Montage n 11 Transformateur monophasé : établissement expérimental d un modèle ; validation du modèle par un essai.

Dimension: px
Commencer à balayer dès la page:

Download "Montage n 11 Transformateur monophasé : établissement expérimental d un modèle ; validation du modèle par un essai."

Transcription

1 Montage n 11 Transformateur monophasé : établissement expérimental d un modèle ; validation du modèle par un essai. Introduction Les premiers générateurs ont été des générateurs de courant continu ( La pile de Volta ). Cette découverte va être très rapidement utilisée à grande échelle pour faire fonctionner toutes sortes de machines électriques ou s'éclairer à l'aide d'ampoules. Peu de temps après le générateur de courant alternatif apparaît. Au début ce type de générateur manque de crédibilité et d'application car ce courant qui «change de sens sans arrêt» inspire peu confiance. Mais un problème important survient quand il s'agit de faire circuler un courant continu sur longue distance. On remarque en effet rapidement d'importantes pertes de puissance lorsque le transport s'effectue sur plusieurs centaines de metres. L'invention du transformateur par Gaulard en 1883 utilisable uniquement avec un courant alternatif va permettre à celui-ci de gagner la bataille puisque en 1884 Gaulard effectue la première liaison électrique en courant alternatif «longue distance» entre l'exposition de Turin et la gare de Tanzo distante de 37 km. Trois ingénieurs Hongrois (Deri, Blathy, Zipernowsky) qui assistent à la démonstration remarque certaines imperfections de ce transformateur ( circuit magnétique ouvert ) et inventent en 1885 une version corrigée du transformateur qui a peu changé depuis. Les transformateurs sont très souvent utilisés de nos jours dès qu'il est nécessaire de modifier l'amplitude d'une tension alternative sans en modifier la fréquence. En effet, les générateurs de courant (turbine de barrage, éolienne ) produisent une tension de trop faible amplitude ( quelques kv ) pour être transportée du lieu de production au lieu de consommation sans subir trop de pertes. On utilise donc des transformateurs «élévateurs» pour faire passer la tension d quelques kv à quelques MV. Ensuite, une fois la longue distance parcourue, on utilise un transformateur «abaisseur», qui redescend la tension de MV à kv avant d'être utilisée. Nous allons, au cours de ce montage, étudier le transformateur monophasé et établir expérimentalement un modèle que nous allons ensuite valider. I. Description du transformateur En utilisant un transfo d étude. Un transformateur est constitué de 2 enroulements enroulés autour d un circuit magnétique. L enroulement primaire est alimenté par une tension variable. Traversé par un courant, il créé un champ magnétique variable qui est canalisé dans le circuit magnétique. Le 2 nd enroulement, qui reçoit un flux magnétique variable, est le siège d un phénomène d induction. On peut mesurer à ses bornes, une fem d induction e=-dφ/dt. Schéma conventionnel : Les points repèrent les bornes homologues, c'est-à-dire les bornes par lesquelles un courant entrant crée un flux positif. Ainsi le sens des bobinages dessinés n a aucune signification.

2 II. Premier modèle : le transformateur parfait II.1 Modèle du transformateur parfait 2 hypothèses sont faites dans le cas du transformateur parfait : Le circuit électrique est parfait : les 2 enroulement sont idéaux et ne possèdent pas de résistance (il n y a donc pas de pertes par effet joule dans les fils de cuivre) Le circuit magnétique est parfait : toutes les lignes de champ sont canalisées par le circuit magnétique. L intégralité du flux créé au primaire est transmis au secondaire. Il n y a donc pas de perte au niveau du circuit magnétique. II.2 Relation entre les tensions Le rôle principal d un transfo est d abaisser ou d élever la tension. Vérifions dans un premier temps la relation existant entre U1 et U2 et caractérisons le rapport de transformation m. II.2.1 Théorie dans le cas du transformateur parfait e 1 = -dϕ 1 / dt = - N 1 dϕ / dt et e 2 = -dϕ 2 / dt = - N 2 dϕ / dt C est le même flux ϕ puisqu il n y a pas de fuites, et donc e 1 / N 1 = e 2 / N 2 Soit : u 2 / u 1 = - N 2 / N 1 = -m. m est le rapport de transformation du transformateur, m est égal dans le cas du transformateur parfait au rapport du nombre de spires. Le transformateur réel peut-il être modélisé par le modèle du transformateur parfait? II.2.2 Essai à vide Alim variable W ISW800 V On fait varier U1 (mesuré avec le wattmètre) et on mesure U2 (au voltmètre) (penser à mesurer aussi P1v pour la suite du TP, mais on n en parle pas maintenant) On trace U 2v =f(u 1v ) On a une droite de coeff directeur m vide. le comparer à m théorique. Conclusion : le modèle du transfo parfait est OK pour les tensions dans le cas de l essai à vide II.3 Relation entre les courants II.3.1 Théorie dans le cas du transformateur parfait D après le théorème d Ampère, la circulation de H le long d un contour fermé, par exemple le long du circuit magnétique, est égale à la somme des courants embrassés par ce contour : La circulation de H est nulle, puisque H est uniformément nul. La somme des courants est N 1 i 1 + N 2 i 2 Donc N 1 i 1 + N 2 i 2 = 0 On dit que le courant magnétisant, nécessaire à la création de H, est nul. On peut écrire cette relation sous la forme i 1 / i 2 = - N 2 / N 1 = -m N 1 fils traversant le contour, parcourus par le courant i 1 N 2 fils traversant le contour, parcourus par le courant i 2 Contour II.3.2 Essai à vide Dans l essai à vide, I2=0. En mesurant I1, on trouve I1v 0. Le modèle du transformateur parfait ne convient pas dans l essai à vide pour les courants. Mais peut être est-ce mieux dans le cas de l essai en court-circuit. II.3.3 Essai en court-circuit Alim variable W ISW800

