Mathématiques Factorisation et fractions algébriques
|
|
|
- Florence Dumouchel
- il y a 9 ans
- Total affichages :
Transcription
1 Définition du domaine d'examen MAT Mathématiques Factorisation et fractions algébriques Mise à jour novembre 004
2 Définition du domaine d'examen MAT Mathématiques Factorisation et fractions algébriques Mise à jour novembre 004 Formation professionnelle et technique et formation continue Direction de la formation générale des adultes
3 Gouvernement du Québec Ministère de l Éducation, ISBN X Dépôt légal Bibliothèque nationale du Québec, 004
4 1. PRÉSENTATION La présente définition du domaine d examen a été rédigée aux fins d évaluation sommative. Elle offre une description et une organisation des éléments essentiels et représentatifs du programme d études Mathématiques, enseignement secondaire, éducation des adultes et, plus particulièrement, du cours Factorisation et fractions algébriques. Elle est fondée sur le programme mais ne peut, en aucun cas, le remplacer. Elle assure la correspondance entre le programme et les épreuves nécessaires à l évaluation sommative. Les sections de la présente définition du domaine d examen sont semblables à celles des définitions du domaine d examen des autres cours. Leur contenu, cependant, est particulier à ce cours. Le but de la définition du domaine d examen est de préparer des épreuves valides d une version à l autre ou encore d une commission scolaire à l autre en tenant compte du partage des responsabilités entre le ministère de l Éducation et les commissions scolaires. Factorisation et fractions algébriques MAT
5 . CONSÉQUENCES DES ORIENTATIONS DU PROGRAMME D ÉTUDES SUR L ÉVALUATION SOMMATIVE ORIENTATIONS Le programme de mathématiques du secondaire à l éducation des adultes a pour objectif de permettre à l élève de maîtriser les concepts mathématiques. Ce programme vise à développer chez l élève l habileté à communiquer clairement de l information au moyen du langage mathématique. Ce programme a pour objectif de développer chez l élève une méthode de travail rigoureuse. Ce programme vise à développer chez l élève la maîtrise d outils technologiques. CONSÉQUENCES Au moment de l évaluation, on devra vérifier si l élève maîtrise les différents concepts. L évaluation comportera des tâches qui exigeront l utilisation du langage mathématique. Dans la notation, on tiendra compte de la précision et de la clarté du langage utilisé. L évaluation exigera que l élève présente sa démarche de façon claire et structurée. Dans la notation, on tiendra compte de ces éléments. L utilisation d une calculatrice scientifique sera permise pour les épreuves de ce cours. Factorisation et fractions algébriques MAT
6 3. CONTENU DU COURS AUX FINS DE L ÉVALUATION SOMMATIVE Notions Factorisation Par simple mise en évidence; par double mise en évidence; d un trinôme de la forme x + bx + c ou de la forme x + bxy + cy ; d un trinôme de la forme ax + bx + c ou de la forme ax + bxy + cy ; d un binôme représentant la différence de deux carrés; d un polynôme en trois facteurs premiers. Fractions algébriques rationnelles Réduction de fractions algébriques; produit de deux fractions algébriques; quotient de deux fractions algébriques; somme de deux fractions algébriques; différence de deux fractions algébriques; équivalence de deux expressions algébriques. Habiletés Chaque habileté est définie dans le contexte d un programme de mathématiques. Opérer Effectuer une opération ou une transformation donnée. Manifestations possibles : calculer, construire, décomposer, effectuer, estimer, évaluer, isoler, mesurer, reconstituer, résoudre, tracer, transformer, vérifier, etc. Analyser Faire ressortir, de façon structurée et organisée, des liens complexes entre des concepts ou des définitions et des manifestations ou des illustrations de ceux-ci. Manifestations possibles : conclure, corriger, déduire, dégager, démontrer, expliquer, extrapoler, inférer, justifier, etc. Factorisation et fractions algébriques MAT
7 4. TABLEAU DE PONDÉRATION HABILETÉS NOTIONS FACTORISATION 35 % Effectuer une simple mise en évidence. FRACTIONS ALGÉBRIQUES RATIONNELLES 65 % Réduire une fraction algébrique. 1 5 % Effectuer une double mise en évidence. 8 5 % Réduire le produit de deux fractions algébriques. 5 % Factoriser un trinôme de la forme x + bx + c ou de la forme 9 10 % Réduire le quotient de deux fractions algébriques. x + + bxy cy. OPÉRER 80 % 3 5 % Factoriser un trinôme de la forme ax + bx + c ou de la forme ax + + bxy cy. 4 5 % Factoriser un binôme représentant la différence de deux carrés. 5 5 % Décomposer un polynôme de deux ou quatre termes en trois facteurs premiers. 6 5 % Décomposer un trinôme en trois facteurs premiers. 7 5 % % Réduire la somme de deux fractions algébriques % Réduire la différence de deux fractions algébriques % Vérifier l équivalence de deux expressions algébriques, l une des expressions étant à réduire. ANALYSER % 0 % Vérifier l équivalence de deux expressions algébriques, les deux expressions étant à réduire % Factorisation et fractions algébriques MAT
