Chapitre 8: Inférence, échantillonnage et estimation

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Chapitre 8: Inférence, échantillonnage et estimation"

Transcription

1 Chapitre 8: Inférence, échantillonnage et estimation 1. Echantillonnage aléatoire simple 2. Inférence statistique 3. Estimation 4. Evaluation graphique de l adéquation d un modèle de distribution 1

2 L inférence regroupe l ensemble des techniques visant à généraliser à la population des résultats observés sur un échantillon. Ce chapitre place le contexte théorique sur lequel se base généralement un processus d inférence, et présente un outil graphique pour évaluer l adéquation d un modèle pour résumer des données (qq-plot). 1. Echantillonnage aléatoire simple Afin d obtenir un échantillon représentatif d une population, il est nécessaire de le tirer de façon aléatoire. L exemple classique d échantillonnage aléatoire simple consiste à placer des billets contenant les noms de tous les individus de la population dans une urne et de tirer des billets au hasard sans remise. Dans la pratique, ce principe est mis en oeuvre à l aide de logiciels permettant de générer des nombres aléatoires, sur la base desquels on sélectionne des individus à partir d une liste (ex.: annuaire téléphonique). Il existe des procédés d échantillonage plus sophistiqués, comme par exemple l échantillonnage aléatoire stratifié, où l on échantillonne séparément dans des sous-populations (appelées strates), par exemple pour garantir d avoir des proportions d individus de chaque strate qui soient conformes aux proportions de la population. Dans ce cours, nous nous concentrerons sur l échantillonnage aléatoire simple. 2

3 Considérons un ensemble de n individus tirés d une population à l aide d un échantillonnage aléatoire simple et intéressons-nous à une caractéristique C de ces individus. On considère les mesures de C que nous allons faire sur chaque individu comme des variables aléatoires C 1,..., C n, et on fait les hypothèses suivantes: Les variables C 1,..., C n sont indépendantes Les variables C 1,..., C n ont toutes la même distribution F, où F est la distribution (inconnue) de la caractéristique d intétêt dans la population. On résume ces deux hypothèses en disant que C 1,..., C n sont indépendantes et identiquement distribuées selon F, ce qu on note C 1,..., C n i.i.d. F. 3

4 2. Inférence statistique L inférence consiste en la détermination de la distribution de population F et de ses caractéristiques (moyenne, variance, quantiles,...) à partir des observations c 1,..., c n sur l échantillon, ainsi qu en l étude de la précision avec laquelle ces caractéristiques sont déterminées. Echantilonnage Population Echantillon Inférence Souvent, on aura recours à un modèle mathématique pour F, qui prendra la forme d une famille de distributions dépendant d un ou plusieurs paramètres (ex.: normale, binomiale, Poisson). Il faudra alors déterminer le ou les paramètres qui conviennent le mieux à l échantillon. On parle dans ce cas d une approche paramétrique de l inférence. 4

5 3. Estimation Le processus de détermination de la distribution de population à l aide des observations est appelé l estimation. Dans le cadre d une approche paramétrique, il s agit d estimer les paramètres inconnus du modèle choisi. Exemple: jet d une pièce On jette 6 fois une pièce de monnaie et on obtient le résultat suivant: (Pile, Pile, Face, Pile, Face, Pile). On décide de modéliser cette expérience avec une distribution binomiale B(1, p), où p est la probabilité d obtenir Pile. On décrit chaque jet i par une variable aléatoire X i B(1, p) (X i = 1 si le jet est Pile ; X i = 0 si le jet est Face ), et il nous faut donc estimer le paramètre p à l aide des données. NB: avec cette modélisation, on a fait l hypothèse que p est le même à chaque jet. 5

6 De façon générale, on peut se poser la question de savoir comment déterminer les paramètres inconnus à partir des données. Un principe très utilisé est celui du maximum de vraisemblance. Il consiste à choisir les paramètres qui maximisent la probabilité d observer l échantillon obtenu, appelée la vraisemblance des paramètres. Dans l exemple de la pièce, on le met en oeuvre de la façon suivante: Calcul de la probabilité d obtenir exactement l échantillon observé: On a O = (Pile, Pile, Face, Pile, Face, Pile) et P (O) = p p (1 p) p (1 p) p = p 4 (1 p) 2. Ici on a utilisé l hypothèse d indépendance entre les jets pour esprimer P (O) comme le produit des probabilités des résultats des jets individuels. On doit donc trouver la valeur de p qui rend P (O) maximal. L approche généralement utilisée pour maximiser P (O) consiste à maximiser son logarithme: log (P (O)) = 4 log(p) + 2 log(1 p). En effet, le logarithme étant une fonction croissante, maximiser P (O) est équivalent à maximiser log (P (O)). (De plus, P (O) étant une probabilité, c est une quantité forcément positive et son logarithme est donc toujours défini). 6

7 Pour maximiser log (P (O)), on cherche la valeur de p où sa dérivée s annule: d log (P (O)) dp = 4 p 2 1 p = 0 La solution de cette équation est p = 6 4, et on vérifie facilement que 4 6 correspond bien au maximum (et non à un minimum) de log (P (O)). Ici, nous avons donc obtennu que 4 6 est l estimation du maximum de vraisemblance de p. Remarques La valeur obtenue n est pas suprenante, elle correspond à la proportion de Pile dans l échantillon. Le fait de prendre le logarithme de la vraisemblance transforme le produit en une somme, ce qui facilite le calcul de la dérivée 7

8 Illustration du calcul des pages précédentes: P(O) p 6 log(p(o)) p 6 8

9 Cas général On se propose de résoudre le même problème de façon générale, avec n lancers de la pièce et k resultats Pile. Cela revient à trouver la valeur de p qui maximise P (X 1 = 1)... P (X k = 1) P (X k+1 = 0)... P (X n = 0) = p k (1 p) n k. La solution de ce problème est ˆp(X 1,..., X n ) = k n. Ainsi, d une façon générale, la valeur de p qui maximise la vraisemblance dans ce type d expériences est la proportion de succès dans l échantillon. ˆp est une fonction des variables aléatoires qui représentent les observations. ˆp est donc lui-même une variable aléatoire, appelée un estimateur, en l occurrence l estimateur du maximum de vraisemblance de p. Les propriétés des estimations fournies par un estimateur vont dépendre de ses propriétés en tant que variable aléatoire (espérance, variance, etc). La question de la distribution d un estimateur sera abordée dans le prochain chapitre. 9