3 III. Quand le transformateur est en court-circuit, la puissance utile est nulle, la tension secondaire est nulle mais les courants primaire et secondaire sont importants. Il faut donc que la tension d alimentation du transformateur soit très faible : il faut commencer l essai à 0 V, puis augmenter peu à peu la tension d alimentation en surveillant l intensité du courant secondaire. La mesure du courant secondaire doit être faite à la pince ampèremétrique placée autour d un fil court formant le court-circuit car un ampèremètre a une résistance interne et ne constitue pas un bon court-circuit. On trace I 1cc =f(i 2cc ) On a une droite de coeff directeur m cc. le comparer à m théorique. Conclusion : le modèle du transfo parfait est OK pour les courants dans le cas de l essai en court circuit Est-il aussi OK pour les tensions? non. On a U 2cc =0, mais U 1cc 0 II.4 Rapport de transformation Si m v m cc, on peut calculer m= ½ (m v + m cc ) Deuxième modèle : modèle de Thévenin, vu du secondaire Le modèle du transformateur parfait n est que partiellement correct et ne correspond donc pas au transformateur réel. Nous allons essayer de trouver un autre modèle. Qu est-ce qui différentie le transfo réel du transfo parfait? Dans le transfo réel, on a des pertes dues aux résistances des enroulement, et des pertes magnétiques. Nous allons élaborer un modèle qui prenne en compte ces différentes pertes. Le modèle de Thévenin vu du secondaire est le suivant : R S j X S -m U 1cc I 2cc Au cœur de ce schéma équivalent du secondaire se trouve un transformateur parfait de rapport de transformation m qui donne donc une force électromotrice -mu 1. L impédance interne (complexe) de ce générateur est composée d un élément résistif R S et d un élément inductif L S d impédance jl S ω = jx S. S il est évident que R S représente l ensemble des résistances des bobinages, que représente la partie réactive de l impédance? Il s agit de l ensemble des inductances de fuites. III.1 Essai en court-circuit pour le courant secondaire nominal Tout transformateur doit porter les indications suivantes sur une plaque ou dans un document annexe : Tension nominale primaire U 1N ici 48 V Tension nominale secondaire U 2N ici 6 V Puissance apparent nominale S N ici 12 VA Ceci signifie que le rendement est maximal lorsque l on se place dans les conditions nominales (les pertes sont minimisées) Quand le transformateur est en court-circuit, la puissance utile est nulle, la tension secondaire est nulle mais les courants primaire et secondaire sont importants. Il faut donc que la tension d alimentation du transformateur soit très faible : il faut commencer l essai à 0 V, puis augmenter peu à peu la tension d alimentation en surveillant l intensité du courant secondaire jusqu à atteindre le courant nominal secondaire. (Tension nominale secondaire U 2N ici 6 V ; Puissance apparent nominale S N ici 12 VA ; courant nominal secondaire : I 2N = S N / U 2N = 2 A) Lors de l essai en court-circuit, comme pour l essai à vide, toute la puissance utile est consommée sous forme de pertes. Par définition, la puissance active est consommée par la résistance : P 1cc = R S I 2cc 2 et que la puissance réactive étant consommée par l inductance : Q 1cc = X S I 2cc 2 Ce qui détermine les éléments du schéma R S et X S Résultat des mesures U 2cc = 0 V I 2cc = I 2N = U 1cc = I 1cc =

4 P 1cc = cosϕ 1cc donc Q 1cc On en déduit : R S = P 1cc / I 2cc 2 = X S = Q 1cc / I 2cc 2 = Parmi les hypothèses à la base du modèle du transformateur parfait, les 2 hypothèses «pas de résistance» et «pas de fuites magnétiques» sont donc abandonnées. Pour ce transformateur, les fuites magnétiques sont très faibles, d où la valeur de X S négligeable devant R S. Par contre pour un très mauvais transformateur, par exemple un transformateur démontable, c est R S qui est inférieur à X S. III.2 Validation du modèle Le nouveau modèle est donc complètement déterminé. Nous allons maintenant tenter de valider ce modèle. III.2.1 Charge à utiliser Nous allons nous placer dans des conditions nominales, autant que faire se peut, donc U 2 6 V et I 2 2 A. La charge sera donc constituée d une résistance R ch d environ 3 ohms. On utilise une résistance variable (rhéostat) dont on règle la valeur à l ohmmètre avant de mettre la résistance dans le circuit. III.2.2 Prévision des résultats -m U 1 R S j X S 0 R ch I 2 U 2 On calcule la tension prévue (tous les éléments sont ici résistifs, le calcul peut se faire en valeur efficace) : U 2th = m U 1 R ch / (R ch + R S ) U 2th = Attention : ce calcul n est valable que si on a un très bon transfo, c est à dire si Xs est négligeable devant Rs. Sinon, il faut construire une représentation de Fresnel. Généralement, on utilisera le schéma simplifié vu du secondaire ainsi que ce diagramme pour calculer une grandeur en particulier à partir de la relation vectorielle suivante : V 20 = V 2+ RS I 2+ Xs I 2 III.2.3 Vérification par la mesure U 2mes = Les écarts sont dûs essentiellement à Rch très faible. IV. Troisième modèle (si on a le temps) I 1 - m I 2 I 2 R S j X S U 2 U 1 R F j X F -m U 1 IV.1 Raisonnement conduisant aux éléments à ajouter au modèle Au cœur du modèle se trouve le transformateur parfait.

5 A vide le courant secondaire est nul et donc le courant primaire du transformateur parfait aussi (rappel i 1 = -m i 2 pour ce transformateur parfait). Le courant primaire à vide doit s écouler, il ne peut le faire dans le primaire du transformateur parfait, il doit le faire dans un dipôle en dérivation. Ce dipôle doit comporter 2 éléments en dérivations avec l entrée du transformateur, actifs et réactifs : R F qui «consomme» les pertes fer et j X F qui «consomme» la puissance réactive à vide. IV.2 Détermination des éléments à ajouter au modèle par un essai à vide à tension nominale On se place à U 1N =48V Dans l essai à vide, la puissance utile est nulle. Donc toute la puissance délivrée par le primaire est perdue par effet joule dans le primaire (I 2 =0) et par pertes magnétiques. Donc P 1v = P joule1 + P fer. On mesure P 1v = On peut calculer Pjoule1 en mesurant I 1N = et r 1 = (à l ohmmètre en 2 isolant le transfo du système). P joule1 = r 1 I 1N D où P fer = P 1v P joule1 =P v1. On peut tracer P 1v = f(u 1v 2 ) proportionnelles à U 2 1v. p fer =U 2 1V / R F et p fer = P 1V Q 1V = U 2 1v / X F Conclusion et on montre que les pertes fer (courants de Foucault et hystérésis) sont Nous avons réussi à modéliser un transformateur réel en tenant compte de ses imperfection par rapport au modèle du transformateur parfait : les pertes fer et les pertes joule sont prises en compte. On pourrait aller plus loin en calculant le rendement du transformateur, nous en avons maintenant toutes les données en main pour le calculer. Tous ces essais sont réalisés par les constructeurs de transformateurs afin de caractériser leurs produit. On arrive maintenant à fabriquer de très bons transformateurs avec d excellent rendements (99 %) BIBLIO Bellier p.69 Duffait Capes p.91 Quaranta T4 p.487 Questions donc R F = U 1V 2 / P 1V donc X F = U 1 2 / Q 1V Q1 : quels sont les grands champs d application des transfo? R1 : distribution du courant pour minimiser les pertes par effet joule dans les lignes. On transporte à très haute tension. Q2 : quel est le rapport de bobinage dans les transfo EDF? R2 : m=u2/u1= / 230 = 200 Q3 : autres application des transfo? R3 : isolement (pour la protection) et adaptation d impédance Q4 : comment réduire les pertes fer? R4 : les courants de Foucault sont des courants volumiques. On réduit donc le volume en feuilletant le matériau. Concernant les pertes par hystérésis, il suffit de choisir un matériau dont l aire du cycle est la + petite possible Q5 : pourquoi mesure-t on les pertes fer quand le secondaire est ouvert? R5 : P1=P2 + Pfer + Pcuivre. Or, P2=0 et Pcuivre=0 (car i faibles)

6 Nature des pertes mesurées lors de l essai en court-circuit Dans l essai en court-circuit, la puissance utile est toujours nulle. Donc toute la puissance délivrée par le primaire est perdue par effet joule dans le primaire et le secondaire et par pertes magnétiques. Les intensités des courants étant nominales, les pertes par effet Joules sont nominales. La tension U 1cc étant faible, les pertes fer sont très faibles ( U 1cc 2 << U 1v 2 ) La puissance mesurée P 1cc est donc égale aux pertes par effet Joule dans les fils, appelées «pertes cuivre». Remarque : on peut montrer que, dans cet essai en court-circuit, on reste proche du modèle du transformateur parfait pour les courants et donc que I 2cc / I 1cc = m cc est une bonne détermination de m. Si on ne trouve pas la même valeur pour les deux rapports m v et m cc, il est conseillé dans les livres d électrotechnique de prendre comme valeur de m la moyenne des deux..

