays? Exercice 4 On a observé pendant deux heures le nombre X de voitures arrivées par minute à un poste de péage. Le tableau suivant contient les valeurs observées x i de cette variable et le nombre d observations correspondantes N i. x i N i Tester l adéquation de la loi X à une loi de Poisson dont on estimera le paramètre à partir des données observées. Exercice 5 Un organisme de défense des consommateurs a prélevé au hasard 200 boites de conserve de haricots verts pour tester la validité de l étiquetage indiquant un poids net égoutté de 560 grammes. La distribution du poids égoutté X en grammes observé, figure dans le tableau suivant : X [530; 540[ [540; 545[ [545; 550[ [550; 555[ [555; 560[ [560; 565[ [565; 570[ [570; 580[ N i

16 Tester l hypothèse X N (555; 10). Exercice 6 Le tableau ci-dessous contient les nombres N i d apparition des entiers x i (de 0 à 9) dans les premières décimales du nombre π. x i N i Tester l hypothèse d une répartition uniforme de ces entiers. 16

17 11 Annexe 11.1 Tables Loi Normale N (0; 1) Figure 1 Table de la fonction de répartition 17

18 Figure 2 Table de l inverse de la fonction de réparition. Lorsque P 0.5, il faut utiliser la colonne de gauche et la ligne supérieure. (Les fractiles sont négatifs). Lorsque P 0.5, il faut utiliser la colonne de droite et la ligne inférieure. (Les fractiles sont positifs.) 18

19 11.2 Table loi du Chi 2 19

20 11.3 Tables Loi de Student 20

21 Figure 3 Table de loi de Student. 21

22 11.4 Tables Loi de Fisher-Snedecor 22

23 23

Probabilités conditionnelles Loi binomiale

Probabilités conditionnelles Loi binomiale Exercices 23 juillet 2014 Probabilités conditionnelles Loi binomiale Équiprobabilité et variable aléatoire Exercice 1 Une urne contient 5 boules indiscernables, 3 rouges et 2 vertes. On tire au hasard

Plus en détail

Exercices supplémentaires sur l introduction générale à la notion de probabilité 2009-2010

Exercices supplémentaires sur l introduction générale à la notion de probabilité 2009-2010 Exercices supplémentaires sur l introduction générale à la notion de probabilité 2009-2010 Exercices fortement conseillés : 6, 10 et 14 1) Un groupe d étudiants est formé de 20 étudiants de première année

Plus en détail

UFR de Sciences Economiques Année 2008-2009 TESTS PARAMÉTRIQUES

UFR de Sciences Economiques Année 2008-2009 TESTS PARAMÉTRIQUES Université Paris 13 Cours de Statistiques et Econométrie I UFR de Sciences Economiques Année 2008-2009 Licence de Sciences Economiques L3 Premier semestre TESTS PARAMÉTRIQUES Remarque: les exercices 2,

Plus en détail

TSTI 2D CH X : Exemples de lois à densité 1

TSTI 2D CH X : Exemples de lois à densité 1 TSTI 2D CH X : Exemples de lois à densité I Loi uniforme sur ab ; ) Introduction Dans cette activité, on s intéresse à la modélisation du tirage au hasard d un nombre réel de l intervalle [0 ;], chacun

Plus en détail

Exercices sur le chapitre «Probabilités»

Exercices sur le chapitre «Probabilités» Arnaud de Saint Julien - MPSI Lycée La Merci 2014-2015 1 Pour démarrer Exercices sur le chapitre «Probabilités» Exercice 1 (Modélisation d un dé non cubique) On considère un parallélépipède rectangle de

Plus en détail

Probabilités et Statistiques. Feuille 2 : variables aléatoires discrètes

Probabilités et Statistiques. Feuille 2 : variables aléatoires discrètes IUT HSE Probabilités et Statistiques Feuille : variables aléatoires discrètes 1 Exercices Dénombrements Exercice 1. On souhaite ranger sur une étagère 4 livres de mathématiques (distincts), 6 livres de

Plus en détail

Feuille 6 : Tests. Peut-on dire que l usine a respecté ses engagements? Faire un test d hypothèses pour y répondre.

Feuille 6 : Tests. Peut-on dire que l usine a respecté ses engagements? Faire un test d hypothèses pour y répondre. Université de Nantes Année 2013-2014 L3 Maths-Eco Feuille 6 : Tests Exercice 1 On cherche à connaître la température d ébullition µ, en degrés Celsius, d un certain liquide. On effectue 16 expériences

Plus en détail

Actuariat I ACT2121. septième séance. Arthur Charpentier. Automne 2012. charpentier.arthur@uqam.ca. http ://freakonometrics.blog.free.