10 Le principe du maximum du vraisemblance peut être appliqué à une grande variété de cas: Modèle normal: Soient X 1,..., X n i.i.d N (µ, σ 2 ). Les estimateurs du maximum de vraisemblance pour les paramètres µ et σ 2 sont n ˆµ = 1 X i et ˆσ2 = 1 (X i ˆµ) 2. n i=1 n i=1 Les estimateurs du maximum de vraisemblance de la moyenne et de la variance d une distribution normale sont donc égaux à la moyenne et à la variance de l échantillon telles que définies au chapitre 2. Modèle de Poisson: Soient Y 1,..., Y n i.i.d P(λ). L estimateur du maximum de vraisemblance pour le paramètre λ est ˆλ = 1 n Ici aussi, l estimateur du maximum de vraisemblance de la moyenne d une distribution de Poisson est égal à la moyenne de l échantillon. 10 n i=1 Y i. n

11 Exemple pour le cas normal Reprenons les poids des étudiant(e)s en première année et considérons uniquement les garçons (sans l outlier déjà constaté). On obtient ˆµ = kg et ˆσ 2 = kg 2 et la figure représente la densité correspondante superposée à l histogramme. Densité Poids Comme on le voit, l approximation offerte par le modèle normal n est pas parfaite. Cela dit, le modèle normal n est pas trop violemment mis en défaut, par exemple par une forte asymétrie ou la présence d outliers. 11

12 En passant: Retour sur la régression: modélisation de la relation entre deux variables X et Y à l aide d une droite. Nous avons vu au chapitre 3 que lorsqu on calcule une valeur pour l intercept (ˆβ 0 ) et pour la pente (ˆβ 1 ) d une droite de régression, on postule implicitement que les variables X et Y suivent le modèle suivant: Y i = β 0 + β 1 X i + ε i, i = 1,..., n où β 0 et β 1 sont les vraies valeurs de l intercept et de la pente au niveau de la population. En prenant l approche paramétrique suivante pour modéliser les erreurs ε i : ε i i.i.d. N (0, σ 2 ), indépendants de X i, et en calculant les estimations de l intercept et de la pente selon le maximum de vraisemblance, on obtient justement les estimateurs des moindres carrés ˆβ 0 et ˆβ 1 que nous avons vus au chapitre 3. Autrement dit, si on postule que les erreurs suivent une distribution normale, la méthode du maximum de vraisemblance est equivalente à celle des moindres carrés. 12

13 L approche du maximum de vraisemblance est une approche paramétrique. Elle implique de faire une hypothèse assez forte sur la forme de la distribution des données. Si on ne souhaite pas faire une hypothèse aussi forte, on peut prendre une approche non paramétrique. Par exemple, on peut estimer F par F n, la fonction de distribution cumulative empirique. Avantage d une approche non paramétrique: Moins d hypothèses, donc moins de biais dûs à de fausses hypothèses. Avantage d une approche paramétrique: La distribution est entièrement déterminée par quelques paramètres, ce qui simplifie les calculs des autres caractéristiques de la distribution (par ex. les quantiles). 13

14 4. Evaluation graphique de l adéquation d un modèle de distribution Nous avons vu plus haut un exemple d évaluation graphique du modèle normal (poids des étudiants), qui consiste à superposer la densité du modèle à l histogramme des données. Voici encore deux exemples, avec les données de la série d exercices 1 (nombres d étamines). Comme pour les poids des étudiants, on a estimé les paramètres µ et σ 2 du modèle normal par maximum de vraisemblance et on obtient les graphiques ci-dessous: Densité Nombre d'étamines 14

15 Densité log(nombre d'étamines) On voit que le modèle normal n est pas approprié pour décrire la distribution du nombre d étamines, qui est très asymétrique. Il l est par contre beaucoup plus pour décrire la distribution du logarithme du nombre d étamines, comme on le voit sur le graphique ci-dessus. Nous allons à présent introduire un procédé graphique plus efficace pour évaluer l adéquation d un modèle, appelé qq-plot (quantile-quantile plot). Dans la série d exercices 8, vous l appliquerez aux deux cas ci-dessus. 15

16 Le qq-plot L idée est de comparer les quantiles de la distribution empirique à ceux du modèle, en les répresentant sur un graphique. Si les quantiles empiriques sont proches de ceux du modèle, les points du graphique devraient être alignés sur la diagonale ( y=x ). Appliquons ceci aux poids des étudiants, au nombre de n = 29. Que valent les quantiles empiriques correspondant aux probabilités α i = i 1/2 n, i = 1,..., n? Il sont égaux au observations. (V. illustration p. suivante) On va donc représenter sur un graphique: Sur l axe vertical: les observations Sur l axe horizontal: les quantiles du modèle pour les probabilités α i, donnés par où ˆF est la cumulative du modèle. q αi = ˆF 1 ( i 1/2 n ), 16

17 F n (Poids) 0α 1 α 2 α 3 α 4 α 5 α 6 α 7 α 8 α 9 α 10 α 11 α 12 α 13 α 14 α 15 α 16 α 17 α 18 α 19 α 20 α 21 α 22 α 23 α 24 α 25 α 26 α 27 α 28 α Poids [cm] 17

18 Dans le cas des poids des étudiants, nous avions obtenu ˆµ = kg et ˆσ 2 = kg 2 et le modèle correspondant est donc ˆF = N (67.59, 35.55). Nous calculons donc les valeurs correspondantes des q αi et nous obtenons le tableau suivant, qui contient les coordonnnées des points du qq-plot: q αi p i q αi p i q αi p i

19 Avec les données de la page précédente, on obtient le graphique suivant: p i On voit que les points ne s éloignent pas trop de la diagonale. q αi 19

20 Propriété de la distribution normale: A la place de définir q αi comme les quantiles de N (µ, σ), on peut les définir comme les quantiles d une normale standard N (0, 1). On obtient alors le graphique suivant, exactement pareil au graphique précédent à l exception de la graduation de l axe horizontal. p i Dans ce cas, la droite n est plus la diagonale, et on représente généralement une droite passant par les premier et troisième quartiles des données et du modèle. De cette façon, on accorde plus d importance à la partie centrale du graphique, plus stable que les extrémités. Souvent en effet, les extrémités s éloignent de la droite même si le modèle est adéquat, en raison de leur plus grande variabilité. q αi 20