CARACTERISTIQUE D UNE DIODE ET POINT DE FONCTIONNEMENT

CARACTERISTIQUE D UNE DIODE ET POINT DE FONCTIONNEMENT TP CIRCUITS ELECTRIQUES R.DUPERRAY Lycée F.BUISSON PTSI CARACTERISTIQUE D UNE DIODE ET POINT DE FONCTIONNEMENT OBJECTIFS Savoir utiliser le multimètre pour mesurer des grandeurs électriques Obtenir expérimentalement

Plus en détail

CH 11: PUIssance et Énergie électrique

CH 11: PUIssance et Énergie électrique Objectifs: CH 11: PUssance et Énergie électrique Les exercices Tests ou " Vérifie tes connaissances " de chaque chapitre sont à faire sur le cahier de brouillon pendant toute l année. Tous les schémas

Plus en détail

CHAPITRE IX. Modèle de Thévenin & modèle de Norton. Les exercices EXERCICE N 1 R 1 R 2

CHAPITRE IX. Modèle de Thévenin & modèle de Norton. Les exercices EXERCICE N 1 R 1 R 2 CHPITRE IX Modèle de Thévenin & modèle de Norton Les exercices EXERCICE N 1 R 3 E = 12V R 1 = 500Ω R 2 = 1kΩ R 3 = 1kΩ R C = 1kΩ E R 1 R 2 U I C R C 0V a. Dessiner le générateur de Thévenin vu entre les

Plus en détail

Chapitre 7: Énergie et puissance électrique. Lequel de vous deux est le plus puissant? L'énergie dépensée par les deux est-elle différente?

Chapitre 7: Énergie et puissance électrique. Lequel de vous deux est le plus puissant? L'énergie dépensée par les deux est-elle différente? CHAPITRE 7 ÉNERGIE ET PUISSANCE ÉLECTRIQUE 2.4.0 Découvrir les grandeurs physiques qui influencent l'énergie et la puissance en électricité. Vous faites le grand ménage dans le sous-sol de la maison. Ton

Plus en détail

Chapitre 7. Circuits Magnétiques et Inductance. 7.1 Introduction. 7.1.1 Production d un champ magnétique

Chapitre 7. Circuits Magnétiques et Inductance. 7.1 Introduction. 7.1.1 Production d un champ magnétique Chapitre 7 Circuits Magnétiques et Inductance 7.1 Introduction 7.1.1 Production d un champ magnétique Si on considère un conducteur cylindrique droit dans lequel circule un courant I (figure 7.1). Ce courant

Plus en détail

CORRECTION TP Multimètres - Mesures de résistances - I. Mesure directe de résistors avec ohmmètre - comparaison de deux instruments de mesure

CORRECTION TP Multimètres - Mesures de résistances - I. Mesure directe de résistors avec ohmmètre - comparaison de deux instruments de mesure Introduction CORRECTION TP Multimètres - Mesures de résistances - La mesure d une résistance s effectue à l aide d un multimètre. Utilisé en mode ohmmètre, il permet une mesure directe de résistances hors

Plus en détail

Cours d électricité. Circuits électriques en courant constant. Mathieu Bardoux. 1 re année

Cours d électricité. Circuits électriques en courant constant. Mathieu Bardoux. 1 re année Cours d électricité Circuits électriques en courant constant Mathieu Bardoux mathieu.bardoux@univ-littoral.fr IUT Saint-Omer / Dunkerque Département Génie Thermique et Énergie 1 re année Objectifs du chapitre

Plus en détail

électricité Pourquoi le courant, dans nos maison, est-il alternatif?

électricité Pourquoi le courant, dans nos maison, est-il alternatif? CHAPITRE 4 : Production de l él électricité Pourquoi le courant, dans nos maison, est-il alternatif? D où vient le courant? Comment arrive-t-il jusqu à nous? 1 la fabrication du courant 2 Les transformateurs

Plus en détail

Précision d un résultat et calculs d incertitudes

Précision d un résultat et calculs d incertitudes Précision d un résultat et calculs d incertitudes PSI* 2012-2013 Lycée Chaptal 3 Table des matières Table des matières 1. Présentation d un résultat numérique................................ 4 1.1 Notations.........................................................

Plus en détail

Les résistances de point neutre

Les résistances de point neutre Les résistances de point neutre Lorsque l on souhaite limiter fortement le courant dans le neutre du réseau, on utilise une résistance de point neutre. Les risques de résonance parallèle ou série sont

Plus en détail

Les Mesures Électriques

Les Mesures Électriques Les Mesures Électriques Sommaire 1- La mesure de tension 2- La mesure de courant 3- La mesure de résistance 4- La mesure de puissance en monophasé 5- La mesure de puissance en triphasé 6- La mesure de

Plus en détail

ELEC2753 Electrotechnique examen du 11/06/2012

ELEC2753 Electrotechnique examen du 11/06/2012 ELEC2753 Electrotechnique examen du 11/06/2012 Pour faciliter la correction et la surveillance, merci de répondre aux 3 questions sur des feuilles différentes et d'écrire immédiatement votre nom sur toutes

Plus en détail

1 000 W ; 1 500 W ; 2 000 W ; 2 500 W. La chambre que je dois équiper a pour dimensions : longueur : 6 m largeur : 4 m hauteur : 2,50 m.

1 000 W ; 1 500 W ; 2 000 W ; 2 500 W. La chambre que je dois équiper a pour dimensions : longueur : 6 m largeur : 4 m hauteur : 2,50 m. EXERCICES SUR LA PUISSANCE DU COURANT ÉLECTRIQUE Exercice 1 En zone tempérée pour une habitation moyennement isolée il faut compter 40 W/m 3. Sur un catalogue, 4 modèles de radiateurs électriques sont

Plus en détail

CH IV) Courant alternatif Oscilloscope.

