1 Un objet aléatoire de base : le dé

Dimension: px
Commencer à balayer dès la page:

Download "1 Un objet aléatoire de base : le dé"

Transcription

1 Dans le monde des statistiques, il est bien évident qu on ne fait plus aucun calcul à la main. Si nous le faisons en cours de mathématiques, c est pour mieux comprendre ce que font les divers logiciels et pour connaître les pièges de ces notions. L un des logiciels utiles et surtout gratuit (argument important pour nous étudiants et professeurs) est le logiciel (http://www.r-project.org/). Bien qu en anglais, il reste accessible mais néanmoins extrémement puissant. Commençons son exploration par les bases. 1 Un objet aléatoire de base : le dé 1. Démarrer le logiciel R (Démarrer/tous les programmes/r/r 2.9.2). 2. Quand on lance un dé non truqué, les résultats possibles sont 1, 2, 3, 4, 5 ou 6. (a) Précisons au logiciel ce qu est un dé avec l instruction :d=1:6 (b) Demandons maintenant ce que contient l objet d en tapant simplement :d On dit que d est un objet liste. 3. Pour un logiciel, lancer un dé c est donc choisir au hasard un nombre dans l ensemble des résultats possibles. (a) C est aussi un échantillon de taille 1 de l objet d :sample(d,1) (b) Avec la flèche vers le haut, rappeler plusieurs fois cette commande. Obtient-on toujours le même résultat? Le dé est-il équilibré? (c) Lancer le dé 6 fois à l aide de la seule commande :sample(d,6) Relancer plusieurs fois cette commande. A-t-on ce que l on espère? Qu est-ce qui semble «louche»? (d) Demander l aide sur cette fonction en tapant :help("sample") Comment faire pour obtenir 6 lancers du dé? Peut-on truquer le dé? 4. Présentons de nombreuses informations : (a) Lancer 100 fois le dé et ranger les résultats dans la variable s :s=sample(d,100,t) (b) afficher le contenu de s en tapant simplement :s Remarque : On aurait pu tout faire en une seule ligne, il suffit de séparer les instructions par un point-virgule, comme ceci :s=sample(d,100,t); s (c) Les données sont illisibles du fait de leur grand nombre. Résumons les à l aide d un tableau :t=table(s); t Présentons ce tableau à l aide d un diagramme en barre :barplot(t) 5. Construisons maintenant une fonction qui fasse toutes les étapes. Nous souhaitons simplement pouvoir donner le nombre de lancers. (a) Taper : f=function(n){d=1:6; s=sample(d,n,t); t=table(s); print(t); barplot(t)} (b) essayer la fonction avec :f(500) 2 Fluctuation d échantillonnage 1. Taperf(100), puis à nouveau f(100) Que s est-il passé? Ce phénomène est appelé fluctuation d échantillonnage Rappeler la commandef(100) plusieurs fois pour observer cette fluctuation. 1. Le changement de hauteur des barres du diagramme indique la fluctuation d échantillonnage.

2 BTS ACSE/GPN/TV 3. Recommencer et observer la fluctuation d échantillonnage avec 1000 lancers puis lancers, lancers et lancers. Quelle conclusion concernant la fluctuation d échantillonnage peut-on déduire de ce qui précède? 4. Quand on lance un dé bien équilibré on a 1 chance sur 6 d obtenir la face 5 (de même pour les autres faces). Retrouve-t-on ce résultat? 5. Application : deviner la composition de l urne. Une urne bien cachée dans la mémoire de l ordinateur contient 470 boules de couleurs. Le but de l exercice est de trouver la composition de cette urne. (a) Ouvrir le fichier «Secrets». (b) Que réalise l instruction suivante :s=sample(urnesecrete,1,t); s? (c) On étudie des échantillons de taille 10 et on observe les tables et les diagrammes obtenus : s=sample(urnesecrete,10,t); t=table(s); t; barplot(t) Quelles sont les couleurs des boules contenues dans l urne? (d) En modifiant la taille de l échantillon, déterminer la composition de l urne en pourcentage. Commenter votre démarche et présenter un diagramme qui justifie votre réponse. En déduire la composition de l urne. 3 Le problème des sondages Nous savons tout, nous voyons tout! On imagine une population composée de d individus. La moitié des individus possèdent une certaine caractéristique qui est codée par le chiffre 1. L autre moitié est codée par 0. On effectue des sondages dans cette population et étudie les résultats. 1. On définit la population :population=c(rep(0,500000),rep(1,500000)) 2. (a) Un échantillon de 1000 :échantillon=sample(population,1000); échantillon (b) Dans cet échantillon, combien d individus possèdent la caractéristique étudiée? s=sum(échantillon) (c) Quel pourcentage cela représente-t-il? s*100/1000 (d) En abrégé :s=sum(sample(population,1000))/10; s 3. En rappelant cette instruction vous obtiendrez le résultat d autant de sondages que vous le souhaitez...chose qu on ne peut pas se permettre en réalité. (a) Dans quel intervalle se trouvent les résultats observés? (b) Dans la population choisie on sait que 50% des personnes possèdent la caractéristique étudiée. Quelle est la marge d erreur induite par le sondage? 4. Pour affiner cette estimation nous allons faire un grand nombre de sondages, par exemple 500 sondages. (a) L instruction est la suivante : L=c(); for(i in 1:500) L=c(sum(sample(population,1000))/10,L) (b) Pour analyser les résultats :hist(l,prob=true) Quelle loi de probabilité peut produire cet histogramme? Un indice de plus? Taper l instruction :hist(l,prob=true,nclass=20) Un indice de plus? Taper l instruction :lines(density(l,bw=1)) (c) Calculons quelques valeurs caractéristiques : Taper l instruction :mean(l), la moyenneµdes 500 échantillons est : Taper l instruction :sd(l), l écart typeσdes 500 échantillons est : Taper l instruction :length(l[(l>mean(l)-sd(l))&(l<mean(l)+sd(l))])/500, le pourcentage des 500 échantillons dans l intervalle[µ σ;µ+σ] est :