Actuariat I ACT2121. septième séance. Arthur Charpentier. Automne 2012. charpentier.arthur@uqam.ca. http ://freakonometrics.blog.free. Actuariat I ACT2121 septième séance Arthur Charpentier charpentier.arthur@uqam.ca http ://freakonometrics.blog.free.fr/ Automne 2012 1 Exercice 1 En analysant le temps d attente X avant un certain événement

Plus en détail

P1 : Corrigés des exercices

P1 : Corrigés des exercices P1 : Corrigés des exercices I Exercices du I I.2.a. Poker : Ω est ( l ensemble ) des parties à 5 éléments de l ensemble E des 52 cartes. Cardinal : 5 I.2.b. Bridge : Ω est ( l ensemble ) des parties à

Plus en détail

Feuille d exercices 2 : Espaces probabilisés

Feuille d exercices 2 : Espaces probabilisés Feuille d exercices 2 : Espaces probabilisés Cours de Licence 2 Année 07/08 1 Espaces de probabilité Exercice 1.1 (Une inégalité). Montrer que P (A B) min(p (A), P (B)) Exercice 1.2 (Alphabet). On a un

Plus en détail

Probabilités. Rappel : trois exemples. Exemple 2 : On dispose d un dé truqué. On sait que : p(1) = p(2) =1/6 ; p(3) = 1/3 p(4) = p(5) =1/12

Probabilités. Rappel : trois exemples. Exemple 2 : On dispose d un dé truqué. On sait que : p(1) = p(2) =1/6 ; p(3) = 1/3 p(4) = p(5) =1/12 Probabilités. I - Rappel : trois exemples. Exemple 1 : Dans une classe de 25 élèves, il y a 16 filles. Tous les élèves sont blonds ou bruns. Parmi les filles, 6 sont blondes. Parmi les garçons, 3 sont

Plus en détail

Probabilité. Table des matières. 1 Loi de probabilité 2 1.1 Conditions préalables... 2 1.2 Définitions... 2 1.3 Loi équirépartie...

Probabilité. Table des matières. 1 Loi de probabilité 2 1.1 Conditions préalables... 2 1.2 Définitions... 2 1.3 Loi équirépartie... 1 Probabilité Table des matières 1 Loi de probabilité 2 1.1 Conditions préalables........................... 2 1.2 Définitions................................. 2 1.3 Loi équirépartie..............................

Plus en détail

4. Exercices et corrigés

4. Exercices et corrigés 4. Exercices et corrigés. N 28p.304 Dans une classe de 3 élèves, le club théâtre (T) compte 0 élèves et la chorale (C) 2 élèves. Dix-huit élèves ne participent à aucune de ces activités. On interroge au

Plus en détail

Travaux dirigés d introduction aux Probabilités

Travaux dirigés d introduction aux Probabilités Travaux dirigés d introduction aux Probabilités - Dénombrement - - Probabilités Élémentaires - - Variables Aléatoires Discrètes - - Variables Aléatoires Continues - 1 - Dénombrement - Exercice 1 Combien

Plus en détail

Probabilités. I Petits rappels sur le vocabulaire des ensembles 2 I.1 Définitions... 2 I.2 Propriétés... 2

Probabilités. I Petits rappels sur le vocabulaire des ensembles 2 I.1 Définitions... 2 I.2 Propriétés... 2 Probabilités Table des matières I Petits rappels sur le vocabulaire des ensembles 2 I.1 s................................................... 2 I.2 Propriétés...................................................

Plus en détail

Fluctuation d une fréquence selon les échantillons - Probabilités

Fluctuation d une fréquence selon les échantillons - Probabilités Fluctuation d une fréquence selon les échantillons - Probabilités C H A P I T R E 3 JE DOIS SAVOIR Calculer une fréquence JE VAIS ÊTRE C APABLE DE Expérimenter la prise d échantillons aléatoires de taille

Plus en détail

Probabilités Loi binomiale Exercices corrigés

Probabilités Loi binomiale Exercices corrigés Probabilités Loi binomiale Exercices corrigés Sont abordés dans cette fiche : (cliquez sur l exercice pour un accès direct) Exercice 1 : épreuve de Bernoulli Exercice 2 : loi de Bernoulli de paramètre

Plus en détail

Université Paris 8 Introduction aux probabilités 2014 2015 Licence Informatique Exercices Ph. Guillot. 1 Ensemble fondamental loi de probabilité

Université Paris 8 Introduction aux probabilités 2014 2015 Licence Informatique Exercices Ph. Guillot. 1 Ensemble fondamental loi de probabilité Université Paris 8 Introduction aux probabilités 2014 2015 Licence Informatique Exercices Ph. Guillot 1 Ensemble fondamental loi de probabilité Exercice 1. On dispose de deux boîtes. La première contient

Plus en détail

Correction du baccalauréat ES/L Métropole 20 juin 2014

Correction du baccalauréat ES/L Métropole 20 juin 2014 Correction du baccalauréat ES/L Métropole 0 juin 014 Exercice 1 1. c.. c. 3. c. 4. d. 5. a. P A (B)=1 P A (B)=1 0,3=0,7 D après la formule des probabilités totales : P(B)=P(A B)+P(A B)=0,6 0,3+(1 0,6)

Plus en détail

PROBABILITÉS CONDITIONNELLES

PROBABILITÉS CONDITIONNELLES PROBABILITÉS CONDITIONNELLES A.FORMONS DES COUPLES Pour la fête de l école, les élèves de CE 2 ont préparé une danse qui s exécute par couples : un garçon, une fille. La maîtresse doit faire des essais