CH IV) Courant alternatif Oscilloscope. CH IV) Courant alternatif Oscilloscope. Il existe deux types de courant, le courant continu et le courant alternatif. I) Courant alternatif : Observons une coupe transversale d une «dynamo» de vélo. Galet

Plus en détail

M HAMED EL GADDAB & MONGI SLIM

M HAMED EL GADDAB & MONGI SLIM Sous la direction : M HAMED EL GADDAB & MONGI SLIM Préparation et élaboration : AMOR YOUSSEF Présentation et animation : MAHMOUD EL GAZAH MOHSEN BEN LAMINE AMOR YOUSSEF Année scolaire : 2007-2008 RECUEIL

Plus en détail

1 Systèmes triphasés symétriques

1 Systèmes triphasés symétriques 1 Systèmes triphasés symétriques 1.1 Introduction Un système triphasé est un ensemble de grandeurs (tensions ou courants) sinusoïdales de même fréquence, déphasées les unes par rapport aux autres. Le système

Plus en détail

Cours d électricité. Introduction. Mathieu Bardoux. 1 re année. IUT Saint-Omer / Dunkerque Département Génie Thermique et Énergie

Cours d électricité. Introduction. Mathieu Bardoux. 1 re année. IUT Saint-Omer / Dunkerque Département Génie Thermique et Énergie Cours d électricité Introduction Mathieu Bardoux mathieu.bardoux@univ-littoral.fr IUT Saint-Omer / Dunkerque Département Génie Thermique et Énergie 1 re année Le terme électricité provient du grec ἤλεκτρον

Plus en détail

Solutions pour la mesure. de courant et d énergie

Solutions pour la mesure. de courant et d énergie Solutions pour la mesure de courant et d énergie Mesure et analyse de signal Solutions WAGO pour la surveillance et l économie d énergie Boucles de mesure Rogowski, série 855 pour la mesure non intrusive

Plus en détail

Chapitre 1 Régime transitoire dans les systèmes physiques

Chapitre 1 Régime transitoire dans les systèmes physiques Chapitre 1 Régime transitoire dans les systèmes physiques Savoir-faire théoriques (T) : Écrire l équation différentielle associée à un système physique ; Faire apparaître la constante de temps ; Tracer

Plus en détail

Charges électriques - Courant électrique

Charges électriques - Courant électrique Courant électrique Charges électriques - Courant électrique Exercice 6 : Dans la chambre à vide d un microscope électronique, un faisceau continu d électrons transporte 3,0 µc de charges négatives pendant

Plus en détail

CHAPITRE IX : Les appareils de mesures électriques

CHAPITRE IX : Les appareils de mesures électriques CHAPITRE IX : Les appareils de mesures électriques IX. 1 L'appareil de mesure qui permet de mesurer la différence de potentiel entre deux points d'un circuit est un voltmètre, celui qui mesure le courant

Plus en détail

I GENERALITES SUR LES MESURES

I GENERALITES SUR LES MESURES 2 Dans le cas d intervention de dépannage l usage d un multimètre est fréquent. Cet usage doit respecter des méthodes de mesure et des consignes de sécurité. 1/ Analogie. I GENERALITES SUR LES MESURES

Plus en détail

Séquence 14 : puissance et énergie électrique Cours niveau troisième

Séquence 14 : puissance et énergie électrique Cours niveau troisième Séquence 14 : puissance et énergie électrique Cours niveau troisième Objectifs : - Savoir que : o Le watt (W) est l unité de puissance o Le joule (J) est l unité de l énergie o L intensité du courant électrique

Plus en détail

TP 7 : oscillateur de torsion

TP 7 : oscillateur de torsion TP 7 : oscillateur de torsion Objectif : étude des oscillations libres et forcées d un pendule de torsion 1 Principe général 1.1 Définition Un pendule de torsion est constitué par un fil large (métallique)

Plus en détail

Electrotechnique. Fabrice Sincère ; version 3.0.5 http://pagesperso-orange.fr/fabrice.sincere/

Electrotechnique. Fabrice Sincère ; version 3.0.5 http://pagesperso-orange.fr/fabrice.sincere/ Electrotechnique Fabrice Sincère ; version 3.0.5 http://pagesperso-orange.fr/fabrice.sincere/ 1 Sommaire 1 ère partie : machines électriques Chapitre 1 Machine à courant continu Chapitre 2 Puissances électriques

Plus en détail

Les puissances 4. 4.1. La notion de puissance. 4.1.1. La puissance c est l énergie pendant une seconde CHAPITRE

Les puissances 4. 4.1. La notion de puissance. 4.1.1. La puissance c est l énergie pendant une seconde CHAPITRE 4. LES PUISSANCES LA NOTION DE PUISSANCE 88 CHAPITRE 4 Rien ne se perd, rien ne se crée. Mais alors que consomme un appareil électrique si ce n est les électrons? La puissance pardi. Objectifs de ce chapitre

Plus en détail

Chapitre 7 : CHARGES, COURANT, TENSION S 3 F

Chapitre 7 : CHARGES, COURANT, TENSION S 3 F Chapitre 7 : CHARGES, COURANT, TENSION S 3 F I) Electrostatique : 1) Les charges électriques : On étudie l électricité statique qui apparaît par frottement sur un barreau d ébonite puis sur un barreau

Plus en détail

Energie et conversions d énergie

Energie et conversions d énergie Chapitre 6 et conversions d énergie I) NOTIONS GENERALES Les différentes formes d énergie : électrique (liée aux courants et tensions) lumineuse (liée à un mouvement ou à l altitude) thermique (liée à

Plus en détail

MATIE RE DU COURS DE PHYSIQUE

MATIE RE DU COURS DE PHYSIQUE MATIE RE DU COURS DE PHYSIQUE Titulaire : A. Rauw 5h/semaine 1) MÉCANIQUE a) Cinématique ii) Référentiel Relativité des notions de repos et mouvement Relativité de la notion de trajectoire Référentiel

Plus en détail

Méthodes de Caractérisation des Matériaux. Cours, annales http://www.u-picardie.fr/~dellis/

Méthodes de Caractérisation des Matériaux. Cours, annales http://www.u-picardie.fr/~dellis/ Méthodes de Caractérisation des Matériaux Cours, annales http://www.u-picardie.fr/~dellis/ 1. Symboles standards et grandeurs électriques 3 2. Le courant électrique 4 3. La résistance électrique 4 4. Le

Plus en détail

I- Définitions des signaux.

I- Définitions des signaux. 101011011100 010110101010 101110101101 100101010101 Du compact-disc, au DVD, en passant par l appareil photo numérique, le scanner, et télévision numérique, le numérique a fait une entrée progressive mais

Plus en détail

LES APPAREILS A DEVIATION EN COURANT CONTINU ( LES APPREILS MAGNETOELECTRIQUES)

LES APPAREILS A DEVIATION EN COURANT CONTINU ( LES APPREILS MAGNETOELECTRIQUES) Chapitre 3 LES APPARELS A DEVATON EN COURANT CONTNU ( LES APPRELS MAGNETOELECTRQUES) - PRNCPE DE FONCTONNEMENT : Le principe de fonctionnement d un appareil magnéto-électrique est basé sur les forces agissant

Plus en détail

4.14 Influence de la température sur les résistances

4.14 Influence de la température sur les résistances nfluence de la température sur la résistance 4.14 nfluence de la température sur les résistances ne résistance R, parcourue par un courant pendant un certain temps t, dissipe une énergie calorifique (W

Plus en détail

Physique, chapitre 8 : La tension alternative

Physique, chapitre 8 : La tension alternative Physique, chapitre 8 : La tension alternative 1. La tension alternative 1.1 Différence entre une tension continue et une tension alternative Une tension est dite continue quand sa valeur ne change pas.

