ANNEXE 5 : Quelques notions de mathématiques

Dimension: px
Commencer à balayer dès la page:

Download "ANNEXE 5 : Quelques notions de mathématiques"

Transcription

1 ANNEXE 5 : Quelques notions de mathématiques 1. Inclusion et appartenance. Sur tout ensemble, on peut considérer deux relations très différentes (leur confusion conduisant à des difficultés innombrables), l appartenance de symbole : et l inclusion de symbole :. L appartenance à un ensemble X permet de définir cet ensemble par ses éléments. On peut ainsi définir l ensemble X = {0,1,2} ensemble à 3 éléments, à savoir les nombres 0, 1 et 2 ; on traduit cela en écrivant : 0 X 1 X 2 X. Cette relation n est aucunement homogène puisqu elle relie des éléments à des ensembles. L inclusion par contre est une relation entre ensembles, donc homogène, qu on peut définir à partir de la relation d appartenance. Si X et Y sont deux ensembles, on dit que Y est inclus dans X, ou encore que Y est un sous-ensemble de X, et on note Y X 75

2 si tous les éléments de Y sont des éléments de X. Autrement dit, Y X signifie : si a Y alors a X (1) 2. Parties d un ensemble. Si X est un ensemble, on définit un autre ensemble, appelé ensemble des parties de X et noté P(X). C est l ensemble dont les éléments sont les sousensembles de X. Autrement dit, Z P(X) signifie : Z X. 3. Espace et dimension. Dans la suite, on note R l ensemble des nombres réels et R n, le produit n fois de R. Ainsi R 2 peut être considéré comme le plan (espace à deux dimensions), R 3 l espace à trois dimensions, (2) 4. Propriétés d une application. Une application f entre deux ensembles E et F est dite a) injective si deux éléments différents de E sont envoyés par cette application sur deux éléments différents de F i.e. si x y alors f(x) f(y) b) surjective tout point de F est dans l image de f i.e. pour tout y F, on a y = f(x) pour un certain x E. c) bijective si elle est à la fois injective et surjective. 76

3 Si f est une application bijective de E dans F, on peut définir sa réciproque. C est une application de F dans E notée f --1 et définie par : f --1 (y) = x l unique élément de E tel que f(x) = y. Un exemple d une telle application bijective est fournie en prenant E l ensemble des entiers positifs, F l ensemble des entiers qui sont des carrés et f l application qui à un entier n lui associe son carré i.e. f(n) = n 2. Par contre si on considère E l ensemble des entiers relatifs, F de même que précédemment (l ensemble des entiers qui sont des carrés) et f l application qui à un entier positif ou négatif n lui associe son carré, cette application n est pas bijective ; ainsi f(2) = f(-2) = Opération interne, groupe, corps, sous-groupe, sous-corps. Soit A un ensemble. Une opération interne + sur A est une application qui à tout couple d éléments de A lui associe un élément de A i.e. pour tout a, a A, on a : a+a A. On dit que (A,+) est un groupe commutatif, si l opération interne + vérifie les propriétés suivantes : a) associativité i.e. pour tout a, b, c A, on a : (a+b)+c = a+ (b+c) b) existence d un élément neutre i.e. il existe un élément e A tel que pour tout a A : a+e =e+a = a c) existence d un symétrique i.e. pour tout a A, il existe a A tel que : a+a = a +a = e d) commutativité i.e. pour tout a A : a+b = b+a. Si (A,+) est un groupe commutatif, un sous-ensemble B de A est dit un sous-groupe commutatif de A, si (B, +) est lui-même un groupe commutatif. 77

4 Si l on a deux lois internes +, sur A, on dit que (A,+, ) est un corps commutatif, si i) (A,+) est un groupe commutatif d élément neutre e ii) (A*, ) est un groupe commutatif où A* = A\{e} (i.e. A* est égal à A privé de l élément neutre e pour +). Si (A,+, ) est un corps commutatif, un sous-ensemble B de A est dit un sous-corps commutatif de A, si (B, +, ) est lui-même un corps commutatif. 5. Opération externe. Soit A et N deux ensembles. Une opération externe de N sur A est une application qui à tout élément de N et tout élément de A, lui associe un élément de A i.e. pour tout n N et tout a A, on a : n a A. Comme on le voit, une opération interne est en quelque sorte le cas particulier, ou plutôt dégénéré, de l application externe, où A et N identiques. Ainsi, à toute application interne associative + sur un ensemble, on peut associer une application externe avec N l ensemble des entiers naturels, à savoir l addition itérée i.e. pour tout n N et tout a A, on pose : n a = (a+a) +a en additionnant n fois l élément a. 6. Translation. Soit (A,+) un groupe commutatif ; soit b A, on appelle translation par b, l application T b de A dans A définie par : pour tout a A, T b (a) = a+b. 78

5 Pour tout b A, soit T l ensemble des translations T b. Une translation est un élément de T i.e. c est une application T b pour un certain b A. 7. Bijectivité des translations. Une propriété importante de toute translation est d être une application bijective. En effet, soit (A,+) un groupe, b A un élément quelconque de A et T b la translation par b. 1) Pour tout a,a A, on a : T b (a) = T b (a ) signifie par définition, a+b = a +b d où a = a et donc T b est injective. 2) Pour tout a A, soit b est le symétrique de b (i.e. avec les notations additives habituelles, on peut écrire : b = -b). On pose : a = a + b A. On a alors : T b(a ) = a +b = (a+b )+b = a+(b +b) = a+e = a, d où T b est surjective. T b étant à la fois injective et surjective est (définition) bijective. 8. Translations planes. On considère le plan R 2 (cf. 3. ci-dessus) i.e. l ensemble formé des couples de réels, et on note + l addition sur R 2 i.e. pour tout z = (u,v) et z = (u,v ) éléments de R 2 : z+z = (u+u, v+v ). Alors (R 2,+) est un groupe commutatif, et une translation de R 2 est donc une certaine application T y (pour y R 2 ) définie par : 79