Plus en détail

Baccalauréat ES Antilles Guyane 12 septembre 2014 Corrigé

Baccalauréat ES Antilles Guyane 12 septembre 2014 Corrigé Baccalauréat ES Antilles Guyane 12 septembre 2014 Corrigé EXERCICE 1 5 points Commun à tous les candidats 1. Réponse c : ln(10)+2 ln ( 10e 2) = ln(10)+ln ( e 2) = ln(10)+2 2. Réponse b : n 13 0,7 n 0,01

Plus en détail

Estimation et tests statistiques, TD 5. Solutions

Estimation et tests statistiques, TD 5. Solutions ISTIL, Tronc commun de première année Introduction aux méthodes probabilistes et statistiques, 2008 2009 Estimation et tests statistiques, TD 5. Solutions Exercice 1 Dans un centre avicole, des études

Plus en détail

Probabilités. Une urne contient 3 billes vertes et 5 billes rouges toutes indiscernables au toucher.

Probabilités. Une urne contient 3 billes vertes et 5 billes rouges toutes indiscernables au toucher. Lycée Jean Bart PCSI Année 2013-2014 17 février 2014 Probabilités Probabilités basiques Exercice 1. Vous savez bien qu un octet est une suite de huit chiffres pris dans l ensemble {0; 1}. Par exemple 01001110

Plus en détail

Estimation: intervalle de fluctuation et de confiance. Mars 2012. IREM: groupe Proba-Stat. Fluctuation. Confiance. dans les programmes comparaison

Estimation: intervalle de fluctuation et de confiance. Mars 2012. IREM: groupe Proba-Stat. Fluctuation. Confiance. dans les programmes comparaison Estimation: intervalle de fluctuation et de confiance Mars 2012 IREM: groupe Proba-Stat Estimation Term.1 Intervalle de fluctuation connu : probabilité p, taille de l échantillon n but : estimer une fréquence

Plus en détail

1 TD1 : rappels sur les ensembles et notion de probabilité

1 TD1 : rappels sur les ensembles et notion de probabilité 1 TD1 : rappels sur les ensembles et notion de probabilité 1.1 Ensembles et dénombrement Exercice 1 Soit Ω = {1, 2, 3, 4}. Décrire toutes les parties de Ω, puis vérier que card(p(ω)) = 2 4. Soit k n (

Plus en détail

ACTUARIAT 1, ACT 2121, AUTOMNE 2013 #4-5

ACTUARIAT 1, ACT 2121, AUTOMNE 2013 #4-5 ACTUARIAT 1, ACT 2121, AUTOMNE 2013 #4-5 ARTHUR CHARPENTIER 1 Un certain test médical révèle correctement, avec probabilité 0.85, qu une personne a le sida lorsqu elle l a vraiment et révèle incorrectement,

Plus en détail

I3, Probabilités 2014 Travaux Dirigés F BM F BM F BM F BM F B M F B M F B M F B M 20 20 80 80 100 100 300 300

I3, Probabilités 2014 Travaux Dirigés F BM F BM F BM F BM F B M F B M F B M F B M 20 20 80 80 100 100 300 300 I3, Probabilités 2014 Travaux Dirigés TD 1 : rappels. Exercice 1 Poker simplié On tire 3 cartes d'un jeu de 52 cartes. Quelles sont les probabilités d'obtenir un brelan, une couleur, une paire, une suite,

Plus en détail

Exemple On lance une pièce de monnaie trois fois de suite. Calculer la probabilité d obtenir exactement deux fois pile.

Exemple On lance une pièce de monnaie trois fois de suite. Calculer la probabilité d obtenir exactement deux fois pile. Probabilités Définition intuitive Exemple On lance un dé. Quelle est la probabilité d obtenir un multiple de 3? Comme il y a deux multiples de 3 parmi les six issues possibles, on a chances sur 6 d obtenir

Plus en détail

Arbre de probabilité(afrique) Univers - Evénement

Arbre de probabilité(afrique) Univers - Evénement Arbre de probabilité(afrique) Univers - Evénement Exercice 1 Donner l univers Ω de l expérience aléatoire consistant à tirer deux boules simultanément d une urne qui en contient 10 numérotés puis à lancer

Plus en détail

Exo7. Probabilité conditionnelle. Exercices : Martine Quinio

Exo7. Probabilité conditionnelle. Exercices : Martine Quinio Exercices : Martine Quinio Exo7 Probabilité conditionnelle Exercice 1 Dans la salle des profs 60% sont des femmes ; une femme sur trois porte des lunettes et un homme sur deux porte des lunettes : quelle

Plus en détail

UE Ma401. 1.1 probabilité conditionnelle, indépendance, dénombrement

UE Ma401. 1.1 probabilité conditionnelle, indépendance, dénombrement UE Ma401 1 EXERCICES 1.1 probabilité conditionnelle, indépendance, dénombrement Exercice 1 La probabilité pour une population d être atteinte d une maladie A est p donné; dans cette même population, un

Plus en détail

Soit la fonction affine qui, pour représentant le nombre de mois écoulés, renvoie la somme économisée.