21 Propriété de la distribution normale: A la place de définir q αi comme les quantiles de N (µ, σ), on peut les définir comme les quantiles d une normale standard N (0, 1). On obtient alors le graphique suivant, exactement pareil au graphique précédent à l exception de la graduation de l axe horizontal. p i Dans ce cas, la droite n est plus la diagonale, et on représente généralement une droite passant par les premier et troisième quartiles des données et du modèle. De cette façon, on accorde plus d importance à la partie centrale du graphique, plus stable que les extrémités. Souvent en effet, les extrémités s éloignent de la droite même si le modèle est adéquat, en raison de leur plus grande variabilité. q αi 21

1/4 2/4 3/4 4/4. 10. Estimation MTH2302D. S. Le Digabel, École Polytechnique de Montréal H2016. (v1) MTH2302D: estimation 1/50

1/4 2/4 3/4 4/4. 10. Estimation MTH2302D. S. Le Digabel, École Polytechnique de Montréal H2016. (v1) MTH2302D: estimation 1/50 10. Estimation MTH2302D S. Le Digabel, École Polytechnique de Montréal H2016 (v1) MTH2302D: estimation 1/50 Plan 1. Introduction 2. Estimation ponctuelle 3. Estimation par intervalles de confiance 4. Autres

Plus en détail

Estimation. Anita Burgun

Estimation. Anita Burgun Estimation Anita Burgun Estimation Anita Burgun Contenu du cours Sondages Mesures statistiques sur un échantillon Estimateurs Problème posé Le problème posé en statistique: On s intéresse à une population

Plus en détail

Statistiques Appliquées Rôle des femmes dans la société

Statistiques Appliquées Rôle des femmes dans la société Statistiques Appliquées Rôle des femmes dans la société Denis Schelling Semestre d automne 2012 Résumé A partir de données concernant le rôle des femmes dans la société, nous avons effectué une analyse

Plus en détail

Statistique (MATH-F-315, Cours #3)

Statistique (MATH-F-315, Cours #3) Statistique (MATH-F-315, Cours #3) Thomas Verdebout Université Libre de Bruxelles 2015 Plan de la partie Statistique du cours 1. Introduction. 2. Théorie de l estimation. 3. Tests d hypothèses et intervalles

Plus en détail

4.1 Planification d une expérience complètement randomisée

4.1 Planification d une expérience complètement randomisée Chapitre 4 La validation des hypothèses d ANOVA à un facteur Dans le modèle standard d ANOVA, on a fait quelques hypothèses. Pour que les résultats de l analyse effectuée soient fiables, il est nécessaire

Plus en détail

Tests statistiques Formation «Analyse de données RNA-seq/ChiP-seq»

Tests statistiques Formation «Analyse de données RNA-seq/ChiP-seq» Tests statistiques Formation «Analyse de données RNA-seq/ChiP-seq» Guy Perrière Pôle Rhône-Alpes de Bioinformatique 14 novembre 2012 Guy Perrière (PRABI) Tests statistiques 14 novembre 2012 1 / 40 Plan

Plus en détail

ECGE 1224 - Statistiques en économie et gestion : TP 1

ECGE 1224 - Statistiques en économie et gestion : TP 1 ECGE 14 - Statistiques en économie et gestion : TP 1 Exercice 1 Un dé parfaitement équilibré est lancé. Soit X la variable aléatoire (v.a.) correspondant au résultat obtenu avec le dé. a) Justifer pourquoi

Plus en détail

a) Considérons le cas où N est un multiple de n : N = Mn

a) Considérons le cas où N est un multiple de n : N = Mn 5.2 TIRAGE SYSTEMATIQUE a) Considérons le cas où N est un multiple de n : N = Mn où M N 0 Prélever un échantillon systématique consiste à tirer de manière équiprobable un individu i 1 parmi {1,..., M},

Plus en détail

Introduction aux sondages

Introduction aux sondages Service Universitaire d Enseignement à Distance Licence AES - Troisième année Introduction aux sondages Université Rennes 2 Place du Recteur H. le Moal CS 24307-35043 Rennes Tel : 02 99 14 18 21 Mel :

Plus en détail

«Cours Statistique et logiciel R»

«Cours Statistique et logiciel R» «Cours Statistique et logiciel R» Rémy Drouilhet (1), Adeline Leclercq-Samson (1), Frédérique Letué (1), Laurence Viry (2) (1) Laboratoire Jean Kuntzmann, Dép. Probabilites et Statistique, (2) Laboratoire

Plus en détail

Cours 2 6 octobre. 2.1 Maximum de vraisemblance pour une loi Gaussienne multivariée

Cours 2 6 octobre. 2.1 Maximum de vraisemblance pour une loi Gaussienne multivariée Introduction aux modèles graphiques 2010/2011 Cours 2 6 octobre Enseignant: Francis Bach Scribe: Nicolas Cheifetz, Issam El Alaoui 2.1 Maximum de vraisemblance pour une loi Gaussienne multivariée Soit

Plus en détail

Chapitre 1 GRAPHIQUES

Chapitre 1 GRAPHIQUES Statistique appliquée à la gestion et au marketing http://foucart.thierry.free.fr/statpc Chapitre 1 GRAPHIQUES On entend souvent qu un schéma vaut mieux qu un long discours. Effectivement, lorsque l on

Plus en détail

Chapitre 6 TESTS STATISTIQUES

Chapitre 6 TESTS STATISTIQUES Statistique appliquée à la gestion et au marketing http://foucart.thierry.free.fr/statpc Chapitre 6 TESTS STATISTIQUES Les tests statistiques sont des méthodes de la statistique inférentielle qui, comme

Plus en détail

Schéma de Bernoulli Loi binomiale

Schéma de Bernoulli Loi binomiale Schéma de Bernoulli Loi binomiale I) Epreuve et loi de Bernoulli 1) Définition On appelle épreuve de Bernoulli de paramètre, toute expérience aléatoire admettant deux issues exactement : L une appelée

Plus en détail

MODELISATION DE DONNÉES QUALITATIVES PREMIÈRE PARTIE

MODELISATION DE DONNÉES QUALITATIVES PREMIÈRE PARTIE MODELISATION DE DONNÉES QUALITATIVES PREMIÈRE PARTIE Pierre-Louis Gonzalez 1 I INTRODUCTION 1 variable qualitative. Tri à plat. Représentations graphiques. Modélisation : loi binomiale loi multinomiale

Plus en détail

Leçon n 11 Statistiques et simulations

Leçon n 11 Statistiques et simulations Leçon n 11 Statistiques et simulations C est une leçon qui se prolongera les années suivantes. Il s agit de rapprocher «les statistiques» d une notion qui sera étudiée en première «les probabilités» et

