1. Introduction. 1.1 Jeux, divination et hasard

Dimension: px
Commencer à balayer dès la page:

Download "1. Introduction. 1.1 Jeux, divination et hasard"

Transcription

1 La Bible (env. V e siècle av. J.-C.) Le sort fait cesser les contestations, Et décide entre les puissants. (Proverbes, 18, 18) 1. Introduction 1.1 Jeux, divination et hasard Les archéologues ont retrouvé dans des habitats très anciens des pierres de différentes couleurs ainsi que des os, en particulier l os du talon de certains animaux (chiens et moutons), qui présentent quatre faces relativement symétriques. On les appelle des astragales. L utilisation de ces astragales n est pas connue avec certitude, on pense qu ils étaient là pour le jeu et pour des pratiques divinatoires. A partir de l antiquité on est sûr de l existence de jeux avec des astragales. Les quatre astragales étaient couramment utilisés dans les temples de la Grèce antique et à Rome. On pense que c est par une observation attentive des lancers, observation qui montrait à l évidence que la régularité des apparitions dépendait de l animal dont l os provenait, qu est venue l idée de construire un objet plus sûr: le dé. Le dé le plus ancien que l on ait retrouvé date du début du troisième millénaire avant Jésus Christ. Il comporte des points marqués sur chaque face dans un ordre consécutif. Ce n est qu au premier millénaire, avant notre ère que l on trouve le dé moderne, avec la répartition actuelle des points sur les faces. On a créé des dés avec 4, 6, 8, 12 voir 20 faces (icosaèdre). 1.2 L origine des mots hasard, aléa et chance Le terme de hasard est un terme, qui apparaît au Moyen-Âge, et dont l étymologie n est pas bien établie. Il pourrait s agir d une adaptation du mot arabe «sar» qui signifie dé, ou encore d une dérivation du nom d un château, El Azar, en Syrie, où un jeu pratiqué avec 2 ou 3 dés, avait été découvert. Hasard : n.m. représente un emprunt (v.1150, hasart) à l arabe az-zahr, «jeu de dés», par l intermédiaire de l espagnol azar (1283) «jeu de dés» et «coup défavorable au jeu de dés». Le mot arabe vient de zahr «fleur» ou «chance» (espagnol azahar «fleur d oranger»), les dés ayant porté une fleur sur l une des faces, soit du verbe yasara «jouer au hasard». Le h- est dû au fait qu au moyen âge les mots à initiale vocalique, d origine étrangère, étaient régulièrement écrits avec h. Hasard a désigné au moyen âge un jeu de dés et s est dit (1200) d un coup heureux à ce jeu (le six). C est de ce premier sens que vient l expression jeu de hasard (1538), mais aujourd hui la référence au jeu de dés est oubliée, hasard, étant toujours compris au sens absolu et philosophique. (Dictionnaire Historique De La Langue Française, Dictionnaires Le Robert, Paris, 1993) Aléa : n.m. est emprunté (1852) au sens de «hasard» au latin alea, mot d origine inconnue signifiant «jeu de dés», puis dés (le mot classique pour «dés» étant talli) et enfin «hasard». Le sens de «dés» reste connu par la phrase célèbre de César, franchissant le fleuve Rubicon, alea jacta est, «les dés sont jetés». (Dictionnaire Historique De La Langue Française, Dictionnaires Le Robert, Paris, 1993) Chance : n.f. d abord chaance (v. 1175), caanche (1200), est issu de l évolution du latin cadentia ( cadence), participe présent pluriel neutre de cadere «tomber» ( choir) pris pour un féminin, proprement «action de tomber», spécialement employé en latin au jeu des osselets. 1

2 Le mot désigne le hasard qui peut faire réussir ou échouer une entreprise. ( ) Sa spécialisation au jeu «chute des dés» (1208) a disparu. (Dictionnaire Historique De La Langue Française, Dictionnaires Le Robert, Paris, 1993) Ainsi donc hasard et jeu ont la même origine. Lanier (1991) Les jeux, au sens large, qui peuvent relever du calcul des probabilités, peuvent être de hasard classique avec mise, mais aussi de hasard décisionnel, de partage. Dans ce dernier cas, le hasard est convoqué pour obtenir une décision, par exemple lorsque l enjeu ne peut être divisé (la tunique du Christ, les charges de la démocratie athénienne). Le hasard et son calcul peuvent être convoqués soit pour aider le joueur à élaborer une stratégie gagnante dans un jeu de hasard c est-à-dire mesurer, peser, comparer avec le maximum de justesse, soit pour assurer l égalité entre des joueurs devant une décision à prendre ou un choix devant éviter la tricherie c est-àdire assurer la justice. Comme on le verra, ce sont ces deux aspects qui président à la constitution du calcul et c est sans doute, leur conjonction qui va permettre sa naissance. (Lanier D., La géométrie du hasard, in : Rev. Sc. et Techn. en perspective, 1991) 1.3 Qu est-ce que le hasard? Dans son ouvrage l Essay d analyse sur les jeux de hazard, (1708) de Montmort dans son introduction affirmait que le hasard n existait pas, mais que l on usait de ce mot pour stigmatiser notre ignorance des phénomènes étudiés. De Montmort (1708) A parler exactement, rien ne dépend du hasard; quand on étudie la nature, on est bientôt convaincu que son auteur agit d une manière générale et uniforme, qui porte le caractère d une sagesse et d une prescience infinies. Ainsi pour attacher à ce mot «hasard» une idée qui soit conforme à la vraie philosophie, on doit penser que toutes choses étant réglées suivant des lois certaines, dont le plus souvent l ordre ne nous est pas connu, celles-là dépendent du hasard dont la cause naturelle nous est cachée. Après cette définition on peut dire que la vie de l homme est un jeu où règne le hasard. (De Montmort, Essay d analyse sur les jeux de hazard, 1708) On retrouve cette vision déterministe de la réalité chez P.S. De Laplace, qui écrivait en 1814: Laplace (1814) Tous les événements, ceux même qui par leur petitesse semblent ne pas tenir aux grandes lois de la nature, en sont une suite aussi nécessaire que les révolutions du soleil. Dans l ignorance des liens qui les unissent au système entier de l univers, on les a fait dépendre des causes finales ou du hasard, suivant qu ils arrivaient ou se succédaient avec régularité ou sans ordre apparent; mais ces causes imaginaires ont été successivement reculées avec les bornes de nos connaissances et disparaissent entièrement devant la saine philosophie, qui ne voit en elles que l expression de l ignorance où nous sommes des véritables causes. Les événements actuels ont avec les précédents une liaison fondée sur le principe évident, qu une chose ne peut commencer d être sans une cause qui la produise. Cet axiome, connu sous le nom de «principe de la raison suffisante», s étend aux 2

3 actions même que l on juge indifférentes. La volonté la plus libre ne peut sans un motif déterminé leur donner naissance; car si, toutes les circonstances de deux positions étant exactement semblables, elle agissait dans l une et s abstenait d agir dans l autre, son choix serait un effet sans cause; elle serait alors, dit Leibniz, le hasard aveugle des épicuriens. L opinion contraire est une illusion de l esprit qui, perdant de vue les raisons fugitives du choix de la volonté dans les choses indifférentes, se persuade qu elle est déterminée d elle-même et sans motifs. Nous devons donc envisager l état présent de l univers comme l effet de son état antérieur et comme la cause de celui qui va suivre. Une intelligence qui, pour un instant donné, connaîtrait toutes les forces dont la nature est animée et la situation respective des êtres qui la composent, si d ailleurs elle était assez vaste pour soumettre ces données à l analyse, embrasserait dans la même formule les mouvements des plus grands corps de l univers et ceux du plus léger atome: rien ne serait incertain pour elle, et l avenir, comme le passé serait présent à ses yeux.» (De Laplace S.P., Essai philosophique sur les probabilités, 1814.) Les mathématiciens d alors ne donneront pas de définition formelle du hasard, jugeant cette définition inutile à la pratique de cette discipline («Sur un sujet vaguement défini, on peut raisonner sans équivoque» dit P.S. de Laplace) voir suffisamment claire en soi («le mot hasard, intelligible en soi, éveille dans l esprit une idée parfaitement claire» (Bertrand J., Calcul des probabilités, 1889). Cette attitude philosophique à l égard de cette discipline se maintiendra jusqu au début du XX e siècle. Poincaré (1907) Et d abord, qu est-ce que le hasard? Les Anciens distinguaient les phénomènes qui semblent obéir à des lois harmonieuses, établies une fois pour toutes, et ceux qu ils attribuaient au hasard; c étaient ceux qu on ne pouvait prévoir parce qu ils étaient rebelles à toute loi. Dans chaque domaine, les lois précises ne décidaient pas de tout, elles traçaient seulement les limites entre lesquelles il était permis au hasard de se mouvoir. Dans cette conception, le mot hasard pour l un, était aussi hasard pour l autre et même pour les dieux. Mais cette conception n est plus la nôtre; nous sommes devenus des déterministes absolus, et ceux mêmes qui veulent réserver les lois du libre arbitre humain laissent du moins le déterminisme régner sans partage dans le monde inorganique. Tout phénomène, si minime qu il soit, a une cause, et un esprit infiniment puissant, infiniment bien informé des lois de la nature, aurait pu le prévoir depuis le début des siècles. Si un pareil esprit existait, on ne pourrait jouer avec lui à aucun jeu de hasard, on perdrait toujours. Pour lui, en effet, le mot de hasard n aurait pas de sens, où plutôt il n y aurait pas de hasard. C est à cause de notre faiblesse et de notre ignorance qu il y en aurait un pour nous. (Poincaré H., Science et Méthode, in : Revue du mois, 1907) Mais avec l exploration de l infiniment petit, l élaboration de la théorie quantique, qui affirme qu il n est pas possible de connaître simultanément la position et la vitesse d une particule avec une précision arbitraire, la vision déterministe de l univers a été sérieusement mis à mal. Car il ne s agit pas d une impossibilité technique, matérielle, liée à nos instruments de mesure ou à nos capacités, non, il s agit d une impossibilité fondamentale qui échappe et échappera toujours à notre contrôle. Pagels (1982) Malgré toutes les difficultés mathématiques de la définition du hasard, nous pouvons, à l instar de Richard von Mises, adopter une attitude pragmatique. Pour lui, la définition pratique d un processus aléatoire tient en ce qu il est imbattable. Imaginons une machine à sous qui génère des nombres aléatoires. A long terme, cette machine est imbattable et toute stratégie est inutile; nous pouvons alors dire 3