Soit la fonction affine qui, pour représentant le nombre de mois écoulés, renvoie la somme économisée. ANALYSE 5 points Exercice 1 : Léonie souhaite acheter un lecteur MP3. Le prix affiché (49 ) dépasse largement la somme dont elle dispose. Elle décide donc d économiser régulièrement. Elle a relevé qu elle

Plus en détail

GEA II Introduction aux probabilités Poly. de révision. Lionel Darondeau

GEA II Introduction aux probabilités Poly. de révision. Lionel Darondeau GEA II Introduction aux probabilités Poly. de révision Lionel Darondeau Table des matières Énoncés 4 Corrigés 10 TD 1. Analyse combinatoire 11 TD 2. Probabilités élémentaires 16 TD 3. Probabilités conditionnelles

Plus en détail

Théorie et Codage de l Information (IF01) exercices 2013-2014. Paul Honeine Université de technologie de Troyes France

Théorie et Codage de l Information (IF01) exercices 2013-2014. Paul Honeine Université de technologie de Troyes France Théorie et Codage de l Information (IF01) exercices 2013-2014 Paul Honeine Université de technologie de Troyes France TD-1 Rappels de calculs de probabilités Exercice 1. On dispose d un jeu de 52 cartes

Plus en détail

Les devoirs en Première STMG

Les devoirs en Première STMG Les devoirs en Première STMG O. Lader Table des matières Devoir sur table 1 : Proportions et inclusions....................... 2 Devoir sur table 1 : Proportions et inclusions (corrigé)..................

Plus en détail

LEÇON N 7 : Schéma de Bernoulli et loi binomiale. Exemples.

LEÇON N 7 : Schéma de Bernoulli et loi binomiale. Exemples. LEÇON N 7 : Schéma de Bernoulli et loi binomiale. Exemples. Pré-requis : Probabilités : définition, calculs et probabilités conditionnelles ; Notion de variables aléatoires, et propriétés associées : espérance,

Plus en détail

Probabilités sur un univers fini

Probabilités sur un univers fini [http://mp.cpgedupuydelome.fr] édité le 7 août 204 Enoncés Probabilités sur un univers fini Evènements et langage ensembliste A quelle condition sur (a, b, c, d) ]0, [ 4 existe-t-il une probabilité P sur

Plus en détail

Réseau SCEREN. Ce document a été numérisé par le CRDP de Bordeaux pour la. Base Nationale des Sujets d Examens de l enseignement professionnel.

Réseau SCEREN. Ce document a été numérisé par le CRDP de Bordeaux pour la. Base Nationale des Sujets d Examens de l enseignement professionnel. Ce document a été numérisé par le CRDP de Bordeaux pour la Base Nationale des Sujets d Examens de l enseignement professionnel. Campagne 2013 Ce fichier numérique ne peut être reproduit, représenté, adapté

Plus en détail

Probabilités conditionnelles

Probabilités conditionnelles Probabilités conditionnelles Exercice Dans une usine, on utilise conjointement deux machines M et M 2 pour fabriquer des pièces cylindriques en série. Pour une période donnée, leurs probabilités de tomber

Plus en détail

Baccalauréat ES Amérique du Nord 4 juin 2008

Baccalauréat ES Amérique du Nord 4 juin 2008 Baccalauréat ES Amérique du Nord 4 juin 2008 EXERCICE 1 Commun à tous les candidats f est une fonction définie sur ] 2 ; + [ par : 4 points f (x)=3+ 1 x+ 2. On note f sa fonction dérivée et (C ) la représentation

Plus en détail

Que faire lorsqu on considère plusieurs variables en même temps?

Que faire lorsqu on considère plusieurs variables en même temps? Chapitre 3 Que faire lorsqu on considère plusieurs variables en même temps? On va la plupart du temps se limiter à l étude de couple de variables aléatoires, on peut bien sûr étendre les notions introduites

Plus en détail

Moments des variables aléatoires réelles

Moments des variables aléatoires réelles Chapter 6 Moments des variables aléatoires réelles Sommaire 6.1 Espérance des variables aléatoires réelles................................ 46 6.1.1 Définition et calcul........................................

Plus en détail

Cours de Tests paramétriques

Cours de Tests paramétriques Cours de Tests paramétriques F. Muri-Majoube et P. Cénac 2006-2007 Licence Ce document est sous licence ALC TYPE 2. Le texte de cette licence est également consultable en ligne à l adresse http://www.librecours.org/cgi-bin/main?callback=licencetype2.

Plus en détail

Ressources pour le lycée général et technologique

Ressources pour le lycée général et technologique éduscol Ressources pour le lycée général et technologique Ressources pour la classe de terminale générale et technologique Exercices de mathématiques Classes de terminale S, ES, STI2D, STMG Ces documents

Plus en détail

Licence MASS 2000-2001. (Re-)Mise à niveau en Probabilités. Feuilles de 1 à 7

Licence MASS 2000-2001. (Re-)Mise à niveau en Probabilités. Feuilles de 1 à 7 Feuilles de 1 à 7 Ces feuilles avec 25 exercices et quelques rappels historiques furent distribuées à des étudiants de troisième année, dans le cadre d un cours intensif sur deux semaines, en début d année,