Plus en détail

Circuits RL et RC. Chapitre 5. 5.1 Inductance

Circuits RL et RC. Chapitre 5. 5.1 Inductance Chapitre 5 Circuits RL et RC Ce chapitre présente les deux autres éléments linéaires des circuits électriques : l inductance et la capacitance. On verra le comportement de ces deux éléments, et ensuite

Plus en détail

La température du filament mesurée et mémorisée par ce thermomètre Infra-Rouge(IR) est de 285 C. EST-CE POSSIBLE?

La température du filament mesurée et mémorisée par ce thermomètre Infra-Rouge(IR) est de 285 C. EST-CE POSSIBLE? INVESTIGATION De nombreux appareils domestiques, convecteurs, chauffe-biberon, cafetière convertissent l énergie électrique en chaleur. Comment interviennent les grandeurs électriques, tension, intensité,

Plus en détail

Les Conditions aux limites

Les Conditions aux limites Chapitre 5 Les Conditions aux limites Lorsque nous désirons appliquer les équations de base de l EM à des problèmes d exploration géophysique, il est essentiel, pour pouvoir résoudre les équations différentielles,

Plus en détail

CHAPITRE XIII : Les circuits à courant alternatif : déphasage, représentation de Fresnel, phaseurs et réactance.

CHAPITRE XIII : Les circuits à courant alternatif : déphasage, représentation de Fresnel, phaseurs et réactance. XIII. 1 CHAPITRE XIII : Les circuits à courant alternatif : déphasage, représentation de Fresnel, phaseurs et réactance. Dans les chapitres précédents nous avons examiné des circuits qui comportaient différentes

Plus en détail

Instruments de mesure

Instruments de mesure Chapitre 9a LES DIFFERENTS TYPES D'INSTRUMENTS DE MESURE Sommaire Le multimètre L'oscilloscope Le fréquencemètre le wattmètre Le cosphimètre Le générateur de fonctions Le traceur de Bodes Les instruments

Plus en détail

Eléments constitutifs et synthèse des convertisseurs statiques. Convertisseur statique CVS. K à séquences convenables. Source d'entrée S1

Eléments constitutifs et synthèse des convertisseurs statiques. Convertisseur statique CVS. K à séquences convenables. Source d'entrée S1 1 Introduction Un convertisseur statique est un montage utilisant des interrupteurs à semiconducteurs permettant par une commande convenable de ces derniers de régler un transfert d énergie entre une source

Plus en détail

L ÉLECTROCUTION Intensité Durée Perception des effets 0,5 à 1 ma. Seuil de perception suivant l'état de la peau 8 ma

L ÉLECTROCUTION Intensité Durée Perception des effets 0,5 à 1 ma. Seuil de perception suivant l'état de la peau 8 ma TP THÈME LUMIÈRES ARTIFICIELLES 1STD2A CHAP.VI. INSTALLATION D ÉCLAIRAGE ÉLECTRIQUE SÉCURISÉE I. RISQUES D UNE ÉLECTROCUTION TP M 02 C PAGE 1 / 4 Courant Effets électriques 0,5 ma Seuil de perception -

Plus en détail

Electricité : caractéristiques et point de fonctionnement d un circuit

Electricité : caractéristiques et point de fonctionnement d un circuit Electricité : caractéristiques et point de fonctionnement d un circuit ENONCE : Une lampe à incandescence de 6 V 0,1 A est branchée aux bornes d une pile de force électromotrice E = 6 V et de résistance

Plus en détail

Exercice n 1: La lampe ci-dessous comporte 2 indications: Exercice n 2: ( compléter les réponses sans espaces)

Exercice n 1: La lampe ci-dessous comporte 2 indications: Exercice n 2: ( compléter les réponses sans espaces) Exercice n 1: La lampe ci-dessous comporte 2 indications: Complétez le tableau en indiquant quelle est la grandeur indiquée et son unité: indication grandeur unité 12 V 25W Pour cela je dois appliquer

Plus en détail

Electricité Générale

Electricité Générale Electricité Générale Electricité 1 Livret 4 Résistance Loi d Ohm Loi de Joule Mise à jour février 2007 *FC1207041.1* FC 1207 04 1.1 Centre National d Enseignement et de Formation A Distance Réalisation

Plus en détail

«LES ALTERNATEURS DE VOITURES»

«LES ALTERNATEURS DE VOITURES» MENUGE CECILE BELVAL FRANCOIS BRAS FRANCOIS CADART JULIEN GAIGNEUR GUILLAUME «LES ALTERNATEURS DE VOITURES» LYCEE EDOUARD BRANLY BOULOGNE SUR MER Aidés par nos professeurs : M Buridant, M Courtois, M Ducrocq

Plus en détail

Electrocinétique Livret élève

Electrocinétique Livret élève telier de Physique Secondaire supérieur Electrocinétique Livret élève ouquelle Véronique Pire Joëlle Faculté des Sciences Diffusé par Scienceinfuse, ntenne de Formation et de Promotion du secteur Sciences

Plus en détail

véhicule hybride (première

véhicule hybride (première La motorisation d un véhicule hybride (première HERVÉ DISCOURS [1] La cherté et la raréfaction du pétrole ainsi que la sensibilisation du public à l impact de son exploitation sur l environnement conduisent

Plus en détail

Electrotechnique: Electricité Avion,

Electrotechnique: Electricité Avion, Electrotechnique: Electricité Avion, La machine à Courant Continu Dr Franck Cazaurang, Maître de conférences, Denis Michaud, Agrégé génie Electrique, Institut de Maintenance Aéronautique UFR de Physique,

Plus en détail

Mesures et incertitudes

Mesures et incertitudes En physique et en chimie, toute grandeur, mesurée ou calculée, est entachée d erreur, ce qui ne l empêche pas d être exploitée pour prendre des décisions. Aujourd hui, la notion d erreur a son vocabulaire

Plus en détail

DÉPANNAGE SUR PLACE D UN MOTEUR À COURANT CONTINU

DÉPANNAGE SUR PLACE D UN MOTEUR À COURANT CONTINU DÉPANNAGE SUR PLACE D UN MOTEUR À COURANT CONTINU Par Preben Christiansen, EASA Ingénieur Conseil (retraité) Il s'avère parfois difficile d effectuer un dépannage de moteurs à courant continu sur place,

Plus en détail

TS 35 Numériser. Activité introductive - Exercice et démarche expérimentale en fin d activité Notions et contenus du programme de Terminale S

TS 35 Numériser. Activité introductive - Exercice et démarche expérimentale en fin d activité Notions et contenus du programme de Terminale S FICHE Fiche à destination des enseignants TS 35 Numériser Type d'activité Activité introductive - Exercice et démarche expérimentale en fin d activité Notions et contenus du programme de Terminale S Compétences

Plus en détail

1 ère partie : tous CAP sauf hôtellerie et alimentation CHIMIE ETRE CAPABLE DE. PROGRAMME - Atomes : structure, étude de quelques exemples.