4 que, d un point de vue pratique, les nombres qu elle produit sont vraiment aléatoires. S il y avait le moindre défaut dans la machine si les nombres n étaient pas vraiment aléatoires, un nombre donné reviendrait plus souvent que les autres et le sachant, cela pourrait nous servir à battre la machine. Le hasard véritable est imbattable. Cette définition pratique du hasard convient au monde réel. C est sur elle que tablent les casinos et les compagnies d assurances. Et s ils sont toujours gagnants, c est parce que le hasard est imbattable et qu ils le savent bien. Observons à présent le hasard dans la nature. L atome est le meilleur endroit où nous puissions trouver le hasard il n y a rien de tel que le hasard quantique. Des processus tels que la désintégration radioactive d un noyau, soumis aux tests du hasard, triomphent à tous les coups. L instant et le lieu auxquels un atome se désintègre sont totalement aléatoires. S il nous est possible d imaginer un défaut dans la machine envisagée ci-dessus, les physiciens par contre n ont jamais pu déceler le moindre défaut dans le monde quantique. (Pagels H., L Univers quantique, Interédition, Paris, 1982, p.19) Et Pagels de poursuivre: Pagels (1982) Laplace et les autres mathématiciens ont montré que, bien que les événements aléatoires individuels fussent dépourvus de toute signification, la distribution de ces mêmes événements ne l est en rien et peut être l objet d une science exacte: la théorie des probabilités. L idée centrale de cette théorie est la notion de distribution des probabilités ou affectation de probabilités à un ensemble d événements liés les uns aux autres. (...) La distribution des probabilités résulte d une combinatoire mathématique; il s agit de l addition des différentes combinaisons permettant d obtenir tel ou tel résultat. (...) La distribution des événements semble pourvue d une objectivité que ne possède pas l événement aléatoire individuel. < Ainsi > dans le monde microscopique des atomes, c est la distribution des événements qui est spécifiée par la théorie quantique, et non pas les événements individuels eux-mêmes. (...) Nous pourrions imaginer que, puisqu elles détiennent une sorte d objectivité, les distributions de probabilité possèdent une existence indépendante des événements individuels. Cette erreur peut nous inciter à croire que la distribution «oblige» les événements à se conformer à un schéma donné. (...) C est là un raisonnement «à rebours», parce que ce sont les événements individuels qui établissent la distribution, et non pas le contraire. En introduisant un événement non aléatoire, un élément d organisation au niveau des événements individuels, on change la distribution des probabilités. L invisibilité et l objectivité des distributions sont étonnantes; mais celles-ci possèdent une autre caractéristique tout aussi remarquable: leur stabilité, qu il s agisse de distributions de mouvements atomiques, de réactions chimiques, d événements biologiques ou sociaux. Nous n imaginons pas que les distributions de probabilité au jeu de dés puissent changer avec le temps, puisque les dés ne sont pas soumis à des forces temporelles. Mais qu en est-il de la probabilité de fractures de la jambe dans une station de ski donnée, saison après saison? Comment peut-on expliquer la stabilité de cette probabilité sur de très longues périodes? Cette stabilité résulte du fait que l événement individuel est aléatoire et indépendant des autres événements semblables. Le désordre au niveau individuel entraîne un déterminisme collectif. (...) La distribution est stable parce que les événements sont aléatoires et indépendants. Ce n est qu en introduisant un événement non aléatoire (...) que l on pourra modifier la distribution. (Pagels H., L Univers quantique, Interédition, Paris, 1982, pp ) Ainsi les événements qui nous paraissent ou qui sont fondamentalement aléatoires peuvent faire l objet d une étude scientifique du fait même de leur caractère aléatoire. C est là le fondement même de cette branche des mathématiques appelée statistique. Ces disciplines que l on jumelle volontiers, statistique et probabilité, sont très récentes. C est en 4

5 effet dans les années 1930 que le mathématicien russe Kolmogorov élabora l axiomatique des probabilités. Si l on sait que le complexe peut être appréhendé, par le biais des distributions de probabilité, par le général, le «simple», ce n est que tout dernièrement que l on s est rendu compte, par l étude des systèmes dynamiques, que le simple engendre le complexe. Ce complexe ayant alors tous les aspects de l aléatoire. C est dans les années cinquante qu ont commencé les premiers travaux sur le chaos. On parle maintenant de chaos déterministe appellation aussi stupéfiante que celle utilisée par B. Pascal pour décrire le premier traité de probabilité: La Géométrie du Hasard. Après avoir signalé la différence qui existe entre déterminisme et prévisibilité, I. Stewart, dans son ouvrage La Nature et les Nombres, présente le problème sous ce nouvel angle. Stewart (1998) Notre monde est-il déterministe, ainsi que le dit Laplace, ou est-il régi par le hasard, comme il semble souvent l être? Et, si vraiment Laplace avait raison, pourquoi notre expérience quotidienne le dément-il si fréquemment? L un des domaines les plus excitants des nouvelles mathématiques connu par le public sous le nom de théorie du chaos se targue de pouvoir apporter bien des réponses. Qu il le fasse ou non, il révolutionne certainement la manière dont nous pensons à l ordre et au désordre, aux lois et à la chance, à la prévisibilité et au hasard. (...) Où Laplace avait-il donc commis une erreur? Le point à ne pas manquer, c est qu en réalité on ne peut jamais mesurer l état initial d un système de manière exacte. Les mesures les plus précises que l on soit parvenu à faire sur un système physique sont exactes à la dixième ou à la douzième décimale près. Et l énoncé de Laplace ne vaut que si l on arrive à mesurer les grandeurs avec une précision infinie, avec un nombre infini de décimales et cela, bien entendu, c est exclu. A l époque de Laplace, les gens étaient conscients de ces incertitudes de mesure, mais ils supposaient généralement que, s ils avaient été en mesure de déterminer les grandeurs initiales avec dix décimales, par exemple, alors toutes les prédictions seraient aussi exactes à dix décimales près. L erreur ne disparaîtrait pas, mais elle ne croîtrait pas non plus. Malheureusement, l erreur croît, ce qui nous interdit de mettre bout à bout des prédictions à court terme pour en faire une prévision à long terme. (...) A chaque étape l erreur croît d un facteur dix environ. (...) Ce phénomène se nomme «sensibilité aux conditions initiales», ou, plus informellement l «effet papillon» < lorsqu un papillon à Tokyo bat des ailes, un ouragan peut se déclencher en Floride un mois plus tard >. Il est intimement lié à une très grande irrégularité dans le comportement. Tout ce qui est vraiment régulier est assez prévisible. Mais une très grande sensibilité aux conditions initiales rend un système imprévisible donc irrégulier. C est pour cela que l on qualifie tout système sensible aux conditions initiales de chaotique. Un comportement chaotique suit des lois déterministes, mais il est si irrégulier que l oeil non exercé le prend pour un phénomène réellement aléatoire. Le chaos, ce n est pas seulement un comportement compliqué et sans motif apparent; le concept est bien plus subtil. Le chaos a les apparences de la complication, en apparence aucun motif n est présent, mais l explication est simple et de nature déterministe. (...) Cette découverte fut le fruit de trois développements indépendants. L un d eux a été un changement d intérêt, lorsque les scientifiques se sont désintéressés des comportements périodiques pour s intéresser à des comportements plus complexes. Le deuxième fut l avènement de l ordinateur, qui a rendu possible, rapide et aisée la recherche de solutions approchées des équations dynamiques. Le troisième fut un changement de perspective sur la dynamique que l on a commencé à approcher par la géométrie au lieu d utiliser des approches numériques. Le premier développement a fourni un objectif, le deuxième une technique, le troisième un outil pour la compréhension. (Stewart I., La Nature et les Nombres, Hachette, Paris, 1998, pp ) En quoi ces données nouvelles ont-elles modifié notre mathématisation des phénomènes 5

6 aléatoires? Pour ce qui est du calcul lui-même les résultats établis avant le début du XX e siècle restent valables. C est dans l analyse des fondements ainsi que dans la manière d envisager les objets mathématiques concernés que les changements peuvent être observés. 6

7 2. Quelques problèmes historiques 2.1 L astragale Dans un astragale on attribuait à la face supérieure convexe 4 points, à la face opposée concave 3 points, à la face latérale la plus grande, 1 points et à la face latérale opposée la plus mince, 6 points. On a fait avec un astragale de mouton de nombreux jets et on a ainsi pu établir les probabilités empiriques suivantes: la probabilité pour obtenir l une des faces latérales est de 0,1, et la probabilité l une des deux autres faces est de 0,4. On jetait le plus souvent quatre astragales. On appelait «coup du chien» lorsque l on obtenait 4 fois la même face latérale. Ce coup était considéré comme un mauvais présage. Le nom de «coup de Vénus» était donné lorsque les quatre astragales présentaient des faces toutes différentes. Ce coup était considéré comme un présage favorable. a) Quelles sont, avec les données expérimentales ci-dessus, les probabilités d obtenir de tels coups? Différentes astragales de ruminants b) Avec les données expérimentales citées cidessus quelle est la moyenne des points que l on obtient en jetant les quatre astragales? 2.2 Le problème du Grand duc de Toscane: Le jeu de passe-dix On jouait beaucoup, au XVI e et XVII e siècle, au jeu de passe-dix. La règle en est très simple; on jette trois dés au hasard; l un des joueurs gagne s il obtient une somme de points supérieurs à 10; il perd si la somme des points est inférieure ou égale à 10. a) Ce jeu est-il équitable? b) L expérience a montré que la somme de 9 sortait moins souvent que la somme 10 alors qu il y a pourtant autant de combinaisons pour obtenir ces deux sommes. Pourquoi? c) Quelle est la différence de fréquence d apparition entre la somme de 9 et celle de 10? 7