6 T y (z) = z+y. Une telle application est encore appelée translation plane. D après le 7. ci-dessus, ces applications sont des bijections. Exemple. 2 1 z z Sur la figure ci-dessus, on a : z = T y (z) avec z = (2,1), y = (1,1) (figuré par une flèche) et donc z = z +y = (3,2). 9. Image inverse ou réciproque par une application. Soit f une application d un ensemble A dans un ensemble B. Pour tout sous-ensemble B de B, on appelle image réciproque (ou image inverse) de B par f, et on le note f - 1 (B ), le sous-ensemble de A, formé de tous les éléments de A dont l image par f appartient à B i.e. f -1 (B ) = {a A; f(a) B }. 10. Contraposition. Soit p et q des énoncés ; la contraposée à l implication : 80

7 p q est l implication : non q non p où non p (respectivement non q) est la négation de la proposition p (respectivement q). On a la propriété suivante : une implication entre deux proposition est vraie (ou fausse) si et seulement si sa contraposée l est. Pour vérifier la vérité d une implication, il suffit donc de vérifier celle de sa contraposée. Ainsi l implication : Si X est un homme, alors X est mortel est équivalent à : Si X est immortel, alors ce n est pas un homme. Ou encore : Si un polygone convexe est un triangle, la somme de ses angles est égale à 2 droits est équivalent à : Si la somme d un polygone convexe n est pas égale à deux droits, ce n est pas un triangle. 11. Relation d ordre. Définition. Sur un ensemble A, un ordre (ou relation d ordre) est la donnée d une relation (permettant de comparer deux éléments de A) vérifiant les propriétés suivantes : Réflexivité : pour tout a A, on a : a a Antisymétrie : pour tout a, b A, on a : (a b et b a) implique a = b Transitivité : pour tout a, b, c A, on a : (a b et b c) implique a b. 81

8 Définition. Ordre strict. Un ordre s sur A est dit strict, si la réflexivité est toujours fausse, i.e. pour tout pour tout a A : a s a est faux. Ou encore, en prenant la contraposée (cf. paragraphe précédent) : a s b implique a b. A toute relation d ordre (générale) sur un ensemble A, on associe une relation d ordre stricte s en posant : a s b signifie : a s b et a b. Définition. Ordre total. Un ordre sur A est dit total, si pour tout élément a, a' de A, on a : soit a a', soit a' a, soit a = a'. Un ensemble sur lequel on met un ordre total est dit totalement ordonné. Exemples. a) Soit A l ensemble des nombres entiers naturels et la relation (supérieure ou égale) définie par : pour tout n, m A, on a : n m signifie (n-m) A. Il est facile de montrer que cette relation vérifie les trois propriétés (réflexivité, antisymétrie et transitivité) ci-dessus. b) Cette relation d ordre est une relation d ordre total (deux entiers naturels peuvent toujours être comparés). c) Soit A le sous-ensemble de A des entiers naturels non nuls i.e. A est égal à A privé de zéro. La relation d ordre stricte associée à est notée >. D après ci-dessus : n > m signifie (n-m) A. d) Soit A l ensemble des mots d un dictionnaire et la relation définie par être situé après i.e. si a et b sont deux mots dans le dictionnaire, on a : a b signifie le mot a est situé après le mot b autrement dit c est l ordre alphabétique. 82

9 Cette relation vérifie les trois propriétés i), ii) et iii), c est donc une relation d ordre (la relation d ordre alphabétique) sur l ensemble des mots du dictionnaire. Et c est une relation d ordre total. 83

Logique, ensembles et applications.

Logique, ensembles et applications. Logique, ensembles et applications. I Outils du raisonnement mathématique 1 I.A Assertions et connecteurs logiques................. 1 I.A.1 Assertions........................... 1 I.A.2 Connecteurs logiques.....................

Plus en détail

GROUPES, ANNEAUX, CORPS

GROUPES, ANNEAUX, CORPS GROUPES, ANNEAUX, CORPS 1 Notion de loi 1.1 Loi interne Définition 1.1 Loi interne Soit E un ensemble. On appelle loi interne sur E toute application de E E dans E. Notation 1.1 Si est une loi interne

Plus en détail

Chapitre 2. Ensembles et sous-ensembles

Chapitre 2. Ensembles et sous-ensembles Chapitre 2 Ensembles et sous-ensembles 1. Notion d ensemble - Elément d un ensemble Dans une théorie mathématique, il est rare qu un objet intervienne seul ; d où l idée de considèrer des collections,

Plus en détail

Logique et théorie des ensembles

Logique et théorie des ensembles Rappels : Logique et théorie des ensembles N : ensemble des entiers naturels = { 0,, 2, } A part 0, un nombre n a pas d opposé dans N = {0} : ensemble des entiers relatifs = {, 2,, 0,, 2, } = { n, -n ;

Plus en détail

Polycopié de Logique Mathématique

Polycopié de Logique Mathématique 1. Propositions. Université de la Nouvelle Calédonie. Licences Math, PC, SPI. Semestre 2. Polycopié de Logique Mathématique Une proposition est un enoncé mathématique qui peut être soit vrai (V) soit faux

Plus en détail

Algèbre 1 RAISONNEMENT ELEMENTS DE LA THEORIE DES ENSEMBLES

Algèbre 1 RAISONNEMENT ELEMENTS DE LA THEORIE DES ENSEMBLES Algèbre - chap 1 1/8 Algèbre 1 RAISONNEMENT ELEMENTS DE LA THEORIE DES ENSEMBLES 1. ELEMENTS DE LOGIQUE 1.1 Propositions Règles logiques Définition 1 : On appelle propriété ou assertion une affirmation

Plus en détail

ÉLÉMENTS DE THÉORIE DES ENSEMBLES. 1 Les ensembles. 1.1 Définition d un ensemble

ÉLÉMENTS DE THÉORIE DES ENSEMBLES. 1 Les ensembles. 1.1 Définition d un ensemble 2015-2016 MPSI2 du lycée Condorcet 1/22 ÉLÉMENTS DE THÉORIE DES ENSEMBLES 1 Les ensembles 1.1 Définition d un ensemble Définition 1. Un ensemble est une collection d objets mathématiques. Les objets qui