8 5. COMPORTEMENTS OBSERVAVBLES C est à partir de la liste des comportements observables ci-dessous que seront construits les items de l épreuve. On devra respecter les exigences et les limites précisées dans les dimensions ainsi que dans les objectifs du programme. Dimension 1 Effectuer une simple mise en évidence du facteur commun à tous les termes d un polynôme d au plus six termes. Dimension Décomposer en facteurs un polynôme d au plus six termes en appliquant la méthode de la double mise en évidence. Dimension 3 Décomposer en facteurs un trinôme de la forme + bxy cy. x + bx + c x + Dimension 4 Décomposer en facteurs un trinôme de la forme ax + bx + c ax + ou de la forme ou de la forme + bxy cy. L élève doit présenter clairement les éléments de sa démarche. Dimension 5 Décomposer en facteurs un binôme représentant la différence de deux carrés. Dimension 6 Décomposer en trois facteurs premiers un polynôme de deux ou quatre termes en appliquant les méthodes de factorisation appropriées, dont la simple mise en évidence. L élève doit présenter clairement les éléments de sa démarche. Factorisation et fractions algébriques MAT
9 Dimension 7 Décomposer en trois facteurs premiers un trinôme en appliquant les méthodes de factorisation appropriées. Une des factorisations doit être la simple mise en évidence. L élève doit présenter clairement les éléments de sa démarche. Dimension 8 Réduire à sa plus simple expression une fraction algébrique rationnelle dont le numérateur et le dénominateur sont des polynômes décomposables formés au plus de trois termes. Chaque terme contient au plus deux variables. La réduction exige deux ou trois factorisations. Si deux factorisations sont nécessaires pour un même polynôme, l une de celles-ci doit être une simple mise en évidence. L élève doit présenter clairement les éléments de sa démarche. Dimension 9 Exprimer sous sa forme la plus simple le produit de deux fractions algébriques rationnelles. Les polynômes des numérateurs et des dénominateurs renferment au maximum trois termes. Chaque terme contient au plus deux variables. La réduction exige deux ou trois factorisations. Si deux factorisations sont nécessaires pour un même polynôme, l une de celles-ci doit être une simple mise en évidence. L élève doit présenter clairement les éléments de sa démarche. (opérer) /10 Dimension 10 Exprimer sous sa forme la plus simple le quotient de deux fractions algébriques rationnelles. Les polynômes des numérateurs et des dénominateurs renferment au maximum trois termes. Chaque terme contient au plus deux variables. La réduction exige deux ou trois factorisations. Si deux factorisations sont nécessaires pour un même polynôme, l une de celles-ci doit être une simple mise en évidence. L élève doit présenter clairement les éléments de sa démarche. (opérer) /10 Factorisation et fractions algébriques MAT
10 Dimension 11 Exprimer sous sa forme la plus simple la somme de deux fractions algébriques rationnelles. La réduction exige au plus une factorisation. Le dénominateur commun doit être constitué au maximum de deux binômes et un monôme. L élève doit présenter clairement les éléments de sa démarche. (opérer) /10 Dimension 1 Exprimer sous sa forme la plus simple la différence de deux fractions algébriques rationnelles. La réduction exige au plus une factorisation. Un numérateur et un dénominateur des fractions sont des monômes. Le dénominateur commun doit être constitué au maximum de deux binômes et un monôme. L élève doit présenter clairement les éléments de sa démarche. (opérer) /10 Dimension 13 Vérifier l équivalence de deux expressions algébriques en réduisant à sa forme la plus simple l expression renfermant la somme ou la différence de deux fractions algébriques rationnelles. La réduction exige au plus trois factorisations. Le dénominateur commun doit être constitué d au plus deux binômes et un monôme. L élève doit présenter clairement les éléments de sa démarche. (analyser) /10 Dimension 14 Vérifier l équivalence de deux expressions algébriques en réduisant à leur forme la plus simple les deux expressions, chacune renfermant la somme ou la différence de deux fractions algébriques rationnelles. La réduction exige au plus trois factorisations. Le dénominateur commun doit être constitué d au plus deux binômes et un monôme. L élève doit présenter clairement les éléments de sa démarche. (analyser) /10 Factorisation et fractions algébriques MAT
11 6. JUSTIFICATION DES CHOIX L habileté OPÉRER compte pour 80 % de l évaluation. Par cette habileté, on vérifie chez l élève la maîtrise de certaines opérations ou transformations : les méthodes de factorisation; la réduction d une fraction algébrique; le produit de deux fractions algébriques; le quotient de deux fractions algébriques; la somme de deux fractions algébriques; la différence de deux fractions algébriques. L habileté ANALYSER compte pour 0 % de l évaluation. Par cette habileté, on vérifie chez l élève la capacité de faire des liens : par la vérification de l équivalence de deux expressions algébriques. Factorisation et fractions algébriques MAT