8 2.3 Le premier problème du chevalier de Méré: le problème des dés. Pascal (1654) «Je n ai pas le temps de vous envoyer la démonstration d une difficulté qui étonnait fort M. de Méré; car il a un très bon esprit, mais il n est pas géomètre. C est comme vous savez, un grand défaut. Il me disait donc qu il avait trouvé difficulté sur les nombres pour cette raison: si l on entreprend de faire 6 avec un dé, il y a avantage de l entreprendre par quatre coups. Si l on entreprend de faire «sonnez» (double six) avec deux dés, il y a désavantage de l entreprendre en vingt-quatre coups, et néanmoins 24 est à 36, qui est le nombre des faces de deux dés, comme 4 est à 6, qui est le nombre des faces d un dé. Voilà quel était son grand scandale et qui lui faisait dire hautement que les propositions n étaient pas constantes et que l arithmétique se dément.» (Extrait de la lettre de B.Pascal à P. Fermat datée du 29 juillet 1654) a) Reformulée en langage moderne le «scandale» du chevalier de Méré revient à poser la question suivante: pourquoi est-il plus avantageux d obtenir au moins un 6 en lançant 4 fois un dé que d obtenir au moins un double 6 en lançant 24 fois deux dés alors que 4 est à 6 comme 24 est à 36? Il apparut assez rapidement que la valeur moyenne du nombre d épreuves qu il faut tenter pour voir un événement se produire est l inverse de sa probabilité. Si, par exemple, la probabilité d un événement est de 1/100, il faut tenter, en moyenne cent épreuves pour que l événement se produise, mais vraisemblablement l événement se produira en un nombre d épreuves moindre. Pour le chevalier de Méré il y a une chance sur deux pour qu un tel événement se produise avant cinquante épreuves ou pour qu il se produise après, parce que 50 est à 100 ce que 1 est à 2. Il s appuyait pour affirmer cela sur le fait que lorsque la probabilité est de 1/2, il y a égale chance pour que l événement se produise à la première épreuve, ou pour qu il se produise ensuite. b) Que pensez-vous de ce raisonnement et quelle serait votre réponse à la question: quelle est la valeur probable du nombre d épreuves à réaliser pour qu un événement de probabilité 1/100 ait une chance sur deux de se réaliser? c) Montrer que de façon générale, si la probabilité d un événement est p à chaque épreuve, p étant inférieur à 1/25, la valeur probable du nombre d épreuves qu il faut tenter pour voir l événement se produire avec une probabilité de 50% est approximativement de 0,7/p. Ainsi si la probabilité d un événement est 1/400, on peut parier à égalité que cet événement se produira avant 280 épreuves. 2.4 Le deuxième problème du chevalier de Méré: le problème des Partis Dans une première lettre de l été 1654 (malheureusement perdue), B.Pascal soumet à P.Fermat un deuxième problème, posé par le chevalier de Méré: Deux joueurs engagent chacun 32 pistoles dans un jeu de pile ou face; empochera les 64 pistoles celui d entre eux qui, le premier, aura obtenu 3 succès, consécutifs ou non. Ils jouent une première manche, un des deux joueurs gagne; ils sont à ce moment obligés de se séparer, et la partie ne sera jamais terminée. Comment partager équitablement l enjeu entre eux? Quelle réponse donnez-vous à cette question et pourquoi? 8

9 P. Fermat répondra à B. Pascal qui lui répondra à son tour, dans cette même lettre du 29 juillet Cette date symbolique est considérée par certains comme le véritable début de l étude mathématique des probabilités. Pascal présente à Fermat, non seulement la solution à la question du chevalier de Méré, mais une méthode qui permet une généralisation. Ce problème est connu sous le nom de: problème des partis. B.Pascal dans son traité: Traité du triangle arithmétique précise ce qu il entend par cette dénomination. Pascal (1654) Pour déterminer les partis qu on doit faire entre deux joueurs qui jouent en plusieurs parties. Pour entendre les règles des partis, la première chose qu il faut considérer est que l argent que les joueurs ont mis au jeu ne leur appartient plus, car ils en ont quitté la propriété: mais ils ont reçu en revanche le droit d attendre ce que le hasard leur en peut donner, suivant les conditions dont ils sont convenus d abord. Mais comme c est une loi volontaire, ils peuvent la rompre de gré à gré; et ainsi, en quelque terme que le jeu se trouve, ils peuvent le quitter; et, au contraire de ce qu ils ont fait en y entrant, renoncer à l attente du hasard, et rentrer chacun en la propriété de quelque chose. Et en ce cas, le règlement de ce qui doit leur appartenir doit être tellement proportionné à ce qu ils avaient droit d espérer de la fortune, que chacun d eux trouve entièrement égal de prendre ce qu on lui assigne ou de continuer l aventure du jeu: et cette juste distribution s appelle le parti. (Pascal B., Traité du triangle arithmétique, 1654). Précisons encore que ce problème des partis, est déjà abordé par L.Pacioli ( ) dans son ouvrage: Summa de arithmetica, geometria, proprotionii et proportionalita: Une brigade joue à la paume: il faut 60 pour gagner, chaque coup vaut 10. L enjeu est de 10 ducats. Un incident survient qui force les soldats à interrompre la partie commencée, alors que le premier camp a gagné 50 et le second 20. On demande quelle part de l enjeu revient à chaque camp. La solution de L. Pacioli sera critiquée par N. Tartaglia ( ), qui par un chemin différent, aboutira à la même solution que L. Pacioli. Il conclura: La résolution d une telle question est davantage d ordre judiciaire que rationnel et quelque manière qu on veuille la résoudre, on y trouvera sujet à litiges. La clé du problème sera fournie par G.Cardan ( ), qui pourtant ne pourra l exploiter et donnera dans son ouvrage, Practica arithmetica et mesurandi singularis (1539), une réponse erronée au problème posé par L. Pacioli. Il faudra attendre un siècle pour que B. Pascal et P. Fermat donnent la solution à ce problème par deux voies différentes (pour les détails concernant les différentes solutions proposées par L.Pacioli, N. Tartaglia et G. Cardan, voir l article de D. Lanier La géométrie du hasard, mars 1991). 9

10 2.6 Le problème de l aiguille de Buffon Je suppose que dans une chambre dont le parquet est simplement divisé par des joints parallèles, on jette en l air une aiguille, et que l un des joueurs parie que l aiguille ne croisera aucune des parallèles du parquet, et que l autre, au contraire parie que l aiguille croisera quelques unes des parallèles; on demande le sort de ces deux joueurs. Georges Louis Leclerc, comte de Buffon ( ) En d autres termes, en désignant par 2a la distance des joints parallèles du plancher et par 2l la longueur de l aiguille, quelle est la probabilité que l aiguille rencontre un des joints? (On supposera que l < a pour ne pas avoir à considérer les cas où l aiguille coupe plusieurs joints) Remarque : Comme vous le trouverez, le résultat fait intervenir le nombre π. En effectuant donc un grand nombre de jets d aiguille on peut trouver des approximations de la valeur π! C est ainsi qu en 1850 Wolf lance 5000 aiguilles avec une rapport l/a = 0,8 et trouve 2532 intersections; il en déduit l approximation π = 3,1596. En 1855, Smith d Aberdeen lance 3204 aiguilles avec un rapport l/a = 0,6 et trouve 1218,5 (les demi-intersections correspondent aux cas ambigus); il en déduit l approximation π = 3,1553. En 1860, Augustus De Morgan lance 600 aiguilles avec un rapport l/a = 1 et trouve 382,5 intersections; il en déduit l approximation π = 3,137. (Delahaye J.P., Le fascinant nombre π, pp ). 2.7 Le paradoxe de la corde de Bertrand Bertrand, (1899) On trace une corde au hasard dans un cercle; quelle est la probabilité pour que sa longueur soit supérieure au côté du triangle équilatéral inscrit? (Bertrand J., Calcul des Probabilités) Joseph Bertrand, ( ) 10

11 3. Conclusion provisoire Avant de passer à une présentation axiomatisée moderne des probabilités, axiomatisation accomplie dans le milieu du XX e siècle par le mathématicien russe Kolmogorov, Henri Poincaré brosse un résumé de l'état des problèmes que pose la notion de probabilité dans un texte écrit au début de ce siècle. Poincaré (1918) Pour classer les problèmes qui se présentent à propos des probabilités, on peut se placer à plusieurs points de vue différents, et d'abord au point de vue de la généralité. J'ai dit plus haut que la probabilité est le rapport du nombre de cas favorables au nombre des cas possibles. Ce que, faute d'un meilleur terme, j'appelle la généralité, croîtra avec le nombre des cas possibles. Ce nombre peut être fini; comme, par exemple, si l'on envisage un coup de deux dés où le nombre de cas possibles est 36. C'est là le premier degré de généralité. Mais, si nous demandons, par exemple, quelle est la probabilité pour qu'un point intérieur à un cercle soit intérieur au carré inscrit, il y a autant de cas possibles que de points dans le cercle, c'est-à-dire une infinité. C'est le second degré de généralité. La généralité peut être poussée plus loin encore: on peut se demander la probabilité pour qu'une fonction satisfasse à une condition donnée; il y a alors autant de cas possibles qu'on peut imaginer de fonctions différentes. C'est le troisième cas de généralité, auquel on s'élève, par exemple, quand on cherche à deviner la loi la plus probable d'après un nombre fini d'observations. On peut se placer à un point de vue tout différent. Si nous n'étions ignorants, il n'y aurait pas de probabilité, il n'y aurait de place que pour la certitude; mais notre ignorance ne peut être absolue sans quoi il n'y aurait pas non plus de probabilité, puisqu'il faut un peu de lumière pour parvenir même à cette science incertaine. Les problèmes de probabilité peuvent ainsi se classer d'après la profondeur plus ou moins grande de notre ignorance. En mathématiques, on peut déjà se proposer des problèmes de probabilité. Quelle est la probabilité pour que la 5ème décimale d'un logarithme pris au hasard dans une table soit un 9? On n'hésitera pas à répondre que cette probabilité est 1/10. Ici nous possédons toutes les données du problème; nous saurions calculer notre logarithme sans recourir à la table; mais nous ne voulons pas nous en donner la peine. C'est le premier degré de l'ignorance. Dans les sciences physiques, notre ignorance est déjà plus grande. L'état d'un système, à un instant donné, dépend de deux choses: son état initial et la loi d'après laquelle cet état varie. Si nous connaissions à la fois cette loi et cet état initial, nous n'aurions plus qu'un problème mathématique à résoudre et nous retomberions sur le premier degré d'ignorance. Mais il arrive souvent qu'on connaisse la loi et qu'on ne connaisse pas l'état initial. On demande, par exemple, quelle est la distribution actuelle des petites planètes; nous savons que, de tous temps, elles ont obéi aux lois de Kepler, mais nous ignorons quelle était leur distribution initiale. Dans la théorie cinétique des gaz, on suppose que les molécules gazeuses suivent des trajectoires rectilignes et obéissent aux lois du choc des corps élastiques; mais, comme on ne sait rien de leurs vitesses initiales, on ne sait rien de leurs vitesses actuelles. Seul, le calcul des probabilités permet de prévoir les phénomènes moyens qui résulteront de la combinaison de ces vitesses. C'est là le second degré d'ignorance. Il est possible, enfin, que non seulement les conditions initiales, mais les lois elles-mêmes, soient inconnues; on atteint alors le troisième degré de l'ignorance et, généralement, on ne peut plus rien affirmer du tout au sujet de la probabilité d'un phénomène. Il arrive souvent qu'au lieu de chercher à deviner un événement d'après une connaissance plus ou moins imparfaite de la loi, on connaisse les événements et qu'on cherche à deviner la loi; qu au lieu de déduire les effets des causes, on veuille déduire les causes des effets. Ce sont là les problèmes dits de probabilités des causes, les plus intéressants au point de vue de leurs applications scientifiques. (...) 11