Plus en détail

Chapitre 4. Applications

Chapitre 4. Applications Chapitre 4 Applications 1. Définitions et exemples Définition 4.1 Soient E et F deux ensembles. Une application f de E dans F est un procédé qui permet d associer à chaque élément x de E un unique élément

Plus en détail

Ensembles, applications, relations

Ensembles, applications, relations Ensembles, applications, relations Notations : : «il existe» ; : «appartient à» ; : «contenu dans» : «quel que soit» ; : «n appartient pas à» ; : «n est pas contenu dans» : «contenu ou égal à» I) Ensembles

Plus en détail

Nombres complexes. 1 Le corps commutatif (C, +, )

Nombres complexes. 1 Le corps commutatif (C, +, ) Nombres complexes La construction du corps des réels a permis de gagner, par rapport au corps des rationnels, des propriétés topologiques importantes : complétude, théorème de la borne supérieure... À

Plus en détail

Université de Provence Feuille d exercices n 4. Théorie des ensembles, relations, applications. I. Un peu de logique

Université de Provence Feuille d exercices n 4. Théorie des ensembles, relations, applications. I. Un peu de logique Université de Provence 2010 2011 Mathématiques Générales 1 Feuille d exercices n 4 Théorie des ensembles, relations, applications I. Un peu de logique Exercice 1 Ecrire à l aide de quantificateurs (, )

Plus en détail

Chapitre 5. Applications

Chapitre 5. Applications Chapitre 5 Applications 1. Définitions et exemples Définition 5.1 Soient E et F deux ensembles. Une application f de E dans F est un procédé qui permet d associer à chaque élément x de E un unique élément

Plus en détail

TOPOLOGIE & CONTINUITÉE Une approche mathéematique et philosophique III

TOPOLOGIE & CONTINUITÉE Une approche mathéematique et philosophique III TOPOLOGIE & CONTINUITÉE Une approche mathéematique et philosophique III 4. PARTIES D UN ENSEMBLE. Déefinition. Ensemble des parties d un ensemble Soit A un ensemble ; l ensemble des parties de A notée

Plus en détail

Correction des exercices du TD1

Correction des exercices du TD1 Correction des exercices du TD1 Rappel : des aides vous sont fournies sur le site «www4.utc.fr /~mt21/» à la fin des fichiers consacrés aux chapitre de cours. N hésitez pas à les consulter pour refaire

Plus en détail

ANNEXE 5 : Quelques notions de topologie

ANNEXE 5 : Quelques notions de topologie ANNEXE 5 : Quelques notions de topologie 1. Généralités. Définition. Topologie. Soit X un ensemble quelconque. Une topologie est une partie F(X) de P(X) (i.e. une famille de sous-ensembles de X) vérifiant

Plus en détail

Leçon 69 : Les différents types de raisonnement en mathématiques

Leçon 69 : Les différents types de raisonnement en mathématiques Leçon 69 : Les différents types de raisonnement en mathématiques 1 er avril 01 En mathématiques, pour démontrer divers propriétés ou théorèmes, nous avons besoin d appliquer rigoureusement un raisonnement

Plus en détail

5. ( ) ( ) Aller à : Correction exercice 6 : Exercice 7 : Soient et deux parties de. Ecrire en utilisant les assertions

5. ( ) ( ) Aller à : Correction exercice 6 : Exercice 7 : Soient et deux parties de. Ecrire en utilisant les assertions Logique Exercice 1 : Parmi les assertions suivantes, lesquelles sont vraies, lesquelles sont fausses et pourquoi? 1. Si Napoléon était chinois alors 2. Soit Cléopâtre était chinoise, soit les grenouilles

Plus en détail

LFA / Terminale S SPÉCIALITÉ MATHS Mme MAINGUY. Les nombres contenus dans ce tableau sont appelés les coefficients de la matrice.

LFA / Terminale S SPÉCIALITÉ MATHS Mme MAINGUY. Les nombres contenus dans ce tableau sont appelés les coefficients de la matrice. Les matrices chapitre 2 : calcul matriciel I / Définitions Soit n et p deux entiers naturels non nuls Une matrice n p (on dit aussi de format n ; p ( ) est un tableau de nombres réels à n lignes et p colonnes

Plus en détail

Différents types de raisonnement en mathématiques

Différents types de raisonnement en mathématiques Différents types de raisonnement en mathématiques I) Symboles logiques 1) Les quantificateurs Les quantificateurs permettent de connaitre le domaine de validité d une propriété. a) Pour une propriété universelle

Plus en détail

À partir de différentes propositions logiques, on peut en construire d autres grâce aux connecteurs

À partir de différentes propositions logiques, on peut en construire d autres grâce aux connecteurs Assertion Une assertion est une phrase (énoncé mathématique) qui peut être «vraie» ou «fausse», mais jamais les deux à la fois. Exemples: (3 > 0), (3 = 0) sont des assertions. L énoncé «L avenue des Champs

Plus en détail

Chapitre 5. Lois de composition internes - Relations

Chapitre 5. Lois de composition internes - Relations Chapitre 5 Lois de composition internes - Relations 1. Lois de composition internes 1.1. Définition et exemples Définition 5.1 Soit E un ensemble. Une loi de composition interne sur E est une application

Plus en détail

Cours d arithmétique. Khaoula Ben Abdeljelil

Cours d arithmétique. Khaoula Ben Abdeljelil Cours d arithmétique Khaoula Ben Abdeljelil 2 Table des matières Table des matières............................... i 1 LES ENTIERS NATURELS 1 1.1 Les opérations élémentaires sur N.................... 1

Plus en détail

Nombres réels. Définition On définit également le produit de deux suites u et v de S comme le produit terme à terme : u v = (u n v n ) n N

Nombres réels. Définition On définit également le produit de deux suites u et v de S comme le produit terme à terme : u v = (u n v n ) n N Nombres réels 1 Suites de rationnels Définition Une suite de rationnels (ou suite rationnelle) est une application u : N Q. Notation : Pour tout entier n, on note u n l image u(n) de l entier n par l application