1 ère partie : tous CAP sauf hôtellerie et alimentation CHIMIE ETRE CAPABLE DE. PROGRAMME - Atomes : structure, étude de quelques exemples. Référentiel CAP Sciences Physiques Page 1/9 SCIENCES PHYSIQUES CERTIFICATS D APTITUDES PROFESSIONNELLES Le référentiel de sciences donne pour les différentes parties du programme de formation la liste

Plus en détail

Convertisseurs Statiques & Machines

Convertisseurs Statiques & Machines MASTER EEA Parcours CESE Travaux Pratiques Convertisseurs Statiques & Machines EM7ECEBM V. BLEY D. RISALETTO D. MALEC J.P. CAMBRONNE B. JAMMES 0-0 TABLE DES MATIERES Rotation des TP Binôme Séance Séance

Plus en détail

CHAPITRE VIII : Les circuits avec résistances ohmiques

CHAPITRE VIII : Les circuits avec résistances ohmiques CHAPITRE VIII : Les circuits avec résistances ohmiques VIII. 1 Ce chapitre porte sur les courants et les différences de potentiel dans les circuits. VIII.1 : Les résistances en série et en parallèle On

Plus en détail

Génie Industriel et Maintenance

Génie Industriel et Maintenance Génie Industriel et Maintenance Pour qu aucun de ces systèmes ne tombe en panne. Plan de la visite 1 2 3 6 4 5 Guide visite du département Génie Industriel et Maintenance 1 Salles Informatiques Utilisation

Plus en détail

Cahier technique n 18

Cahier technique n 18 Collection Technique... Cahier technique n 8 Analyse des réseaux triphasés en régime perturbé à l aide des composantes symétriques B. de Metz-Noblat Building a New lectric World * Les Cahiers Techniques

Plus en détail

MESURE DE LA PUISSANCE

MESURE DE LA PUISSANCE Chapitre 9 I- INTRODUCTION : MESURE DE L PUISSNCE La mesure de la puissance fait appel à un appareil de type électrodynamique, qui est le wattmètre. Sur le cadran d un wattmètre, on trouve : la classe

Plus en détail

de mesure d intérieur

de mesure d intérieur Distribution Moyenne Tension Catalogue 2012 Transformateurs de mesure d intérieur Transformateurs de courant Transformateurs de tension Vous aider à tirer le meilleur de votre énergie Transformateurs

Plus en détail

BACCALAURÉAT PROFESSIONNEL EPREUVE DE TRAVAUX PRATIQUES DE SCIENCES PHYSIQUES SUJET A.1

BACCALAURÉAT PROFESSIONNEL EPREUVE DE TRAVAUX PRATIQUES DE SCIENCES PHYSIQUES SUJET A.1 TP A.1 Page 1/5 BACCALAURÉAT PROFESSIONNEL EPREUVE DE TRAVAUX PRATIQUES DE SCIENCES PHYSIQUES SUJET A.1 Ce document comprend : - une fiche descriptive du sujet destinée à l examinateur : Page 2/5 - une

Plus en détail

Electron ELECTRICITE. Pour les détails: www.electron.it. Design, Production & Trading. Catalogue Synthétique Rev 01/2007 Page 17

Electron ELECTRICITE. Pour les détails: www.electron.it. Design, Production & Trading. Catalogue Synthétique Rev 01/2007 Page 17 ELECTRICITE Catalogue Synthétique Rev 01/2007 Page 17 SYSTEME DIDACTIQUE FONDEMENTS DE L ELECTRICITE A11 INSTRUMENTS ELECTRIQUES A12 SYSTEME DIDACTIQUE D INSTALLATIONS ELECTRIQUES A21 A24 SYSTEME DIDACTIQUE

Plus en détail

PRODUIRE DES SIGNAUX 1 : LES ONDES ELECTROMAGNETIQUES, SUPPORT DE CHOIX POUR TRANSMETTRE DES INFORMATIONS

PRODUIRE DES SIGNAUX 1 : LES ONDES ELECTROMAGNETIQUES, SUPPORT DE CHOIX POUR TRANSMETTRE DES INFORMATIONS PRODUIRE DES SIGNAUX 1 : LES ONDES ELECTROMAGNETIQUES, SUPPORT DE CHOIX POUR TRANSMETTRE DES INFORMATIONS Matériel : Un GBF Un haut-parleur Un microphone avec adaptateur fiche banane Une DEL Une résistance

Plus en détail

Contribution à la conception par la simulation en électronique de puissance : application à l onduleur basse tension

Contribution à la conception par la simulation en électronique de puissance : application à l onduleur basse tension Contribution à la conception par la simulation en électronique de puissance : application à l onduleur basse tension Cyril BUTTAY CEGELY VALEO 30 novembre 2004 Cyril BUTTAY Contribution à la conception

Plus en détail

Electricité. Electrostatique

Electricité. Electrostatique 5G1 - Electrostatique - Page 1 Electricité Electrostatique Cette partie du cours de physique étudie le comportement des charges électriques au repos ainsi que l influence de celles-ci les unes sur les

Plus en détail

La conversion de données : Convertisseur Analogique Numérique (CAN) Convertisseur Numérique Analogique (CNA)

La conversion de données : Convertisseur Analogique Numérique (CAN) Convertisseur Numérique Analogique (CNA) La conversion de données : Convertisseur Analogique Numérique (CAN) Convertisseur Numérique Analogique (CNA) I. L'intérêt de la conversion de données, problèmes et définitions associés. I.1. Définitions:

Plus en détail

Union générale des étudiants de Tunisie Bureau de l institut Préparatoire Aux Etudes D'ingénieurs De Tunis. Modèle de compte-rendu de TP.

Union générale des étudiants de Tunisie Bureau de l institut Préparatoire Aux Etudes D'ingénieurs De Tunis. Modèle de compte-rendu de TP. Union générale des étudiants de Tunisie Modèle de compte-rendu de TP Dipôle RC Ce document a été publié pour l unique but d aider les étudiants, il est donc strictement interdit de l utiliser intégralement

Plus en détail

Chap 1: Toujours plus vite... Introduction: Comment déterminer la vitesse d une voiture?

Chap 1: Toujours plus vite... Introduction: Comment déterminer la vitesse d une voiture? Thème 2 La sécurité Chap 1: Toujours plus vite... Introduction: Comment déterminer la vitesse d une voiture?! Il faut deux informations Le temps écoulé La distance parcourue Vitesse= distance temps > Activité

Plus en détail

CIRCUIT DE CHARGE BOSCH

CIRCUIT DE CHARGE BOSCH LA GUZZITHÈQUE 1/5 10/06/06 CIRCUIT DE CHARGE BOSCH Ce document est issu d un article de l Albatros, revue de liaison du MGCF, lui-même issu du Gambalunga, revue anglaise de liaison du MGC d Angleterre.