12 On peut dire que c'est le problème essentiel de la méthode expérimentale. J'ai observé n valeurs de x et les valeurs correspondantes de y; j'ai constaté que le rapport des secondes aux premières est sensiblement constant. Voilà l'événement; quelle est la cause? Est-il probable qu'il y ait une loi générale d'après laquelle y serait proportionnel à x et que les petites divergences soient dues à des erreurs d'observations? Voilà un genre de question qu'on est sans cesse amené à se poser et qu'on résout inconsciemment toutes les fois que l'on fait de la science. (Poincaré H., La Science et l'hypothèse, pp ). 12

13 4. Présentation axiomatique des probabilités de Kolmogorov (1933) 4.1 Expérience aléatoire Univers Evénements Définitions On appelle épreuve ou expérience aléatoire ε une expérience qui peut être répétée dans des conditions apparemment identiques et dont le résultat ne peut être prévu a priori : jet de dés; tirage de boules dans des urnes avec (ou sans) remise; choix d une direction dans le plan ; etc. On appelle éventualité ou issue, le résultat de l expérience aléatoire et ensemble des constituants, ou univers, l ensemble des résultats possibles. On note souvent cet ensemble univers par les lettres U, E ou Ω. Remarques 1. Cet univers Ω peut être fini comme dans l expérience aléatoire d un jet de dé cubique. Ω = 1;2;3; 4;5;6 { }. 2. Cet univers peut être infini dénombrable comme dans l expérience suivante jet d une pièce de monnaie jusqu à ce que pile apparaisse. E = P;FP;FFP;FFFP;... { } 3. Cet univers peut être infini non dénombrable comme dans l expérience suivante angle formé par une aiguille jetée sur un plancher formé de lames de même direction (cf. l expérience aléatoire de l aiguille de Buffon). U = 0;2π [ [ Définitions On appelle événement tout sous-ensemble A de l univers U. On dit d un événement A qu il s est réalisé ou qu il a eu lieu, si lors du déroulement de l expérience aléatoire se présente une issue appartenant à A. En d autres termes: considérons une expérience aléatoire dont les issues forment un univers U. Soit A un événement et e U une issue de l expérience aléatoire. Si e A, alors l événement A s est réalisé, et si e A, alors l événement A ne s est pas réalisé; on dit alors que c est l événement contraire A qui s est réalisé. On appelle événement élémentaire tout singleton de U. On dit que U est un événement certain. On dit que l ensemble vide,, est l événement impossible. Soit A et B deux événements tels que A B = on dit alors que les deux événements sont incompatibles. Soit A un événement de U, on dit que l événement contraire de A s est réalisé, événement contraire que l on note A, si l événement A ne s est pas réalisé 13

14 Exercices 1. Montrer que l ensemble vide est inclus dans tout ensemble A. 2. On note PU ( ) l ensemble des sous-ensembles de l ensemble U. Montrer, à l aide d un raisonnement par récurrence, que si l univers U possède n éléments alors il y a 2 n événements. 4.2 Algèbre des ensembles Définitions Un événement étant un sous-ensemble d un ensemble appelé univers, on peut envisager de construire d autres événements à partir d événements, élémentaires par exemple, à l aide des opérations sur les ensembles: l intersection et la réunion, symbolisée par : et. Ainsi l événement A B se réalise lorsque les événements A et B se produisent tous les deux. L événement A B se réalise lorsque l événement A ou bien l événement B (éventuellement les deux) se produit. On a vu plus haut que A définit l événement contraire de A, cette notion permet de définir la différence de deux ensembles : A B = A B. On a de plus une relation d ordre entre les sous-ensembles de l univers U: l inclusion. Ainsi si la réalisation de l événement A entraîne systématiquement la réalisation de l événement B, on dit que A implique B; ceci se note : A B. Deux ensembles sont égaux s ils contiennent les mêmes éléments. Propriétés des opérations sur les événements P 1 P 2 Les opérations et sont associatives et commutatives. Dans le cas où l univers U est fini ces opérations sont internes dans P(U). P 3 A ( B C) = ( A B) ( A C) P 4 A ( B C) = ( A B) ( A C) P 5 P 6 P 7 P 8 ( A) A B B A A B A B = A A B A B = B = A P 9 P 10 P 11 A B = A B A B = A B n I i =1 Ai = U n Ai i=1 14

15 P 12 n U i =1 n Ai = I Ai. i=1 Remarque Deux ensembles A et B sont égaux si Exercice A= B A Bet B A Justifiez les propriétés P 3 à P 10 à l aide de diagramme de Venn. Définition Soit F U une famille de parties de U. Si (1) U F U, si (2) quels que soient A, B F U, alors A, B, A B, A B F U et si (3) A 1, A 2,..., A n,...forment une suite Ai F U et I Ai F U alors F U est dénombrable d ensembles appartenant à F U entraîne i =1 une tribu d événements sur U. i=1 Remarque Dans le cas où l univers U est fini, F U =P(U) et la propriété c n a pas de sens. On a donc, dans ce cas-là une tribu naturelle évidente. C est lorsque l univers U est infini, dénombrable ou non, que l exigence signalée au point c est essentielle. 4.3 Fondement axiomatique de la théorie des probabilités Soit U l ensemble de toutes les issues d une expérience aléatoire. Soit F U une tribu d événements construite sur U. On considère Une application Pr de F dans est une U probabilité si elle satisfait aux quatre axiomes suivants Axiome 1. Pour tout événement A F U, Pr(A) est positif ou nul. Axiome 2. Pr(U)=1 Axiome 3. Si A et B sont deux événements incompatibles alors Pr( A B)=Pr(A)+Pr(B) Axiome 4. Si A 1, A 2,..., A n,...forment une suite dénombrables d éléments de F U, telle que tous ces événements soient incompatibles deux à deux alors Pr( U Ai )= Pr(A i ) i =1. i =1 Remarque Il va de soi que l axiome 4 n a de sens que si les issues de l expérience aléatoire sont en nombre infini. 15

16 Définition On dit alors que l on est en présence d un espace de probabilité, c est-à-dire que l on s est donné un ensemble U, une tribu F U et une probabilité Pr satisfaisant aux 4 axiomes. Ce que l on résume en disant que le triplet (U; F U ; Pr) est un espace de probabilité. Propriétés de la fonction probabilité P 1 P 2 P 3 P 4 Pr( A)=1-Pr(A) Pr( )=0 Si A B alors Pr(A) Pr(B) Pour tout événement A on a 0 Pr(A) 1 P 5 Pr( A B)=Pr(A)-Pr( A B) P 6 Pr( A B)=Pr(A)+Pr(B)-Pr( A B) P 7 P 8 Si U est fini et si A 1, A 2,..., A n est une famille d événements incompatibles n deux à deux, alors Pr( U Ai )= Pr(A i ) i =1 n i =1 Si U est formé de n événements élémentaires, A 1, A 2,..., A n que l on suppose, pour des raisons «évidentes», équiprobables alors Pr( A i )= 1 n. P 9 Si un événement A est formé de la réunion de k événements élémentaires équiprobables, alors Pr(A)= k n. Exercice Démontrez les propriétés P 1 à P 9 16

17 4.4 Evénement indépendant et probabilité conditionnelle Lorsque, en enchaînant deux expériences aléatoires, le déroulement de la seconde est lié à celui de la première, les probabilités de réalisation de la seconde seront donc liées à celle de la première. On parle alors de probabilité conditionnelle que l on définit de la manière suivante. Définition: Soit A et B deux événements d un univers probabilisé U. Si Pr( A) 0, alors on appelle probabilité conditionnelle de B sachant A, le nombre Pr(B / A) = Pr( A B) Pr(A) Propriété Pr(B / A) est une probabilité. Exercice Démontrez la propriété ci-dessus Définition: Deux événements A et B sont indépendants si Pr( A B) = Pr(A) Pr(B) Principe général Lors d une épreuve globale qui se décompose en n épreuves partielles successives la probabilité d un événement final est égale au produit des probabilités des événements intermédiaires successifs. 17

18 5. Exercices A propos de combinatoire 5.1 a) Dans une société de 25 personnes, on doit en désigner 4 qui formeront le comité. Combien de comités différents peut-on constituer? b) Dans une société de 25 personnes, on doit désigner un président, un viceprésident, un trésorier et un secrétaire; ces quatre personnes constituent le comité. Combien de comités différents peut-on constituer? 5.2 Dans une assemblée de 25 dames et 15 messieurs, il est décidé de nommer un comité de 5 personnes. a) Combien de comités peut-on envisager? b) Combien de ces comités comprennent 3 dames? c) Combien de ces comités comprennent au moins 3 dames? 5.3 Douze joueurs d échec participent à un tournoi dans lequel chaque joueur joue une fois contre chacun des autres joueurs. Combien y a-t-il de parties disputées? 5.4 Un examen est composé de dix questions, parmi lesquelles un étudiant doit répondre à huit d entre elles et en négliger deux. a) De combien de façons peut-il faire son choix? b) De combien de façons peut-il faire son choix s il devait répondre à deux questions et en négliger huit? 5.5 Combien a-t-on de façons de placer dix personnes en file, de telle sorte que deux d entre elles ne soient pas l un à côté de l autre? A propos de probabilité 5.6 a) On lance une pièce non truquée 1000 fois en obtenant à chaque fois pile; si on lance la pièce une fois de plus, quelle est la probabilité d obtenir face? b) On lance une pièce 10 fois quelle est la probabilité d obtenir plus de faces que de piles? c) On lance une pièce fois; quelle est la probabilité d obtenir plus de faces que de piles? 18