12 7. DESCRIPTION DE L ÉPREUVE A. TYPE DE L ÉPREUVE L épreuve sommative sera une épreuve écrite comportant des items à réponses courtes ou à développement. Les items devront respecter les exigences et les limites prévues dans les dimensions ainsi que dans les objectifs du programme. La répartition des notes devra respecter les pourcentages du tableau de pondération. B. CARACTÉRISTIQUES DE L ÉPREUVE L épreuve se déroulera en une seule séance d une durée maximale de deux heures trente minutes. L utilisation de la calculatrice scientifique sera permise; cependant, l utilisation de la calculatrice à affichage graphique ne le sera pas. C. NOTE La note de passage est fixée à 60 sur 100. Factorisation et fractions algébriques MAT
13 MAJ
MATHÉMATIQUES. Les préalables pour l algèbre MAT-P020-1 DÉFINITION DU DOMAINE D EXAMEN
MATHÉMATIQUES Les préalables pour l algèbre MAT-P020-1 DÉFINITION DU DOMAINE D EXAMEN Mars 2001 MATHÉMATIQUES Les préalables pour l algèbre MAT-P020-1 DÉFINITION DU DOMAINE D EXAMEN Mars 2001 Direction
MICRO-INFORMATIQUE DÉFINITION DU DOMAINE D'EXAMEN BASE DE DONNÉES CONSULTATION INF-5060-1
MICRO-INFORMATIQUE DÉFINITION DU DOMAINE D'EXAMEN BASE DE DONNÉES CONSULTATION INF-5060-1 OCTOBRE 1996 MICRO-INFORMATIQUE DÉFINITION DU DOMAINE D'EXAMEN BASE DE DONNÉES CONSULTATION INF-5060-1 OCTOBRE
SOCLE COMMUN - La Compétence 3 Les principaux éléments de mathématiques et la culture scientifique et technologique
SOCLE COMMUN - La Compétence 3 Les principaux éléments de mathématiques et la culture scientifique et technologique DOMAINE P3.C3.D1. Pratiquer une démarche scientifique et technologique, résoudre des
Complément d information concernant la fiche de concordance
Sommaire SAMEDI 0 DÉCEMBRE 20 Vous trouverez dans ce dossier les documents correspondants à ce que nous allons travailler aujourd hui : La fiche de concordance pour le DAEU ; Page 2 Un rappel de cours
O, i, ) ln x. (ln x)2
EXERCICE 5 points Commun à tous les candidats Le plan complee est muni d un repère orthonormal O, i, j Étude d une fonction f On considère la fonction f définie sur l intervalle ]0; + [ par : f = ln On
MATHÉMATIQUES 10 e 12 e ANNÉE
MATHÉMATIQUES 10 e 12 e ANNÉE INTRODUCTION Le programme d études de mathématiques de l Alberta de la 10 e à la 12 e année est basé sur le Cadre commun du programme d études de mathématiques 10-12 du Protocole
Etude de fonctions: procédure et exemple
Etude de fonctions: procédure et exemple Yves Delhaye 8 juillet 2007 Résumé Dans ce court travail, nous présentons les différentes étapes d une étude de fonction à travers un exemple. Nous nous limitons
Du Premier au Second Degré
Du Premier au Second Degré Première Bac Pro 3 ans November 26, 2011 Première Bac Pro 3 ans Du Premier au Second Degré Sommaire 1 Fonction Polynôme du second degré 2 Fonction Polynôme du Second Degré: Synthèse
Introduction à l étude des Corps Finis
Introduction à l étude des Corps Finis Robert Rolland (Résumé) 1 Introduction La structure de corps fini intervient dans divers domaines des mathématiques, en particulier dans la théorie de Galois sur
Mathématiques Première L, ES, S, Concours Post-Bac Equations et inéquations du second degré FORMAV
Mathématiques Première L, ES, S, Concours Post-Bac Equations et inéquations du second degré Méthode et exercices corrigés générés aléatoirement Pour un meilleur rendu ouvrir ce document avec TeXworks FORMAV
CONNAISSANCES DE GESTION DE BASE
MINISTERE DE LA COMMUNAUTE FRANCAISE ADMINISTRATION GENERALE DE L ENSEIGNEMENT ET DE LA RECHERCHE SCIENTIFIQUE ENSEIGNEMENT DE PROMOTION SOCIALE DE REGIME 1 DOSSIER PEDAGOGIQUE UNITE DE FORMATION CONNAISSANCES
Développements limités, équivalents et calculs de limites
Développements ités, équivalents et calculs de ites Eercice. Déterminer le développement ité en 0 à l ordre n des fonctions suivantes :. f() e (+) 3 n. g() sin() +ln(+) n 3 3. h() e sh() n 4. i() sin(
Exercices - Polynômes : corrigé. Opérations sur les polynômes
Opérations sur les polynômes Exercice 1 - Carré - L1/Math Sup - Si P = Q est le carré d un polynôme, alors Q est nécessairement de degré, et son coefficient dominant est égal à 1. On peut donc écrire Q(X)
III- Raisonnement par récurrence
III- Raisonnement par récurrence Les raisonnements en mathématiques se font en général par une suite de déductions, du style : si alors, ou mieux encore si c est possible, par une suite d équivalences,
Fonction inverse Fonctions homographiques
Fonction inverse Fonctions homographiques Année scolaire 203/204 Table des matières Fonction inverse 2. Définition Parité............................................ 2.2 Variations Courbe représentative...................................