Plus en détail

Approche empirique du test χ 2 d ajustement

Approche empirique du test χ 2 d ajustement Approche empirique du test χ 2 d ajustement Alain Stucki, Lycée cantonal de Porrentruy Introduction En lisant des rapports, on rencontre souvent des raisonnements du style : «le premier groupe est meilleur

Plus en détail

Statistique (MATH-F-315, Cours #1)

Statistique (MATH-F-315, Cours #1) Statistique (MATH-F-315, Cours #1) Thomas Verdebout Université Libre de Bruxelles 2015 Plan de la partie Statistique du cours 1. Introduction. 2. Théorie de l estimation. 3. Tests d hypothèses et intervalles

Plus en détail

Introduction à l optimisation

Introduction à l optimisation Université du Québec à Montréal Introduction à l optimisation Donnée dans le cadre du cours Microéconomie II ECO2012 Baccalauréat en économique Par Dominique Duchesneau 21 janvier septembre 2008 Ce document

Plus en détail

TUTORAT UE4 2010-2011 Biostatistiques Concours Blanc

TUTORAT UE4 2010-2011 Biostatistiques Concours Blanc TUTORAT UE4 2010-2011 Biostatistiques Concours Blanc Lorsque cela n est pas précisé (explicitement ou implicitement), les tests sont réalisés à 5% en bilatéral QCM n 1 : Généralités sur les probabilités

Plus en détail

Plan de cours. Programme : Sciences de la nature 200.B0 2-2-2. 2 2/3 unités. Automne 2010

Plan de cours. Programme : Sciences de la nature 200.B0 2-2-2. 2 2/3 unités. Automne 2010 Plan de cours Programme : Sciences de la nature 00.B0 Département : Titre du cours : Code du cours : Mathématiques Probabilités et Statistiques 01-GHC-04 -- /3 unités Automne 010 Éric Brunelle A-10 450-347-5301

Plus en détail

Ministère de la Jeunesse et des Sports Institut Royal de Formation des Cadres Département des Sciences de la Vie. A. Arfaoui

Ministère de la Jeunesse et des Sports Institut Royal de Formation des Cadres Département des Sciences de la Vie. A. Arfaoui Ministère de la Jeunesse et des Sports Institut Royal de Formation des Cadres Département des Sciences de la Vie A. Arfaoui PLA Définitions Paramètres marginaux Covariance Coefficient de Corrélation Coefficient

Plus en détail

Techniques d estimation : Maximum de Vraisemblance et Méthode des Moments Généralisée

Techniques d estimation : Maximum de Vraisemblance et Méthode des Moments Généralisée Techniques d estimation : Maximum de Vraisemblance et Méthode des Moments Généralisée Philippe Gagnepain Université Paris 1 Ecole d Economie de Paris Centre d économie de la Sorbonne-UG 4-Bureau 405 philippe.gagnepain@univ-paris1.fr

Plus en détail

ÉLÉMENTS D OPTIMISATION. Complément au cours et au livre de MTH 1101 - CALCUL I

ÉLÉMENTS D OPTIMISATION. Complément au cours et au livre de MTH 1101 - CALCUL I ÉLÉMENTS D OPTIMISATION Complément au cours et au livre de MTH 1101 - CALCUL I CHARLES AUDET DÉPARTEMENT DE MATHÉMATIQUES ET DE GÉNIE INDUSTRIEL ÉCOLE POLYTECHNIQUE DE MONTRÉAL Hiver 2011 1 Introduction

Plus en détail

5. Quelques lois discrètes

5. Quelques lois discrètes 5. Quelques lois discrètes MTH2302D S. Le Digabel, École Polytechnique de Montréal H2016 (v1) MTH2302D: Lois discrètes 1/46 Plan 1. Loi de Bernoulli 2. Loi binomiale 3. Loi géométrique 4. Loi hypergéométrique

Plus en détail

Problème 4: Les diagrammes suivants représentent la distribution de 4 variables discrètes X1, X2, X3 et X4 :

Problème 4: Les diagrammes suivants représentent la distribution de 4 variables discrètes X1, X2, X3 et X4 : Cours 5-62-96 : Traitement et analyse des données Test autodiagnostique PARTIE 1 : Problème 1 : Pour chacune des distributions ci-dessous, identifier la population et la variable étudiée en précisant si

Plus en détail

Probabilité mathématique et distributions théoriques

Probabilité mathématique et distributions théoriques Probabilité mathématique et distributions théoriques 3 3.1 Notion de probabilité 3.1.1 classique de la probabilité s Une expérience ou une épreuve est dite aléatoire lorsqu on ne peut en prévoir exactement

Plus en détail

Exercice n HF 0201 - Corrigé

Exercice n HF 0201 - Corrigé ENAC/ISTE/HYDRAM HYDROTHEQUE : base de données d exercices en Hydrologie Cours : Hydrologie Fréquentielle / Thématique : Construction des courbes IDF Exercice n HF 0201 - Corrigé Logo optimisé par J.-D.Bonjour,

Plus en détail

Agrégation externe de mathématiques, texte d exercice diffusé en 2012 Épreuve de modélisation, option informatique

Agrégation externe de mathématiques, texte d exercice diffusé en 2012 Épreuve de modélisation, option informatique Agrégation externe de mathématiques, texte d exercice diffusé en 2012 Épreuve de modélisation, option informatique Résumé : A partir du problème de la représentation des droites sur un écran d ordinateur,

Plus en détail

Qualité Six Sigma. Sommaire. Sylvain ROZÈS. 28 mars 2008. 1 Introduction 1. 2 Étude séparée de quatre échantillons 1

Qualité Six Sigma. Sommaire. Sylvain ROZÈS. 28 mars 2008. 1 Introduction 1. 2 Étude séparée de quatre échantillons 1 Qualité Six Sigma Sylvain ROZÈS 28 mars 2008 Sommaire 1 Introduction 1 2 Étude séparée de quatre échantillons 1 3 Étude sur l ensemble des échantillons 8 4 Étude sur les range 13 1 Introduction Le but

Plus en détail

Lycée Fénelon Sainte-Marie Préparation Science-Po/Prépa HEC

Lycée Fénelon Sainte-Marie Préparation Science-Po/Prépa HEC Lycée Fénelon Sainte-Marie Préparation Science-Po/Prépa HEC Dénombrement et probabilités Version du juillet 05 Enoncés Exercice - YouTube Sur YouTube, les vidéos sont identifiées à l aide d une chaîne