3 Taper l instruction :length(l[(l>mean(l)-2*sd(l))&(l<mean(l)+2*sd(l))])/500, le pourcentage des 500 échantillons dans l intervalle[µ 2σ;µ+2σ] est : Taper l instruction :length(l[(l>mean(l)-3*sd(l))&(l<mean(l)+3*sd(l))])/500, le pourcentage des 500 échantillons dans l intervalle[µ 3σ;µ+3σ] est : Taper l instruction : length(l[(l>mean(l)-2/3*sd(l))&(l<mean(l)+2/3*sd(l))])/500, le pourcentage des 500 échantillons dans l intervalle[µ 2 σ;µ+ 2 σ] est : 3 3 Calculer 100 0,5(1 0,5) 1000 et le comparer avecσ. (d) À l aide du graphique ci-dessous repris du cours et des informations trouvées ci-dessus, quelle est la loi de la variable aléatoire X où X est la fréquence en pourcentage des individus ayant une certaine caractéristique dans un échantillon de 500 individus choisis de manière indépendante? 1 σ 2π µ 3σ µ 2σ µ σ µ 2 3 σ µ µ+ 2 3 σ µ+σ µ+2σ µ+3σ 0, 5 0, 68 0, 95 0, 997 (e) Taper l instruction : quantile(l,c(0.025,0.975)). La réponse signifie que 95% des résultats sont dans l intervalle affiché. Quelle est la valeur de k telle que Φ(k) = 0, 975? Que vautµ 1, 96σ? Que vautµ+1, 96σ? Si la loi de X est la loi (µ;σ), que vaut P(µ 1, 96σ X µ+1, 96σ)? Cela explique-t-il les valeurs trouvées par le logiciel au début de la question? 5. Application : Nous ne savons rien, nous ne voyons que le résultat d un seul sondage! Vous réalisez un sondage sur un échantillon de 1000 personnes parmi la population de Secreteville (qui comporte 1 million d habitants). Vous posez la question suivante : «Pensez-vous que l étude des statistiques au lycée soit utile?». La réponse «oui» est codée par 1 et la réponse «non» est codée par 0. Quelle estimation pourriez-vous publier? Donner par calcul un intervalle dans lequel on trouvera 95% des estimations. 4 Un premier test statistique : le test duχ 2 Le dé que vous lancez est-il vraiment bien équilibré? Les résultats que l on obtient en lançant un dé sont censés suivre la loi uniforme : à chacun des 6 résultats possibles, on attribue la probabilité 1 ; c est la symétrie du cube qui nous amène à penser cela. 6

4 BTS ACSE/GPN/TV En pratique cependant, on observe une certaine fluctuation des résultats : si on lance le dé 120 fois, il est rarissime d obtenir exactement 20 résultats de chaque sorte! À titre d exemple, on pourrait obtenir la table suivante : résultat Effectifs observés Effectifs théoriques Il n est pas évident, au vu de ces résultats, de déterminer si les différences sont dues à des fluctuations normales, ou si elles sont dues à un déséquilibre du dé. 4.1 Élaboration d un test 1. Dans Fichier, Charger l environnement de travail, choisir d ouvrir le fichier «adequat.r». 2. Vous pouvez maintenant faire un grand nombre d essais, sur un dé de référence parfaitement équilibré : (a) Tapezn_Lancers(), 120 résultats s affichent ; (b) Une simple table des résultats serait plus lisible ; ou bien un tracé en bâtons TapezDé0(), et vous obtiendrez les 2. (c) En rappelant la ligne précédente avec la touche «flèche vers le haut», vous pouvez effectuer un grand nombre d essais. Ceci permet de se faire une première idée des fluctuations possibles sur un dé bien équilibré. L appréciation de ces fluctuations nécessite la prise en compte simultanée de 6 valeurs numériques ; 3. La tâche serait plus facile si on synthétisait ces informations en une seule valeur numérique. L idée est de mesurer l écart entre les effectifs observés et les effectifs théoriques. (a) tapezobservés= Dé0(); théorique=20 (b) Puisdifférence = observés - théorique (c) Puis(différence)ˆ2 qui donne les carrés des valeurs précédentes. (d) sum(différence) donne toujours 0 ; et donc aucune information. (e) Par contre sum((différence)ˆ2) n est nul que si les valeurs théoriques et observées coïncident (ce qui est rarissime) et croit quand les écarts croissent. Nous prendrons cette valeur comme indicative de l écart «théoriques par rapport à observées», et la noterons ECART. (f) Pour en faciliter les calculs, tapez en une ligne Obs=Dé0(); E=sum((Obs-20)ˆ2); Obs; paste(«ecart=»,e) Puis rappelez cette ligne d instruction grâce à la touche «flèche vers le haut» autant de fois que vous le souhaitez. Vous aurez ainsi une petite idée des valeurs possibles de l ECART. Notez 20 de ces valeurs. (g) Pour avoir une idée plus claire des valeurs possibles de ECART, nous allons collecter par simulations un grand nombre de valeurs de ECART. La fonction N_ECARTS() collecte 1000 valeurs de ECART et renvoie les résultats sous forme d une représentation graphique. Ce graphique, que nous appellerons graphique de référence, montre bien quelles sont les valeurs typiques auxquelles nous devons nous attendre. Souvenez vous que ces valeurs constituent une mesure des fluctuations ordinaires d un dé parfaitement équilibré

5 4. Pour aller plus loin il faut décider d un critère de sélection. Rangeons les 1000 valeurs de ECART par ordre croissant et notons E 0.95 la 950ème valeur, c est à dire le 95ième centile de cette série de 1000 valeurs. Dans la simulation de référence, 95% des résultats sont inférieurs à E Un résultat supérieur sera considéré comme excentrique, même si, notez-le bien, il a été obtenu par le lancer d un dé bien équilibré, notre dé de référence! Notez également le caractère arbitraire de ce choix ; arbitraire mais raisonnable! la fonction N_Ecarts() recalcule un graphique de référence et y adjoint le nombre E 0.95 que nous appellerons valeur critique ; On obtient un graphique comme le suivant : 95% des valeurs de ECART sont inferieures à 214 effectifs valeurs de ECART, calculées sur 120 lancers Placez les 20 résultats obtenus en 3f sur votre graphique de référence. Combien de valeurs sont inféreures à E 0.95? 4.2 Mise en œuvre du test Soit à tester un nouveau dé. On décide de l accepter comme bien équilibré si la valeur de ECART que l on obtient suite à 120 lancers est inférieure à E 0.95 ; dans le cas contraire, il est écarté. Vous avez 9 dés à tester. 1. Pour lancer 120 fois le dé numero 7, tapezdé7() ; 2. Pour calculer la valeur de ECART relative à ce lancer, tapez : Obs=Dé7(); E=sum((Obs-20)ˆ2); Obs; paste(«ecart=»,e) Puis comparez le résultat à la valeur critique lue sur votre graphique de référence. 3. Pour vous faciliter la tâche, il existe une fonction Test, dont la syntaxe est Test(Dé7,120) qui donne une table portant sur 120 lancers du dé numéro 7, un graphique et la valeur de l Ecart correspondant. 4. Quels dés retiendriez-vous?

