1 Un objet aléatoire de base : le dé

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "1 Un objet aléatoire de base : le dé"

Transcription

1 Dans le monde des statistiques, il est bien évident qu on ne fait plus aucun calcul à la main. Si nous le faisons en cours de mathématiques, c est pour mieux comprendre ce que font les divers logiciels et pour connaître les pièges de ces notions. L un des logiciels utiles et surtout gratuit (argument important pour nous étudiants et professeurs) est le logiciel ( Bien qu en anglais, il reste accessible mais néanmoins extrémement puissant. Commençons son exploration par les bases. 1 Un objet aléatoire de base : le dé 1. Démarrer le logiciel R (Démarrer/tous les programmes/r/r 2.9.2). 2. Quand on lance un dé non truqué, les résultats possibles sont 1, 2, 3, 4, 5 ou 6. (a) Précisons au logiciel ce qu est un dé avec l instruction :d=1:6 (b) Demandons maintenant ce que contient l objet d en tapant simplement :d On dit que d est un objet liste. 3. Pour un logiciel, lancer un dé c est donc choisir au hasard un nombre dans l ensemble des résultats possibles. (a) C est aussi un échantillon de taille 1 de l objet d :sample(d,1) (b) Avec la flèche vers le haut, rappeler plusieurs fois cette commande. Obtient-on toujours le même résultat? Le dé est-il équilibré? (c) Lancer le dé 6 fois à l aide de la seule commande :sample(d,6) Relancer plusieurs fois cette commande. A-t-on ce que l on espère? Qu est-ce qui semble «louche»? (d) Demander l aide sur cette fonction en tapant :help("sample") Comment faire pour obtenir 6 lancers du dé? Peut-on truquer le dé? 4. Présentons de nombreuses informations : (a) Lancer 100 fois le dé et ranger les résultats dans la variable s :s=sample(d,100,t) (b) afficher le contenu de s en tapant simplement :s Remarque : On aurait pu tout faire en une seule ligne, il suffit de séparer les instructions par un point-virgule, comme ceci :s=sample(d,100,t); s (c) Les données sont illisibles du fait de leur grand nombre. Résumons les à l aide d un tableau :t=table(s); t Présentons ce tableau à l aide d un diagramme en barre :barplot(t) 5. Construisons maintenant une fonction qui fasse toutes les étapes. Nous souhaitons simplement pouvoir donner le nombre de lancers. (a) Taper : f=function(n){d=1:6; s=sample(d,n,t); t=table(s); print(t); barplot(t)} (b) essayer la fonction avec :f(500) 2 Fluctuation d échantillonnage 1. Taperf(100), puis à nouveau f(100) Que s est-il passé? Ce phénomène est appelé fluctuation d échantillonnage Rappeler la commandef(100) plusieurs fois pour observer cette fluctuation. 1. Le changement de hauteur des barres du diagramme indique la fluctuation d échantillonnage.

2 BTS ACSE/GPN/TV 3. Recommencer et observer la fluctuation d échantillonnage avec 1000 lancers puis lancers, lancers et lancers. Quelle conclusion concernant la fluctuation d échantillonnage peut-on déduire de ce qui précède? 4. Quand on lance un dé bien équilibré on a 1 chance sur 6 d obtenir la face 5 (de même pour les autres faces). Retrouve-t-on ce résultat? 5. Application : deviner la composition de l urne. Une urne bien cachée dans la mémoire de l ordinateur contient 470 boules de couleurs. Le but de l exercice est de trouver la composition de cette urne. (a) Ouvrir le fichier «Secrets». (b) Que réalise l instruction suivante :s=sample(urnesecrete,1,t); s? (c) On étudie des échantillons de taille 10 et on observe les tables et les diagrammes obtenus : s=sample(urnesecrete,10,t); t=table(s); t; barplot(t) Quelles sont les couleurs des boules contenues dans l urne? (d) En modifiant la taille de l échantillon, déterminer la composition de l urne en pourcentage. Commenter votre démarche et présenter un diagramme qui justifie votre réponse. En déduire la composition de l urne. 3 Le problème des sondages Nous savons tout, nous voyons tout! On imagine une population composée de d individus. La moitié des individus possèdent une certaine caractéristique qui est codée par le chiffre 1. L autre moitié est codée par 0. On effectue des sondages dans cette population et étudie les résultats. 1. On définit la population :population=c(rep(0,500000),rep(1,500000)) 2. (a) Un échantillon de 1000 :échantillon=sample(population,1000); échantillon (b) Dans cet échantillon, combien d individus possèdent la caractéristique étudiée? s=sum(échantillon) (c) Quel pourcentage cela représente-t-il? s*100/1000 (d) En abrégé :s=sum(sample(population,1000))/10; s 3. En rappelant cette instruction vous obtiendrez le résultat d autant de sondages que vous le souhaitez...chose qu on ne peut pas se permettre en réalité. (a) Dans quel intervalle se trouvent les résultats observés? (b) Dans la population choisie on sait que 50% des personnes possèdent la caractéristique étudiée. Quelle est la marge d erreur induite par le sondage? 4. Pour affiner cette estimation nous allons faire un grand nombre de sondages, par exemple 500 sondages. (a) L instruction est la suivante : L=c(); for(i in 1:500) L=c(sum(sample(population,1000))/10,L) (b) Pour analyser les résultats :hist(l,prob=true) Quelle loi de probabilité peut produire cet histogramme? Un indice de plus? Taper l instruction :hist(l,prob=true,nclass=20) Un indice de plus? Taper l instruction :lines(density(l,bw=1)) (c) Calculons quelques valeurs caractéristiques : Taper l instruction :mean(l), la moyenneµdes 500 échantillons est : Taper l instruction :sd(l), l écart typeσdes 500 échantillons est : Taper l instruction :length(l[(l>mean(l)-sd(l))&(l<mean(l)+sd(l))])/500, le pourcentage des 500 échantillons dans l intervalle[µ σ;µ+σ] est :