Plus en détail

F = B * I * L. Force en Newtons Induction magnétique en teslas Intensité dans le conducteur en ampères Longueur du conducteur en mètres

F = B * I * L. Force en Newtons Induction magnétique en teslas Intensité dans le conducteur en ampères Longueur du conducteur en mètres LE M O TE U R A C O U R A N T C O N TI N U La loi de LAPLACE Un conducteur traversé par un courant et placé dans un champ magnétique est soumis à une force dont le sens est déterminée par la règle des

Plus en détail

Cours 9. Régimes du transistor MOS

Cours 9. Régimes du transistor MOS Cours 9. Régimes du transistor MOS Par Dimitri galayko Unité d enseignement Élec-info pour master ACSI à l UPMC Octobre-décembre 005 Dans ce document le transistor MOS est traité comme un composant électronique.

Plus en détail

SUJET ZÉRO Epreuve d'informatique et modélisation de systèmes physiques

SUJET ZÉRO Epreuve d'informatique et modélisation de systèmes physiques SUJET ZÉRO Epreuve d'informatique et modélisation de systèmes physiques Durée 4 h Si, au cours de l épreuve, un candidat repère ce qui lui semble être une erreur d énoncé, d une part il le signale au chef

Plus en détail

PHY2723 Hiver 2015. Champs magnétiques statiques. cgigault@uottawa.ca. Notes partielles accompagnant le cours.

PHY2723 Hiver 2015. Champs magnétiques statiques. cgigault@uottawa.ca. Notes partielles accompagnant le cours. PHY2723 Hiver 2015 Champs magnétiques statiques cgigault@uottawa.ca otes partielles accompagnant le cours. Champs magnétiques statiques (Chapitre 5) Charges électriques statiques ρ v créent champ électrique

Plus en détail

Caractéristiques des ondes

Caractéristiques des ondes Caractéristiques des ondes Chapitre Activités 1 Ondes progressives à une dimension (p 38) A Analyse qualitative d une onde b Fin de la Début de la 1 L onde est progressive puisque la perturbation se déplace

Plus en détail

TUTORIAL 1 ETUDE D UN MODELE SIMPLIFIE DE PORTIQUE PLAN ARTICULE

TUTORIAL 1 ETUDE D UN MODELE SIMPLIFIE DE PORTIQUE PLAN ARTICULE TUTORIAL 1 ETUDE D UN MODELE SIMPLIFIE DE PORTIQUE PLAN ARTICULE L'objectif de ce tutorial est de décrire les différentes étapes dans CASTOR Concept / FEM permettant d'effectuer l'analyse statique d'une

Plus en détail

Guide de correction TD 6

Guide de correction TD 6 Guid d corrction TD 6 JL Monin nov 2004 Choix du point d polarisation 1- On décrit un montag mttur commun à résistanc d mttur découplé, c st à dir avc un condnsatur n parallèl sur R. La condition d un

Plus en détail

CHAPITRE IV Oscillations libres des systèmes à plusieurs degrés de liberté

CHAPITRE IV Oscillations libres des systèmes à plusieurs degrés de liberté CHAPITE IV Oscillations ibres des Systèmes à plusieurs derés de liberté 010-011 CHAPITE IV Oscillations libres des systèmes à plusieurs derés de liberté Introduction : Dans ce chapitre, nous examinons

Plus en détail

Module 3 : L électricité

Module 3 : L électricité Sciences 9 e année Nom : Classe : Module 3 : L électricité Partie 1 : Électricité statique et courant électrique (chapitre 7 et début du chapitre 8) 1. L électrostatique a. Les charges et les décharges

Plus en détail

Références pour la commande

Références pour la commande avec fonction de détection de défaillance G3PC Détecte les dysfonctionnements des relais statiques utilisés pour la régulation de température des éléments chauffants et émet simultanément des signaux d'alarme.

Plus en détail

RÉFÉRENTIEL TECHNIQUE

RÉFÉRENTIEL TECHNIQUE SYSTÈMES ÉNERGÉTIQUES INSULAIRES RÉFÉRENTIEL TECHNIQUE CONTRÔLES DES PERFORMANCES AVANT LA MISE EN EXPLOITATION DEFINITIVE DES INSTALLATIONS DE PRODUCTION D ÉNERGIE ÉLECTRIQUE RACCORDÉES EN HTB DANS LES

Plus en détail

Compatibilité Électromagnétique

Compatibilité Électromagnétique Compatibilité Électromagnétique notions générales et applications à l électronique de puissance Ir. Stéphane COETS 18 mai 2005 Journée d étude en Électronique de Puissance 1 Plan de l exposé La Compatibilité

Plus en détail

Module d Electricité. 2 ème partie : Electrostatique. Fabrice Sincère (version 3.0.1) http://pagesperso-orange.fr/fabrice.sincere

Module d Electricité. 2 ème partie : Electrostatique. Fabrice Sincère (version 3.0.1) http://pagesperso-orange.fr/fabrice.sincere Module d Electricité 2 ème partie : Electrostatique Fabrice Sincère (version 3.0.1) http://pagesperso-orange.fr/fabrice.sincere 1 Introduction Principaux constituants de la matière : - protons : charge

Plus en détail

TRAVAUX PRATIQUES SCIENTIFIQUES SUR SYSTÈME

TRAVAUX PRATIQUES SCIENTIFIQUES SUR SYSTÈME Baccalauréat Professionnel SYSTÈMES ÉLECTRONIQUES NUMÉRIQUES Champ professionnel : Alarme Sécurité Incendie SOUS - EPREUVE E12 TRAVAUX PRATIQUES SCIENTIFIQUES SUR SYSTÈME Durée 3 heures coefficient 2 Note

Plus en détail

Électricité au service des machines. heig-vd. Chapitre 3. Alimentations électriques, courant alternatif 3-1

Électricité au service des machines. heig-vd. Chapitre 3. Alimentations électriques, courant alternatif 3-1 heig-vd Électricité au service des machines Chapitre 3 Alimentations électriques, courant alternatif 3-1 Électricité au service des machines Alimentations électriques, courant alternatif heig-vd 3 Alimentations

Plus en détail

GENERALITES SUR LA MESURE DE TEMPERATURE

GENERALITES SUR LA MESURE DE TEMPERATURE Distributeur exclusif de GENERALITES SUR LA MESURE DE TEMPERATURE INTRODUCTION...2 GENERALITES SUR LA MESURE DE TEMPERATURE...2 La température...2 Unités de mesure de température...3 Echelle de température...3

Plus en détail

Circuit comportant plusieurs boucles

Circuit comportant plusieurs boucles Sommaire de la séquence 3 Séance 1 Qu est-ce qu un circuit comportant des dérivations? A Les acquis du primaire B Activités expérimentales C Exercices d application Séance 2 Court-circuit dans un circuit