Niveau. Situation étudiée. Type d activité. Durée. Objectifs. Seconde.

Niveau. Situation étudiée. Type d activité. Durée. Objectifs. Seconde. Simuler des expériences aléatoires avec une calculatrice Niveau Seconde. Situation étudiée Différentes selon les séances : Séance 1 : Jeu de pile ou face, tirages de boule dans une urne avec des proportions

Plus en détail

Annexe commune aux séries ES, L et S : boîtes et quantiles

Annexe commune aux séries ES, L et S : boîtes et quantiles Annexe commune aux séries ES, L et S : boîtes et quantiles Quantiles En statistique, pour toute série numérique de données à valeurs dans un intervalle I, on définit la fonction quantile Q, de [,1] dans

Plus en détail

Chapitre VI Échantillonages et simulations

Chapitre VI Échantillonages et simulations Chapitre VI Commentaires : Récursivement, les commentaires ne sont pas à l attention des élèves.. Fluctuation d échantillonnage Définition : En statistiques, un échantillon de taille n est la liste des

Plus en détail

Fluctuation d une fréquence selon les échantillons - Probabilités

Fluctuation d une fréquence selon les échantillons - Probabilités Fluctuation d une fréquence selon les échantillons - Probabilités C H A P I T R E 3 JE DOIS SAVOIR Calculer une fréquence JE VAIS ÊTRE C APABLE DE Expérimenter la prise d échantillons aléatoires de taille

Plus en détail

Exercices : Probabilités

Exercices : Probabilités Exercices : Probabilités Partie : Probabilités Exercice Dans un univers, on donne deux événements et incompatibles tels que =0, et =0,7. Calculer,, et. Exercice Un dé (à faces) est truqué de la façon suivante

Plus en détail

ECHANTILLONNAGES Fiche de repérage

ECHANTILLONNAGES Fiche de repérage M Objectifs pédagogiques généraux : Fiche de repérage Type : Activité d approche de la notion de fluctuation d échantillonnage et d intervalle de confiance à travers quelques simulations. Niveau : Lycée

Plus en détail

Les probabilités. Chapitre 18. Tester ses connaissances

Les probabilités. Chapitre 18. Tester ses connaissances Chapitre 18 Les probabilités OBJECTIFS DU CHAPITRE Calculer la probabilité d événements Tester ses connaissances 1. Expériences aléatoires Voici trois expériences : - Expérience (1) : on lance une pièce

Plus en détail

Partie 2 Statistique- Chapitre 8 Tableaux Croisés

Partie 2 Statistique- Chapitre 8 Tableaux Croisés Partie 2 Statistique- Chapitre 8 Tableaux Croisés PLAN: Cours... 2 TABLEAUX CROISES... 2 1. Tableau des effectifs... 2 2. Tableau des fréquences un rapport à l'effectif total... 2 3. Tableau des fréquences

Plus en détail

Examen d accès - 1 Octobre 2009

Examen d accès - 1 Octobre 2009 Examen d accès - 1 Octobre 2009 Aucun document autorisé - Calculatrice fournie par le centre d examen Ce examen est un questionnaire à choix multiples constitué de 50 questions. Plusieurs réponses sont

Plus en détail

Introduction à Excel

Introduction à Excel Introduction à Excel Commentaires : Cet exercice a pour but de vous apprendre les fonctions rudimentaires du logiciel excel. C est seulement par la pratique que vous connaîtrez parfaitement le logiciel.

Plus en détail

Activité 1 : échantillonnage

Activité 1 : échantillonnage Activité échantillonnage, intervalle de fluctuation, prise de décision (à partir d un même thème) Les trois activités qui suivent s inspirent du document «ressources pour la classe de première générale

Plus en détail

Entrer par les problèmes en probabilités et en statistique. Équipe Académique Mathématiques - 2009

Entrer par les problèmes en probabilités et en statistique. Équipe Académique Mathématiques - 2009 Entrer par les problèmes en probabilités et en statistique Équipe Académique Mathématiques - 2009 Quelle valeur ajoutée peut-on espérer d une entrée par les problèmes en probabilités? Donner du sens aux

Plus en détail

EXCEL 1 - PRISE EN MAIN

EXCEL 1 - PRISE EN MAIN EXCEL 1 - PRISE EN MAIN I - Qu est-ce qu un tableur? Excel est un logiciel permettant d élaborer des feuilles de calculs automatiques présentées la plupart du temps sur de grandes feuilles quadrillées.

Plus en détail

LES GENERATEURS DE NOMBRES ALEATOIRES

LES GENERATEURS DE NOMBRES ALEATOIRES LES GENERATEURS DE NOMBRES ALEATOIRES 1 Ce travail a deux objectifs : ====================================================================== 1. Comprendre ce que font les générateurs de nombres aléatoires

Plus en détail

ADMISSION AU COLLEGE UNIVERSITAIRE Samedi 1 mars 2014 MATHEMATIQUES durée de l épreuve : 3h coefficient 2

ADMISSION AU COLLEGE UNIVERSITAIRE Samedi 1 mars 2014 MATHEMATIQUES durée de l épreuve : 3h coefficient 2 ADMISSION AU COLLEGE UNIVERSITAIRE Samedi 1 mars 2014 MATHEMATIQUES durée de l épreuve : 3h coefficient 2 Le sujet est numéroté de 1 à 5. L annexe 1 est à rendre avec la copie. L exercice Vrai-Faux est

Plus en détail

Statistique : Résumé de cours et méthodes

Statistique : Résumé de cours et méthodes Statistique : Résumé de cours et méthodes 1 Vocabulaire : Population : c est l ensemble étudié. Individu : c est un élément de la population. Effectif total : c est le nombre total d individus. Caractère

Plus en détail

«Monsieur, on fait quoi?»