3 Taper l instruction :length(l[(l>mean(l)-2*sd(l))&(l<mean(l)+2*sd(l))])/500, le pourcentage des 500 échantillons dans l intervalle[µ 2σ;µ+2σ] est : Taper l instruction :length(l[(l>mean(l)-3*sd(l))&(l<mean(l)+3*sd(l))])/500, le pourcentage des 500 échantillons dans l intervalle[µ 3σ;µ+3σ] est : Taper l instruction : length(l[(l>mean(l)-2/3*sd(l))&(l<mean(l)+2/3*sd(l))])/500, le pourcentage des 500 échantillons dans l intervalle[µ 2 σ;µ+ 2 σ] est : 3 3 Calculer 100 0,5(1 0,5) 1000 et le comparer avecσ. (d) À l aide du graphique ci-dessous repris du cours et des informations trouvées ci-dessus, quelle est la loi de la variable aléatoire X où X est la fréquence en pourcentage des individus ayant une certaine caractéristique dans un échantillon de 500 individus choisis de manière indépendante? 1 σ 2π µ 3σ µ 2σ µ σ µ 2 3 σ µ µ+ 2 3 σ µ+σ µ+2σ µ+3σ 0, 5 0, 68 0, 95 0, 997 (e) Taper l instruction : quantile(l,c(0.025,0.975)). La réponse signifie que 95% des résultats sont dans l intervalle affiché. Quelle est la valeur de k telle que Φ(k) = 0, 975? Que vautµ 1, 96σ? Que vautµ+1, 96σ? Si la loi de X est la loi (µ;σ), que vaut P(µ 1, 96σ X µ+1, 96σ)? Cela explique-t-il les valeurs trouvées par le logiciel au début de la question? 5. Application : Nous ne savons rien, nous ne voyons que le résultat d un seul sondage! Vous réalisez un sondage sur un échantillon de 1000 personnes parmi la population de Secreteville (qui comporte 1 million d habitants). Vous posez la question suivante : «Pensez-vous que l étude des statistiques au lycée soit utile?». La réponse «oui» est codée par 1 et la réponse «non» est codée par 0. Quelle estimation pourriez-vous publier? Donner par calcul un intervalle dans lequel on trouvera 95% des estimations. 4 Un premier test statistique : le test duχ 2 Le dé que vous lancez est-il vraiment bien équilibré? Les résultats que l on obtient en lançant un dé sont censés suivre la loi uniforme : à chacun des 6 résultats possibles, on attribue la probabilité 1 ; c est la symétrie du cube qui nous amène à penser cela. 6

4 BTS ACSE/GPN/TV En pratique cependant, on observe une certaine fluctuation des résultats : si on lance le dé 120 fois, il est rarissime d obtenir exactement 20 résultats de chaque sorte! À titre d exemple, on pourrait obtenir la table suivante : résultat Effectifs observés Effectifs théoriques Il n est pas évident, au vu de ces résultats, de déterminer si les différences sont dues à des fluctuations normales, ou si elles sont dues à un déséquilibre du dé. 4.1 Élaboration d un test 1. Dans Fichier, Charger l environnement de travail, choisir d ouvrir le fichier «adequat.r». 2. Vous pouvez maintenant faire un grand nombre d essais, sur un dé de référence parfaitement équilibré : (a) Tapezn_Lancers(), 120 résultats s affichent ; (b) Une simple table des résultats serait plus lisible ; ou bien un tracé en bâtons TapezDé0(), et vous obtiendrez les 2. (c) En rappelant la ligne précédente avec la touche «flèche vers le haut», vous pouvez effectuer un grand nombre d essais. Ceci permet de se faire une première idée des fluctuations possibles sur un dé bien équilibré. L appréciation de ces fluctuations nécessite la prise en compte simultanée de 6 valeurs numériques ; 3. La tâche serait plus facile si on synthétisait ces informations en une seule valeur numérique. L idée est de mesurer l écart entre les effectifs observés et les effectifs théoriques. (a) tapezobservés= Dé0(); théorique=20 (b) Puisdifférence = observés - théorique (c) Puis(différence)ˆ2 qui donne les carrés des valeurs précédentes. (d) sum(différence) donne toujours 0 ; et donc aucune information. (e) Par contre sum((différence)ˆ2) n est nul que si les valeurs théoriques et observées coïncident (ce qui est rarissime) et croit quand les écarts croissent. Nous prendrons cette valeur comme indicative de l écart «théoriques par rapport à observées», et la noterons ECART. (f) Pour en faciliter les calculs, tapez en une ligne Obs=Dé0(); E=sum((Obs-20)ˆ2); Obs; paste(«ecart=»,e) Puis rappelez cette ligne d instruction grâce à la touche «flèche vers le haut» autant de fois que vous le souhaitez. Vous aurez ainsi une petite idée des valeurs possibles de l ECART. Notez 20 de ces valeurs. (g) Pour avoir une idée plus claire des valeurs possibles de ECART, nous allons collecter par simulations un grand nombre de valeurs de ECART. La fonction N_ECARTS() collecte 1000 valeurs de ECART et renvoie les résultats sous forme d une représentation graphique. Ce graphique, que nous appellerons graphique de référence, montre bien quelles sont les valeurs typiques auxquelles nous devons nous attendre. Souvenez vous que ces valeurs constituent une mesure des fluctuations ordinaires d un dé parfaitement équilibré

5 4. Pour aller plus loin il faut décider d un critère de sélection. Rangeons les 1000 valeurs de ECART par ordre croissant et notons E 0.95 la 950ème valeur, c est à dire le 95ième centile de cette série de 1000 valeurs. Dans la simulation de référence, 95% des résultats sont inférieurs à E Un résultat supérieur sera considéré comme excentrique, même si, notez-le bien, il a été obtenu par le lancer d un dé bien équilibré, notre dé de référence! Notez également le caractère arbitraire de ce choix ; arbitraire mais raisonnable! la fonction N_Ecarts() recalcule un graphique de référence et y adjoint le nombre E 0.95 que nous appellerons valeur critique ; On obtient un graphique comme le suivant : 95% des valeurs de ECART sont inferieures à 214 effectifs valeurs de ECART, calculées sur 120 lancers Placez les 20 résultats obtenus en 3f sur votre graphique de référence. Combien de valeurs sont inféreures à E 0.95? 4.2 Mise en œuvre du test Soit à tester un nouveau dé. On décide de l accepter comme bien équilibré si la valeur de ECART que l on obtient suite à 120 lancers est inférieure à E 0.95 ; dans le cas contraire, il est écarté. Vous avez 9 dés à tester. 1. Pour lancer 120 fois le dé numero 7, tapezdé7() ; 2. Pour calculer la valeur de ECART relative à ce lancer, tapez : Obs=Dé7(); E=sum((Obs-20)ˆ2); Obs; paste(«ecart=»,e) Puis comparez le résultat à la valeur critique lue sur votre graphique de référence. 3. Pour vous faciliter la tâche, il existe une fonction Test, dont la syntaxe est Test(Dé7,120) qui donne une table portant sur 120 lancers du dé numéro 7, un graphique et la valeur de l Ecart correspondant. 4. Quels dés retiendriez-vous?