Plus en détail

Correction des exercices du TD1

Correction des exercices du TD1 Correction des exercices du TD1 Rappel : des aides vous sont fournies sur le site «www4.utc.fr /~mt21/» à la fin des fichiers consacrés aux chapitre de cours. N hésitez pas à les consulter pour refaire

Plus en détail

1 Réunion, intersection, différence, produit cartésien d ensembles

1 Réunion, intersection, différence, produit cartésien d ensembles Université Claude Bernard Lyon 1 Licence Mathématiques et informatique Première année UE Math I-ALGEBRE Année 008-009 CHAPITRE 1 1 Réunion, intersection, différence, produit cartésien d ensembles Exercice

Plus en détail

TOPOLOGIE & CONTINUITÉE Une approche mathéematique et philosophique I

TOPOLOGIE & CONTINUITÉE Une approche mathéematique et philosophique I TOPOLOGIE & CONTINUITÉE Une approche mathéematique et philosophique I EXERCICES Exercices sur la partie 0. Exercice 0.1. Montrer l affirmation de l ÉEtranger des Lois de Platon : traduire en termes mathéematiques

Plus en détail

ÉGALITÉS ET INÉGALITÉS

ÉGALITÉS ET INÉGALITÉS ÉGALITÉS ET INÉGALITÉS 1 Égalités Définition 1.1 Identité On appelle identité une égalité entre deux expressions qui est valable quelles que soient les valeurs des variables entrant en jeu dans ces expressions.

Plus en détail

Matrices. 6 On appelle matrice triangulaire inférieure toute matrice carrée d ordre n telle que, si

Matrices. 6 On appelle matrice triangulaire inférieure toute matrice carrée d ordre n telle que, si Agrégation interne UFR MATHÉMATIQUES Matrices On note K un corps commutatif. n et p représentent deux entiers naturels non nuls. 1. Notion de matrice 1.1. Définitions Définition 1 On appelle matrice d

Plus en détail

ENSEMBLES ET APPLICATIONS

ENSEMBLES ET APPLICATIONS ENSEMBLES ET APPLICATIONS 1 Applications : définitions ensemblistes Définition 1.1 Application Soient E et F deux ensembles. On appelle application de E dans F un objet { mathématique f qui à tout élément

Plus en détail

Deux éléments quelconques de Z sont comparables (l ordre est total). C est-à-dire que pour n, m dans Z on a soit n m soit m n.

Deux éléments quelconques de Z sont comparables (l ordre est total). C est-à-dire que pour n, m dans Z on a soit n m soit m n. 6 Arithmétique dans Z 6.1 L anneau Z des entiers relatifs On désigne par Z l ensemble des entiers relatifs, soit : Z = {, n,, 2, 1, 0, 1, 2,, n, }. On note Z l ensemble Z privé de 0. On rappelle que l

Plus en détail

Cours de Mathématiques Ensembles, applications, relations

Cours de Mathématiques Ensembles, applications, relations Table des matières I Un peu de logique................................... 2 I.1 Assertions................................... 2 I.2 Opérations sur les assertions......................... 2 I.3 Tableaux

Plus en détail

Axiomatique de N. Construction de l anneau Z

Axiomatique de N. Construction de l anneau Z DOCUMENT 1 Axiomatique de N. Construction de l anneau Z 1. Les entiers naturels La première définition axiomatique des entiers naturels apparaît dans un ouvrage de Dedekind, Was sind und was sollen die

Plus en détail

Notions de base et notations courantes en mathématiques

Notions de base et notations courantes en mathématiques Algèbre linéaire avancée I Automne 015 EPFL Notions de base et notations courantes en mathématiques A. Théorie des ensembles 1. Un ensemble est une collection d objets appelés les éléments de l ensemble.

Plus en détail

Fondement des mathématiques

Fondement des mathématiques Fondement des mathématiques Cédric Milliet Version préliminaire Cours de première année de licence Université Galatasaray Année 2011-2012 Ces notes de cours doivent beaucoup au cours du même nom de Marie-Christime

Plus en détail

RELATION BINAIRE [ [ ( ) Est bien définie et que c est une bijection. Allez à : Correction exercice 3 :

RELATION BINAIRE [ [ ( ) Est bien définie et que c est une bijection. Allez à : Correction exercice 3 : RELATION BINAIRE Exercice 1 : Soit { } et la relation binaire sur dont le graphe est { } 1. Vérifier que la relation est une relation d équivalence. 2. Faire la liste des classes d équivalences distinctes

Plus en détail

Chapitre 4 - Calcul des propositions et des prédicats, langage ensembliste et calcul booléen

Chapitre 4 - Calcul des propositions et des prédicats, langage ensembliste et calcul booléen Lycée Maximilien Sorre Année 2015-2016 BTS SIO 1 Chapitre 4 - Calcul des propositions et des prédicats, langage ensembliste et calcul booléen 1 Calcul des propositions 1.1 Propositions, valeurs de vérité

Plus en détail

Chapitre II : L ensemble des nombres réels

Chapitre II : L ensemble des nombres réels 1 UNIVERSITÉ DE CERGY Année 2013-2014 U.F.R. Économie & Gestion Licence d Économie et Mathématiques MATH104 : Mathématiques Chapitre II : L ensemble des nombres réels 1 Quelques notions générales sur R

Plus en détail

Logique, ensembles, raisonnements

Logique, ensembles, raisonnements Bibliothèque d exercices Énoncés L1 Feuille n Logique, ensembles, raisonnements 1 Logique Exercice 1 Soient les quatre assertions suivantes : (a) x R y R x + y > 0 ; (b) x R y R x + y > 0 ; (c) x R y R

Plus en détail

Algèbre linéaire avancée I Jeudi 17 septembre 2015 Prof. A. Abdulle

Algèbre linéaire avancée I Jeudi 17 septembre 2015 Prof. A. Abdulle Algèbre linéaire avancée I Jeudi 17 septembre 015 Prof. A. Abdulle EPFL Série 1 (Corrigé) Exercice 1 Soit f : R R définie par f(x) = x 4x. Répondre à chacune des questions suivantes en cochant la case