«Monsieur, on fait quoi?» Nous avons le plaisir aujourd hui de vous proposer une séance de travaux pratiques de statistique, c est-à-dire, une séance où vous allez pouvoir mettre les mains dans le cambouis (dans les données) et

Plus en détail

Emilien Suquet, suquet@automaths.com

Emilien Suquet, suquet@automaths.com STATISTIQUES Emilien Suquet, suquet@automaths.com I Comment réagir face à un document statistique? Les deux graphiques ci-dessous représentent l évolution du taux de chômage en France sur les 1 mois de

Plus en détail

Probabilités Loi binomiale Exercices corrigés

Probabilités Loi binomiale Exercices corrigés Probabilités Loi binomiale Exercices corrigés Sont abordés dans cette fiche : (cliquez sur l exercice pour un accès direct) Exercice 1 : épreuve de Bernoulli Exercice 2 : loi de Bernoulli de paramètre

Plus en détail

Collecte de données. Laurent Dorey

Collecte de données. Laurent Dorey Laurent Dorey Mercredi 16 Décembre 2014 Programme : Recensement & Echantillonnage Étapes pour sélectionner un échantillon La population observée La base de sondage Les unités d enquête La taille de l échantillon

Plus en détail

Statistiques à une variable

Statistiques à une variable Statistiques à une variable Objectif : connaissances des termes et formules statistiques Acquis : Programme de seconde professionnelle. 1/ Généralités : Exploitation d une base de données. Vie économique

Plus en détail

Proposition de corrigé

Proposition de corrigé Externat Notre Dame Devoir Survéillé n 2 (1 ere ES/L) Samedi 14 décembre Durée : 3 h calculatrice autorisée - pas d échange de calculatrice ou de matériel Proposition de corrigé Dans tout ce devoir, la

Plus en détail

STATISTIQUES. I. Un peu de vocabulaire. II. Representations graphiques. 1. Diagramme circulaire

STATISTIQUES. I. Un peu de vocabulaire. II. Representations graphiques. 1. Diagramme circulaire STATISTIQUES I. Un peu de vocabulaire Toute étude statistique s'appuie sur des données. Dans le cas où ces données sont numériques, on distingue les données discrètes (qui prennent un nombre fini de valeurs

Plus en détail

Notions de probabilités

Notions de probabilités 44 Notions de probabilités Capacités Expérimenter, d abord à l aide de pièces, de dés ou d urnes, puis à l aide d une simulation informatique prête à l emploi, la prise d échantillons aléatoires de taille

Plus en détail

T. D. n o 3 Analyse de données quantitatives avec le logiciel R

T. D. n o 3 Analyse de données quantitatives avec le logiciel R T. D. n o 3 Analyse de données quantitatives avec le logiciel R 1 Rappel de quelques fonctions statistiques sous R Fonction summary() cumsum() sum() mean() max() min() range() median() var() sd() Description

Plus en détail

Probabilités. Rappel : trois exemples. Exemple 2 : On dispose d un dé truqué. On sait que : p(1) = p(2) =1/6 ; p(3) = 1/3 p(4) = p(5) =1/12

Probabilités. Rappel : trois exemples. Exemple 2 : On dispose d un dé truqué. On sait que : p(1) = p(2) =1/6 ; p(3) = 1/3 p(4) = p(5) =1/12 Probabilités. I - Rappel : trois exemples. Exemple 1 : Dans une classe de 25 élèves, il y a 16 filles. Tous les élèves sont blonds ou bruns. Parmi les filles, 6 sont blondes. Parmi les garçons, 3 sont

Plus en détail

Chapitre 3 : INFERENCE

Chapitre 3 : INFERENCE Chapitre 3 : INFERENCE 3.1 L ÉCHANTILLONNAGE 3.1.1 Introduction 3.1.2 L échantillonnage aléatoire 3.1.3 Estimation ponctuelle 3.1.4 Distributions d échantillonnage 3.1.5 Intervalles de probabilité L échantillonnage

Plus en détail

Feuille de Travaux Dirigés n o 10 Régression linéaire simple avec R

Feuille de Travaux Dirigés n o 10 Régression linéaire simple avec R Feuille de Travaux Dirigés n o 10 Régression linéaire simple avec R Exercice X.1. Étude de la pollution de l air. Cet exercice est issu du livre «Statistiques avec R», Pierre-André Cornillon et autres,

Plus en détail

Lycée Cassini BTS CGO 2014-2015. Test de début d année

Lycée Cassini BTS CGO 2014-2015. Test de début d année Lycée assini BTS GO 4-5 Exercice Test de début d année Pour chaque question, plusieurs réponses sont proposées. Déterminer celles qui sont correctes. On a mesuré, en continu pendant quatre heures, la concentration

Plus en détail

STATISTIQUES À UNE VARIABLE

STATISTIQUES À UNE VARIABLE STATISTIQUES À UNE VARIABLE Table des matières I Méthodes de représentation 2 I.1 Vocabulaire.............................................. 2 I.2 Tableaux...............................................

Plus en détail

LM206 : Initiation à Scilab

LM206 : Initiation à Scilab Université Pierre et Marie Curie Année 2013-2014 Licence période 2 7 Au hasard LM206 : Initiation à Scilab Cette séance traite de quelques possibilités de simulation en probabilités et statistiques. Après

Plus en détail

Comme la moyenne au devoir est plutôt faible, le professeur propose deux possibilités pour augmenter cette moyenne :

Comme la moyenne au devoir est plutôt faible, le professeur propose deux possibilités pour augmenter cette moyenne : Chapitre 6 : Statistiques I Premières définitions - Etablir une statistique, c est relever pour tous les individus d une population les valeurs d une grandeur X, appelée caractère ou variable statistique.