Niveau. Situation étudiée. Type d activité. Durée. Objectifs. Seconde.

Niveau. Situation étudiée. Type d activité. Durée. Objectifs. Seconde. Simuler des expériences aléatoires avec une calculatrice Niveau Seconde. Situation étudiée Différentes selon les séances : Séance 1 : Jeu de pile ou face, tirages de boule dans une urne avec des proportions

Plus en détail

Annexe commune aux séries ES, L et S : boîtes et quantiles

Annexe commune aux séries ES, L et S : boîtes et quantiles Annexe commune aux séries ES, L et S : boîtes et quantiles Quantiles En statistique, pour toute série numérique de données à valeurs dans un intervalle I, on définit la fonction quantile Q, de [,1] dans

Plus en détail

Fluctuation d une fréquence selon les échantillons - Probabilités

Fluctuation d une fréquence selon les échantillons - Probabilités Fluctuation d une fréquence selon les échantillons - Probabilités C H A P I T R E 3 JE DOIS SAVOIR Calculer une fréquence JE VAIS ÊTRE C APABLE DE Expérimenter la prise d échantillons aléatoires de taille

Plus en détail

Chapitre VI Échantillonages et simulations

Chapitre VI Échantillonages et simulations Chapitre VI Commentaires : Récursivement, les commentaires ne sont pas à l attention des élèves.. Fluctuation d échantillonnage Définition : En statistiques, un échantillon de taille n est la liste des

Plus en détail

Introduction à Excel

Introduction à Excel Introduction à Excel Commentaires : Cet exercice a pour but de vous apprendre les fonctions rudimentaires du logiciel excel. C est seulement par la pratique que vous connaîtrez parfaitement le logiciel.

Plus en détail

Exercices : Probabilités

Exercices : Probabilités Exercices : Probabilités Partie : Probabilités Exercice Dans un univers, on donne deux événements et incompatibles tels que =0, et =0,7. Calculer,, et. Exercice Un dé (à faces) est truqué de la façon suivante

Plus en détail

EXCEL 1 - PRISE EN MAIN

EXCEL 1 - PRISE EN MAIN EXCEL 1 - PRISE EN MAIN I - Qu est-ce qu un tableur? Excel est un logiciel permettant d élaborer des feuilles de calculs automatiques présentées la plupart du temps sur de grandes feuilles quadrillées.

Plus en détail

ECHANTILLONNAGES Fiche de repérage

ECHANTILLONNAGES Fiche de repérage M Objectifs pédagogiques généraux : Fiche de repérage Type : Activité d approche de la notion de fluctuation d échantillonnage et d intervalle de confiance à travers quelques simulations. Niveau : Lycée

Plus en détail

Emilien Suquet, suquet@automaths.com

Emilien Suquet, suquet@automaths.com STATISTIQUES Emilien Suquet, suquet@automaths.com I Comment réagir face à un document statistique? Les deux graphiques ci-dessous représentent l évolution du taux de chômage en France sur les 1 mois de

Plus en détail

Les probabilités. Chapitre 18. Tester ses connaissances

Les probabilités. Chapitre 18. Tester ses connaissances Chapitre 18 Les probabilités OBJECTIFS DU CHAPITRE Calculer la probabilité d événements Tester ses connaissances 1. Expériences aléatoires Voici trois expériences : - Expérience (1) : on lance une pièce

Plus en détail

Proposition de corrigé

Proposition de corrigé Externat Notre Dame Devoir Survéillé n 2 (1 ere ES/L) Samedi 14 décembre Durée : 3 h calculatrice autorisée - pas d échange de calculatrice ou de matériel Proposition de corrigé Dans tout ce devoir, la

Plus en détail

Partie 2 Statistique- Chapitre 8 Tableaux Croisés

Partie 2 Statistique- Chapitre 8 Tableaux Croisés Partie 2 Statistique- Chapitre 8 Tableaux Croisés PLAN: Cours... 2 TABLEAUX CROISES... 2 1. Tableau des effectifs... 2 2. Tableau des fréquences un rapport à l'effectif total... 2 3. Tableau des fréquences

Plus en détail

Découverte de l ordinateur. Explorer l ordinateur et gérer ses fichiers

Découverte de l ordinateur. Explorer l ordinateur et gérer ses fichiers Découverte de l ordinateur Explorer l ordinateur et gérer ses fichiers SOMMAIRE I L ORDINATEUR ET L EXPLORATEUR... 3 1.1 : PRESENTATION ET GENERALITES... 3 1.2 : CONNAÎTRE LES PROPRIETES D UN ELEMENT...

Plus en détail

Statistiques à une variable

Statistiques à une variable Statistiques à une variable Objectif : connaissances des termes et formules statistiques Acquis : Programme de seconde professionnelle. 1/ Généralités : Exploitation d une base de données. Vie économique

Plus en détail

Examen d accès - 1 Octobre 2009

Examen d accès - 1 Octobre 2009 Examen d accès - 1 Octobre 2009 Aucun document autorisé - Calculatrice fournie par le centre d examen Ce examen est un questionnaire à choix multiples constitué de 50 questions. Plusieurs réponses sont

Plus en détail

TD de statistique : graphiques avec R

TD de statistique : graphiques avec R TD de statistique : graphiques avec R Jean-Baptiste Lamy 11 octobre 2007 1 Rappels de vocabulaire Données univariées lorsqu il n y a qu une seule variable Données bivariées lorsqu il y a deux variables

Plus en détail

Statistique : Résumé de cours et méthodes

Statistique : Résumé de cours et méthodes Statistique : Résumé de cours et méthodes 1 Vocabulaire : Population : c est l ensemble étudié. Individu : c est un élément de la population. Effectif total : c est le nombre total d individus. Caractère

Plus en détail

Ce TD se déroule sur 3 heures : vous devez donc consacrer environ 1 heure pour chacune des phases.