Plus en détail

Monte charge de cuisine PRESENTATION DU MONTE CHARGE

Monte charge de cuisine PRESENTATION DU MONTE CHARGE Nom.. Prénom.. Monte charge de cuisine Réalisation /0 Mise en service /0 Dépannage /0 PRESENTATION DU MONTE CHARGE M ~ S0 (Atu) S (appel pour monter) S (descente) H (descendez les déchets S.V.P.!) Sh Salle

Plus en détail

10 leçon 2. Leçon n 2 : Contact entre deux solides. Frottement de glissement. Exemples. (PC ou 1 er CU)

10 leçon 2. Leçon n 2 : Contact entre deux solides. Frottement de glissement. Exemples. (PC ou 1 er CU) 0 leçon 2 Leçon n 2 : Contact entre deu solides Frottement de glissement Eemples (PC ou er CU) Introduction Contact entre deu solides Liaisons de contact 2 Contact ponctuel 2 Frottement de glissement 2

Plus en détail

Applications des supraconducteurs en courant fort

Applications des supraconducteurs en courant fort Applications des supraconducteurs en courant fort Xavier CHAUD Ingénieur de Recherche du CNRS au Laboratoire National des Champs Magnétiques Intenses à Grenoble Introduction Propriétés supraconductrices

Plus en détail

Introduction à l électronique de puissance Synthèse des convertisseurs statiques. Lycée Richelieu TSI 1 Année scolaire 2006-2007 Sébastien GERGADIER

Introduction à l électronique de puissance Synthèse des convertisseurs statiques. Lycée Richelieu TSI 1 Année scolaire 2006-2007 Sébastien GERGADIER Introduction à l électronique de puissance Synthèse des convertisseurs statiques Lycée Richelieu TSI 1 Année scolaire 2006-2007 Sébastien GERGADIER 28 janvier 2007 Table des matières 1 Synthèse des convertisseurs

Plus en détail

T.P. 7 : Définir et contrôler un système d allumage statique

T.P. 7 : Définir et contrôler un système d allumage statique T.P. 7 : Définir et contrôler un système d allumage statique Nom : Prénom : Classe : Date : Durée : 6 heures Zone de travail : Classe de cours et atelier Objectif du T.P. : - Être capable d identifier

Plus en détail

Influence de la géométrie du conducteur sur la température dans un poste sous enveloppe métallique

Influence de la géométrie du conducteur sur la température dans un poste sous enveloppe métallique SYMPOSIUM DE GENIE ELECTRIQUE (SGE 14) : EF-EPF-MGE 2014, 8-10 JUILLET 2014, ENS CACHAN, FRANCE Influence de la géométrie du conducteur sur la dans un poste sous enveloppe métallique Nesrine REBZANI 1,2,3,

Plus en détail

Introduction : Les modes de fonctionnement du transistor bipolaire. Dans tous les cas, le transistor bipolaire est commandé par le courant I B.

Introduction : Les modes de fonctionnement du transistor bipolaire. Dans tous les cas, le transistor bipolaire est commandé par le courant I B. Introduction : Les modes de fonctionnement du transistor bipolaire. Dans tous les cas, le transistor bipolaire est commandé par le courant. - Le régime linéaire. Le courant collecteur est proportionnel

Plus en détail

BTS Groupement A. Mathématiques Session 2011. Spécialités CIRA, IRIS, Systèmes électroniques, TPIL

BTS Groupement A. Mathématiques Session 2011. Spécialités CIRA, IRIS, Systèmes électroniques, TPIL BTS Groupement A Mathématiques Session 11 Exercice 1 : 1 points Spécialités CIRA, IRIS, Systèmes électroniques, TPIL On considère un circuit composé d une résistance et d un condensateur représenté par

Plus en détail

Exercice 1. Exercice n 1 : Déséquilibre mécanique

Exercice 1. Exercice n 1 : Déséquilibre mécanique Exercice 1 1. a) Un mobile peut-il avoir une accélération non nulle à un instant où sa vitesse est nulle? donner un exemple illustrant la réponse. b) Un mobile peut-il avoir une accélération de direction

Plus en détail

Les schémas électriques normalisés

Les schémas électriques normalisés On distingue 4 types de schémas I)- Schéma développé : Les schémas électriques normalisés C'est le schéma qui permet de comprendre facilement le fonctionnement d'une installation électrique. Il ne tient

Plus en détail

Les correcteurs accorderont une importance particulière à la rigueur des raisonnements et aux représentations graphiques demandées.

Les correcteurs accorderont une importance particulière à la rigueur des raisonnements et aux représentations graphiques demandées. Les correcteurs accorderont une importance particulière à la rigueur des raisonnements et aux représentations graphiques demandées. 1 Ce sujet aborde le phénomène d instabilité dans des systèmes dynamiques

Plus en détail

Les transistors à effet de champ.

Les transistors à effet de champ. Chapitre 2 Les transistors à effet de champ. 2.1 Les différentes structures Il existe de nombreux types de transistors utilisant un effet de champ (FET : Field Effect Transistor). Ces composants sont caractérisés

Plus en détail

Série 77 - Relais statiques modulaires 5A. Caractéristiques. Relais temporisés et relais de contrôle

Série 77 - Relais statiques modulaires 5A. Caractéristiques. Relais temporisés et relais de contrôle Série 77 - Relais statiques modulaires 5A Caractéristiques 77.01.x.xxx.8050 77.01.x.xxx.8051 Relais statiques modulaires, Sortie 1NO 5A Largeur 17.5mm Sortie AC Isolation entre entrée et sortie 5kV (1.2/

Plus en détail

0.8 U N /0.5 U N 0.8 U N /0.5 U N 0.8 U N /0.5 U N 0.2 U N /0.1 U N 0.2 U N /0.1 U N 0.2 U N /0.1 U N

0.8 U N /0.5 U N 0.8 U N /0.5 U N 0.8 U N /0.5 U N 0.2 U N /0.1 U N 0.2 U N /0.1 U N 0.2 U N /0.1 U N Série 55 - Relais industriels 7-10 A Caractéristiques 55.12 55.13 55.14 Relais pour usage général avec 2, 3 ou 4 contacts Montage sur circuit imprimé 55.12-2 contacts 10 A 55.13-3 contacts 10 A 55.14-4

Plus en détail

Théorie : Introduction

Théorie : Introduction Méthode et objectifs Electricité et électronique Quelques symboles conventionnels L'anglais en électronique Théorie : Introduction Méthode et objectifs Compte tenu du fait que cet ouvrage s'adresse à des

Plus en détail

Lecture recommandée (en anglais) Activité d écriture facultative. Références

Lecture recommandée (en anglais) Activité d écriture facultative. Références Application de la loi d Ohm Présenté par TryEngineering - Cliquez ici pour donner votre avis sur cette leçon. Objet de la leçon Démontrer la loi d Ohm à l aide de multimètres numériques. La loi d Ohm est

Plus en détail