Plus en détail

Soutien illimité 7j/7 en maths: Coach, profs, exercices & annales, cours. Sujet de Bac 2013 Maths S Obligatoire & Spécialité - Amérique du Nord

Soutien illimité 7j/7 en maths: Coach, profs, exercices & annales, cours. Sujet de Bac 2013 Maths S Obligatoire & Spécialité - Amérique du Nord Sujet de Bac 2013 Maths S Obligatoire & Spécialité - Amérique du Nord EXERCICE 1 : 5 points On se place dans l espace muni d un repère orthonormé. On considère les points,, et. 1. Démontrer que les points,

Plus en détail

Chapitre 1: Introduction au calcul des probabilités, cas d un univers fini.

Chapitre 1: Introduction au calcul des probabilités, cas d un univers fini. Chapitre 1: Introduction au calcul des probabilités, cas d un univers fini. 1 Introduction Des actions comme lancer un dé, tirer une carte d un jeu, observer la durée de vie d une ampoule électrique, etc...sont

Plus en détail

Baccalauréat ES Centres étrangers 12 juin 2014 - Corrigé

Baccalauréat ES Centres étrangers 12 juin 2014 - Corrigé Baccalauréat ES Centres étrangers 1 juin 14 - Corrigé A. P. M. E. P. Exercice 1 5 points Commun à tous les candidats 1. On prend un candidat au hasard et on note : l évènement «le candidat a un dossier

Plus en détail

Introduction à Rcommander

Introduction à Rcommander Introduction à Rcommander Pauline Scherdel Septembre 2014 Table des matières 1 Introduction à Rcmdr sous R 2 2 Interagir avec R 3 3 Installer et charger le package Rcmdr sous R 3 4 Importation des données

Plus en détail

Découverte de l ordinateur. Explorer l ordinateur et gérer ses fichiers

Découverte de l ordinateur. Explorer l ordinateur et gérer ses fichiers Découverte de l ordinateur Explorer l ordinateur et gérer ses fichiers SOMMAIRE I L ORDINATEUR ET L EXPLORATEUR... 3 1.1 : PRESENTATION ET GENERALITES... 3 1.2 : CONNAÎTRE LES PROPRIETES D UN ELEMENT...

Plus en détail

STATISTIQUES I) UN PEU DE VOCABULAIRE

STATISTIQUES I) UN PEU DE VOCABULAIRE STATISTIQUES I) UN PEU DE VOCABULAIRE Toute étude statistique s'appuie sur des données. Dans le cas ou ces données sont numériques (99% des cas), on distingue les données discrètes (qui prennent un nombre

Plus en détail

Soutien illimité 7j/7 en maths: Coach, profs, exercices & annales, cours. Sujet de Bac 2013 Maths S Obligatoire & Spécialité - Liban

Soutien illimité 7j/7 en maths: Coach, profs, exercices & annales, cours. Sujet de Bac 2013 Maths S Obligatoire & Spécialité - Liban Sujet de Bac 2013 Maths S Obligatoire & Spécialité - Liban EXERCICE 1 : 4 Points Cet exercice est un questionnaire à choix multiples. Aucune justification n est demandée. Pour chacune des questions, une

Plus en détail

Principe des tests statistiques

Principe des tests statistiques Principe des tests statistiques Jean Vaillant Un test de signification est une procédure permettant de choisir parmi deux hypothèses celles la plus probable au vu des observations effectuées à partir d

Plus en détail

UFR de Sciences Economiques Année 2008-2009 TESTS PARAMÉTRIQUES

UFR de Sciences Economiques Année 2008-2009 TESTS PARAMÉTRIQUES Université Paris 13 Cours de Statistiques et Econométrie I UFR de Sciences Economiques Année 2008-2009 Licence de Sciences Economiques L3 Premier semestre TESTS PARAMÉTRIQUES Remarque: les exercices 2,

Plus en détail

Exercices de simulation 1

Exercices de simulation 1 Licence MIA 2ème année Année universitaire 2009-2010 Simulation stochastique C. Léonard Exercices de simulation 1 Les simulations qui suivent sont à effectuer avec Scilab. Le générateur aléatoire de Scilab.

Plus en détail

Ch.12 : Loi binomiale

Ch.12 : Loi binomiale 4 e - programme 2007 - mathématiques ch.12 - cours Page 1 sur 5 1 RÉPÉTITION D'EXPÉRIENCES INDÉPENDANTES Lancer plusieurs fois un dé et noter les résultats successifs. Ch.12 : Loi binomiale Prélever des

Plus en détail

Niveau. Situations étudiées. Type d activité. Durée. Objectifs

Niveau. Situations étudiées. Type d activité. Durée. Objectifs Fourchettes, non réponses, fausses réponses et redressements... : la cuisine mathématique des sondages Niveau Exercice 1 : 3 ème 2 nde. Exercice 2 : 3 ème 2 nde. Exercice 3 : Seconde ou première. Exercice

Plus en détail

Enquête consommation - Tableaux croisés dynamiques

Enquête consommation - Tableaux croisés dynamiques Enquête consommation Tableaux croisés dynamiques 1. Chargement des données dans Excel Souvent les données collectées sont stockées dans un fichier au format texte, dont les informations sont séparées par

Plus en détail

Lycée Fénelon Sainte-Marie Préparation Science-Po/Prépa HEC

Lycée Fénelon Sainte-Marie Préparation Science-Po/Prépa HEC Lycée Fénelon Sainte-Marie Préparation Science-Po/Prépa HEC Dénombrement et probabilités Version du juillet 05 Enoncés Exercice - YouTube Sur YouTube, les vidéos sont identifiées à l aide d une chaîne

Plus en détail

Approche empirique du test χ 2 d ajustement

Approche empirique du test χ 2 d ajustement Approche empirique du test χ 2 d ajustement Alain Stucki, Lycée cantonal de Porrentruy Introduction En lisant des rapports, on rencontre souvent des raisonnements du style : «le premier groupe est meilleur

Plus en détail

PROBABILITES. Chaque élève lance 100 fois un dé à six faces et note les effectifs d apparition de chaque face dans le tableau :

PROBABILITES. Chaque élève lance 100 fois un dé à six faces et note les effectifs d apparition de chaque face dans le tableau : PROBABILITES 1 I. Expérience aléatoire 1) Exemples : - On lance une pièce de monnaie et on regarde la face supérieure. - On lance un dé à six faces et on regarde le nombre de points inscrits sur la face

Plus en détail

5.1 Sauvegarder avec Nero

5.1 Sauvegarder avec Nero Nero propose plusieurs outils et méthodes pour sauvegarder le contenu d un disque dur et le restaurer. De fait, les supports optiques représentent des solutions parfaitement bien adaptées pour l enregistrement