Ce TD se déroule sur 3 heures : vous devez donc consacrer environ 1 heure pour chacune des phases. TD Analyse de données pour l évaluation de l exposition Octobre 2014 1 Contexte et objectif du TD Pour réaliser une évaluation de l exposition d une population à un contaminant chimique, plusieurs sources

Plus en détail

«Monsieur, on fait quoi?»

«Monsieur, on fait quoi?» Nous avons le plaisir aujourd hui de vous proposer une séance de travaux pratiques de statistique, c est-à-dire, une séance où vous allez pouvoir mettre les mains dans le cambouis (dans les données) et

Plus en détail

Lycée Fénelon Sainte-Marie Préparation Science-Po/Prépa HEC

Lycée Fénelon Sainte-Marie Préparation Science-Po/Prépa HEC Lycée Fénelon Sainte-Marie Préparation Science-Po/Prépa HEC Dénombrement et probabilités Version du juillet 05 Enoncés Exercice - YouTube Sur YouTube, les vidéos sont identifiées à l aide d une chaîne

Plus en détail

Activité 1 : échantillonnage

Activité 1 : échantillonnage Activité échantillonnage, intervalle de fluctuation, prise de décision (à partir d un même thème) Les trois activités qui suivent s inspirent du document «ressources pour la classe de première générale

Plus en détail

Leçon n 11 Statistiques et simulations

Leçon n 11 Statistiques et simulations Leçon n 11 Statistiques et simulations C est une leçon qui se prolongera les années suivantes. Il s agit de rapprocher «les statistiques» d une notion qui sera étudiée en première «les probabilités» et

Plus en détail

Baccalauréat ES Centres étrangers 12 juin 2014 - Corrigé

Baccalauréat ES Centres étrangers 12 juin 2014 - Corrigé Baccalauréat ES Centres étrangers 1 juin 14 - Corrigé A. P. M. E. P. Exercice 1 5 points Commun à tous les candidats 1. On prend un candidat au hasard et on note : l évènement «le candidat a un dossier

Plus en détail

Chapitre 1: Introduction au calcul des probabilités, cas d un univers fini.

Chapitre 1: Introduction au calcul des probabilités, cas d un univers fini. Chapitre 1: Introduction au calcul des probabilités, cas d un univers fini. 1 Introduction Des actions comme lancer un dé, tirer une carte d un jeu, observer la durée de vie d une ampoule électrique, etc...sont

Plus en détail

Probabilités Loi binomiale Exercices corrigés

Probabilités Loi binomiale Exercices corrigés Probabilités Loi binomiale Exercices corrigés Sont abordés dans cette fiche : (cliquez sur l exercice pour un accès direct) Exercice 1 : épreuve de Bernoulli Exercice 2 : loi de Bernoulli de paramètre

Plus en détail

STATISTIQUES. I. Un peu de vocabulaire. II. Representations graphiques. 1. Diagramme circulaire

STATISTIQUES. I. Un peu de vocabulaire. II. Representations graphiques. 1. Diagramme circulaire STATISTIQUES I. Un peu de vocabulaire Toute étude statistique s'appuie sur des données. Dans le cas où ces données sont numériques, on distingue les données discrètes (qui prennent un nombre fini de valeurs

Plus en détail

Probabilités. Rappel : trois exemples. Exemple 2 : On dispose d un dé truqué. On sait que : p(1) = p(2) =1/6 ; p(3) = 1/3 p(4) = p(5) =1/12

Probabilités. Rappel : trois exemples. Exemple 2 : On dispose d un dé truqué. On sait que : p(1) = p(2) =1/6 ; p(3) = 1/3 p(4) = p(5) =1/12 Probabilités. I - Rappel : trois exemples. Exemple 1 : Dans une classe de 25 élèves, il y a 16 filles. Tous les élèves sont blonds ou bruns. Parmi les filles, 6 sont blondes. Parmi les garçons, 3 sont

Plus en détail

Projet Epibac - Chiffrement de fichiers avant envoi à l'invs

Projet Epibac - Chiffrement de fichiers avant envoi à l'invs Projet Epibac - Chiffrement de fichiers avant envoi à l'invs Installation de l outil de chiffrement Vous venez de recevoir par mail un fichier Install.ivs ainsi que cette documentation au format PDF nommée

Plus en détail

INITIATION A POWERPOINT

INITIATION A POWERPOINT INITIATION A POWERPOINT P. BESSON OCTOBRE 2000 SOMMAIRE Chap. 1 Découverte de POWERPOINT I. Démarrer Powerpoint 1. Lancement de l application 2. Boite de dialogue de démarrage de Powerpoint II. Structure

Plus en détail

5. Word - Ecrire un texte

5. Word - Ecrire un texte 5. Word - Ecrire un texte Entrons dans le vif du sujet en commençant par Word! Nous allons tout d'abord voir les bases de la mise en forme du texte, et l'insertion d'éléments. 1. Ecrire son premier texte

Plus en détail

Entrer par les problèmes en probabilités et en statistique. Équipe Académique Mathématiques - 2009

Entrer par les problèmes en probabilités et en statistique. Équipe Académique Mathématiques - 2009 Entrer par les problèmes en probabilités et en statistique Équipe Académique Mathématiques - 2009 Quelle valeur ajoutée peut-on espérer d une entrée par les problèmes en probabilités? Donner du sens aux

Plus en détail

LES GENERATEURS DE NOMBRES ALEATOIRES

LES GENERATEURS DE NOMBRES ALEATOIRES LES GENERATEURS DE NOMBRES ALEATOIRES 1 Ce travail a deux objectifs : ====================================================================== 1. Comprendre ce que font les générateurs de nombres aléatoires

Plus en détail

Ordinateur, programme et langage

Ordinateur, programme et langage 1 Ordinateur, programme et langage Ce chapitre expose tout d abord les notions de programme et de traitement de l information. Nous examinerons ensuite le rôle de l ordinateur et ses différents constituants.

Plus en détail

Fiches Outil Acces Sommaire

Fiches Outil Acces Sommaire Fiches Outil Acces Sommaire Fiche Outil Access n 1 :... 2 Le vocabulaire d Access... 2 Fiche Outil Access n 2 :... 4 Créer une table dans la base... 4 Fiche Outil Access n 3 :... 6 Saisir et modifier des

Plus en détail

Initiation aux probabilités.