Plus en détail

C(x) = 5 9. et h = 160

C(x) = 5 9. et h = 160 Chapitre Fonctions affines. Définition Définition. La fonction définie par f : R R = m+h où m et h sont des nombres réels, est appelée fonction affine. Eemple La fonction C() qui permet de convertir des

Plus en détail

Exercices. Version du 7 janvier 2016 16:37. UE Mathématiques et statistiques appliquées AA Mathématiques et statistiques appliquées

Exercices. Version du 7 janvier 2016 16:37. UE Mathématiques et statistiques appliquées AA Mathématiques et statistiques appliquées Exercices Version du 7 janvier 2016 16:37 UE Mathématiques et statistiques appliquées AA Mathématiques et statistiques appliquées 1ère Bachelier en Informatique de Gestion Ludovic Kuty

Plus en détail

Commission Réseau Sémantique Universel Étude de cas n 1 : routage postal

Commission Réseau Sémantique Universel Étude de cas n 1 : routage postal Commission Réseau Sémantique Universel Étude de cas n 1 : routage postal La meilleure méthode pour mettre au point une méthode étant de la tester sur le plus grand nombre possible de cas concrets, voici

Plus en détail

2. Formalisation ... Or les variables sont indépendantes. Donc si

2. Formalisation ... Or les variables sont indépendantes. Donc si L'estimation 1. Concrètement... Dernièrement un quotidien affichait en première page : en 30 ans les françaises ont grandi de... je ne sais plus exactement, disons 7,1 cm. C'est peut-être un peu moins

Plus en détail

Niveau. Situations étudiées. Type d activité. Durée. Objectifs

Niveau. Situations étudiées. Type d activité. Durée. Objectifs Fourchettes, non réponses, fausses réponses et redressements... : la cuisine mathématique des sondages Niveau Exercice 1 : 3 ème 2 nde. Exercice 2 : 3 ème 2 nde. Exercice 3 : Seconde ou première. Exercice

Plus en détail

MT18 A 2012 Variables aléatoires à valeurs réelles Aleth Chevalley Loi binomiale, loi de Poisson, loi normale

MT18 A 2012 Variables aléatoires à valeurs réelles Aleth Chevalley Loi binomiale, loi de Poisson, loi normale MT8 A 0 Variables aléatoires à valeurs réelles Aleth Chevalley Loi binomiale, loi de Poisson, loi normale. Fonction de répartition.. Variable aléatoire à valeurs réelles Définition : Soit un ensemble fondamental

Plus en détail

Régression linéaire et corrélation

Régression linéaire et corrélation CHAPITRE 10 Régression linéaire et corrélation 1. Introduction Dans ce chapitre, nous regarderons comment vérifier si une variable à un influence sur une autre variable afin de prédire une des variables

Plus en détail

Texte 1, Choix intertemporel du consommateur Microéconomie 3-851-84

Texte 1, Choix intertemporel du consommateur Microéconomie 3-851-84 1 Texte 1, Choix intertemporel du consommateur Microéconomie 3-851-84 1. Présentation générale du contexte intertemporel La théorie du comportement du consommateur telle que nous l'avons vue jusqu'à présent,

Plus en détail

Analyse en composantes principales Christine Decaestecker & Marco Saerens ULB & UCL

Analyse en composantes principales Christine Decaestecker & Marco Saerens ULB & UCL Analyse en composantes principales Christine Decaestecker & Marco Saerens ULB & UCL LINF 2275 Stat. explor. multidim. 1 A.C.P.: Analyse en Composantes Principales Analyse de la structure de la matrice

Plus en détail

Proposition de corrigé

Proposition de corrigé Externat Notre Dame Devoir Survéillé n 2 (1 ere ES/L) Samedi 14 décembre Durée : 3 h calculatrice autorisée - pas d échange de calculatrice ou de matériel Proposition de corrigé Dans tout ce devoir, la

Plus en détail

1 Retour sur le cours 3 Présentation de tableaux et graphiques Les mesures de tendance centrale Moyenne Mode (et classe modale) Médiane Les mesures de position Quartiles Déciles Mesures tendance centrale

Plus en détail

1 Variable aléatoire discrète... 1. 1.1 Rappels... 1. 1.2 Exemple... 2 2 Couples de variables aléatoires... 3. 2.1 Définition... 3

1 Variable aléatoire discrète... 1. 1.1 Rappels... 1. 1.2 Exemple... 2 2 Couples de variables aléatoires... 3. 2.1 Définition... 3 CHAPITRE : LOIS DISCRÈTES Sommaire Variable aléatoire discrète................................... Rappels........................................... Exemple......................................... Couples

Plus en détail

Statistiques de groupe

Statistiques de groupe Système Méthodologique d Aide à la Réalisation de Tests Statistiques de groupe et analyse des questions de votre épreuve Une unité de soutien de l IFRES Université de Liège L analyse des statistiques de

Plus en détail

Dérivées et applications. Equation

Dérivées et applications. Equation Dérivées et applications. Equation I) Dérivée d une fonction strictement monotone 1) Exemples graphiques Soit une fonction dérivable sur un intervalle I. Pour tout I, (x) est le coefficient directeur de

Plus en détail

Eléments de stratégie d échantillonnage à l adresse des diagnostiqueurs amiante.

Eléments de stratégie d échantillonnage à l adresse des diagnostiqueurs amiante. Eléments de stratégie d échantillonnage à l adresse des diagnostiqueurs amiante. Essai de détermination du nombre de prélèvements à effectuer lors d un diagnostic amiante afin d assurer une représentativité

Plus en détail

Méthode des moindres carrés

Méthode des moindres carrés Chapitre 5 Méthode des moindres carrés Une situation courante en sciences biologiques est d avoir à sa disposition deux ensembles de données de taille n, {y 1,y 2,...,y n } et {x 1,x 2,...,x n }, obtenus

Plus en détail

KIT DE SURVIE EN RECHERCHE D EXTREMA LIÉS

KIT DE SURVIE EN RECHERCHE D EXTREMA LIÉS KIT DE SURVIE EN RECHERCHE D EXTREMA LIÉS Remarques préliminaires : Ce court document n a nullement la prétention de présenter la question de la recherche d extrema liés avec toute la rigueur qui lui serait

Plus en détail

Test de sélection du 4 juin 2013

Test de sélection du 4 juin 2013 Test de sélection du 4 juin 2013 Vous étiez 270 candidat-e-s à ce test de sélection, et 62 d entre vous (23%) participeront au stage olympique de Montpellier, du 19 au 29 août 2013, dont 12 filles : la

Plus en détail

BACCALAURÉAT GÉNÉRAL. MATHÉMATIQUES Série ES/L

BACCALAURÉAT GÉNÉRAL. MATHÉMATIQUES Série ES/L BACCALAURÉAT GÉNÉRAL SESSION 2015 MATHÉMATIQUES Série ES/L Durée de l épreuve : 3 heures Coefficient : 5 (ES), 4 (L) ES : ENSEIGNEMENT OBLIGATOIRE L : ENSEIGNEMENT DE SPECIALITE Les calculatrices électroniques

Plus en détail

Theme 4 - Lois usuelles discrètes

Theme 4 - Lois usuelles discrètes L2 AES TD de statistique 2008/2009 Cours de Mme Mériot M.-A. Jambu & S.Turolla Theme 4 - Lois usuelles discrètes Exercice 1 (Loi binomiale) A et B sont deux avions ayant respectivement 4 et 2 moteurs.