Plus en détail

Texte Agrégation limitée par diffusion interne

Texte Agrégation limitée par diffusion interne Page n 1. Texte Agrégation limitée par diffusion interne 1 Le phénomène observé Un fût de déchets radioactifs est enterré secrètement dans le Cantal. Au bout de quelques années, il devient poreux et laisse

Plus en détail

STATISTIQUES A UNE VARIABLE EXERCICES CORRIGES

STATISTIQUES A UNE VARIABLE EXERCICES CORRIGES STATISTIQUES A UNE VARIALE EXERCICES CORRIGES Exercice n Les élèves d une classe ont obtenu les notes suivantes lors d un devoir : Note 4 5 8 0 4 5 8 0 Effectif 4 7 6 4 ) Déterminer l étendue et le mode

Plus en détail

Probabilités et Statistiques. Chapitre 1 : Statistique descriptive

Probabilités et Statistiques. Chapitre 1 : Statistique descriptive U.P.S. I.U.T. A, Département d Informatique Année 2008-2009 Probabilités et Statistiques Emmanuel PAUL Chapitre 1 : Statistique descriptive 1 Objectifs des statistiques. Il s agit d étudier un ou plusieurs

Plus en détail

Les mathématiques à la maison Volume 2 Chapitre 7

Les mathématiques à la maison Volume 2 Chapitre 7 Chapitre 7 Statistiques et probabilités Depuis quelques années on a tendance à inscrire les statistiques et les probabilités dès le début de la formation scolaire. Ici aussi, il ne faut pas paniquer, les

Plus en détail

TD de statistique : graphiques avec R

TD de statistique : graphiques avec R TD de statistique : graphiques avec R Jean-Baptiste Lamy 11 octobre 2007 1 Rappels de vocabulaire Données univariées lorsqu il n y a qu une seule variable Données bivariées lorsqu il y a deux variables

Plus en détail

Statistiques Descriptives à une dimension

Statistiques Descriptives à une dimension I. Introduction et Définitions 1. Introduction La statistique est une science qui a pour objectif de recueillir et de traiter les informations, souvent en très grand nombre. Elle regroupe l ensemble des

Plus en détail

Baccalauréat STG Mercatique Centres étrangers juin 2007

Baccalauréat STG Mercatique Centres étrangers juin 2007 Baccalauréat STG Mercatique Centres étrangers juin 2007 EXERCICE 1 6 points En 2003, une étude est réalisée sur un échantillon représentatif de la population française composé de 1 500 individus. La première

Plus en détail

1 Premiers pas avec Rstudio

1 Premiers pas avec Rstudio Université Paris Descartes UFR de Mathématiques et Informatique Probabilités et Statistiques pour l informatique- Licence MIA 2e année Travaux Pratiques - 1 ère séance Le but de cette première séance est

Plus en détail

1 Générateurs à Congruences Linéaires (GCL)

1 Générateurs à Congruences Linéaires (GCL) TP 4 : Générateurs pseudo-aléatoires et applications Un générateur de nombres pseudo-aléatoires, pseudorandom number generator (PRNG) en anglais, est un algorithme qui génère une séquence de nombres présentant

Plus en détail

Introduction au logiciel R

Introduction au logiciel R Introduction au logiciel R R est un logiciel libre, clone d un autre logiciel très célèbre dans la communauté statisticienne S+. Il peut être téléchargé gratuitement sur www.r-project.org. Sur ce site

Plus en détail

Cours de Mathématiques Seconde. Généralités sur les fonctions

Cours de Mathématiques Seconde. Généralités sur les fonctions Cours de Mathématiques Seconde Frédéric Demoulin 1 Dernière révision : 16 avril 007 Document diffusé via le site www.bacamaths.net de Gilles Costantini 1 frederic.demoulin (chez) voila.fr gilles.costantini

Plus en détail

Statistique Descriptive I (M1102)

Statistique Descriptive I (M1102) Illustration du cours de Statistique Descriptive I (M1102) Année scolaire 2013/2014 Université de Perpignan Via Domitia, IUT STatistique et Informatique Décisionnelle (STID) Table des matières 1 Généralités

Plus en détail

Soit la fonction affine qui, pour représentant le nombre de mois écoulés, renvoie la somme économisée.

Soit la fonction affine qui, pour représentant le nombre de mois écoulés, renvoie la somme économisée. ANALYSE 5 points Exercice 1 : Léonie souhaite acheter un lecteur MP3. Le prix affiché (49 ) dépasse largement la somme dont elle dispose. Elle décide donc d économiser régulièrement. Elle a relevé qu elle

Plus en détail

ASI (L2) : TP3 Calculs probabilistes avec Excel et Rstat

ASI (L2) : TP3 Calculs probabilistes avec Excel et Rstat ASI (L2) : TP3 Calculs probabilistes avec Excel et Rstat Objectifs du TP : Savoir utiliser Excel et Rstat pour calculer des moyennes pondérées, des variances pondérées et savoir faire des approximations

Plus en détail

Chapitre 2 Les graphiques

Chapitre 2 Les graphiques Chapitre Les graphiques. Généralités C est la partie des statistiques la moins souvent oubliée dans l enseignement secondaire car elle mobilise la notion de proportionnalité sous ses différentes formes.

Plus en détail

TD de statistique : introduction à R

TD de statistique : introduction à R TD de statistique : introduction à R Jean-Baptiste Lamy 11 octobre 2007 1 Introduction : pourquoi R? R est un logiciel pour l analyse statistique. C est un logiciel libre; il est disponible gratuitement

Plus en détail

Dénombrement, opérations sur les ensembles.