Initiation aux probabilités. Initiation aux probabilités. On place dans une boite trois boules identiques à l exception de leur couleur : une boule est noire, une est blanche, la troisième est grise. On tire une des boules sans regarder,

Plus en détail

Principe des tests statistiques

Principe des tests statistiques Principe des tests statistiques Jean Vaillant Un test de signification est une procédure permettant de choisir parmi deux hypothèses celles la plus probable au vu des observations effectuées à partir d

Plus en détail

TUTORIAL. www.benevolat.org TUTORIAL. Créez en quelques minutes votre site Internet!

TUTORIAL. www.benevolat.org TUTORIAL. Créez en quelques minutes votre site Internet! Créez en quelques minutes votre site Internet! SOMMAIRE : Choisir une interface graphique - Nommez votre site... page 03 5 étapes de création... page 04 Les outils de création graphique... page 05 Mise

Plus en détail

TP Méthodes Numériques

TP Méthodes Numériques ENSIMAG 1ère année, 2007-2008 TP Méthodes Numériques Objectifs Les objectifs de ce TP sont : de revenir sur les méthodes de résolution des équations différentielles vues en cours de MN ; d utiliser un

Plus en détail

Soutien illimité 7j/7 en maths: Coach, profs, exercices & annales, cours. Sujet de Bac 2013 Maths S Obligatoire & Spécialité - Liban

Soutien illimité 7j/7 en maths: Coach, profs, exercices & annales, cours. Sujet de Bac 2013 Maths S Obligatoire & Spécialité - Liban Sujet de Bac 2013 Maths S Obligatoire & Spécialité - Liban EXERCICE 1 : 4 Points Cet exercice est un questionnaire à choix multiples. Aucune justification n est demandée. Pour chacune des questions, une

Plus en détail

Le Menu Démarrer Vista Win7

Le Menu Démarrer Vista Win7 Le Menu Démarrer Vista Win7 Session Initiation 2011/2012 1 - Utilisation du menu Démarrer Lorsque vous cliquez sur le Bouton Démarrer ou sur la touche Windows de votre clavier, le menu Démarrer s'affiche

Plus en détail

STATISTIQUES A UNE VARIABLE EXERCICES CORRIGES

STATISTIQUES A UNE VARIABLE EXERCICES CORRIGES STATISTIQUES A UNE VARIALE EXERCICES CORRIGES Exercice n Les élèves d une classe ont obtenu les notes suivantes lors d un devoir : Note 4 5 8 0 4 5 8 0 Effectif 4 7 6 4 ) Déterminer l étendue et le mode

Plus en détail

Page 1/11. Préambule. Table des matières

Page 1/11. Préambule. Table des matières Page 1/11 Table des matières Préambule... 1 1- Le principe de «NuaFil»... 2 2 - Accueil de votre gestion de profil... 2 2-1 - La recherche de profils... 3 2-2- La liste de vos profils... 3 3 - Le référencement

Plus en détail

RemoteExec Guide de démarrage rapide. Version 5

RemoteExec Guide de démarrage rapide. Version 5 RemoteExec Guide de démarrage rapide Version 5 Table des Matières 1. Général... 3 1.1. Vue d ensemble... 3 1.2. Prérequis... 3 1.3. Installer RemoteExec... 3 2. Votre première éxecution a distance... 5

Plus en détail

STATISTIQUES À UNE VARIABLE

STATISTIQUES À UNE VARIABLE STATISTIQUES À UNE VARIABLE Table des matières I Méthodes de représentation 2 I.1 Vocabulaire.............................................. 2 I.2 Tableaux...............................................

Plus en détail

T. D. n o 3 Analyse de données quantitatives avec le logiciel R

T. D. n o 3 Analyse de données quantitatives avec le logiciel R T. D. n o 3 Analyse de données quantitatives avec le logiciel R 1 Rappel de quelques fonctions statistiques sous R Fonction summary() cumsum() sum() mean() max() min() range() median() var() sd() Description

Plus en détail

1 Générateurs à Congruences Linéaires (GCL)

1 Générateurs à Congruences Linéaires (GCL) TP 4 : Générateurs pseudo-aléatoires et applications Un générateur de nombres pseudo-aléatoires, pseudorandom number generator (PRNG) en anglais, est un algorithme qui génère une séquence de nombres présentant

Plus en détail

Personnalisation de votre ordinateur

Personnalisation de votre ordinateur Quelles sont les nouveautés dans Windows 7? Même si de nombreuses fonctionnalités sont identiques à la version précédente de Windows, vous aurez peut-être besoin d aide pour effectuer vos tâches plus rapidement.

Plus en détail

Fiche PanaMaths Introduction au tracé de courbes avec Scilab

Fiche PanaMaths Introduction au tracé de courbes avec Scilab Fiche PanaMaths Introduction au tracé de courbes avec Scilab Introduction Ce document présuppose un certain niveau de connaissance du logiciel Scilab de la part du lecteur (de la lectrice) : calcul matriciel,

Plus en détail

Simulation d un lancer d un dé cubique équilibré à l aide du tableur d Open Office : Appuyez sur la touche f9 plusieurs fois. Qu obtenez-vous alors?

Simulation d un lancer d un dé cubique équilibré à l aide du tableur d Open Office : Appuyez sur la touche f9 plusieurs fois. Qu obtenez-vous alors? Simulation d un lancer d un dé cubique équilibré à l aide du tableur d Open Office : Ouvrez un nouveau fichier tableur (excel/open office...). 1 ) Dans la cellule A1, tapez la fonction =ALEA( ). Qu obtenez-vous?

Plus en détail

Approche empirique du test χ 2 d ajustement

Approche empirique du test χ 2 d ajustement Approche empirique du test χ 2 d ajustement Alain Stucki, Lycée cantonal de Porrentruy Introduction En lisant des rapports, on rencontre souvent des raisonnements du style : «le premier groupe est meilleur

Plus en détail

ADMISSION AU COLLEGE UNIVERSITAIRE Samedi 1 mars 2014 MATHEMATIQUES durée de l épreuve : 3h coefficient 2

ADMISSION AU COLLEGE UNIVERSITAIRE Samedi 1 mars 2014 MATHEMATIQUES durée de l épreuve : 3h coefficient 2 ADMISSION AU COLLEGE UNIVERSITAIRE Samedi 1 mars 2014 MATHEMATIQUES durée de l épreuve : 3h coefficient 2 Le sujet est numéroté de 1 à 5. L annexe 1 est à rendre avec la copie. L exercice Vrai-Faux est

Plus en détail

Comme la moyenne au devoir est plutôt faible, le professeur propose deux possibilités pour augmenter cette moyenne :

Comme la moyenne au devoir est plutôt faible, le professeur propose deux possibilités pour augmenter cette moyenne : Chapitre 6 : Statistiques I Premières définitions - Etablir une statistique, c est relever pour tous les individus d une population les valeurs d une grandeur X, appelée caractère ou variable statistique.