Plus en détail

7 Compléments : Quelques structures algébriques

7 Compléments : Quelques structures algébriques Université de Nice Sophia-Antipolis L1 - MP Algébre 16-17 semestre 1 7 Compléments : Quelques structures algébriques Introduction : L ensemble des nombres rationnels est muni de deux opérations : l addition

Plus en détail

Propositions et prédicats

Propositions et prédicats Propositions et prédicats 1 introduction Définition : Une proposition est un énoncé mathématiques qui peut être démontré comme vrai ou faux, il a valeur de vérité. La logique en mathématique permet d établir

Plus en détail

Chapitre 2. Groupes. Introduction : lois de composition. 2.1 Structure de groupe

Chapitre 2. Groupes. Introduction : lois de composition. 2.1 Structure de groupe Chapitre 2 Groupes Introduction : lois de composition Une loi de composition interne sur un ensemble G est une application G G G. L image du couple (x, y) est notée avec un symbole : suivant le contexte

Plus en détail

Outils formels pour l étude du langage

Outils formels pour l étude du langage Outils formels pour l étude du langage Cours de Master, ENS, MasterCog + LTD, A. Lecomte, 2009-2010 Ensembles et logique 1 Ensembles Rappelons brièvement quelques notions de théorie des ensembles. Notons

Plus en détail

Chapitre 1 : s exprimer en mathématiques

Chapitre 1 : s exprimer en mathématiques Université Paris-Dauphine DUMI2E, Algèbre 1, 2009-2010 Chapitre 1 : s exprimer en mathématiques Ces notes correspondent au cours qui a été donné en amphi. C est une version condensée du polycopié de logique,

Plus en détail

Cours d Algèbre I Bachelor Semestre 3 Prof. E. Bayer Fluckiger 24 septembre 2012

Cours d Algèbre I Bachelor Semestre 3 Prof. E. Bayer Fluckiger 24 septembre 2012 Cours d Algèbre I Bachelor Semestre 3 Prof. E. Bayer Fluckiger 24 septembre 2012 Corrigé 1 Exercice 1. 1 Montrer qu un groupe G a exactement un élément neutre. 2 Soient a, b et c trois éléments d un groupe

Plus en détail

RELATIONS D EQUIVALENCE ET ACTIONS DE GROUPES

RELATIONS D EQUIVALENCE ET ACTIONS DE GROUPES Géométrie du plan et de l espace RELATIONS D EQUIVALENCE ET ACTIONS DE GROUPES 1. Rappels ensemblistes Les ensembles seront souvent notés X, Y,... On note f : X Y une application de X dans Y. On dit que

Plus en détail

Les ensembles D. Daigle

Les ensembles D. Daigle Les ensembles D. Daigle 1. Notions de base La notation x A signifie que x est un élément de l ensemble A (elle se lit x est élément de A ou encore x appartient à A ). Remarquez que le symbole d appartenance

Plus en détail

E E[v := F ] (1.8) Réflexivité :x = x (1.9) Symétrie (commutativité) : (x = y) =(y = x) (1.7) Substitution : (1.10) Transitivité : X = Y, Y = Z X = Z

E E[v := F ] (1.8) Réflexivité :x = x (1.9) Symétrie (commutativité) : (x = y) =(y = x) (1.7) Substitution : (1.10) Transitivité : X = Y, Y = Z X = Z (1.7) Substitution : E E[v := F ] (1.8) Réflexivité :x = x (1.9) Symétrie (commutativité) : (x = y) =(y = x) (1.10) Transitivité : X = Y, Y = Z X = Z (1.11) Leibniz: X = Y E[z := X] =E[z := Y ] X = Y (1.14)

Plus en détail

Notions de bases. 2 Ensembles Vocabulaire ensembliste Ensemble des parties d un ensemble... 5

Notions de bases. 2 Ensembles Vocabulaire ensembliste Ensemble des parties d un ensemble... 5 Maths PCSI Cours Notions de bases Table des matières 1 Logique 2 1.1 Proposition logique.......................................... 2 1.2 Disjonction, conjonction et implication...............................

Plus en détail

Structures algébriques

Structures algébriques Structures algébriques Plan du chapitre 1 Lois de composition interne.... page 2 1.1 Définition....... page 2 1.2 Exemples......... page 2 1.3 Propriétés éventuelles des lois de composition interne...page

Plus en détail

Groupes. Motivation. 1. Groupe. Exo Définition

Groupes. Motivation. 1. Groupe. Exo Définition Exo7 Groupes Vidéo partie 1. Définition Vidéo partie 2. Sous-groupes Vidéo partie 3. Morphismes de groupes Vidéo partie 4. Le groupe Z/nZ Vidéo partie 5. Le groupe des permutations Motivation Évariste

Plus en détail

4.1 Définitions et notations 1 CHAPITRE 4. Matrices Définitions et notations

4.1 Définitions et notations 1 CHAPITRE 4. Matrices Définitions et notations 4 Définitions et notations CHAPITRE 4 Matrices 4 Définitions et notations On désigne par K un des deux ensembles R ou C et par n et p deux entiers strictement positifs 4 Matrices Définition On appelle

Plus en détail

Combinatoire énumérative

Combinatoire énumérative DOMAINE : Combinatoire AUTEUR : Igor KORTCHEMSKI NIVEAU : Débutants STAGE : Montpellier 2012 CONTENU : Cours et exercices Combinatoire énumérative - Introduction - La Combinatoire est un sous-art des mathématiques

Plus en détail

logique I démonstration et théorie axiomatique 2 1 généralités 2 2 proposition, prédicat simple 2

logique I démonstration et théorie axiomatique 2 1 généralités 2 2 proposition, prédicat simple 2 logique Table des matières I démonstration et théorie axiomatique 1 généralités proposition, prédicat simple 3 prédicats composés 3 3.1 prédicat de négation....................................... 3 3.

Plus en détail

Formalisation mathématique

Formalisation mathématique Formalisation mathématique Tony Bourdier (2012) Table des matières 1 Logique de base 1 1.1 Implication, condition nécéssaire, condition suffisante............. 1 1.2 Contraposée....................................