Plus en détail

Les probabilités. Chapitre 18. Tester ses connaissances

Les probabilités. Chapitre 18. Tester ses connaissances Chapitre 18 Les probabilités OBJECTIFS DU CHAPITRE Calculer la probabilité d événements Tester ses connaissances 1. Expériences aléatoires Voici trois expériences : - Expérience (1) : on lance une pièce

Plus en détail

Probabilités. C. Charignon. I Cours 3

Probabilités. C. Charignon. I Cours 3 Probabilités C. Charignon Table des matières I Cours 3 1 Dénombrements 3 1.1 Cardinal.................................................. 3 1.1.1 Définition............................................. 3

Plus en détail

CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE. Cinquième épreuve d admissibilité STATISTIQUE. (durée : cinq heures)

CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE. Cinquième épreuve d admissibilité STATISTIQUE. (durée : cinq heures) CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE Cinquième épreuve d admissibilité STATISTIQUE (durée : cinq heures) Une composition portant sur la statistique. SUJET Cette épreuve est composée d un

Plus en détail

4 Distributions particulières de probabilités

4 Distributions particulières de probabilités 4 Distributions particulières de probabilités 4.1 Distributions discrètes usuelles Les variables aléatoires discrètes sont réparties en catégories selon le type de leur loi. 4.1.1 Variable de Bernoulli

Plus en détail

Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques.

Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques. 14-3- 214 J.F.C. p. 1 I Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques. Exercice 1 Densité de probabilité. F { ln x si x ], 1] UN OVNI... On pose x R,

Plus en détail

Calculs de probabilités conditionelles

Calculs de probabilités conditionelles Calculs de probabilités conditionelles Mathématiques Générales B Université de Genève Sylvain Sardy 20 mars 2008 1. Indépendance 1 Exemple : On lance deux pièces. Soit A l évènement la première est Pile

Plus en détail

MATHÉMATIQUES. Mat-4104

MATHÉMATIQUES. Mat-4104 MATHÉMATIQUES Pré-test D Mat-404 Questionnaire e pas écrire sur le questionnaire Préparé par : M. GHELLACHE Mai 009 Questionnaire Page / 0 Exercice ) En justifiant votre réponse, dites quel type d étude

Plus en détail

Correction du baccalauréat STMG Polynésie 17 juin 2014

Correction du baccalauréat STMG Polynésie 17 juin 2014 Correction du baccalauréat STMG Polynésie 17 juin 2014 EXERCICE 1 Cet exercice est un Q.C.M. 4 points 1. La valeur d une action cotée en Bourse a baissé de 37,5 %. Le coefficient multiplicateur associé

Plus en détail

Qu est-ce qu une probabilité?

Qu est-ce qu une probabilité? Chapitre 1 Qu est-ce qu une probabilité? 1 Modéliser une expérience dont on ne peut prédire le résultat 1.1 Ensemble fondamental d une expérience aléatoire Une expérience aléatoire est une expérience dont

Plus en détail

Les probabilités. Guide pédagogique Le présent guide sert de complément à la série d émissions intitulée Les probabilités produite par TFO.

Les probabilités. Guide pédagogique Le présent guide sert de complément à la série d émissions intitulée Les probabilités produite par TFO. Guide pédagogique Le présent guide sert de complément à la série d émissions intitulée produite par TFO. Le guide Édition 1988 Rédacteur (version anglaise) : Ron Carr Traduction : Translatec Conseil Ltée

Plus en détail

Baccalauréat ES/L Amérique du Sud 21 novembre 2013

Baccalauréat ES/L Amérique du Sud 21 novembre 2013 Baccalauréat ES/L Amérique du Sud 21 novembre 2013 A. P. M. E. P. EXERCICE 1 Commun à tous les candidats 5 points Une entreprise informatique produit et vend des clés USB. La vente de ces clés est réalisée

Plus en détail

Exercices de dénombrement

Exercices de dénombrement Exercices de dénombrement Exercice En turbo Pascal, un entier relatif (type integer) est codé sur 6 bits. Cela signifie que l'on réserve 6 cases mémoires contenant des "0" ou des "" pour écrire un entier.

Plus en détail

Probabilités (méthodes et objectifs)

Probabilités (méthodes et objectifs) Probabilités (méthodes et objectifs) G. Petitjean Lycée de Toucy 10 juin 2007 G. Petitjean (Lycée de Toucy) Probabilités (méthodes et objectifs) 10 juin 2007 1 / 19 1 Déterminer la loi de probabilité d

Plus en détail

Couples de variables aléatoires discrètes

Couples de variables aléatoires discrètes Couples de variables aléatoires discrètes ECE Lycée Carnot mai Dans ce dernier chapitre de probabilités de l'année, nous allons introduire l'étude de couples de variables aléatoires, c'est-à-dire l'étude

Plus en détail

CALCUL DES PROBABILITES

CALCUL DES PROBABILITES CALCUL DES PROBABILITES Exemple On lance une pièce de monnaie une fois. Ensemble des événements élémentaires: E = pile, face. La chance pour obtenir pile vaut 50 %, pour obtenir face vaut aussi 50 %. Les

Plus en détail

Chapitre 3 : INFERENCE

Chapitre 3 : INFERENCE Chapitre 3 : INFERENCE 3.1 L ÉCHANTILLONNAGE 3.1.1 Introduction 3.1.2 L échantillonnage aléatoire 3.1.3 Estimation ponctuelle 3.1.4 Distributions d échantillonnage 3.1.5 Intervalles de probabilité L échantillonnage

Plus en détail

Probabilités conditionnelles Exercices corrigés

Probabilités conditionnelles Exercices corrigés Terminale S Probabilités conditionnelles Exercices corrigés Exercice : (solution Une compagnie d assurance automobile fait un bilan des frais d intervention, parmi ses dossiers d accidents de la circulation.