ELEMENTS DE BUREAUTIQUE
MINISTERE DE LA COMMUNAUTE FRANCAISE ADMINISTRATION GENERALE DE L ENSEIGNEMENTET DE LA RECHERCHE SCIENTIFIQUE ENSEIGNEMENT DE PROMOTION SOCIALE DE REGIME 1 DOSSIER PEDAGOGIQUE UNITE DE FORMATION ELEMENTS
Infographie. Objectifs du programme : Conditions d'admission :
Infographie Secteur de formation : Communications et documentation Sanction des études : DEP Numéro du programme : 5344 Nombre d'unités : 120 unités Durée de la formation : 1 800 heures Objectifs du programme
Fonctions homographiques
Seconde-Fonctions homographiques-cours Mai 0 Fonctions homographiques Introduction Voir le TP Géogébra. La fonction inverse. Définition Considérons la fonction f définie par f() =. Alors :. f est définie
Pour l épreuve d algèbre, les calculatrices sont interdites.
Les pages qui suivent comportent, à titre d exemples, les questions d algèbre depuis juillet 003 jusqu à juillet 015, avec leurs solutions. Pour l épreuve d algèbre, les calculatrices sont interdites.
Présentation du langage et premières fonctions
1 Présentation de l interface logicielle Si les langages de haut niveau sont nombreux, nous allons travaillé cette année avec le langage Python, un langage de programmation très en vue sur internet en
2. RAPPEL DES TECHNIQUES DE CALCUL DANS R
2. RAPPEL DES TECHNIQUES DE CALCUL DANS R Dans la mesure où les résultats de ce chapitre devraient normalement être bien connus, il n'est rappelé que les formules les plus intéressantes; les justications
Mes parents, mon éducatrice, mon éducateur, partenaires de mon développement! Parce que chaque enfant est. unique. mfa.gouv.qc.ca
Mes parents, mon éducatrice, mon éducateur, partenaires de mon développement! Parce que chaque enfant est unique mfa.gouv.qc.ca Les services de gardes éducatifs, un milieu de vie stimulant pour votre enfant
Présentation du cours de mathématiques de D.A.E.U. B, remise à niveau
i Présentation du cours de mathématiques de D.A.E.U. B, remise à niveau Bonjour, bienvenue dans votre début d étude du cours de mathématiques de l année de remise à niveau en vue du D.A.E.U. B Au cours
INFORMATIQUE : LOGICIELS TABLEUR ET GESTIONNAIRE DE BASES DE DONNEES
MINISTERE DE LA COMMUNAUTE FRANCAISE ADMINISTRATION GENRALE DE L ENSEIGNEMENT ET DE LA RECHERCHE SCIENTIFIQUE ENSEIGNEMENT DE PROMOTION SOCIALE DE REGIME 1 DOSSIER PEDAGOGIQUE UNITE DE FORMATION INFORMATIQUE
Principes de mathématiques 12 SÉRIE DE PROBLÈMES. Septembre 2001. Student Assessment and Program Evaluation Branch
Principes de mathématiques 12 SÉRIE DE PROBLÈMES Septembre 2001 Student Assessment and Program Evaluation Branch REMERCIEMENTS Le Ministère de l Éducation tient à remercier chaleureusement les professionnels
d évaluation Objectifs Processus d élaboration
Présentation du Programme pancanadien d évaluation Le Programme pancanadien d évaluation (PPCE) représente le plus récent engagement du Conseil des ministres de l Éducation du Canada (CMEC) pour renseigner
Cabri et le programme de géométrie au secondaire au Québec
Cabri et le programme de géométrie au secondaire au Québec Benoît Côté Département de mathématiques, UQAM, Québec [email protected] 1. Introduction - Exercice de didactique fiction Que signifie intégrer
Spécialité auxiliaire en prothèse dentaire du brevet d études professionnelles. ANNEXE IIb DEFINITION DES EPREUVES
ANNEXE IIb DEFINITION DES EPREUVES 51 Epreuve EP1 : ANALYSE ET COMMUNICATION TECHNOLOGIQUES UP1 Coefficient 4 Finalité et objectifs de l épreuve L épreuve vise à évaluer la capacité du candidat à mobiliser
Baccalauréat technologique
Baccalauréat technologique Épreuve relative aux enseignements technologiques transversaux, épreuve de projet en enseignement spécifique à la spécialité et épreuve d'enseignement technologique en langue