19 5.7 Un candidat à un examen résout, en moyenne, deux questions sur trois, de sorte que la probabilité pour qu il résolve une question est 2/3. A l examen on pose trois questions, et le candidat, pour être reçu, doit en résoudre au moins deux. a) Quelle est la probabilité qu un tel candidat, devant ce type d examen, soit reçu? b) Que devient cette probabilité si on pose au candidat non pas trois questions, mais six, et qu on exige qu il réponde à quatre questions? c) A partir de combien de questions aurait-il trois chances sur cinq d être reçu si on exige qu il réponde, au moins, aux deux tiers des questions? 5.8 On lance simultanément trois pièces de monnaie parfaitement symétrique de 10, 20 et 50 centimes respectivement. Le lanceur pourra conserver les pièces qui présentent le côté pile. a) Décrire l univers. b) Quelle probabilité le lanceur a-t-il de gagner : 20 centimes? Moins de 50 centimes? Plus de 20 centimes? 5.9 Lors d un synode groupant 500 personnes, 360 personnes comprennent le latin, 200 l italien, 90 l anglais, 160 à la fois le latin et l italien, 60 à la fois le latin et l anglais, 40 à la fois l italien et l anglais et 20 les trois langues à la fois. Si l on choisit une personne au hasard parmi celles qui participent au synode, quelle probabilité y a-t-il qu elle comprenne: a) exactement deux de ces trois langues? b) l une au moins de ces langues? 5.10 Une étude statistique portant sur l absentéisme chez les élèves d un collège a donné les résultats suivants pour le mois de février 1994: 25% des élèves ont été absents exactement un jour; 12% l ont été au moins deux jours; 8% l ont été au moins trois jours; 6% l ont été au moins quatre; et 5% l ont été au moins cinq jours. On choisit un élève au hasard dans ce collège. Quelle est la probabilité qu il ait été absent: a) au moins un jour? b) jamais? c) exactement deux jours? d) moins de trois jours? e) deux ou trois jours? 5.11 On jette simultanément trois dés. Calculer la probabilité que: a) la face 3 apparaisse sur un seul des dés b) la face 1 apparaisse sur deux dés au moins c) l on ait une somme paire d) l on ait une somme dépassant 8. 19

20 5.12 On considère un dé cubique pipé de telle manière que la probabilité d apparition d une face soit proportionnelle au nombre marqué sur la face supérieure de ce dé. a) Donner la loi de probabilité de cette expérience aléatoire. b) Quelle est la probabilité d obtenir un nombre pair? 5.13 Vous jouez avec deux dés ordinaires. a) Si la somme des points obtenus est strictement supérieure à 7, vous gagnez; sinon, c est votre adversaire qui est vainqueur. Ce jeu est-il équitable? b) Si la différence entre les points marqués est 1 ou 2, vous gagnez; sinon, c est votre adversaire. Avec cette nouvelle règle, ce jeu est-il équitable? 5.14 On tire successivement 4 cartes d un jeu de 36 cartes. Le jeu ayant été brassé convenablement, quelle probabilité a-t-on de tirer a) Dans l ordre: l as de pique, de coeur, de trèfle et de carreau? b) Les quatre as? c) Les quatre as sachant que les deux premières cartes tirées étaient des as? d) Un as et trois autres cartes (ordre indifférent)? e) Un as au moins? f) Un as au moins sachant que la première carte n était pas un as? 5.15 On joue au poker avec un jeu de 52 cartes. On tire 5 cartes. Les meilleures combinaisons sont, dans l ordre: a) La suite 10, V, D, R, As dans une même couleur (flush royal) b) Une autre suite de 5 cartes consécutives dans la même couleur (flush) c) Quatre cartes de même valeur (carré) d) 3 cartes de même valeur et 2 autres cartes de même valeur (full) e) 5 cartes de même couleur mais ne se suivant pas (couleur) f) 5 cartes se suivant mais de couleurs différentes (quinte) g) 3 cartes de même valeur et deux autres cartes (brelan) h) 2 fois deux cartes de même valeur (deux paires) i) 2 cartes de même valeur (une paire) Quelle est la probabilité d obtenir chacune de ces combinaisons? 20

Exercices de dénombrement

Exercices de dénombrement Exercices de dénombrement Exercice En turbo Pascal, un entier relatif (type integer) est codé sur 6 bits. Cela signifie que l'on réserve 6 cases mémoires contenant des "0" ou des "" pour écrire un entier.

Plus en détail

Feuille d exercices 2 : Espaces probabilisés

Feuille d exercices 2 : Espaces probabilisés Feuille d exercices 2 : Espaces probabilisés Cours de Licence 2 Année 07/08 1 Espaces de probabilité Exercice 1.1 (Une inégalité). Montrer que P (A B) min(p (A), P (B)) Exercice 1.2 (Alphabet). On a un

Plus en détail

Probabilités conditionnelles Loi binomiale

Probabilités conditionnelles Loi binomiale Exercices 23 juillet 2014 Probabilités conditionnelles Loi binomiale Équiprobabilité et variable aléatoire Exercice 1 Une urne contient 5 boules indiscernables, 3 rouges et 2 vertes. On tire au hasard

Plus en détail

Probabilité. Table des matières. 1 Loi de probabilité 2 1.1 Conditions préalables... 2 1.2 Définitions... 2 1.3 Loi équirépartie...

Probabilité. Table des matières. 1 Loi de probabilité 2 1.1 Conditions préalables... 2 1.2 Définitions... 2 1.3 Loi équirépartie... 1 Probabilité Table des matières 1 Loi de probabilité 2 1.1 Conditions préalables........................... 2 1.2 Définitions................................. 2 1.3 Loi équirépartie..............................

Plus en détail

Probabilités. I Petits rappels sur le vocabulaire des ensembles 2 I.1 Définitions... 2 I.2 Propriétés... 2

Probabilités. I Petits rappels sur le vocabulaire des ensembles 2 I.1 Définitions... 2 I.2 Propriétés... 2 Probabilités Table des matières I Petits rappels sur le vocabulaire des ensembles 2 I.1 s................................................... 2 I.2 Propriétés...................................................

Plus en détail

Exercices sur le chapitre «Probabilités»

Exercices sur le chapitre «Probabilités» Arnaud de Saint Julien - MPSI Lycée La Merci 2014-2015 1 Pour démarrer Exercices sur le chapitre «Probabilités» Exercice 1 (Modélisation d un dé non cubique) On considère un parallélépipède rectangle de

Plus en détail

PROBABILITÉS CONDITIONNELLES

PROBABILITÉS CONDITIONNELLES PROBABILITÉS CONDITIONNELLES A.FORMONS DES COUPLES Pour la fête de l école, les élèves de CE 2 ont préparé une danse qui s exécute par couples : un garçon, une fille. La maîtresse doit faire des essais

Plus en détail

Probabilités. Une urne contient 3 billes vertes et 5 billes rouges toutes indiscernables au toucher.

Probabilités. Une urne contient 3 billes vertes et 5 billes rouges toutes indiscernables au toucher. Lycée Jean Bart PCSI Année 2013-2014 17 février 2014 Probabilités Probabilités basiques Exercice 1. Vous savez bien qu un octet est une suite de huit chiffres pris dans l ensemble {0; 1}. Par exemple 01001110

Plus en détail

Qu est-ce qu une probabilité?

Qu est-ce qu une probabilité? Chapitre 1 Qu est-ce qu une probabilité? 1 Modéliser une expérience dont on ne peut prédire le résultat 1.1 Ensemble fondamental d une expérience aléatoire Une expérience aléatoire est une expérience dont

Plus en détail

Fluctuation d une fréquence selon les échantillons - Probabilités

Fluctuation d une fréquence selon les échantillons - Probabilités Fluctuation d une fréquence selon les échantillons - Probabilités C H A P I T R E 3 JE DOIS SAVOIR Calculer une fréquence JE VAIS ÊTRE C APABLE DE Expérimenter la prise d échantillons aléatoires de taille

Plus en détail

Probabilités sur un univers fini

Probabilités sur un univers fini [http://mp.cpgedupuydelome.fr] édité le 7 août 204 Enoncés Probabilités sur un univers fini Evènements et langage ensembliste A quelle condition sur (a, b, c, d) ]0, [ 4 existe-t-il une probabilité P sur

Plus en détail

Les probabilités. Chapitre 18. Tester ses connaissances

Les probabilités. Chapitre 18. Tester ses connaissances Chapitre 18 Les probabilités OBJECTIFS DU CHAPITRE Calculer la probabilité d événements Tester ses connaissances 1. Expériences aléatoires Voici trois expériences : - Expérience (1) : on lance une pièce

Plus en détail

Probabilités Loi binomiale Exercices corrigés

Probabilités Loi binomiale Exercices corrigés Probabilités Loi binomiale Exercices corrigés Sont abordés dans cette fiche : (cliquez sur l exercice pour un accès direct) Exercice 1 : épreuve de Bernoulli Exercice 2 : loi de Bernoulli de paramètre

Plus en détail

Petits jeux de probabilités (Solutions)

Petits jeux de probabilités (Solutions) Petits jeux de probabilités (Solutions) Christophe Lalanne En famille 1. Mon voisin a deux enfants dont l un est une fille, quelle est la probabilité pour que l autre soit un garçon? Une famille de deux

Plus en détail

4. Exercices et corrigés

4. Exercices et corrigés 4. Exercices et corrigés. N 28p.304 Dans une classe de 3 élèves, le club théâtre (T) compte 0 élèves et la chorale (C) 2 élèves. Dix-huit élèves ne participent à aucune de ces activités. On interroge au

Plus en détail

9 5 2 5 Espaces probabilisés

9 5 2 5 Espaces probabilisés BCPST2 9 5 2 5 Espaces probabilisés I Mise en place du cadre A) Tribu Soit Ω un ensemble. On dit qu'un sous ensemble T de P(Ω) est une tribu si et seulement si : Ω T. T est stable par complémentaire, c'est-à-dire

Plus en détail

Analyse Combinatoire

Analyse Combinatoire Analyse Combinatoire 1) Équipes On dispose d un groupe de cinq personnes. a) Combien d équipes de trois personnes peut-on former? b) Combien d équipes avec un chef, un sous-chef et un adjoint? c) Combien

Plus en détail

Exercices : VAR discrètes

Exercices : VAR discrètes Exercices : VAR discrètes Exercice 1: Une urne contient 2 boules blanches et 4 boules noires. On tire les boules une à une sans les remettre jusqu à ce qu il ne reste que des boules d une seule couleur

Plus en détail

Travaux dirigés d introduction aux Probabilités

Travaux dirigés d introduction aux Probabilités Travaux dirigés d introduction aux Probabilités - Dénombrement - - Probabilités Élémentaires - - Variables Aléatoires Discrètes - - Variables Aléatoires Continues - 1 - Dénombrement - Exercice 1 Combien

Plus en détail

Espace de probabilité, indépendance et probabilité conditionnelle

Espace de probabilité, indépendance et probabilité conditionnelle Chapter 2 Espace de probabilité, indépendance et probabilité conditionnelle Sommaire 2.1 Tribu et événements........................................... 15 2.2 Probabilité................................................