Plus en détail

Fonctions Nombre Dérivé Fonction dérivée

Fonctions Nombre Dérivé Fonction dérivée Fonctions Nombre Dérivé Fonction dérivée Ce chapitre est le chapitre central de la classe de Terminale STG. Il permet (en partie) de clore ce qui avait été entamé dés le collège avec les fonctions affines

Plus en détail

Chapitre 6 : Estimation d erreurs numériques

Chapitre 6 : Estimation d erreurs numériques Chapitre 6 : Estimation d erreurs numériques Puisque les réels ne sont représentés en machine que sous la forme de flottants, ils ne sont connus que de manière approchée. De plus, la somme ou le produit

Plus en détail

Statistiques. IUT Biotechnologie 2ème année. Jean-Christophe Breton Université de La Rochelle Octobre-Novembre 2008

Statistiques. IUT Biotechnologie 2ème année. Jean-Christophe Breton Université de La Rochelle Octobre-Novembre 2008 Statistiques IUT Biotechnologie 2ème année Jean-Christophe Breton Université de La Rochelle Octobre-Novembre 2008 version du 04 octobre 2008 Table des matières 1 Lois de probabilité usuelles 1 1.1 Dénombrement................................

Plus en détail

Intégration de polynômes Points de Gauss

Intégration de polynômes Points de Gauss Intégration de polynômes Points de Gauss Commençons par un exercice classique de premier cycle. Problème 1 Trouver trois réels α, β et γ tels que, pour tout polynôme P de degré au plus 2, on ait : ( )

Plus en détail

Initiation aux probabilités.

Initiation aux probabilités. Initiation aux probabilités. On place dans une boite trois boules identiques à l exception de leur couleur : une boule est noire, une est blanche, la troisième est grise. On tire une des boules sans regarder,

Plus en détail

Probabilités et statistiques dans le traitement de données expérimentales

Probabilités et statistiques dans le traitement de données expérimentales Probabilités et statistiques dans le traitement de données expérimentales S. LESECQ, B. RAISON IUT1, GEII 1 Module MC-M1 2009-2010 1 V Estimation de paramètres, tests d hypothèse, statistiques Module MC-M1

Plus en détail

Risques hydrologiques & aménagement du territoire Projet d évaluation

Risques hydrologiques & aménagement du territoire Projet d évaluation Risques hydrologiques & aménagement du territoire Professeur responsable : Christophe ANCEY Assistant responsable : Blaise DHONT Date de rendu : 8 janvier 2016 Conditions du projet : travail à rédiger

Plus en détail

Comme la moyenne au devoir est plutôt faible, le professeur propose deux possibilités pour augmenter cette moyenne :

Comme la moyenne au devoir est plutôt faible, le professeur propose deux possibilités pour augmenter cette moyenne : Chapitre 6 : Statistiques I Premières définitions - Etablir une statistique, c est relever pour tous les individus d une population les valeurs d une grandeur X, appelée caractère ou variable statistique.

Plus en détail

Échantillonnage et estimation

Échantillonnage et estimation Échantillonnage et estimation Dans ce chapitre, on s intéresse à un caractère dans une population donnée dont la proportion est notée. Cette proportion sera dans quelques cas connue (échantillonnage),

Plus en détail

Fiche méthodologique Les pièges dans les dénombrements

Fiche méthodologique Les pièges dans les dénombrements Fiche méthodologique Les pièges dans les dénombrements BCPST Lycée Hoche $\ CC BY: Pelletier Sylvain Dans cette fiche, on résume quelques points techniques sur les dénombrements et la théorie des probabilités.

Plus en détail

Bac Blanc de Mathématiques Correction Durée : 3 heures

Bac Blanc de Mathématiques Correction Durée : 3 heures Terminale STG Mercatique Jeudi 1 avril 2010 Bac Blanc de Mathématiques Correction Durée : 3 heures L usage de la calculatrice est autorisé. Le sujet comporte 6 pages. EXERCICE 1 3 points Cet eercice est

Plus en détail

Analyse de spectres d absorbance pour la prédiction des taux de moisissure, de matières grasses et de protéines d échantillons de viande

Analyse de spectres d absorbance pour la prédiction des taux de moisissure, de matières grasses et de protéines d échantillons de viande Université de Nantes M2 Ingénierie Mathématiques Rapport de chimiométrie Analyse de spectres d absorbance pour la prédiction des taux de moisissure, de matières grasses et de protéines d échantillons de

Plus en détail

Statistique descriptive unidimensionnelle

Statistique descriptive unidimensionnelle 1 Statistique descriptive unidimensionnelle Statistique descriptive unidimensionnelle Résumé Les objectifs et la démarche d un première exploration d un jeu de données, les outils de la description statistique

Plus en détail

geffray@math.unistra.fr Outils pour la statistique avancée Année 2015/2016 TD 1 : Bootstrap

geffray@math.unistra.fr Outils pour la statistique avancée Année 2015/2016 TD 1 : Bootstrap Université de Strasbourg Ségolen Geffray M2 - Statistique geffray@math.unistra.fr Outils pour la statistique avancée Année 2015/2016 TD 1 : Bootstrap Ces exercices seront effectués au moyen du logiciel

Plus en détail

Probabilités et inférence statistique (STAT-S-202) Titulaires : Catherine Dehon et Davy Paindaveine Partie 2 : Inférence statistique

Probabilités et inférence statistique (STAT-S-202) Titulaires : Catherine Dehon et Davy Paindaveine Partie 2 : Inférence statistique Probabilités et inférence statistique (STAT-S-202) Titulaires : Catherine Dehon et Davy Paindaveine Partie 2 : Inférence statistique Les exercices qui vous sont proposés sont classés de la façon suivante

Plus en détail

Définitions Covariance Corrélation Meilleur prédicteur linéaire. Chapitre 5 Couple de variables aléatoires

Définitions Covariance Corrélation Meilleur prédicteur linéaire. Chapitre 5 Couple de variables aléatoires Chapitre 5 Couple de variables aléatoires Définitions 1 On appelle couple de variables aléatoires (discrètes) l application: Ω R ω (X (ω), Y (ω)) 2 La distribution d un couple de v.a. est définie par les

Plus en détail

Fonctions. Fonctions linéaires, affines et constantes

Fonctions. Fonctions linéaires, affines et constantes linéaires, affines et constantes 1. linéaires Comme il existe une infinité de fonctions différentes, on les classe par catégories. La première catégorie est constituée par les fonctions linéaires. Une

Plus en détail

Eléments de correction du Bac Blanc n 2 de Mathématiquesdu Lundi 8 Avril2013. Calculatrice autorisée - Aucun document n'est autorisé.