IV- Equations, inéquations dans R, Systèmes d équations
IV- Equations, inéquations dans R, Systèmes d équations 1- Equation à une inconnue Une équation est une égalité contenant un nombre inconnu noté en général x et qui est appelé l inconnue. Résoudre l équation
Mathématiques I Section Architecture, EPFL
Examen, semestre d hiver 2011 2012 Mathématiques I Section Architecture, EPFL Chargé de cours: Gavin Seal Instructions: Mettez votre nom et votre numéro Sciper sur chaque page de l examen. Faites de même
Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures)
Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures) Eercice 1 (5 points) pour les candidats n ayant pas choisi la spécialité MATH Le tableau suivant donne l évolution du chiffre
FctsAffines.nb 1. Mathématiques, 1-ère année Edition 2007-2008. Fonctions affines
FctsAffines.nb 1 Mathématiques, 1-ère année Edition 2007-2008 Fonctions affines Supports de cours de mathématiques de degré secondaire II, lien hpertete vers la page mère http://www.deleze.name/marcel/sec2/inde.html
LA BATTERIE DU PORTABLE
LA BATTERIE DU PORTABLE Table des matières Fiche professeur... 2 Fiche élève... 4 Narration de séance et productions d élèves... 5 1 Fiche professeur LA BATTERIE DU PORTABLE Niveaux et objectifs pédagogiques
Chapitre 2 Le problème de l unicité des solutions
Université Joseph Fourier UE MAT 127 Mathématiques année 2011-2012 Chapitre 2 Le problème de l unicité des solutions Ce que nous verrons dans ce chapitre : un exemple d équation différentielle y = f(y)
SECRETARIAT : ORGANISATION, TECHNIQUES ET METHODES DE TRAVAIL
MINISTERE DE LA COMMUNAUTE FRANCAISE ADMINISTRATION GENERALE DE L ENSEIGNEMENT ET DE LA RECHERCHE SCIENTIFIQUE ENSEIGNEMENT DE PROMOTION SOCIALE DE REGIME 1 DOSSIER PEDAGOGIQUE UNITE DE FORMATION SECRETARIAT
Niveau de scolarité et emploi : le Canada dans un contexte international
N o 81-599-X au catalogue Issue n o 008 ISSN : 1709-8661 ISBN : 978-1-100-98615-9 Feuillet d information Indicateurs de l éducation au Niveau de scolarité et emploi : le dans un contexte international
NOM : Prénom : Date de naissance : Ecole : CM2 Palier 2
NOM : Prénom : Date de naissance : Ecole : CM2 Palier 2 Résultats aux évaluations nationales CM2 Annexe 1 Résultats de l élève Compétence validée Lire / Ecrire / Vocabulaire / Grammaire / Orthographe /
Calculer avec Sage. Revision : 417 du 1 er juillet 2010
Calculer avec Sage Alexandre Casamayou Guillaume Connan Thierry Dumont Laurent Fousse François Maltey Matthias Meulien Marc Mezzarobba Clément Pernet Nicolas Thiéry Paul Zimmermann Revision : 417 du 1
Partie 1 - Séquence 3 Original d une fonction
Partie - Séquence 3 Original d une fonction Lycée Victor Hugo - Besançon - STS 2 I. Généralités I. Généralités Définition Si F(p) = L [f(t)u (t)](p), alors on dit que f est l original de F. On note f(t)
DÉRIVÉES. I Nombre dérivé - Tangente. Exercice 01 (voir réponses et correction) ( voir animation )
DÉRIVÉES I Nombre dérivé - Tangente Eercice 0 ( voir animation ) On considère la fonction f définie par f() = - 2 + 6 pour [-4 ; 4]. ) Tracer la représentation graphique (C) de f dans un repère d'unité
STAGE : ELECTRICIEN INSTALLATEUR-MONTEUR
MINISTERE DE LA COMMUNAUTE FRANCAISE ADMINISTRATION GENERALE DE L ENSEIGNEMENT ET DE LA RECHERCHE SCIENTIFIQUE ENSEIGNEMENT DE PROMOTION SOCIALE DE REGIME 1 DOSSIER PEDAGOGIQUE UNITE DE FORMATION STAGE
Vision industrielle et télédétection - Détection d ellipses. Guillaume Martinez 17 décembre 2007
Vision industrielle et télédétection - Détection d ellipses Guillaume Martinez 17 décembre 2007 1 Table des matières 1 Le projet 3 1.1 Objectif................................ 3 1.2 Les choix techniques.........................