Plus en détail

LES GENERATEURS DE NOMBRES ALEATOIRES

LES GENERATEURS DE NOMBRES ALEATOIRES LES GENERATEURS DE NOMBRES ALEATOIRES 1 Ce travail a deux objectifs : ====================================================================== 1. Comprendre ce que font les générateurs de nombres aléatoires

Plus en détail

Probabilités sur un univers fini

Probabilités sur un univers fini [http://mp.cpgedupuydelome.fr] édité le 10 août 2015 Enoncés 1 Proailités sur un univers fini Evènements et langage ensemliste A quelle condition sur (a,, c, d) ]0, 1[ 4 existe-t-il une proailité P sur

Plus en détail

Terminale STMG Lycée Jean Vilar 2014/2015. Terminale STMG. O. Lader

Terminale STMG Lycée Jean Vilar 2014/2015. Terminale STMG. O. Lader Terminale STMG O. Lader Table des matières Interrogation 1 : Indice et taux d évolution........................... 2 Devoir maison 1 : Taux d évolution................................ 4 Devoir maison 1

Plus en détail

I. Cas de l équiprobabilité

I. Cas de l équiprobabilité I. Cas de l équiprobabilité Enoncé : On lance deux dés. L un est noir et l autre est blanc. Calculer les probabilités suivantes : A «Obtenir exactement un as» «Obtenir au moins un as» C «Obtenir au plus

Plus en détail

Simulation de variables aléatoires

Simulation de variables aléatoires Chapter 1 Simulation de variables aléatoires Références: [F] Fishman, A first course in Monte Carlo, chap 3. [B] Bouleau, Probabilités de l ingénieur, chap 4. [R] Rubinstein, Simulation and Monte Carlo

Plus en détail

La simulation probabiliste avec Excel

La simulation probabiliste avec Excel La simulation probabiliste avec Ecel (2 e version) Emmanuel Grenier emmanuel.grenier@isab.fr Relu par Kathy Chapelain et Henry P. Aubert Incontournable lorsqu il s agit de gérer des phénomènes aléatoires

Plus en détail

Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé

Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé A. P. M. E. P. Exercice 1 5 points 1. Réponse d. : 1 e Le coefficient directeur de la tangente est négatif et n est manifestement pas 2e

Plus en détail

3. Caractéristiques et fonctions d une v.a.

3. Caractéristiques et fonctions d une v.a. 3. Caractéristiques et fonctions d une v.a. MTH2302D S. Le Digabel, École Polytechnique de Montréal H2015 (v2) MTH2302D: fonctions d une v.a. 1/32 Plan 1. Caractéristiques d une distribution 2. Fonctions

Plus en détail

Probabilités. I - Expérience aléatoire. II - Evénements

Probabilités. I - Expérience aléatoire. II - Evénements Probabilités Voici le premier cours de probabilités de votre vie. N avez-vous jamais eut envie de comprendre les règles des grands joueurs de poker et de les battre en calculant les probabilités d avoir

Plus en détail

Lagrange, où λ 1 est pour la contrainte sur µ p ).

Lagrange, où λ 1 est pour la contrainte sur µ p ). Chapitre 1 Exercice 1 : Portefeuilles financiers Considérons trois types d actions qui sont négociées à la bourse et dont les rentabilités r 1, r 2 et r 3 sont des variables aléatoires d espérances µ i

Plus en détail

ACTUARIAT 1, ACT 2121, AUTOMNE 2013 #12

ACTUARIAT 1, ACT 2121, AUTOMNE 2013 #12 ACTUARIAT 1, ACT 2121, AUTOMNE 2013 #12 ARTHUR CHARPENTIER 1 Une compagnie d assurance modélise le montant de la perte lors d un accident par la variable aléatoire continue X uniforme sur l intervalle

Plus en détail

ACTUARIAT 1, ACT 2121, AUTOMNE 2013 #16

ACTUARIAT 1, ACT 2121, AUTOMNE 2013 #16 ACTUARIAT 1, ACT 2121, AUTOMNE 201 #16 ARTHUR CHARPENTIER 1 Dans une petite compagnie d assurance le nombre N de réclamations durant une année suit une loi de Poisson de moyenne λ = 100. On estime que

Plus en détail

Programmes des classes préparatoires aux Grandes Ecoles

Programmes des classes préparatoires aux Grandes Ecoles Programmes des classes préparatoires aux Grandes Ecoles Filière : scientifique Voie : Biologie, chimie, physique et sciences de la Terre (BCPST) Discipline : Mathématiques Seconde année Préambule Programme