Plus en détail

MATHÉMATIQUES. 1. PROPRIÉTES et ENSEMBLES.

MATHÉMATIQUES. 1. PROPRIÉTES et ENSEMBLES. MATHÉMATIQUES. Le Petit Larousse Illustré 1994 donne la définition suivante : Mathématique (de mathêma = science en grec) : nom s. ou pl. 1. Science qui étudie par le moyen du raisonnement déductif les

Plus en détail

ISET Jerba wwww.isetjb.rnu.tn Département Génie Électrique. Cours d algèbre2. Haj Dahmane DHAFER

ISET Jerba wwww.isetjb.rnu.tn Département Génie Électrique. Cours d algèbre2. Haj Dahmane DHAFER ISET Jerba wwwwisetjbrnutn Département Génie Électrique Cours d algèbre2 Haj Dahmane DHAFER 19 février 2015 Chapitre I Généralités sur les matrices Sommaire I Définitions et notations 1 II Opérations sur

Plus en détail

Planche n o 3. Ensembles, relations, applications : corrigé

Planche n o 3. Ensembles, relations, applications : corrigé Planche n o 3 Ensembles, relations, applications : corrigé Exercice n o 1 Si E = F, alors P(E) = P(F) Réciproquement, supposons que P(E) = P(F) F est un élément de P(F) et donc F est un élément P(E) Mais

Plus en détail

RAISONNEMENTS. 1 Propositions logiques. 1.1 Définition et négation. 1.2 Conjonction et disjonction. Laurent Garcin MPSI Lycée Jean-Baptiste Corot

RAISONNEMENTS. 1 Propositions logiques. 1.1 Définition et négation. 1.2 Conjonction et disjonction. Laurent Garcin MPSI Lycée Jean-Baptiste Corot RAISONNEMENTS 1 Propositions logiques 1.1 Définition et négation Définition 1.1 Proposition On appelle proposition un énoncé mathématique qui peut être vrai ou faux. Exemple 1.1 Deux propositions simples.

Plus en détail

Entiers relatifs. 1 Définition

Entiers relatifs. 1 Définition Entiers relatifs 1 Définition On définit, sur l ensemble N N, la relation binaire R par : (a, b)r(c, d) a + d = b + c On vérifie sans peine que R est bien une relation d équivalence : La réflexivité découle

Plus en détail

Nombres réels et inégalités

Nombres réels et inégalités Nombres réels et inégalités Lycée Berthollet, PCSI2 2016-17 I Nombres réels Il est demandé à la classe de définir les nombres réels. En général, il se dégage deux courants : Un réel positif peut être pensé

Plus en détail

ENSEMBLES, FONCTIONS, SUITES 1. ENSEMBLES {1,2,2,4,3} = {1,2,3,4}

ENSEMBLES, FONCTIONS, SUITES 1. ENSEMBLES {1,2,2,4,3} = {1,2,3,4} ENSEMBLES, FONCTIONS, SUITES IFT1065 AUT. 2007 - SEMAINE 3 1. ENSEMBLES 1.1. Définition par extension. On peut définir un ensemble en listant ces éléments. Une telle définition est dite par extension.

Plus en détail

DENOMBRABILITE. P. Pansu 14 mai 2005

DENOMBRABILITE. P. Pansu 14 mai 2005 DENOMBRABILITE P. Pansu 14 mai 2005 1 Motivation Il y a t il plus de réels dans ]1, + [ ou dans l intervalle ]0, 1[? Oui, bien sûr. Des droites passant par l origine dans le plan, il y en a-t-il autant

Plus en détail

TD 1: Calcul propositionnel

TD 1: Calcul propositionnel Université Paris 1 Panthéon-Sorbonne. L1 MIASHS -Fondement des mathématiques TD 1: Calcul propositionnel Exercice 1. Soit p la proposition il fait froid et q il pleut. Donner l énoncé en language naturel

Plus en détail

TD n3. Relations, fonctions et ordres

TD n3. Relations, fonctions et ordres Université de Nice Sophia Antipolis Licence Informatique 2 Outils Mathématiques pour l Informatique 2012 2013 TD n3 Relations, fonctions et ordres 1 Echauffement Exercice 1) Etudier les définitions de

Plus en détail

Les implications dans le raisonnement mathématique

Les implications dans le raisonnement mathématique I Les implications dans le raisonnement mathématique I.1 L implication - L équivalence 1 (De la logique en français) Une réunion de cosmonautes du monde entier a lieu à Paris. Les cosmonautes américains

Plus en détail

Congruences. DOMAINE : Arithmétique. NIVEAU : Débutants STAGE : Montpellier 2014 CONTENU : Cours et exercices

Congruences. DOMAINE : Arithmétique. NIVEAU : Débutants STAGE : Montpellier 2014 CONTENU : Cours et exercices DOMAINE : Arithmétique AUTEUR : Nicolas SÉGARRA NIVEAU : Débutants STAGE : Montpellier 014 CONTENU : Cours et exercices Congruences Commençons par trois exercices permettant de rappeler ce qui a été vu

Plus en détail

THEME : REDACTION PYTHAGORE et SA RECIPROQUE. ThEoreme de Pythagore : Exemple 1 : L unité est le centimètre. TRIANGLE RECTANGLE THEOREME DE PYTHAGORE

THEME : REDACTION PYTHAGORE et SA RECIPROQUE. ThEoreme de Pythagore : Exemple 1 : L unité est le centimètre. TRIANGLE RECTANGLE THEOREME DE PYTHAGORE THEME : REDACTION PYTHAGORE et SA RECIPROQUE ThEoreme de Pythagore : Si ABC est un triangle rectangle en A, alors BC² = BA² + AC² Autrement formulé : Dans un triangle rectangle, le carré de l hypoténuse

Plus en détail

X - LOI DE COMPOSITION INTERNE INDUITE PAR UNE RELATION D ORDRE

X - LOI DE COMPOSITION INTERNE INDUITE PAR UNE RELATION D ORDRE X - LOI DE COMPOSITION INTERNE INDUITE PAR UNE RELATION D ORDRE Proposition 1 Soit E un ensemble muni d une relation d ordre large notée, vérifiant la propriété (I) pour tout couple (x, y) de E E, l ensemble

Plus en détail

Dans tout ce qui suit, on se place dans un espace vectoriel euclidien E de dimension 2.