Eléments de correction du Bac Blanc n 2 de Mathématiquesdu Lundi 8 Avril2013. Calculatrice autorisée - Aucun document n'est autorisé. TES/spé TL Eléments de correction du Bac Blanc n 2 de Mathématiquesdu Lundi 8 Avril2013 Calculatrice autorisée - Aucun document n'est autorisé. Vous apporterez un grand soin à la présentation et à la rédaction

Plus en détail

Baccalauréat STL Biotechnologies juin 2014 Polynésie Correction

Baccalauréat STL Biotechnologies juin 2014 Polynésie Correction Baccalauréat STL Biotechnologies juin 014 Polynésie Correction EXERCICE 1 Les trois parties de cet exercice peuvent être traitées de manière indépendante. Les résultats seront arrondis, si nécessaire,

Plus en détail

Les théorèmes de Gerschgorin et de Hadamard

Les théorèmes de Gerschgorin et de Hadamard Localisation des valeurs propres : Quelques propriétés sur les disques de Gerschgorin. Jean-Baptiste Campesato 22 septembre 29 Gerschgorin est parfois retranscrit en Gershgorin, Geršgorin, Hershhornou

Plus en détail

Support du cours de Probabilités et Statistiques. IUT d Orléans, Département Informatique

Support du cours de Probabilités et Statistiques. IUT d Orléans, Département Informatique Support du cours de Probabilités et Statistiques IUT d Orléans, Département informatique Pierre Andreoletti IUT d Orléans, Département Informatique Laboratoire MAPMO (Bât. de Mathématiques UFR Sciences)

Plus en détail

TP 3 : STATISTIQUE PARAMÉTRIQUE

TP 3 : STATISTIQUE PARAMÉTRIQUE Statistique Numérique et Analyse de Données Ecole des Ponts ParisTech, 2 ème année TP 3 : STATISTIQUE PARAMÉTRIQUE La séance de TP se fait sous environnement Windows, sauf si vous avez une nette préférence

Plus en détail

Introduction à la statistique inférentielle

Introduction à la statistique inférentielle Introduction à la statistique inférentielle Didier Concordet Unité de Biométrie Ecole Vétérinaire de Toulouse Sommaire 1 Statistiques descriptives 7 1.1 Description numérique...................... 7 1.1.1

Plus en détail

Chapitre 4 : RÉGRESSION

Chapitre 4 : RÉGRESSION Chapitre 4 : RÉGRESSION 4.3 Régression linéaire multiple 4.3.1 Equation et Estimation 4.3.2 Inférence 4.3.3 Coefficients de détermination 4.3.4 Spécifications Régression linéaire multiple 1 / 50 Chapitre

Plus en détail

Statistiques inférentielles : estimation

Statistiques inférentielles : estimation Statistiques inférentielles : estimation Table des matières I Estimation ponctuelle d un paramètre 2 I.1 Moyenne................................................ 2 I.2 Écart-type...............................................

Plus en détail

Sommaire. Les pourcentages. Les suites. Statistiques. Les probabilités. Descriptif de l épreuve... Conseils pour l épreuve...

Sommaire. Les pourcentages. Les suites. Statistiques. Les probabilités. Descriptif de l épreuve... Conseils pour l épreuve... Sommaire Descriptif de l épreuve............................................. Conseils pour l épreuve............................................ Les pourcentages FICHES Pages 1 Pourcentage Proportions....................................7

Plus en détail

Bibliothèque de Traitement d Images en Niveaux de Gris

Bibliothèque de Traitement d Images en Niveaux de Gris TP Bibliothèque de Traitement d Images en Niveaux de Gris Étudiants : Besnier Alexandre Taforeau Julien Version 1.2 Janvier 2008 2008 Rapport TP - Version 1.2 i Table des matières Introduction 1 1 Objectif

Plus en détail

TD1, sur la Régression Logistique (STA 2211)

TD1, sur la Régression Logistique (STA 2211) TD, sur la Régression Logistique STA 22) Exercice : Un sondage international cité dans un article de presse le 4 décembre 2004) rapportait le faible taux d approbation de la politique du Président des

Plus en détail

Introduction à Excel

Introduction à Excel Introduction à Excel Commentaires : Cet exercice a pour but de vous apprendre les fonctions rudimentaires du logiciel excel. C est seulement par la pratique que vous connaîtrez parfaitement le logiciel.

Plus en détail

Exercices de Statistique

Exercices de Statistique Université Joseph Fourier, Grenoble I Licence Sciences et Technologies e année STA30 : Méthodes Statistiques pour la Biologie Exercices de Statistique http ://ljk.imag.fr/membres/bernard.ycart/sta30/ Chaque

Plus en détail

Université de Nantes UFR des Sciences et Techniques Département de Mathématiques. Master 1 Ingénierie mathématique Année 2012-2013

Université de Nantes UFR des Sciences et Techniques Département de Mathématiques. Master 1 Ingénierie mathématique Année 2012-2013 Université de Nantes UFR des Sciences et Techniques Département de Mathématiques Master 1 Ingénierie mathématique Année 2012-2013 TP 1: Statistique descriptive F. Lavancier, A. Philippe Le logiciel utilisé

Plus en détail

Construction de la mesure de Lebesgue. 1 Mesure positive engendrée par une mesure extérieure.