Plus en détail

Les probabilités. Guide pédagogique Le présent guide sert de complément à la série d émissions intitulée Les probabilités produite par TFO.

Les probabilités. Guide pédagogique Le présent guide sert de complément à la série d émissions intitulée Les probabilités produite par TFO. Guide pédagogique Le présent guide sert de complément à la série d émissions intitulée produite par TFO. Le guide Édition 1988 Rédacteur (version anglaise) : Ron Carr Traduction : Translatec Conseil Ltée

Plus en détail

Exemple On lance une pièce de monnaie trois fois de suite. Calculer la probabilité d obtenir exactement deux fois pile.

Exemple On lance une pièce de monnaie trois fois de suite. Calculer la probabilité d obtenir exactement deux fois pile. Probabilités Définition intuitive Exemple On lance un dé. Quelle est la probabilité d obtenir un multiple de 3? Comme il y a deux multiples de 3 parmi les six issues possibles, on a chances sur 6 d obtenir

Plus en détail

I. Cas de l équiprobabilité

I. Cas de l équiprobabilité I. Cas de l équiprobabilité Enoncé : On lance deux dés. L un est noir et l autre est blanc. Calculer les probabilités suivantes : A «Obtenir exactement un as» «Obtenir au moins un as» C «Obtenir au plus

Plus en détail

Probabilités sur un univers fini

Probabilités sur un univers fini [http://mp.cpgedupuydelome.fr] édité le 10 août 2015 Enoncés 1 Proailités sur un univers fini Evènements et langage ensemliste A quelle condition sur (a,, c, d) ]0, 1[ 4 existe-t-il une proailité P sur

Plus en détail

Calculs de probabilités

Calculs de probabilités Calculs de probabilités Mathématiques Générales B Université de Genève Sylvain Sardy 13 mars 2008 1. Définitions et notations 1 L origine des probabilités est l analyse de jeux de hasard, tels que pile

Plus en détail

Université Paris 8 Introduction aux probabilités 2014 2015 Licence Informatique Exercices Ph. Guillot. 1 Ensemble fondamental loi de probabilité

Université Paris 8 Introduction aux probabilités 2014 2015 Licence Informatique Exercices Ph. Guillot. 1 Ensemble fondamental loi de probabilité Université Paris 8 Introduction aux probabilités 2014 2015 Licence Informatique Exercices Ph. Guillot 1 Ensemble fondamental loi de probabilité Exercice 1. On dispose de deux boîtes. La première contient

Plus en détail

Probabilités conditionnelles Exercices corrigés

Probabilités conditionnelles Exercices corrigés Terminale S Probabilités conditionnelles Exercices corrigés Exercice : (solution Une compagnie d assurance automobile fait un bilan des frais d intervention, parmi ses dossiers d accidents de la circulation.

Plus en détail

Thème 19: Probabilités

Thème 19: Probabilités PROBABILITÉS 79 Thème 19: Probabilités Introduction: Blaise Pascal Andrey Nikolaevich Kolmogorov La théorie des probabilités est née de l étude par les mathématiciens des jeux de hasard. D ailleurs, le

Plus en détail

Notions de probabilités

Notions de probabilités 44 Notions de probabilités Capacités Expérimenter, d abord à l aide de pièces, de dés ou d urnes, puis à l aide d une simulation informatique prête à l emploi, la prise d échantillons aléatoires de taille

Plus en détail

Concours de recrutement interne PLP 2009

Concours de recrutement interne PLP 2009 Concours de recrutement interne PLP 2009 Le sujet est constitué de quatre exercices indépendants. Le premier exercice, de nature pédagogique au niveau du baccalauréat professionnel, porte sur le flocon

Plus en détail

UVHC - ENSIAME CP1 - Probabilités - Interrogation Enseignante : Madame BOURLARD-JOSPIN Calculatrice autorisée

UVHC - ENSIAME CP1 - Probabilités - Interrogation Enseignante : Madame BOURLARD-JOSPIN Calculatrice autorisée UVHC - ENSIAME CP1 - Probabilités - Interrogation Enseignante : Madame BOURLARD-JOSPIN Calculatrice autorisée 1. On tire successivement et sans remise deux cartes d un jeu de 52 cartes. Soit A l événement

Plus en détail

Calcul élémentaire des probabilités

Calcul élémentaire des probabilités Myriam Maumy-Bertrand 1 et Thomas Delzant 1 1 IRMA, Université Louis Pasteur Strasbourg, France Licence 1ère Année 16-02-2006 Sommaire Variables aléatoires. Exemple 1. (Jeu d argent) Exemple 2. Loi de

Plus en détail

Coefficients binomiaux

Coefficients binomiaux Probabilités L2 Exercices Chapitre 2 Coefficients binomiaux 1 ( ) On appelle chemin une suite de segments de longueur 1, dirigés soit vers le haut, soit vers la droite 1 Dénombrer tous les chemins allant

Plus en détail

Les mathématiques du XXe siècle

Les mathématiques du XXe siècle Itinéraire de visite Les mathématiques du XXe siècle Tous publics de culture scientifique et technique à partir des classes de 1ères Temps de visite : 1 heure 30 Cet itinéraire de visite dans l exposition

Plus en détail

Lois de probabilité à densité Loi normale

Lois de probabilité à densité Loi normale DERNIÈRE IMPRESSIN LE 31 mars 2015 à 14:11 Lois de probabilité à densité Loi normale Table des matières 1 Lois à densité 2 1.1 Introduction................................ 2 1.2 Densité de probabilité

Plus en détail

SOCLE COMMUN - La Compétence 3 Les principaux éléments de mathématiques et la culture scientifique et technologique

SOCLE COMMUN - La Compétence 3 Les principaux éléments de mathématiques et la culture scientifique et technologique SOCLE COMMUN - La Compétence 3 Les principaux éléments de mathématiques et la culture scientifique et technologique DOMAINE P3.C3.D1. Pratiquer une démarche scientifique et technologique, résoudre des

Plus en détail

Théorie et Codage de l Information (IF01) exercices 2013-2014. Paul Honeine Université de technologie de Troyes France

Théorie et Codage de l Information (IF01) exercices 2013-2014. Paul Honeine Université de technologie de Troyes France Théorie et Codage de l Information (IF01) exercices 2013-2014 Paul Honeine Université de technologie de Troyes France TD-1 Rappels de calculs de probabilités Exercice 1. On dispose d un jeu de 52 cartes

Plus en détail

Statistique Descriptive et Inférentielle Méthodes paramétriques et non paramétriques

Statistique Descriptive et Inférentielle Méthodes paramétriques et non paramétriques Fiche TD avec le logiciel : a2-1-c Statistique Descriptive et Inférentielle Méthodes paramétriques et non paramétriques Sylvain Mousset Rappels de probabilités / statistiques Table des matières 1 Probabilités

Plus en détail

Probabilités. I - Expérience aléatoire. II - Evénements

Probabilités. I - Expérience aléatoire. II - Evénements Probabilités Voici le premier cours de probabilités de votre vie. N avez-vous jamais eut envie de comprendre les règles des grands joueurs de poker et de les battre en calculant les probabilités d avoir

Plus en détail

EXPLOITATIONS PEDAGOGIQUES DU TABLEUR EN STG

EXPLOITATIONS PEDAGOGIQUES DU TABLEUR EN STG Exploitations pédagogiques du tableur en STG Académie de Créteil 2006 1 EXPLOITATIONS PEDAGOGIQUES DU TABLEUR EN STG Commission inter-irem lycées techniques contact : dutarte@club-internet.fr La maquette

Plus en détail

2. Probabilité. 2.1: Espaces de probabilité 2.2: Probabilité conditionelle 2.3: Indépendance. http://statwww.epfl.ch

2. Probabilité. 2.1: Espaces de probabilité 2.2: Probabilité conditionelle 2.3: Indépendance. http://statwww.epfl.ch 2. Probabilité 2.1: Espaces de probabilité 2.2: Probabilité conditionelle 2.3: Indépendance Probabilité et Statistiques I Chapître 2 1 2.1 Espaces de Probabilité Contenu Exemples élémentaires de probabilité,

Plus en détail

NOTIONS DE PROBABILITÉS

NOTIONS DE PROBABILITÉS NOTIONS DE PROBABILITÉS Sommaire 1. Expérience aléatoire... 1 2. Espace échantillonnal... 2 3. Événement... 2 4. Calcul des probabilités... 3 4.1. Ensemble fondamental... 3 4.2. Calcul de la probabilité...

Plus en détail

P1 : Corrigés des exercices

P1 : Corrigés des exercices P1 : Corrigés des exercices I Exercices du I I.2.a. Poker : Ω est ( l ensemble ) des parties à 5 éléments de l ensemble E des 52 cartes. Cardinal : 5 I.2.b. Bridge : Ω est ( l ensemble ) des parties à

Plus en détail

TSTI 2D CH X : Exemples de lois à densité 1

TSTI 2D CH X : Exemples de lois à densité 1 TSTI 2D CH X : Exemples de lois à densité I Loi uniforme sur ab ; ) Introduction Dans cette activité, on s intéresse à la modélisation du tirage au hasard d un nombre réel de l intervalle [0 ;], chacun

Plus en détail

CONCOURS GÉNÉRAL DES LYCÉES SESSION DE 2009 COMPOSITION DE MATHÉMATIQUES. (Classe terminale S)

CONCOURS GÉNÉRAL DES LYCÉES SESSION DE 2009 COMPOSITION DE MATHÉMATIQUES. (Classe terminale S) MA 09 CONCOURS GÉNÉRAL DES LYCÉES SESSION DE 009 COMPOSITION DE MATHÉMATIQUES (Classe terminale S) DURÉE : 5 heures La calculatrice de poche est autorisée, conformément à la réglementation. La clarté et

Plus en détail

Chapitre 3 : Introduction aux probabilités

Chapitre 3 : Introduction aux probabilités IUT de Sceaux Département TC1 Mathématiques Chapitre 3 : Introduction aux probabilités 1. Évènements Les événements élémentaires sont les issues possibles d'une expérience aléatoire. Un événement est un

Plus en détail

S initier aux probabilités simples «Question de chance!»