Plus en détail

5.1 Sauvegarder avec Nero

5.1 Sauvegarder avec Nero Nero propose plusieurs outils et méthodes pour sauvegarder le contenu d un disque dur et le restaurer. De fait, les supports optiques représentent des solutions parfaitement bien adaptées pour l enregistrement

Plus en détail

Bien réussir sa migration de Ciel Compta

Bien réussir sa migration de Ciel Compta Bien réussir sa migration de Ciel Compta Chère Cliente, Cher Client, Ce guide vous permet d installer votre nouveau logiciel et de récupérer les données de votre ancienne version de Ciel Compta. Nous vous

Plus en détail

Stand Probabilite s et football

Stand Probabilite s et football Stand Probabilite s et football Dominos... A la de couverte des probabilite s On joue avec deux de s a 6 faces. Essayez de trouver intuitivement quelle est la probabilite : - d obtenir un avec un de a

Plus en détail

Niveau. Situations étudiées. Type d activité. Durée. Objectifs

Niveau. Situations étudiées. Type d activité. Durée. Objectifs Fourchettes, non réponses, fausses réponses et redressements... : la cuisine mathématique des sondages Niveau Exercice 1 : 3 ème 2 nde. Exercice 2 : 3 ème 2 nde. Exercice 3 : Seconde ou première. Exercice

Plus en détail

ELECTROMAGNETISM EXEMPLES

ELECTROMAGNETISM EXEMPLES EXEMPLES 1. Représentation globale du champ électrique 2. Graphiques et export CSV sous Microsoft Excel 3. Configuration de Helmholtz 4. Condensateur plan 5. Limaille de fer autour d une bobine 6. Trajectoire

Plus en détail

Introduction à la programmation sous Scilab : TP auto-correctifs II

Introduction à la programmation sous Scilab : TP auto-correctifs II Introduction à la programmation sous Scilab : TP auto-correctifs II Licence de Physique à distance Table des matières I Vecteurs et matrices (II) 1 a) Vecteurs........................................ 1

Plus en détail

La gestion des doublons

La gestion des doublons fims.informatique@skynet.be 01.10 10.02 N 3 La gestion des doublons Dans la plupart des bases de données, les doublons sont souvent inévitables. Il est parfois complexe de les gérer car les informations

Plus en détail

BACCALAURÉAT PROFESSIONNEL SUJET

BACCALAURÉAT PROFESSIONNEL SUJET SESSION 203 Métropole - Réunion - Mayotte BACCALAURÉAT PROFESSIONNEL ÉPREUVE E4 CULTURE SCIENTIFIQUE ET TECHNOLOGIQUE : MATHÉMATIQUES Toutes options Durée : 2 heures Matériel(s) et document(s) autorisé(s)

Plus en détail

Soutien illimité 7j/7 en maths: Coach, profs, exercices & annales, cours. Sujet de Bac 2013 Maths S Obligatoire & Spécialité - Amérique du Nord

Soutien illimité 7j/7 en maths: Coach, profs, exercices & annales, cours. Sujet de Bac 2013 Maths S Obligatoire & Spécialité - Amérique du Nord Sujet de Bac 2013 Maths S Obligatoire & Spécialité - Amérique du Nord EXERCICE 1 : 5 points On se place dans l espace muni d un repère orthonormé. On considère les points,, et. 1. Démontrer que les points,

Plus en détail

LM206 : Initiation à Scilab

LM206 : Initiation à Scilab Université Pierre et Marie Curie Année 2013-2014 Licence période 2 7 Au hasard LM206 : Initiation à Scilab Cette séance traite de quelques possibilités de simulation en probabilités et statistiques. Après

Plus en détail

Chapitre 3 : INFERENCE

Chapitre 3 : INFERENCE Chapitre 3 : INFERENCE 3.1 L ÉCHANTILLONNAGE 3.1.1 Introduction 3.1.2 L échantillonnage aléatoire 3.1.3 Estimation ponctuelle 3.1.4 Distributions d échantillonnage 3.1.5 Intervalles de probabilité L échantillonnage

Plus en détail

Test de Poisson à 1 échantillon et à 2 échantillons

Test de Poisson à 1 échantillon et à 2 échantillons Test de Poisson à 1 échantillon et à 2 échantillons Sous-menus de Minitab 15 : Stat>Statistiques élémentaires>test de Poisson à 1 échantillon Stat>Statistiques élémentaires>test de Poisson à 2 échantillons

Plus en détail

Collecte de données. Laurent Dorey

Collecte de données. Laurent Dorey Laurent Dorey Mercredi 16 Décembre 2014 Programme : Recensement & Echantillonnage Étapes pour sélectionner un échantillon La population observée La base de sondage Les unités d enquête La taille de l échantillon

Plus en détail

1 Premiers pas avec Rstudio

1 Premiers pas avec Rstudio Université Paris Descartes UFR de Mathématiques et Informatique Probabilités et Statistiques pour l informatique- Licence MIA 2e année Travaux Pratiques - 1 ère séance Le but de cette première séance est

Plus en détail

Dénombrement, opérations sur les ensembles.