Construction de la mesure de Lebesgue. 1 Mesure positive engendrée par une mesure extérieure. Université d Artois Faculté des Sciences Jean Perrin Analyse Fonctionnelle (Licence 3 Mathématiques-Informatique Daniel Li Construction de la mesure de Lebesgue 28 janvier 2008 Dans ce chapitre, nous allons

Plus en détail

PCA appliqué à la 2D et 3D Dernière mise à jour : avril 2011

PCA appliqué à la 2D et 3D Dernière mise à jour : avril 2011 Projet 2009 2010 Biométrie 3D PCA appliqué à la 2D et 3D Dernière mise à jour : avril 2011 Département : TIC Mots clés : Biométrie, Analyse d images, Vision, Caméra thermique, Caméra temps de vol, Détection

Plus en détail

Volume et température d un gaz

Volume et température d un gaz Volume et température d un gaz Par Pascal Rebetez Janvier 7 Introduction Après avoir étudié expérimentalement la relation entre le volume et la température d un gaz (de l air), nous comparons les données

Plus en détail

Annexe commune aux séries ES, L et S : boîtes et quantiles

Annexe commune aux séries ES, L et S : boîtes et quantiles Annexe commune aux séries ES, L et S : boîtes et quantiles Quantiles En statistique, pour toute série numérique de données à valeurs dans un intervalle I, on définit la fonction quantile Q, de [,1] dans

Plus en détail

MESURES ET INCERTITUDES

MESURES ET INCERTITUDES MESURES ET INCERTITUDES OBJECTIFS DE CE CHAPITRE : Savoir exprimer une mesure avec le bon nombre de chiffres significatifs. Savoir arrondir le résultat d un calcul avec le bon nombre de chiffres significatifs.

Plus en détail

OLYMPIADES FRANÇAISES DE MATHÉMATIQUES ÉPREUVE DE SÉLECTION 2012 CORRIGÉ EXERCICES POUR LES ÉLÈVES DE COLLÈGE ET DE SECONDE

OLYMPIADES FRANÇAISES DE MATHÉMATIQUES ÉPREUVE DE SÉLECTION 2012 CORRIGÉ EXERCICES POUR LES ÉLÈVES DE COLLÈGE ET DE SECONDE OLYMPIADES FRANÇAISES DE MATHÉMATIQUES ÉPREUVE DE SÉLECTION 2012 CORRIGÉ EXERCICES POUR LES ÉLÈVES DE COLLÈGE ET DE SECONDE Exercice 1. Fred et Sarah sont les aînés d une même et grande famille. Fred a

Plus en détail

La Grille, moyen fondamental de l analyse

La Grille, moyen fondamental de l analyse Fiche méthodologie #1 La Grille, moyen fondamental de l analyse Cette rubrique présente des notes et documents publiés par Philippe Latour, enseignant au Master Géomarketing et stratégies territoriales

Plus en détail

Statistiques - Notes de cours - M1. Elisabeth Gassiat

Statistiques - Notes de cours - M1. Elisabeth Gassiat Statistiques - Notes de cours - M1 Elisabeth Gassiat Table des matières 1 Introduction 5 1.1 Estimation et régions de confiance...................... 5 1.2 Tests.......................................

Plus en détail

Bases du Modèle Linéaire

Bases du Modèle Linéaire AgroParisTech Bases du Modèle Linéaire J.J. Daudin, E. Lebarbier, C. Vuillet Table des matières 1 Introduction 3 2 Estimation des paramètres 5 2.1 Estimation des paramètres de l espérance......................

Plus en détail

Exo7. Espaces vectoriels. 1 Définition, sous-espaces. Fiche amendée par David Chataur et Arnaud Bodin.

Exo7. Espaces vectoriels. 1 Définition, sous-espaces. Fiche amendée par David Chataur et Arnaud Bodin. Exo7 Espaces vectoriels Fiche amendée par David Chataur et Arnaud Bodin. Définition, sous-espaces Exercice Montrer que les ensembles ci-dessous sont des espaces vectoriels (sur R) : E = { f : [,] R } :

Plus en détail

Feuille de Travaux Dirigés n o 10 Régression linéaire simple avec R

Feuille de Travaux Dirigés n o 10 Régression linéaire simple avec R Feuille de Travaux Dirigés n o 10 Régression linéaire simple avec R Exercice X.1. Étude de la pollution de l air. Cet exercice est issu du livre «Statistiques avec R», Pierre-André Cornillon et autres,

Plus en détail

Intégrale de Lebesgue

Intégrale de Lebesgue Intégrale de Lebesgue ÉCOLE POLYTECHNIQUE Cours 4 : intégrale de Lebesgue Bertrand Rémy 1 / 50 1. Motivations et points de vue ÉCOLE POLYTECHNIQUE Cours 4 : intégrale de Lebesgue Bertrand Rémy 2 / 50 Deux

Plus en détail

Statistiques descriptives Variance et écart type

Statistiques descriptives Variance et écart type Statistiques descriptives Variance et écart type I) Rappel : la moyenne (caractéristique de position ) Définition Soit la série statistique définie dans le tableau suivant : Valeur... Effectif... Fréquences

Plus en détail

Séquence 3. 1 ère partie : 2 e partie : Second degré. Probabilités (1) Séquence 3 MA12. Cned - Académie en ligne

Séquence 3. 1 ère partie : 2 e partie : Second degré. Probabilités (1) Séquence 3 MA12. Cned - Académie en ligne Séquence 3 1 ère partie : Second degré e partie : Probabilités (1) Séquence 3 MA1 1 1 ère partie Second degré Sommaire 1. Pré-requis. Forme canonique, étude d une fonction du second degré 3. Équation du

Plus en détail

Chapitre 1. Le marché, lieu de rencontre entre l offre et la demande

Chapitre 1. Le marché, lieu de rencontre entre l offre et la demande Chapitre 1. Le marché, lieu de rencontre entre l offre et la demande La notion de marché, dans les économies industrialisées contemporaines, est devenue pour une large majorité d économistes la référence

Plus en détail

Baccalauréat S Centres étrangers 12 juin 2014

Baccalauréat S Centres étrangers 12 juin 2014 Durée : 4 heures Baccalauréat S Centres étrangers juin 04 A. P. M. E. P. Dans l ensemble du sujet, et pour chaque question, toute trace de recherche même incomplète, ou d initiative même non fructueuse,

Plus en détail

Validation d une méthode performante de dosage des steviols glycosides de Stevia Rebaudiana

Validation d une méthode performante de dosage des steviols glycosides de Stevia Rebaudiana Validation d une méthode performante de dosage des steviols glycosides de Stevia Rebaudiana J.M. Roussel, Consultant, Aix-en-Pce Prof. Dr. Gertrud Morlock, Chair of Food Science, JLU Giessen S. Meyer,

Plus en détail