Dénombrement, opérations sur les ensembles. Université Pierre et Marie Curie 2013-2014 Probabilités et statistiques - LM345 Feuille 1 (du 16 au 20 septembre 2013) Dénombrement, opérations sur les ensembles 1 Combien de façons y a-t-il de classer

Plus en détail

Corrigé du baccalauréat STMG Métropole 18 juin 2015

Corrigé du baccalauréat STMG Métropole 18 juin 2015 orrigé du baccalauréat STMG Métropole 18 juin 215 Durée : 3 heures EXERIE 1 4 points Tous les ans, en août, Maïlys reçoit l échéancier (document indiquant le montant de sa cotisation annuelle) de sa mutuelle

Plus en détail

FICHE PROFESSSEUR STATISTICIENS EN HERBE PARTIE 1

FICHE PROFESSSEUR STATISTICIENS EN HERBE PARTIE 1 FICHE PROFESSSEUR STATISTICIENS EN HERBE PARTIE 1 Découverte de la démarche statistique Objectifs pédagogiques : o Faire des statistiques avec les élèves en les rendant acteurs lors de plusieurs activités.

Plus en détail

I] ETUDE STATISTIQUES SIMPLE

I] ETUDE STATISTIQUES SIMPLE INTRODUCTION Scilab (contraction de Scientific Laboratory) est un logiciel libre, développé à l'inria Rocquencourt. C'est un environnement de calcul numérique qui permet d'effectuer rapidement toutes les

Plus en détail

TABLEAU 5 Nombre moyen (et écarts types) de mots produits selon le niveau scolaire et les trois conditions de révision

TABLEAU 5 Nombre moyen (et écarts types) de mots produits selon le niveau scolaire et les trois conditions de révision Dans ce tableau, si le chercheur ne s intéresse pas aux notes item par item mais simplement à la note globale, alors il conservera seulement les première et dernière colonnes et calculera des statistiques

Plus en détail

2010 My Maths Space Page 1/6

2010 My Maths Space Page 1/6 A. Des statistiques aux probabilités 1. Statistiques descriptives, analyse de données. Vocabulaire des statistiques : Population : c'est l'ensemble étudié. Individu : c'est un élément de la population.

Plus en détail

Exercices supplémentaires : Loi binomiale

Exercices supplémentaires : Loi binomiale Exercices supplémentaires : Loi binomiale Partie A : Loi binomiale Dans une région pétrolifère, la probabilité qu un forage conduise à une nappe de pétrole est 0,1. 1) Justifier que la réalisation d un

Plus en détail

Stand Probabilite s et football

Stand Probabilite s et football Stand Probabilite s et football Dominos... A la de couverte des probabilite s On joue avec deux de s a 6 faces. Essayez de trouver intuitivement quelle est la probabilite : - d obtenir un avec un de a

Plus en détail

Leçon n 11 Statistiques et simulations

Leçon n 11 Statistiques et simulations Leçon n 11 Statistiques et simulations C est une leçon qui se prolongera les années suivantes. Il s agit de rapprocher «les statistiques» d une notion qui sera étudiée en première «les probabilités» et

Plus en détail

Initiation aux probabilités.

Initiation aux probabilités. Initiation aux probabilités. On place dans une boite trois boules identiques à l exception de leur couleur : une boule est noire, une est blanche, la troisième est grise. On tire une des boules sans regarder,

Plus en détail

À PROPOS D IMAGES : Fiche professeur

À PROPOS D IMAGES : Fiche professeur À PROPOS D IMAGES : Fiche professeur Damier Assiette Danseuse Eventail Danseuse 1 FICHE ÉLÈVE (1) Que devient une image lorsqu on la grossit? Ouvrir (par exemple avec l application «Aperçu»), les deux

Plus en détail

Mercredi 24 Juin 2015

Mercredi 24 Juin 2015 BACCALAURÉAT GÉNÉRAL Session 2015 MATHÉMATIQUES Série ES ENSEIGNEMENT OBLIGATOIRE Durée de l épreuve : 3 heures coefficient : 5 MATHÉMATIQUES Série L ENSEIGNEMENT DE SPÉCIALITÉ Durée de l épreuve : 3 heures

Plus en détail

A PROPOS DES TABLES DE NOMBRES AU HASARD

A PROPOS DES TABLES DE NOMBRES AU HASARD A PROPOS DES TABLES DE NOMBRES AU HASARD Dans les bulletins n 3 et n 5, nous avons publié dans le courrier des lecteurs deux exemples de séances de travaux dirigés durant lesquelles les étudiants devaient

Plus en détail

6GEI500 Signaux et systèmes. Laboratoire #2

6GEI500 Signaux et systèmes. Laboratoire #2 6GEI500 Signaux et systèmes Laboratoire #2 Analyse en fréquences avec MATLAB Automne 2009. Objectifs Se familiariser avec l analyse en fréquences avec MATLAB Explorer le phénomène de Gibbs Faire une analyse

Plus en détail

Introduction à la programmation sous Scilab : TP auto-correctifs II

Introduction à la programmation sous Scilab : TP auto-correctifs II Introduction à la programmation sous Scilab : TP auto-correctifs II Licence de Physique à distance Table des matières I Vecteurs et matrices (II) 1 a) Vecteurs........................................ 1

Plus en détail

Les pourcentages. A) Tout d abord, quelques notions de base à maîtriser. 1- Comment calculer le pourcentage d un nombre?

Les pourcentages. A) Tout d abord, quelques notions de base à maîtriser. 1- Comment calculer le pourcentage d un nombre? Les pourcentages Cette séance est dédiée à l étude des pourcentages. Bien comprendre cette séance s avère être un passage obligé si vous souhaitez aborder de manière sereine les séances concernant les

Plus en détail

BASES DU RAISONNEMENT

BASES DU RAISONNEMENT BASES DU RAISONNEMENT P. Pansu 10 septembre 2006 Rappel du programme officiel Logique, différents types de raisonnement. Ensembles, éléments. Fonctions et applications. Produit, puissances. Union, intersection,

Plus en détail

Statistiques Décisionnelles L3 Sciences Economiques & Gestion Faculté d économie, gestion & AES Université Montesquieu - Bordeaux 4 2013-2014

Statistiques Décisionnelles L3 Sciences Economiques & Gestion Faculté d économie, gestion & AES Université Montesquieu - Bordeaux 4 2013-2014 Tests du χ 2 Statistiques Décisionnelles L3 Sciences Economiques & Gestion Faculté d économie, gestion & AES Université Montesquieu - Bordeaux 4 2013-2014 A. Lourme http://alexandrelourme.free.fr Outline

Plus en détail

L analyse boursière avec Scilab

L analyse boursière avec Scilab L analyse boursière avec Scilab Introduction La Bourse est le marché sur lequel se traitent les valeurs mobilières. Afin de protéger leurs investissements et optimiser leurs résultats, les investisseurs