Dénombrement, opérations sur les ensembles. Université Pierre et Marie Curie 2013-2014 Probabilités et statistiques - LM345 Feuille 1 (du 16 au 20 septembre 2013) Dénombrement, opérations sur les ensembles 1 Combien de façons y a-t-il de classer

Plus en détail

Exercice 2. Population de Bruxelles de 18 à 65 ans selon le sexe et le statut d occupation - 2010

Exercice 2. Population de Bruxelles de 18 à 65 ans selon le sexe et le statut d occupation - 2010 Chapitre 1. Tableau à double entrée Exercices : solutions Texte provisoire. Merci pour les remarques, commentaires, suggestions Exercice 1 1.a. Population de Bruxelles selon le sexe et la nationalité Hommes

Plus en détail

Prise en main d un tableur Open Office

Prise en main d un tableur Open Office Prise en main d un tableur Open Office 1 Présentation de l écran de travail Barre des menus Barre d outil Standard Barre de mise en forme Zone d édition des formules zone active Adresse de la zone active

Plus en détail

IUT Nice-Côte d Azur Informatique appliquée 2005 2006. TP N o 4. Tableur : affichage et impression

IUT Nice-Côte d Azur Informatique appliquée 2005 2006. TP N o 4. Tableur : affichage et impression 1 IUT Nice-Côte d Azur TC-Nice 1 re année Informatique appliquée 2005 2006 TP N o 4 Tableur : affichage et impression I Options d affichage Les options concernant l affichage dans les feuilles de calcul

Plus en détail

Partie Agir : Défis du XXI ème siècle CHAP 20-ACT EXP Convertisseur Analogique Numérique (CAN)

Partie Agir : Défis du XXI ème siècle CHAP 20-ACT EXP Convertisseur Analogique Numérique (CAN) 1/5 Partie Agir : Défis du XXI ème siècle CHAP 20-ACT EXP Convertisseur Analogique Numérique (CAN) Objectifs : Reconnaître des signaux de nature analogique et des signaux de nature numérique Mettre en

Plus en détail

PRISE EN MAIN D UN TABLEUR. Version OPEN OFFICE

PRISE EN MAIN D UN TABLEUR. Version OPEN OFFICE PRISE EN MAIN D UN TABLEUR Version OPEN OFFICE Prise en main d un tableur page 2 1. L utilisation de la souris Pour faire fonctionner un tableur, on utilise le clavier mais aussi la souris. Rappelons,

Plus en détail

Gérer ses photos numériques

Gérer ses photos numériques 1) Les images dans Windows XP Visionnez ses images dans Windows XP Tout d abord il faut savoir qu il existe un dossier spécifique aux images dans Windows XP, il s agit d un sousdossier de Mes Documents

Plus en détail

Tableur - L'interface d'excel

Tableur - L'interface d'excel Tableur - L'interface d'excel Qu'est-ce qu'un tableur? - Une définition: un tableur est un outil informatique qui permet de traiter des données, d'effectuer des calculs de façon automatique. Ces calculs,

Plus en détail

Informatique - TD 3 Graphiques, diagrammes et aléatoire

Informatique - TD 3 Graphiques, diagrammes et aléatoire Informatique - TD 3 Graphiques, diagrammes et aléatoire Bcpst - Lycée F1 Rappels et extensions sur les outils graphiques de base Rappel : Pour faire des graphiques en Python, on introduit les bibliothèques

Plus en détail

Notions de probabilités

Notions de probabilités 44 Notions de probabilités Capacités Expérimenter, d abord à l aide de pièces, de dés ou d urnes, puis à l aide d une simulation informatique prête à l emploi, la prise d échantillons aléatoires de taille

Plus en détail

Les pourcentages. A) Tout d abord, quelques notions de base à maîtriser. 1- Comment calculer le pourcentage d un nombre?

Les pourcentages. A) Tout d abord, quelques notions de base à maîtriser. 1- Comment calculer le pourcentage d un nombre? Les pourcentages Cette séance est dédiée à l étude des pourcentages. Bien comprendre cette séance s avère être un passage obligé si vous souhaitez aborder de manière sereine les séances concernant les

Plus en détail

I. Qu est-ce que l inventaire?...1. II. Paramétrages...3 1. Paramétrage Inventaire...3 2. Paramétrage Dépréciation...3. Lancement / Création...

I. Qu est-ce que l inventaire?...1. II. Paramétrages...3 1. Paramétrage Inventaire...3 2. Paramétrage Dépréciation...3. Lancement / Création... Procédure d utilisation de la fonction «INVENTAIRE» Sommaire I. Qu est-ce que l inventaire?...1 II. Paramétrages...3 1. Paramétrage Inventaire...3 2. Paramétrage Dépréciation...3 III. IV. Lancement / Création...4

Plus en détail

DATA.DREES MANUEL DÉTAILLÉ DES CUBES DE DONNEES

DATA.DREES MANUEL DÉTAILLÉ DES CUBES DE DONNEES DATA.DREES MANUEL DÉTAILLÉ DES CUBES DE DONNEES LES FONCTIONNALITÉS PROPOSÉES CONSULTER, MANIPULER ET CONSERVER DES CUBES DE DONNÉES EN LIGNE Ce document est destiné à vous présenter le fonctionnement

Plus en détail

Mercredi 24 Juin 2015

Mercredi 24 Juin 2015 BACCALAURÉAT GÉNÉRAL Session 2015 MATHÉMATIQUES Série ES ENSEIGNEMENT OBLIGATOIRE Durée de l épreuve : 3 heures coefficient : 5 MATHÉMATIQUES Série L ENSEIGNEMENT DE SPÉCIALITÉ Durée de l épreuve : 3 heures

Plus en détail

JAVA année 2015 CP 2 série n 2

JAVA année 2015 CP 2 série n 2 JAVA année 2015 CP 2 série n 2 Exercices sur les conditionnelles, le contrôle de flot et les méthodes statiques Exercice 1 Écrire un programme Ex0201.java qui lit 3 nombres au clavier, les classes dans

Plus en détail

Cours de Mathématiques Seconde. Généralités sur les fonctions

Cours de Mathématiques Seconde. Généralités sur les fonctions Cours de Mathématiques Seconde Frédéric Demoulin 1 Dernière révision : 16 avril 007 Document diffusé via le site www.bacamaths.net de Gilles Costantini 1 frederic.demoulin (chez) voila.fr gilles.costantini

Plus en détail

Sujet de Bac 2013 - Maths ES Obligatoire & Spécialité Amérique du Nord

Sujet de Bac 2013 - Maths ES Obligatoire & Spécialité Amérique du Nord Sujet de Bac 2013 - Maths ES Obligatoire & Spécialité Amérique du Nord Exercice 1 : 4 points et exercice est un questionnaire à choix multiples. Chaque question ci-après comporte quatre réponses possibles.