Tâche complexe produite par l académie de Clermont-Ferrand. Mai 2012 LE TIR A L ARC. (d après une idée du collège des Portes du Midi de Maurs)
(d après une idée du collège des Portes du Midi de Maurs) Table des matières Fiche professeur... 2 Fiche élève... 5 1 Fiche professeur Niveaux et objectifs pédagogiques 5 e : introduction ou utilisation
EXERCICE 4 (7 points ) (Commun à tous les candidats)
EXERCICE 4 (7 points ) (Commun à tous les candidats) On cherche à modéliser de deux façons différentes l évolution du nombre, exprimé en millions, de foyers français possédant un téléviseur à écran plat
SOCLE COMMUN: LA CULTURE SCIENTIFIQUE ET TECHNOLOGIQUE. alain salvadori IA IPR Sciences de la vie et de la Terre 2009-2010 ALAIN SALVADORI IA-IPR SVT
SOCLE COMMUN: LA CULTURE SCIENTIFIQUE ET TECHNOLOGIQUE alain salvadori IA IPR Sciences de la vie et de la Terre 2009-2010 ALAIN SALVADORI IA-IPR SVT SOCLE COMMUN ET PROGRAMMES La référence pour la rédaction
Chapitre 4 : cas Transversaux. Cas d Emprunts
Chapitre 4 : cas Transversaux Cas d Emprunts Échéanciers, capital restant dû, renégociation d un emprunt - Cas E1 Afin de financer l achat de son appartement, un particulier souscrit un prêt auprès de
Technologie 9 e année (ébauche)
Conseil scolaire acadien provincial École secondaire du Sommet Élaboré par M. J. Saldaña T., BPhB, BEd, MSc Année scolaire 2014 2015 Technologie 9 e année (ébauche) DESCRIPTION DU COURS Pour réussir dans
CHARGÉE DE COURS : Catherine Pelletier, MBA, chargée de communication, Service des communications et des relations avec le milieu, FSA
MRK-20712 - MARKETING DIRECT Syllabus Automne 2008 Local 3307 PAP CHARGÉE DE COURS : Catherine Pelletier, MBA, chargée de communication, Service des communications et des relations avec le milieu, FSA
Exercices types Algorithmique et simulation numérique Oral Mathématiques et algorithmique Banque PT
Exercices types Algorithmique et simulation numérique Oral Mathématiques et algorithmique Banque PT Ces exercices portent sur les items 2, 3 et 5 du programme d informatique des classes préparatoires,
6 ème FONCTIONS. Pratiquer une démarche scientifique et technologique. Capacités
6 ème FONCTIONS Les exercices de ce chapitre permettent de travailler des compétences scientifiques du socle commun. Pratiquer une démarche scientifique et technologique Capacités Rechercher, extraire
Correction de l examen de la première session
de l examen de la première session Julian Tugaut, Franck Licini, Didier Vincent Si vous trouvez des erreurs de Français ou de mathématiques ou bien si vous avez des questions et/ou des suggestions, envoyez-moi
Pas d installations ou d équipement particuliers.
COURS MAM1010 : Niveau : Préalable : Description : Paramètres : MARKÉTING ET GESTION Débutant Aucun L élève acquiert des notions de base en gestion et en markéting et donne des indications sur les meilleures
DOCM 2013 http://docm.math.ca/ Solutions officielles. 1 2 10 + 1 2 9 + 1 2 8 = n 2 10.
A1 Trouvez l entier positif n qui satisfait l équation suivante: Solution 1 2 10 + 1 2 9 + 1 2 8 = n 2 10. En additionnant les termes du côté gauche de l équation en les mettant sur le même dénominateur
BACCALAURÉAT PROFESSIONNEL SUJET
SESSION 203 Métropole - Réunion - Mayotte BACCALAURÉAT PROFESSIONNEL ÉPREUVE E4 CULTURE SCIENTIFIQUE ET TECHNOLOGIQUE : MATHÉMATIQUES Toutes options Durée : 2 heures Matériel(s) et document(s) autorisé(s)
Maple: premiers calculs et premières applications
TP Maple: premiers calculs et premières applications Maple: un logiciel de calcul formel Le logiciel Maple est un système de calcul formel. Alors que la plupart des logiciels de mathématiques utilisent
AC AB. A B C x 1. x + 1. d où. Avec un calcul vu au lycée, on démontre que cette solution admet deux solutions dont une seule nous intéresse : x =
LE NOMBRE D OR Présentation et calcul du nombre d or Euclide avait trouvé un moyen de partager en deu un segment selon en «etrême et moyenne raison» Soit un segment [AB]. Le partage d Euclide consiste
Baccalauréat ES/L Amérique du Sud 21 novembre 2013
Baccalauréat ES/L Amérique du Sud 21 novembre 2013 A. P. M. E. P. EXERCICE 1 Commun à tous les candidats 5 points Une entreprise informatique produit et vend des clés USB. La vente de ces clés est réalisée
STAGE : TECHNICIEN EN INFORMATIQUE
MINISTERE DE LA COMMUNAUTE FRANCAISE ADMINISTRATION GENERALE DE L ENSEIGNEMENT ET DE LA RECHERCHE SCIENTIFIQUE ENSEIGNEMENT DE PROMOTION SOCIALE DE REGIME 1 DOSSIER PEDAGOGIQUE UNITE DE FORMATION STAGE
Table des matières. I Mise à niveau 11. Préface
Table des matières Préface v I Mise à niveau 11 1 Bases du calcul commercial 13 1.1 Alphabet grec...................................... 13 1.2 Symboles mathématiques............................... 14 1.3
Comment faire avancer un engin roulant le plus loin possible sans le toucher?