S initier aux probabilités simples «Question de chance!» «Question de chance!» 29-11 Niveau 1 Entraînement 1 Objectifs - S entraîner à activer la rapidité du balayage visuel. - Réactiver le comptage par addition jusqu à 20. - Développer le raisonnement relatif

Plus en détail

1. Un groupe de dix personnes comprend cinq hommes et cinq femmes.

1. Un groupe de dix personnes comprend cinq hommes et cinq femmes. Dénombrement Exercices 1. Un groupe de dix personnes comprend cinq hommes et cinq femmes. (a) Combien y a-t-il de manières de les disposer autour d une table ronde, en ne tenant compte que de leurs positions

Plus en détail

1. Déterminer l ensemble U ( univers des possibles) et l ensemble E ( événement) pour les situations suivantes.

1. Déterminer l ensemble U ( univers des possibles) et l ensemble E ( événement) pour les situations suivantes. Corrigé du Prétest 1. Déterminer l ensemble U ( univers des possibles) et l ensemble E ( événement) pour les situations suivantes. a) Obtenir un nombre inférieur à 3 lors du lancer d un dé. U= { 1, 2,

Plus en détail

Licence MASS 2000-2001. (Re-)Mise à niveau en Probabilités. Feuilles de 1 à 7

Licence MASS 2000-2001. (Re-)Mise à niveau en Probabilités. Feuilles de 1 à 7 Feuilles de 1 à 7 Ces feuilles avec 25 exercices et quelques rappels historiques furent distribuées à des étudiants de troisième année, dans le cadre d un cours intensif sur deux semaines, en début d année,

Plus en détail

Date : 18.11.2013 Tangram en carré page

Date : 18.11.2013 Tangram en carré page Date : 18.11.2013 Tangram en carré page Titre : Tangram en carré Numéro de la dernière page : 14 Degrés : 1 e 4 e du Collège Durée : 90 minutes Résumé : Le jeu de Tangram (appelé en chinois les sept planches

Plus en détail

Principes de mathématiques 12 SÉRIE DE PROBLÈMES. Septembre 2001. Student Assessment and Program Evaluation Branch

Principes de mathématiques 12 SÉRIE DE PROBLÈMES. Septembre 2001. Student Assessment and Program Evaluation Branch Principes de mathématiques 12 SÉRIE DE PROBLÈMES Septembre 2001 Student Assessment and Program Evaluation Branch REMERCIEMENTS Le Ministère de l Éducation tient à remercier chaleureusement les professionnels

Plus en détail

Probabilités. Rappel : trois exemples. Exemple 2 : On dispose d un dé truqué. On sait que : p(1) = p(2) =1/6 ; p(3) = 1/3 p(4) = p(5) =1/12

Probabilités. Rappel : trois exemples. Exemple 2 : On dispose d un dé truqué. On sait que : p(1) = p(2) =1/6 ; p(3) = 1/3 p(4) = p(5) =1/12 Probabilités. I - Rappel : trois exemples. Exemple 1 : Dans une classe de 25 élèves, il y a 16 filles. Tous les élèves sont blonds ou bruns. Parmi les filles, 6 sont blondes. Parmi les garçons, 3 sont

Plus en détail

S initier aux probabilités simples «Question de chance!»

S initier aux probabilités simples «Question de chance!» «Question de chance!» 29-11 Niveau 1 Entraînement 1 Objectifs - S entraîner à activer la rapidité du balayage visuel. - Réactiver le comptage par addition jusqu à 20. - Développer le raisonnement relatif

Plus en détail

LES GENERATEURS DE NOMBRES ALEATOIRES

LES GENERATEURS DE NOMBRES ALEATOIRES LES GENERATEURS DE NOMBRES ALEATOIRES 1 Ce travail a deux objectifs : ====================================================================== 1. Comprendre ce que font les générateurs de nombres aléatoires

Plus en détail

CALCUL DES PROBABILITES

CALCUL DES PROBABILITES CALCUL DES PROBABILITES Exemple On lance une pièce de monnaie une fois. Ensemble des événements élémentaires: E = pile, face. La chance pour obtenir pile vaut 50 %, pour obtenir face vaut aussi 50 %. Les

Plus en détail

Exo7. Probabilité conditionnelle. Exercices : Martine Quinio

Exo7. Probabilité conditionnelle. Exercices : Martine Quinio Exercices : Martine Quinio Exo7 Probabilité conditionnelle Exercice 1 Dans la salle des profs 60% sont des femmes ; une femme sur trois porte des lunettes et un homme sur deux porte des lunettes : quelle

Plus en détail

Arbre de probabilité(afrique) Univers - Evénement

Arbre de probabilité(afrique) Univers - Evénement Arbre de probabilité(afrique) Univers - Evénement Exercice 1 Donner l univers Ω de l expérience aléatoire consistant à tirer deux boules simultanément d une urne qui en contient 10 numérotés puis à lancer

Plus en détail

Distribution Uniforme Probabilité de Laplace Dénombrements Les Paris. Chapitre 2 Le calcul des probabilités

Distribution Uniforme Probabilité de Laplace Dénombrements Les Paris. Chapitre 2 Le calcul des probabilités Chapitre 2 Le calcul des probabilités Equiprobabilité et Distribution Uniforme Deux événements A et B sont dits équiprobables si P(A) = P(B) Si il y a équiprobabilité sur Ω, cad si tous les événements

Plus en détail

MATHÉMATIQUES APPLIQUÉES S4 Exercices

MATHÉMATIQUES APPLIQUÉES S4 Exercices Unité D Probabilité Exercice 1 : Chemins 1. Aline habite la maison illustrée ci-dessous. Le diagramme illustre les murs et les portes. a) Combien existe-t-il de chemins possibles entre la pièce A et la

Plus en détail

Andrey Nikolaevich Kolmogorov

Andrey Nikolaevich Kolmogorov PROBABILITÉS La théorie des probabilités est née de l étude par les mathématiciens des jeux de hasard. D'ailleurs, le mot hasard provient du mot arabe «az-zahr» signifiant dé à jouer. On attribue au mathématicien

Plus en détail

Niveau. Situation étudiée. Type d activité. Durée. Objectifs. Seconde.

Niveau. Situation étudiée. Type d activité. Durée. Objectifs. Seconde. Simuler des expériences aléatoires avec une calculatrice Niveau Seconde. Situation étudiée Différentes selon les séances : Séance 1 : Jeu de pile ou face, tirages de boule dans une urne avec des proportions

Plus en détail

JEUX AVEC LES CHIFFRES DES DÉVELOPPEMENTS DÉCIMAUX DE QUELQUES RATIONNELS

JEUX AVEC LES CHIFFRES DES DÉVELOPPEMENTS DÉCIMAUX DE QUELQUES RATIONNELS JEUX AVEC LES CHIFFRES DES DÉVELOPPEMENTS DÉCIMAUX DE QUELQUES RATIONNELS Jean Luc Bovet, Auvernier Notre merveilleuse manière d écrire les nombres, due, dit-on, aux Indiens via les Arabes, présente en

Plus en détail

D'UN THÉORÈME NOUVEAU

D'UN THÉORÈME NOUVEAU DÉMONSTRATION D'UN THÉORÈME NOUVEAU CONCERNANT LES NOMBRES PREMIERS 1. (Nouveaux Mémoires de l'académie royale des Sciences et Belles-Lettres de Berlin, année 1771.) 1. Je viens de trouver, dans un excellent

Plus en détail

POKER ET PROBABILITÉ

POKER ET PROBABILITÉ POKER ET PROBABILITÉ Le poker est un jeu de cartes où la chance intervient mais derrière la chance il y a aussi des mathématiques et plus précisément des probabilités, voici une copie d'écran d'une main

Plus en détail

Petit lexique de calcul à l usage des élèves de sixième et de cinquième par M. PARCABE, professeur au collège Alain FOURNIER de BORDEAUX, mars 2007

Petit lexique de calcul à l usage des élèves de sixième et de cinquième par M. PARCABE, professeur au collège Alain FOURNIER de BORDEAUX, mars 2007 Petit lexique de calcul à l usage des élèves de sixième et de cinquième par M. PARCABE, professeur au collège Alain FOURNIER de BORDEAUX, mars 2007 page 1 / 10 abscisse addition additionner ajouter appliquer

Plus en détail

3 Exercices. 3.1 Probabilités simples. 3.2 Probabilités avec dénombrement. Probabilités 3. Exercice 1 On tire au hasard une carte parmi un jeu de 52.

3 Exercices. 3.1 Probabilités simples. 3.2 Probabilités avec dénombrement. Probabilités 3. Exercice 1 On tire au hasard une carte parmi un jeu de 52. Probabilités 3 3 Exercices 3.1 Probabilités simples Exercice 1 On tire au hasard une carte parmi un jeu de 52. Calculer la probabilité d obtenir : 1. un roi 2. le valet de trèfle 3. l as de coeur ou la

Plus en détail

Comment parier jute sur les sites de paris sportifs

Comment parier jute sur les sites de paris sportifs Comment parier jute sur les sites de paris sportifs Ne pariez pas sur Internet avant d avoir lu en totalité cet ebook, vous risqueriez de perdre votre argent bêtement. Si vous voulez mettre de l argent

Plus en détail

RÉVISION DE CALCUL NUMÉRIQUE

RÉVISION DE CALCUL NUMÉRIQUE RÉVISION DE CALCUL NUMÉRIQUE. Les ensembles numériques. Propriétés des nombres réels. Ordre des opérations. Nombres premiers. Opérations sur les fractions 7. Puissances entières 0.7 Notation scientifique.8

Plus en détail

Terminale STMG Lycée Jean Vilar 2013/2014. Terminale STMG. O. Lader

Terminale STMG Lycée Jean Vilar 2013/2014. Terminale STMG. O. Lader Terminale STMG O. Lader Table des matières 1 Information chiffrée (4s) 4 1.1 Taux d évolution....................................... 6 1.2 indices............................................. 6 1.3 Racine

Plus en détail

Les nombres entiers. Durée suggérée: 3 semaines

Les nombres entiers. Durée suggérée: 3 semaines Les nombres entiers Durée suggérée: 3 semaines Aperçu du module Orientation et contexte Pourquoi est-ce important? Dans le présent module, les élèves multiplieront et diviseront des nombres entiers concrètement,

Plus en détail

Nombres, mesures et incertitudes en sciences physiques et chimiques. Groupe des Sciences physiques et chimiques de l IGEN

Nombres, mesures et incertitudes en sciences physiques et chimiques. Groupe des Sciences physiques et chimiques de l IGEN Nombres, mesures et incertitudes en sciences physiques et chimiques. Groupe des Sciences physiques et chimiques de l IGEN Table des matières. Introduction....3 Mesures et incertitudes en sciences physiques

Plus en détail

Pourquoi investir en bourse? Pour gagner nettement plus qu avec un livret

Pourquoi investir en bourse? Pour gagner nettement plus qu avec un livret Chapitre 5 Pourquoi investir en bourse? Pour gagner nettement plus qu avec un livret Achetez de bonnes actions et gardez-les jusqu à ce qu elles augmentent, ensuite vendez-les. Si elles n augmentent pas,

Plus en détail

La pratique des décisions dans les affaires

La pratique des décisions dans les affaires Association Française Edwards Deming Une philosophie de l action pour le XXIème siècle Conférence annuelle, Paris, 8 juin 1999 Jean-Marie Gogue, Président de l AFED La pratique des décisions dans les affaires

Plus en détail

Soit la fonction affine qui, pour représentant le nombre de mois écoulés, renvoie la somme économisée.