Plus en détail

DOCUMENT DE RÉVISION MAT-4104

DOCUMENT DE RÉVISION MAT-4104 CENTRE D ÉDUCATION DES ADULTES DOCUMENT DE RÉVISION MAT-4104 ÉLABORÉ PAR RICHARD ROUSSEAU, ENSEIGNANT EN MATHÉMATIQUES, CENTRE D ÉDUCATION DES ADULTES L ESCALE COMMISSION SCOLAIRE DE L AMIANTE MAI 005

Plus en détail

Estimation et tests statistiques, TD 5. Solutions

Estimation et tests statistiques, TD 5. Solutions ISTIL, Tronc commun de première année Introduction aux méthodes probabilistes et statistiques, 2008 2009 Estimation et tests statistiques, TD 5. Solutions Exercice 1 Dans un centre avicole, des études

Plus en détail

INITIATION A POWERPOINT

INITIATION A POWERPOINT INITIATION A POWERPOINT P. BESSON OCTOBRE 2000 SOMMAIRE Chap. 1 Découverte de POWERPOINT I. Démarrer Powerpoint 1. Lancement de l application 2. Boite de dialogue de démarrage de Powerpoint II. Structure

Plus en détail

Statistiques 0,14 0,11

Statistiques 0,14 0,11 Statistiques Rappels de vocabulaire : "Je suis pêcheur et je désire avoir des informations sur la taille des truites d'une rivière. Je décide de mesurer les truites obtenues au cours des trois dernières

Plus en détail

IPT : Cours 2. La représentation informatique des nombres

IPT : Cours 2. La représentation informatique des nombres IPT : Cours 2 La représentation informatique des nombres (3 ou 4 heures) MPSI-Schwarz : Prytanée National Militaire Pascal Delahaye 28 septembre 2015 1 Codage en base 2 Définition 1 : Tout nombre décimal

Plus en détail

BACCALAURÉAT PROFESSIONNEL SUJET

BACCALAURÉAT PROFESSIONNEL SUJET SESSION 203 Métropole - Réunion - Mayotte BACCALAURÉAT PROFESSIONNEL ÉPREUVE E4 CULTURE SCIENTIFIQUE ET TECHNOLOGIQUE : MATHÉMATIQUES Toutes options Durée : 2 heures Matériel(s) et document(s) autorisé(s)

Plus en détail

Loi normale ou loi de Laplace-Gauss

Loi normale ou loi de Laplace-Gauss LivreSansTitre1.book Page 44 Mardi, 22. juin 2010 10:40 10 Loi normale ou loi de Laplace-Gauss I. Définition de la loi normale II. Tables de la loi normale centrée réduite S il y avait une seule loi de

Plus en détail

Baccalauréat ES Nouvelle-Calédonie 2 mars 2015

Baccalauréat ES Nouvelle-Calédonie 2 mars 2015 Baccalauréat ES Nouvelle-Calédonie mars 015 A. P. M. E. P. EXERCICE 1 Commun à tous les candidats On considère la fonction f définie pour tout réel x de l intervalle [1,5 ; 6] par : f (x)=(5x 3)e x. On

Plus en détail

Série 2 Premiers programmes

Série 2 Premiers programmes Licence pro. GTSBD 2013-2014 Structures de données, langage Python Série 2 Premiers programmes Programmes avec des affectations, des lectures et des écritures Exo 2.1 Le problème de la machine qui rend

Plus en détail

Nouveaux programmes de terminale Probabilités et statistiques

Nouveaux programmes de terminale Probabilités et statistiques Nouveaux programmes de terminale Probabilités et statistiques I. Un guide pour l'année II. La loi uniforme : une introduction III. La loi exponentielle IV. De la loi binomiale à la loi normale V. Échantillonnage

Plus en détail

Le mot «algorithme» vient du nom de l auteur persan Al-Khuwarizmi (né vers 780 - mort vers 850) Une définition: «un algorithme est une suite finie de

Le mot «algorithme» vient du nom de l auteur persan Al-Khuwarizmi (né vers 780 - mort vers 850) Une définition: «un algorithme est une suite finie de Le mot «algorithme» vient du nom de l auteur persan Al-Khuwarizmi (né vers 780 - mort vers 850) Une définition: «un algorithme est une suite finie de règles à appliquer dans un ordre déterminé à un nombre

Plus en détail

Simulations de jeux de pile ou face : distribution de fréquences du nombre maximum de coups consécutifs égaux dans

Simulations de jeux de pile ou face : distribution de fréquences du nombre maximum de coups consécutifs égaux dans SIMULATION ET TABLEUR EN CLASSE DE SECONDE Sommaire A Les instructions officielles 1 B Le tableur 2 B.1 Présentation...................................................... 2 B.2 Prise en mains.....................................................

Plus en détail

ELECTROMAGNETISM EXEMPLES

ELECTROMAGNETISM EXEMPLES EXEMPLES 1. Représentation globale du champ électrique 2. Graphiques et export CSV sous Microsoft Excel 3. Configuration de Helmholtz 4. Condensateur plan 5. Limaille de fer autour d une bobine 6. Trajectoire

Plus en détail

Chapitre 1 : Évolution COURS

Chapitre 1 : Évolution COURS Chapitre 1 : Évolution COURS OBJECTIFS DU CHAPITRE Savoir déterminer le taux d évolution, le coefficient multiplicateur et l indice en base d une évolution. Connaître les liens entre ces notions et savoir

Plus en détail

Travaux dirigés. Introduction à R 1

Travaux dirigés. Introduction à R 1 Introduction à R 1 1 Introduction : pourquoi R? R est un logiciel pour l analyse statistique. C est un logiciel libre ; il est disponible gratuitement et tourne sur différents systèmes (PC Linux, PC Windows,

Plus en détail

Nous allons détailler dans cette documentation les fonctionnalités pour créer un objet colonne.

Nous allons détailler dans cette documentation les fonctionnalités pour créer un objet colonne. Généralités Dans le générateur d états des logiciels Ciel pour Macintosh vous avez la possibilité de créer différents types d éléments (texte, rubrique, liste, graphiques, tableau, etc). Nous allons détailler

Plus en détail