Plus en détail

Coefficients binomiaux

Coefficients binomiaux Probabilités L2 Exercices Chapitre 2 Coefficients binomiaux 1 ( ) On appelle chemin une suite de segments de longueur 1, dirigés soit vers le haut, soit vers la droite 1 Dénombrer tous les chemins allant

Plus en détail

Lois de probabilité. Anita Burgun

Lois de probabilité. Anita Burgun Lois de probabilité Anita Burgun Problème posé Le problème posé en statistique: On s intéresse à une population On extrait un échantillon On se demande quelle sera la composition de l échantillon (pourcentage

Plus en détail

ACTUARIAT 1, ACT 2121, AUTOMNE 2013 #6

ACTUARIAT 1, ACT 2121, AUTOMNE 2013 #6 ACTUARIAT 1, ACT 2121, AUTOMNE 2013 #6 ARTHUR CHARPENTIER 1 Supposons que le nombre X de coups de téléphone durant une heure suive une loi de Poisson avec moyenne λ. Sachant que P (X = 1 X 1) = 0.8, trouver

Plus en détail

mathématiques mathématiques mathématiques mathématiques

mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques

Plus en détail

M2 IAD UE MODE Notes de cours (3)

M2 IAD UE MODE Notes de cours (3) M2 IAD UE MODE Notes de cours (3) Jean-Yves Jaffray Patrice Perny 16 mars 2006 ATTITUDE PAR RAPPORT AU RISQUE 1 Attitude par rapport au risque Nousn avons pas encore fait d hypothèse sur la structure de

Plus en détail

Variables Aléatoires. Chapitre 2

Variables Aléatoires. Chapitre 2 Chapitre 2 Variables Aléatoires Après avoir réalisé une expérience, on ne s intéresse bien souvent à une certaine fonction du résultat et non au résultat en lui-même. Lorsqu on regarde une portion d ADN,

Plus en détail

t 100. = 8 ; le pourcentage de réduction est : 8 % 1 t Le pourcentage d'évolution (appelé aussi taux d'évolution) est le nombre :

t 100. = 8 ; le pourcentage de réduction est : 8 % 1 t Le pourcentage d'évolution (appelé aussi taux d'évolution) est le nombre : Terminale STSS 2 012 2 013 Pourcentages Synthèse 1) Définition : Calculer t % d'un nombre, c'est multiplier ce nombre par t 100. 2) Exemples de calcul : a) Calcul d un pourcentage : Un article coûtant

Plus en détail

Tests de comparaison de moyennes. Dr Sahar BAYAT MASTER 1 année 2009-2010 UE «Introduction à la biostatistique»

Tests de comparaison de moyennes. Dr Sahar BAYAT MASTER 1 année 2009-2010 UE «Introduction à la biostatistique» Tests de comparaison de moyennes Dr Sahar BAYAT MASTER 1 année 2009-2010 UE «Introduction à la biostatistique» Test de Z ou de l écart réduit Le test de Z : comparer des paramètres en testant leurs différences

Plus en détail

9 5 2 5 Espaces probabilisés

9 5 2 5 Espaces probabilisés BCPST2 9 5 2 5 Espaces probabilisés I Mise en place du cadre A) Tribu Soit Ω un ensemble. On dit qu'un sous ensemble T de P(Ω) est une tribu si et seulement si : Ω T. T est stable par complémentaire, c'est-à-dire

Plus en détail

Annexe commune aux séries ES, L et S : boîtes et quantiles

Annexe commune aux séries ES, L et S : boîtes et quantiles Annexe commune aux séries ES, L et S : boîtes et quantiles Quantiles En statistique, pour toute série numérique de données à valeurs dans un intervalle I, on définit la fonction quantile Q, de [,1] dans

Plus en détail

Baccalauréat ES Pondichéry 7 avril 2014 Corrigé

Baccalauréat ES Pondichéry 7 avril 2014 Corrigé Baccalauréat ES Pondichéry 7 avril 204 Corrigé EXERCICE 4 points Commun à tous les candidats. Proposition fausse. La tangente T, passant par les points A et B d abscisses distinctes, a pour coefficient

Plus en détail

Indépendance Probabilité conditionnelle. Chapitre 3 Événements indépendants et Probabilités conditionnelles

Indépendance Probabilité conditionnelle. Chapitre 3 Événements indépendants et Probabilités conditionnelles Chapitre 3 Événements indépendants et Probabilités conditionnelles Indépendance Indépendance Probabilité conditionnelle Definition Deux événements A et B sont dits indépendants si P(A B) = P(A).P(B) Attention

Plus en détail

1. Déterminer l ensemble U ( univers des possibles) et l ensemble E ( événement) pour les situations suivantes.

1. Déterminer l ensemble U ( univers des possibles) et l ensemble E ( événement) pour les situations suivantes. Corrigé du Prétest 1. Déterminer l ensemble U ( univers des possibles) et l ensemble E ( événement) pour les situations suivantes. a) Obtenir un nombre inférieur à 3 lors du lancer d un dé. U= { 1, 2,