Soit la fonction affine qui, pour représentant le nombre de mois écoulés, renvoie la somme économisée. ANALYSE 5 points Exercice 1 : Léonie souhaite acheter un lecteur MP3. Le prix affiché (49 ) dépasse largement la somme dont elle dispose. Elle décide donc d économiser régulièrement. Elle a relevé qu elle

Plus en détail

Couples de variables aléatoires discrètes

Couples de variables aléatoires discrètes Couples de variables aléatoires discrètes ECE Lycée Carnot mai Dans ce dernier chapitre de probabilités de l'année, nous allons introduire l'étude de couples de variables aléatoires, c'est-à-dire l'étude

Plus en détail

Les indices à surplus constant

Les indices à surplus constant Les indices à surplus constant Une tentative de généralisation des indices à utilité constante On cherche ici en s inspirant des indices à utilité constante à définir un indice de prix de référence adapté

Plus en détail

Théorie et codage de l information

Théorie et codage de l information Théorie et codage de l information Mesure quantitative de l information - Chapitre 2 - Information propre et mutuelle Quantité d information propre d un événement Soit A un événement de probabilité P (A)

Plus en détail

Exercices supplémentaires sur l introduction générale à la notion de probabilité 2009-2010

Exercices supplémentaires sur l introduction générale à la notion de probabilité 2009-2010 Exercices supplémentaires sur l introduction générale à la notion de probabilité 2009-2010 Exercices fortement conseillés : 6, 10 et 14 1) Un groupe d étudiants est formé de 20 étudiants de première année

Plus en détail

LE VIDE ABSOLU EXISTE-T-IL?

LE VIDE ABSOLU EXISTE-T-IL? Document professeur Niveau : Seconde LE VIDE ABSOLU EXISTE-T-IL? Compétences mises en œuvre : S approprier : extraire l information utile. Communiquer. Principe de l activité : La question posée à la classe

Plus en détail

Notes de cours de Probabilités Appliquées. Olivier François

Notes de cours de Probabilités Appliquées. Olivier François Notes de cours de Probabilités Appliquées Olivier François 2 Table des matières 1 Axiomes des probabilités 7 1.1 Introduction................................. 7 1.2 Définitions et notions élémentaires.....................

Plus en détail

contes licencieux des provinces de france

contes licencieux des provinces de france Jean Quatorze-Coups Tout près d ici, vivait il y a déjà longtemps une veuve dont le fils était chasse-marée, autrement dit, domestique dans un moulin. Jean c était le nom du jeune homme avait vingt-quatre

Plus en détail

t 100. = 8 ; le pourcentage de réduction est : 8 % 1 t Le pourcentage d'évolution (appelé aussi taux d'évolution) est le nombre :

t 100. = 8 ; le pourcentage de réduction est : 8 % 1 t Le pourcentage d'évolution (appelé aussi taux d'évolution) est le nombre : Terminale STSS 2 012 2 013 Pourcentages Synthèse 1) Définition : Calculer t % d'un nombre, c'est multiplier ce nombre par t 100. 2) Exemples de calcul : a) Calcul d un pourcentage : Un article coûtant

Plus en détail

Sommaire de la séquence 1

Sommaire de la séquence 1 Sommaire de la séquence 1 t t t t t t t t t Séance 1...................................................................................................... 7 Je découvre la notion de probabilité.....................................................................

Plus en détail

Probabilités. C. Charignon. I Cours 3

Probabilités. C. Charignon. I Cours 3 Probabilités C. Charignon Table des matières I Cours 3 1 Dénombrements 3 1.1 Cardinal.................................................. 3 1.1.1 Définition............................................. 3

Plus en détail

Algorithmique et Programmation Projets 2012/2013

Algorithmique et Programmation Projets 2012/2013 3 Dames 3. Objectif Il s agit d écrire un programme jouant aux Dames selon les règles. Le programme doit être le meilleur possible. Vous utiliserez pour cela l algorithme α β de recherche du meilleur coup

Plus en détail

Chaînes de Markov au lycée

Chaînes de Markov au lycée Journées APMEP Metz Atelier P1-32 du dimanche 28 octobre 2012 Louis-Marie BONNEVAL Chaînes de Markov au lycée Andreï Markov (1856-1922) , série S Problème 1 Bonus et malus en assurance automobile Un contrat

Plus en détail

UFR de Sciences Economiques Année 2008-2009 TESTS PARAMÉTRIQUES

UFR de Sciences Economiques Année 2008-2009 TESTS PARAMÉTRIQUES Université Paris 13 Cours de Statistiques et Econométrie I UFR de Sciences Economiques Année 2008-2009 Licence de Sciences Economiques L3 Premier semestre TESTS PARAMÉTRIQUES Remarque: les exercices 2,

Plus en détail

Probabilités et Statistiques. Feuille 2 : variables aléatoires discrètes

Probabilités et Statistiques. Feuille 2 : variables aléatoires discrètes IUT HSE Probabilités et Statistiques Feuille : variables aléatoires discrètes 1 Exercices Dénombrements Exercice 1. On souhaite ranger sur une étagère 4 livres de mathématiques (distincts), 6 livres de

Plus en détail

Jeux sous forme normale

Jeux sous forme normale CHAPITRE 4 Jeux sous forme normale Dans les problèmes de décision, nous avons relié les choix qui pouvaient être faits par un agent avec les utilités qu il pouvait en dériver. L idée qu un agent rationnel

Plus en détail

GEA II Introduction aux probabilités Poly. de révision. Lionel Darondeau

GEA II Introduction aux probabilités Poly. de révision. Lionel Darondeau GEA II Introduction aux probabilités Poly. de révision Lionel Darondeau Table des matières Énoncés 4 Corrigés 10 TD 1. Analyse combinatoire 11 TD 2. Probabilités élémentaires 16 TD 3. Probabilités conditionnelles

Plus en détail

Mathématiques financières

Mathématiques financières Mathématiques financières Table des matières 1 Intérêt simple 1 1.1 Exercices........................................ 1 2 Intérêt composé 2 2.1 Taux nominal, taux périodique, taux réel.......................

Plus en détail

Mesure de probabilité, indépendance.

Mesure de probabilité, indépendance. MATHEMATIQUES TD N 2 : PROBABILITES ELEMENTAIRES. R&T Saint-Malo - 2nde année - 2011/2012 Mesure de probabilité, indépendance. I. Des boules et des cartes - encore - 1. On tire simultanément 5 cartes d

Plus en détail

Cogmaster, Probabilités discrètes. Feuille de TD n o 1 - Événements et probabilités

Cogmaster, Probabilités discrètes. Feuille de TD n o 1 - Événements et probabilités Cogmaster, Probabilités discrètes Feuille de TD n o 1 - Événements et probabilités Exercice 1 Parmi les ensembles suivants, lesquels sont égaux entre eux? A = {n + 4, n N}, B = {n, n = k + 4, k N}, C =

Plus en détail

Première S2 Chapitre 20 : probabilités. Page n 1 2007 2008

Première S2 Chapitre 20 : probabilités. Page n 1 2007 2008 Preière S2 Chapitre 20 : probabilités. Page n De tous teps, les hoes se sont intéressés aux jeux de hasard. La théorie des probabilités est une branche des athéatiques née de l'étude des jeux de hasard

Plus en détail

CORRIGE LES NOMBRES DECIMAUX RELATIFS. «Réfléchir avant d agir!»

CORRIGE LES NOMBRES DECIMAUX RELATIFS. «Réfléchir avant d agir!» Corrigé Cours de Mr JULES v3.3 Classe de Quatrième Contrat 1 Page 1 sur 13 CORRIGE LES NOMBRES DECIMAUX RELATIFS. «Réfléchir avant d agir!» «Correction en rouge et italique.» I. Les nombres décimaux relatifs.

Plus en détail

Eléments de correction du Bac Blanc n 2 de Mathématiquesdu Lundi 8 Avril2013. Calculatrice autorisée - Aucun document n'est autorisé.

Eléments de correction du Bac Blanc n 2 de Mathématiquesdu Lundi 8 Avril2013. Calculatrice autorisée - Aucun document n'est autorisé. TES Spé Maths Eléments de correction du Bac Blanc n 2 de Mathématiquesdu Lundi 8 Avril2013 Calculatrice autorisée - Aucun document n'est autorisé. Vous apporterez un grand soin à la présentation et à la

Plus en détail

Primaire. analyse a priori. Lucie Passaplan et Sébastien Toninato 1

Primaire. analyse a priori. Lucie Passaplan et Sébastien Toninato 1 Primaire l ESCALIER Une activité sur les multiples et diviseurs en fin de primaire Lucie Passaplan et Sébastien Toninato 1 Dans le but d observer les stratégies usitées dans la résolution d un problème

Plus en détail

Exercices Alternatifs. Quelqu un aurait-il vu passer un polynôme?

Exercices Alternatifs. Quelqu un aurait-il vu passer un polynôme? Exercices Alternatifs Quelqu un aurait-il vu passer un polynôme? c 2004 Frédéric Le Roux, François Béguin (copyleft LDL : Licence pour Documents Libres). Sources et figures: polynome-lagrange/. Version

Plus en détail

Exercices Alternatifs. Quelqu un aurait-il vu passer un polynôme?

Exercices Alternatifs. Quelqu un aurait-il vu passer un polynôme? Exercices Alternatifs Quelqu un aurait-il vu passer un polynôme? c 2004 Frédéric Le Roux, François Béguin (copyleft LDL : Licence pour Documents Libres). Sources et figures: polynome-lagrange/. Version

Plus en détail