Dans tout ce qui suit, on se place dans un espace vectoriel euclidien E de dimension 2. Chapitre 3 Les angles 3.1 Angles orientés de vecteurs du plan 3.1.1 Groupe des rotations Dans tout ce qui suit, on se place dans un espace vectoriel euclidien E de dimension 2. Définition 3.1 On appelle

Plus en détail

ESPACES VECTORIELS. Résumé de cours d algèbre linéaire L1 de B. Calmès, Université d Artois (version du 1 er février 2016)

ESPACES VECTORIELS. Résumé de cours d algèbre linéaire L1 de B. Calmès, Université d Artois (version du 1 er février 2016) ESPACES VECTORIELS Résumé de cours d algèbre linéaire L1 de B. Calmès, Université d Artois (version du 1 er février 2016) 1. Espaces et sous-espaces vectoriels Dans ce qui suit, K est un corps, que l on

Plus en détail

Logique et théorie des ensembles.

Logique et théorie des ensembles. Logique et théorie des ensembles. Paul Rozière Paris 7 M63010 28 novembre 2011 On écrit parfois A, B C pour (A et B) C. Le signe «d» signifie «équivaut par définition à». 1 Axiomatisation de l arithmétique

Plus en détail

Les Topos Élémentaires via les Classifiants Alain Prouté

Les Topos Élémentaires via les Classifiants Alain Prouté Les Topos Élémentaires via les Classifiants Alain Prouté Résumé Ce court texte est une introduction rapide à la structure de Topos Élémentaire (de Lawvere- Tierney) via la notion de classifiant. Ce texte

Plus en détail

Sylvain ETIENNE 2003/2004 PLC 1 Exposé 27

Sylvain ETIENNE 2003/2004 PLC 1 Exposé 27 HOMOTHETIES ET TRANSLATIONS ; TRANSFORMATION VECTORIELLE ASSOCIEE. INVARIANTS ELEMENTAIRES : EFFET SUR LES DIRECTIONS, L ALIGNEMENT, LES DISTANCES APPLICATIONS A L ACTION SUR LES CONFIGURATIONS USUELLES.

Plus en détail

LEÇON N 14 : Congruences dans Z. Anneau Z/nZ Congruences dans Z (n N, n 2)

LEÇON N 14 : Congruences dans Z. Anneau Z/nZ Congruences dans Z (n N, n 2) LEÇON N 14 : Congruences dans Z. Anneau Z/nZ. Pré-requis : Relation d équivalence ; Définitions d un groupe, d un anneau, d un corps ; Division euclidienne dans Z, notation d un cardinal ( ) ; Nombres

Plus en détail

Mathématique et Mécanique de Base

Mathématique et Mécanique de Base Mathématique et Mécanique de Base Pauline GERUS - Leila LEFEVBRE - Violaine SEVREZ Licence 1 STAPS BMC 51 2009-2010 Définition Repère = zone de référence Etablit en fonction des objectifs On choisit une

Plus en détail

FONDEMENT DES MATHÉMATIQUES

FONDEMENT DES MATHÉMATIQUES Cédric Milliet Cours de FONDEMENT DES MATHÉMATIQUES Version préliminaire Cours de première année de Lisans Université Galatasaray, 2012 2 Cédric Milliet Université Galatasaray Faculté de Sciences et de

Plus en détail

Corrigé des Exercices d approfondissement du chapitre 0.

Corrigé des Exercices d approfondissement du chapitre 0. Corrigé des Exercices d approfondissement du chapitre 0. Exercice 0.17. Supposons que g f soit surjective et montrons que g est surjective. Soit z G. Comme g f est surjective, il existe x E tel que g f(x)

Plus en détail

Un peu de langage mathématique

Un peu de langage mathématique Chapitre 1 Un peu de langage mathématique 1.1 La Phrase mathématique 1.1.1 Les Assertions Dans l imaginaire collectif, les mathématiques sont souvent considérées comme la science des nombres du calcul.

Plus en détail

Nombres complexes. Lycée du parc. Année

Nombres complexes. Lycée du parc. Année Nombres complexes Lycée du parc Année 2014-2015 Introduction historique Au début du XVI ème siècle en Italie, Scipione del Ferro, découvre une formule permettant de résoudre les équations du type x 3 +

Plus en détail

si 0 p n. = p!(n p)! 0 si p > n.

si 0 p n. = p!(n p)! 0 si p > n. Université Claude Bernard Lyon I L1 - parcours PMI de Mathématiques : Algèbre I Année 2012 2013 Dénombrements Les résultats à retenir Théorème Soit E et F deux ensembles de cardinaux finis respectifs n

Plus en détail

Logique et Raisonnement

Logique et Raisonnement INSA Toulouse Cycle Préparatoire IFCI Module Outils Mathématiques Regroupement n 1 Logique et Raisonnement Introduction En mathématiques, on travaille avec des objets abstraits (nombres, ensembles, applications,

Plus en détail

8. TRANSLATIONS ET ESPACES AFFINES. Dans un espace vectoriel E l application t v : m a v + m est appelée translation de vecteur v.

8. TRANSLATIONS ET ESPACES AFFINES. Dans un espace vectoriel E l application t v : m a v + m est appelée translation de vecteur v. 8. TRANSLATIONS ET ESPACES AFFINES On sait que l addition dans un espace vectoriel E opère sur deux éléments quelconques de E. On peut se demander ce qui se passe, lorsqu on «fixe» l un de ces éléments.