Défi n 6 Cycle 2 Comment faire avancer un engin roulant le plus loin possible sans le toucher? En quoi consiste ce défi?? En la réalisation d un engin roulant doté d un système de propulsion, la présentation
Courtage immobilier résidentiel - EEC.1Y
Attestation d études collégiales Courtage immobilier résidentiel - EEC.1Y Le programme d attestation d études collégiales (AEC) Courtage immobilier résidentiel est d une durée de 570 heures L'objectif
Polynômes à plusieurs variables. Résultant
Polynômes à plusieurs variables. Résultant Christophe Ritzenthaler 1 Relations coefficients-racines. Polynômes symétriques Issu de [MS] et de [Goz]. Soit A un anneau intègre. Définition 1.1. Soit a A \
Continuité en un point
DOCUMENT 4 Continuité en un point En général, D f désigne l ensemble de définition de la fonction f et on supposera toujours que cet ensemble est inclus dans R. Toutes les fonctions considérées sont à
FONDEMENTS MATHÉMATIQUES 12 E ANNÉE. Mathématiques financières
FONDEMENTS MATHÉMATIQUES 12 E ANNÉE Mathématiques financières A1. Résoudre des problèmes comportant des intérêts composés dans la prise de décisions financières. [C, L, RP, T, V] Résultat d apprentissage
Attestation de maîtrise des connaissances et compétences au cours moyen deuxième année
Attestation de maîtrise des connaissances et compétences au cours moyen deuxième année PALIER 2 CM2 La maîtrise de la langue française DIRE S'exprimer à l'oral comme à l'écrit dans un vocabulaire approprié
RÉSULTAT DISCIPLINAIRE RÈGLE DE RÉUSSITE DISCIPLINAIRE Programme de formation de l école québécoise Secondaire - 1 er cycle
RÉSULTAT DISCIPLINAIRE RÈGLE DE RÉUSSITE DISCIPLINAIRE Programme de formation de l école québécoise Secondaire - er cycle Direction générale de la formation des jeunes Octobre 006 Introduction Dans le
RÉSUMÉ DES NORMES ET MODALITÉS D ÉVALUATION AU SECONDAIRE
, chemin de la côte Saint-Antoine Westmount, Québec, HY H7 Téléphone () 96-70 RÉSUMÉ DES NORMES ET MODALITÉS D ÉVALUATION AU SECONDAIRE À TRANSMETTRE AU PARENTS Année scolaire 0-0 Document adapté par Tammy
FONDEMENTS DES MATHÉMATIQUES
FONDEMENTS DES MATHÉMATIQUES AYBERK ZEYTİN 1. DIVISIBILITÉ Comment on peut écrire un entier naturel comme un produit des petits entiers? Cette question a une infinitude d interconnexions entre les nombres
GUIDE À L INTENTION DES GESTIONNAIRES AINSI QUE DES PROFESSIONNELLES ET DES PROFESSIONNELS
ÉVALUATION DES PRÉALABLES FONCTIONNELS À L ADMISSION DES ADULTES À LA FORMATION PROFESSIONNELLE GUIDE À L INTENTION DES GESTIONNAIRES AINSI QUE DES PROFESSIONNELLES ET DES PROFESSIONNELS Juillet 2002 Version
Exercices sur les équations du premier degré
1 Exercices sur les équations du premier degré Application des règles 1 et Résoudre dans R les équations suivantes en essayant d appliquer une méthode systématique : 1 x + = x + 9 x + = x x 1 = x + x +
FORMATION CONTINUE SUR L UTILISATION D EXCEL DANS L ENSEIGNEMENT Expérience de l E.N.S de Tétouan (Maroc)
87 FORMATION CONTINUE SUR L UTILISATION D EXCEL DANS L ENSEIGNEMENT Expérience de l E.N.S de Tétouan (Maroc) Dans le cadre de la réforme pédagogique et de l intérêt que porte le Ministère de l Éducation
Système binaire. Algèbre booléenne
Algèbre booléenne Système binaire Système digital qui emploie des signaux à deux valeurs uniques En général, les digits employés sont 0 et 1, qu'on appelle bits (binary digits) Avantages: on peut utiliser
SOUTIEN INFORMATIQUE DEP 5229
SOUTIEN INFORMATIQUE DEP 5229 Le Diplôme d études professionnelles D.E.P. en soutien informatique a une durée totale de 1800 heures à temps plein. Le programme permet de développer les compétences nécessaires
Livret de liaison Seconde - Première S
Livret de liaison Seconde - Première S I.R.E.M. de Clermont-Ferrand Groupe Aurillac - Lycée Juin 2014 Ont collaboré à cet ouvrage : Emmanuelle BOYER, Lycée Émile Duclaux, Aurillac. Patrick DE GIOVANNI,
STAGE : TECHNICIEN EN BUREAUTIQUE