Plus en détail

1ES Février 2013 Corrigé

1ES Février 2013 Corrigé 1ES Février 213 Corrigé Exercice 1 Le tableau ci-dessous renseigne sur les besoins en eau dans le monde : Population mondiale (Milliards d habitants) Volume moyen par habitant ( ) 195 2,5 4 1 197 3,6 5

Plus en détail

Analyse Combinatoire

Analyse Combinatoire Analyse Combinatoire 1) Équipes On dispose d un groupe de cinq personnes. a) Combien d équipes de trois personnes peut-on former? b) Combien d équipes avec un chef, un sous-chef et un adjoint? c) Combien

Plus en détail

POKER ET PROBABILITÉ

POKER ET PROBABILITÉ POKER ET PROBABILITÉ Le poker est un jeu de cartes où la chance intervient mais derrière la chance il y a aussi des mathématiques et plus précisément des probabilités, voici une copie d'écran d'une main

Plus en détail

L interface utilisateur de Windows

L interface utilisateur de Windows Windows, développé par l éditeur américain Microsoft Corporation, est de loin le système d exploitation pour ordinateurs personnels le plus utilisé dans le monde. Il dépasse à lui seul 90 % du marché mondial

Plus en détail

Moodle. Moodle. Créer un nouveau (Par)cours

Moodle. Moodle. Créer un nouveau (Par)cours 1/16 NB2012 Moodle est une plate-forme d apprentissage en ligne, qui permet de diffuser des cours, Moodle des exercices, toute sorte de ressources pédagogiques et de composer un parcours de formation.

Plus en détail

Chapitre 1 : Évolution COURS

Chapitre 1 : Évolution COURS Chapitre 1 : Évolution COURS OBJECTIFS DU CHAPITRE Savoir déterminer le taux d évolution, le coefficient multiplicateur et l indice en base d une évolution. Connaître les liens entre ces notions et savoir

Plus en détail

Pas-à-pas Excel 2000 et suivants

Pas-à-pas Excel 2000 et suivants Pas-à-pas Excel 2000 et suivants calculer automatiquement un date d échéance Objectif : calculer une date d échéance tenant compte de la durée variable d un contrat, faire apparaître automatiquement les

Plus en détail

Yvon CAVELIER. Méthode n 31 du Club des Turfistes Gagnants. A l Assaut du ZE-Couillon

Yvon CAVELIER. Méthode n 31 du Club des Turfistes Gagnants. A l Assaut du ZE-Couillon Yvon CAVELIER Méthode n 31 du Club des Turfistes Gagnants A l Assaut du ZE-Couillon Réservé aux membres du Club Des Turfistes Gagnants Copyright 2010 - Page 1 Table des Matières I - CE QUI A CHANGE DANS

Plus en détail

DOCUMENT DE RÉVISION MAT-4104

DOCUMENT DE RÉVISION MAT-4104 CENTRE D ÉDUCATION DES ADULTES DOCUMENT DE RÉVISION MAT-4104 ÉLABORÉ PAR RICHARD ROUSSEAU, ENSEIGNANT EN MATHÉMATIQUES, CENTRE D ÉDUCATION DES ADULTES L ESCALE COMMISSION SCOLAIRE DE L AMIANTE MAI 005

Plus en détail

Tableaux personnalisés

Tableaux personnalisés Tableaux personnalisés Documentation d aide http://inventaire-forestier.ign.fr/spip/spip.php?rubrique18 2 SOMMAIRE 1. Choix des résultats à calculer...4 Principe général... 4 Étape 1 : choix d un domaine

Plus en détail

=FONCTION(DONNEE1;DONNEE2;DONNEE3;.)

=FONCTION(DONNEE1;DONNEE2;DONNEE3;.) EXCEL 2010 Page 1/9 Les formules 03 EXCEL LES FONCTIONS Pour toutes les formules, on va utiliser ce que l'on appelle des «fonctions». Ce sont des mots écrits en majuscule dans les formules et qui sont

Plus en détail

TUTORIEL : CREER UNE FICHE D EVALUATION AVEC CALCUL AUTOMATIQUE DE LA NOTE ET REFERENCE A UN BAREME.

TUTORIEL : CREER UNE FICHE D EVALUATION AVEC CALCUL AUTOMATIQUE DE LA NOTE ET REFERENCE A UN BAREME. TUTORIEL : CREER UNE FICHE D EVALUATION AVEC CALCUL AUTOMATIQUE DE LA NOTE ET REFERENCE A UN BAREME. Nous allons créer une fiche d évaluation BAC LGT en Pentabond avec une recherche d automatisation des

Plus en détail

I] ETUDE STATISTIQUES SIMPLE

I] ETUDE STATISTIQUES SIMPLE INTRODUCTION Scilab (contraction de Scientific Laboratory) est un logiciel libre, développé à l'inria Rocquencourt. C'est un environnement de calcul numérique qui permet d'effectuer rapidement toutes les

Plus en détail

Série 2 Premiers programmes

Série 2 Premiers programmes Licence pro. GTSBD 2013-2014 Structures de données, langage Python Série 2 Premiers programmes Programmes avec des affectations, des lectures et des écritures Exo 2.1 Le problème de la machine qui rend

Plus en détail

Lycée Cassini BTS CGO 2014-2015. Test de début d année

Lycée Cassini BTS CGO 2014-2015. Test de début d année Lycée assini BTS GO 4-5 Exercice Test de début d année Pour chaque question, plusieurs réponses sont proposées. Déterminer celles qui sont correctes. On a mesuré, en continu pendant quatre heures, la concentration

Plus en détail

L analyse boursière avec Scilab

L analyse boursière avec Scilab L analyse boursière avec Scilab Introduction La Bourse est le marché sur lequel se traitent les valeurs mobilières. Afin de protéger leurs investissements et optimiser leurs résultats, les investisseurs

Plus en détail

...5 1.1 Description...5. 1.0 Introduction...5....5 1.2 Conditions d utilisation...5....5 1.3 Pour ouvrir le module...5

...5 1.1 Description...5. 1.0 Introduction...5....5 1.2 Conditions d utilisation...5....5 1.3 Pour ouvrir le module...5 Guide de l utilisateur Module d extraction de coefficients de variation Enquête sur les changements à l égard de l emploi Cohortes 1 à 10 Table des matières 1.0 Introduction...5...5 1.1 Description...5...5

Plus en détail