Plus en détail

QUELQUES RAPPELS ET COMPLÉMENTS. 1. Relation d équivalence, relation d ordre

QUELQUES RAPPELS ET COMPLÉMENTS. 1. Relation d équivalence, relation d ordre QUELQUES RAPPELS ET COMPLÉMENTS 1.1. Définitions. 1. Relation d équivalence, relation d ordre Définition 1.1. Soit E un ensemble et E E le produit cartésien. Une relation binaire (ou correspondance binaire)

Plus en détail

Travaux dirigés Feuille d exercices 1

Travaux dirigés Feuille d exercices 1 LM372 Année académique 2010-2011 Anneaux, généralités Travaux dirigés Feuille d exercices 1 Exercice 1 Soit (G, +) un groupe commutatif. On note End(G) l ensemble des endomorphismes de G, sur lequel on

Plus en détail

Université du Maine. Licence 1. Analyse. Alexandre POPIER

Université du Maine. Licence 1. Analyse. Alexandre POPIER Université du Maine Licence Analyse Alexandre POPIER Année : 009-00 Table des matières Introduction Nombres réels et fonctions 3. Opérations sur les nombres réels....................... 4. Fonctions numériques.............................

Plus en détail

Université Aix-Marseille Parcours CUPGE Introduction à l analyse. Cours Applications

Université Aix-Marseille Parcours CUPGE Introduction à l analyse. Cours Applications Université ix-marseille 2015 2016 Parcours CUPGE Introduction à l analyse Cours pplications 1 Définitions Définition 1 Une application, c est la donnée de trois choses : 1 un ensemble de départ ; 2 un

Plus en détail

Algèbre Cours 9. Anneaux. 27 novembre 2009

Algèbre Cours 9. Anneaux. 27 novembre 2009 Algèbre Cours 9 Anneaux 27 novembre 2009 Définition Définition Anneau. Un anneau unitaire est un triplet (A,+, ) où A est un ensemble, + : A A A et : A A A deux lois internes sur A vérifiant les axiomes

Plus en détail

Logique - Calcul propositionnel

Logique - Calcul propositionnel Logique 1/ 6 Logique - Calcul propositionnel En mathématiques, les théorèmes sont des propriétés très importantes. Ils s écrivent le plus souvent à l aide de liens logiques liant entre elles des propositions.

Plus en détail

Morphologie mathématique

Morphologie mathématique Morphologie mathématique Ensembles et Images Luc Brun (d après le cours de M. Coster) Morphologie mathématique p.1/42 lan Les opérateurs ensemblistes de base et les propriétés usuelles Egalité et inclusion

Plus en détail

Chapitre 2 : ensembles

Chapitre 2 : ensembles Université Paris-Dauphine DUMI2E, Algèbre 1, 2009-2010 1 Définitions Chapitre 2 : ensembles Un ensemble est une collection d objets. Ces objets sont appelés éléments de l ensemble. Pour dire que x est

Plus en détail

Exercices corrigés. Exercice 6 Considérons les vecteurs de R 4 suivants : 1 e 1 = 1 1, e 2 = 1. , e 4 = 2, e 3 = 1 1

Exercices corrigés. Exercice 6 Considérons les vecteurs de R 4 suivants : 1 e 1 = 1 1, e 2 = 1. , e 4 = 2, e 3 = 1 1 Eercices corrigés Algèbre linéaire Enoncés Eercice On rappelle que (E, +, est un K-espace vectoriel si (I (E, + est un groupe commutatif ; (II-, y E, α K, α ( + y = α + α y ; (II- E, α, β K, (α + β = α

Plus en détail

Proposition1.1. (i) Le composé d une rotation et d une translation (ou d une translation et d une rotation) est une rotation de même angle.

Proposition1.1. (i) Le composé d une rotation et d une translation (ou d une translation et d une rotation) est une rotation de même angle. Géométrie affine 0. Objet du cours. L objet de ce cours est de présenter les principales idées et les résultats importants de la géométrie élémentaire dans le cadre réel affine et dans le cadre réel euclidien,

Plus en détail

Nombres complexes et géométrie

Nombres complexes et géométrie Université Claude Bernard Lyon 1 L1 de Mathématiques : Algèbre Année 2013 2014 Nombres complexes et géométrie I Le point de vue de ce chapitre consiste à relier une géométrie plane supposée connue aux

Plus en détail

6 Théorie des ensembles la suite

6 Théorie des ensembles la suite 6 Théorie des ensembles la suite Nous avons déjà vu un peu de théorie naïve des ensembles, qui suppose très peu de choses, et qui est très informelle. Nous allons introduire le système d axiomes ZF, introduit

Plus en détail

I-Définitions: A matrice à n lignes et p colonnes : np éléments réels (ou éventuellement complexes). p. 2/2

I-Définitions: A matrice à n lignes et p colonnes : np éléments réels (ou éventuellement complexes). p. 2/2 Matrice p. 1/2 I-Définitions: A matrice à n lignes et p colonnes : np éléments réels (ou éventuellement complexes). p. 2/2 I-Définitions: A matrice à n lignes et p colonnes : np éléments réels (ou éventuellement

Plus en détail

Feuille d exercices numéro 1

Feuille d exercices numéro 1 U2LG35 L3 Algèbre 2014-2015 Feuille d exercices numéro 1 Université Paris-Diderot Exercice 1. (a) Soit G un groupe (que l on ne suppose pas commutatif). Montrer que tout élément x de G est «régulier»,

Plus en détail

Feuille 6 - Calcul matriciel

Feuille 6 - Calcul matriciel IUT d Orsay - Département Informatique 22-23 Exercices de mathématiques DUT A - S Feuille 6 - Calcul matriciel Opérations sur les matrices. Exercice corrigé en amphi Calculer, quand cela est possible,

Plus en détail

.:: Module Mathématiques I : Algèbre ::.

.:: Module Mathématiques I : Algèbre ::. Université Mohammed V - Agdal Faculté des Sciences Département de Mathématiques et Informatique Avenue Ibn Batouta, B.P. 1014 Rabat, Maroc.:: Module Mathématiques I : Algèbre ::. Filière : Sciences de

Plus en détail

DS 1. Le 13 octobre h

DS 1. Le 13 octobre h DS 1. Le 13 octobre 14. 4h Le devoir est probablement trop long pour que vous puissiez le terminer (ce qui est assez classique dans les épreuves de concours). Restez donc calme, prenez le temps de regarder

Plus en détail