Plus en détail

Chapitre 3 : Principe des tests statistiques d hypothèse. José LABARERE

Chapitre 3 : Principe des tests statistiques d hypothèse. José LABARERE UE4 : Biostatistiques Chapitre 3 : Principe des tests statistiques d hypothèse José LABARERE Année universitaire 2010/2011 Université Joseph Fourier de Grenoble - Tous droits réservés. Plan I. Introduction

Plus en détail

Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé

Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé Baccalauréat S ntilles-guyane 11 septembre 14 Corrigé EXERCICE 1 6 points Commun à tous les candidats Une entreprise de jouets en peluche souhaite commercialiser un nouveau produit et à cette fin, effectue

Plus en détail

Exercices types Algorithmique et simulation numérique Oral Mathématiques et algorithmique Banque PT

Exercices types Algorithmique et simulation numérique Oral Mathématiques et algorithmique Banque PT Exercices types Algorithmique et simulation numérique Oral Mathématiques et algorithmique Banque PT Ces exercices portent sur les items 2, 3 et 5 du programme d informatique des classes préparatoires,

Plus en détail

BACCALAURÉAT GÉNÉRAL SESSION 2012 OBLIGATOIRE MATHÉMATIQUES. Série S. Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE

BACCALAURÉAT GÉNÉRAL SESSION 2012 OBLIGATOIRE MATHÉMATIQUES. Série S. Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE BACCALAURÉAT GÉNÉRAL SESSION 2012 MATHÉMATIQUES Série S Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE Les calculatrices électroniques de poche sont autorisées, conformément à la

Plus en détail

LA NOTATION STATISTIQUE DES EMPRUNTEURS OU «SCORING»

LA NOTATION STATISTIQUE DES EMPRUNTEURS OU «SCORING» LA NOTATION STATISTIQUE DES EMPRUNTEURS OU «SCORING» Gilbert Saporta Professeur de Statistique Appliquée Conservatoire National des Arts et Métiers Dans leur quasi totalité, les banques et organismes financiers

Plus en détail

Chaînes de Markov au lycée

Chaînes de Markov au lycée Journées APMEP Metz Atelier P1-32 du dimanche 28 octobre 2012 Louis-Marie BONNEVAL Chaînes de Markov au lycée Andreï Markov (1856-1922) , série S Problème 1 Bonus et malus en assurance automobile Un contrat

Plus en détail

Chapitre 3. Les distributions à deux variables

Chapitre 3. Les distributions à deux variables Chapitre 3. Les distributions à deux variables Jean-François Coeurjolly http://www-ljk.imag.fr/membres/jean-francois.coeurjolly/ Laboratoire Jean Kuntzmann (LJK), Grenoble University 1 Distributions conditionnelles

Plus en détail

Items étudiés dans le CHAPITRE N5. 7 et 9 p 129 D14 Déterminer par le calcul l'antécédent d'un nombre par une fonction linéaire

Items étudiés dans le CHAPITRE N5. 7 et 9 p 129 D14 Déterminer par le calcul l'antécédent d'un nombre par une fonction linéaire CHAPITRE N5 FONCTIONS LINEAIRES NOTION DE FONCTION FONCTIONS LINEAIRES NOTION DE FONCTION FONCTIONS LINEAIRES NOTION DE FONCTION Code item D0 D2 N30[S] Items étudiés dans le CHAPITRE N5 Déterminer l'image

Plus en détail

EPREUVES AU CHOIX DU CANDIDAT. Durée : De 09 h 00 à 12 h 00 (Heure de Yaoundé, TU + 1)

EPREUVES AU CHOIX DU CANDIDAT. Durée : De 09 h 00 à 12 h 00 (Heure de Yaoundé, TU + 1) 1 CYCLE MST-A 30 JUIN 2010 10 ème Promotion 2010 / 2012 CONCOURS D ENTREE A L IIA DROIT EPREUVES AU CHOIX DU CANDIDAT Durée : De 09 h 00 à 12 h 00 (Heure de Yaoundé, TU + 1) Le candidat traitera au choix

Plus en détail

Principes de mathématiques 12 SÉRIE DE PROBLÈMES. Septembre 2001. Student Assessment and Program Evaluation Branch

Principes de mathématiques 12 SÉRIE DE PROBLÈMES. Septembre 2001. Student Assessment and Program Evaluation Branch Principes de mathématiques 12 SÉRIE DE PROBLÈMES Septembre 2001 Student Assessment and Program Evaluation Branch REMERCIEMENTS Le Ministère de l Éducation tient à remercier chaleureusement les professionnels

Plus en détail

Chapitre 6 Test de comparaison de pourcentages χ². José LABARERE

Chapitre 6 Test de comparaison de pourcentages χ². José LABARERE UE4 : Biostatistiques Chapitre 6 Test de comparaison de pourcentages χ² José LABARERE Année universitaire 2010/2011 Université Joseph Fourier de Grenoble - Tous droits réservés. Plan I. Nature des variables

Plus en détail

Analyse Combinatoire

Analyse Combinatoire Analyse Combinatoire 1) Équipes On dispose d un groupe de cinq personnes. a) Combien d équipes de trois personnes peut-on former? b) Combien d équipes avec un chef, un sous-chef et un adjoint? c) Combien

Plus en détail