MINISTERE DE LA COMMUNAUTE FRANCAISE ADMINISTRATION GENERALE DE L ENSEIGNEMENT ET DE LA RECHERCHE SCIENTIFIQUE ENSEIGNEMENT DE PROMOTION SOCIALE DE REGIME 1 DOSSIER PEDAGOGIQUE UNITE DE FORMATION STAGE
D'UN THÉORÈME NOUVEAU
DÉMONSTRATION D'UN THÉORÈME NOUVEAU CONCERNANT LES NOMBRES PREMIERS 1. (Nouveaux Mémoires de l'académie royale des Sciences et Belles-Lettres de Berlin, année 1771.) 1. Je viens de trouver, dans un excellent
STATISTIQUES A DEUX VARIABLES
Evaluation de Mathématiques Bac Pro Date : STATISTIQUES A DEUX VARIABLES Liste des capacités, connaissances et attitudes évaluées Capacités Connaissances Attitudes Evaluation A l aide des TIC, représenter
Université du Québec à Chicoutimi. Département d informatique et de mathématique. Plan de cours. Titre : Élément de programmation.
Université du Québec à Chicoutimi Département d informatique et de mathématique Plan de cours Titre : Élément de programmation Sigle : 8inf 119 Session : Automne 2001 Professeur : Patrice Guérin Local
Format de l avis d efficience
AVIS D EFFICIENCE Format de l avis d efficience Juillet 2013 Commission évaluation économique et de santé publique Ce document est téléchargeable sur www.has-sante.fr Haute Autorité de santé Service documentation
BACCALAURÉAT GÉNÉRAL SESSION 2012 OBLIGATOIRE MATHÉMATIQUES. Série S. Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE
BACCALAURÉAT GÉNÉRAL SESSION 2012 MATHÉMATIQUES Série S Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE Les calculatrices électroniques de poche sont autorisées, conformément à la
Manuel de recherche en sciences sociales
Résumé de QUIVY R; VAN CAMPENHOUDT L. 95, "Manuel de recherches en sciences sociales", Dunod Cours de TC5 du DEA GSI de l intergroupe des écoles Centrales 11/2002 Manuel de recherche en sciences sociales
Items étudiés dans le CHAPITRE N5. 7 et 9 p 129 D14 Déterminer par le calcul l'antécédent d'un nombre par une fonction linéaire
CHAPITRE N5 FONCTIONS LINEAIRES NOTION DE FONCTION FONCTIONS LINEAIRES NOTION DE FONCTION FONCTIONS LINEAIRES NOTION DE FONCTION Code item D0 D2 N30[S] Items étudiés dans le CHAPITRE N5 Déterminer l'image
Equations différentielles linéaires à coefficients constants
Equations différentielles linéaires à coefficients constants Cas des équations d ordre 1 et 2 Cours de : Martine Arrou-Vignod Médiatisation : Johan Millaud Département RT de l IUT de Vélizy Mai 2007 I
Les devoirs en Première STMG
Les devoirs en Première STMG O. Lader Table des matières Devoir sur table 1 : Proportions et inclusions....................... 2 Devoir sur table 1 : Proportions et inclusions (corrigé)..................
Étape 1 La séance d information... p. 2. Étape 2 La préparation de votre dossier... p. 3. Étape 3 Le dépôt de votre demande... p.
Document d information Faire une demande d admission en 5 étapes 1 Le processus d admission présenté dans ce document s applique aux programmes suivants, offerts à l Institut :: AEC en Techniques de procédés
1 radian. De même, la longueur d un arc de cercle de rayon R et dont l angle au centre a pour mesure α radians est α R. R AB =R.
Angles orientés Trigonométrie I. Préliminaires. Le radian Définition B R AB =R C O radian R A Soit C un cercle de centre O. Dire que l angle géométrique AOB a pour mesure radian signifie que la longueur
Réseau SCEREN. Ce document a été numérisé par le CRDP de Bordeaux pour la. Base Nationale des Sujets d Examens de l enseignement professionnel.
Ce document a été numérisé par le CRDP de Bordeaux pour la Base Nationale des Sujets d Examens de l enseignement professionnel. Campagne 2013 Ce fichier numérique ne peut être reproduit, représenté, adapté
S entraîner au calcul mental
E F C I - R E H S E S O S A PHOTOCOPIER S R U C Une collection dirigée par Jean-Luc Caron S entraîner au calcul mental CM Jean-François Quilfen Illustrations : Julie Olivier Sommaire Introduction au calcul
Comparaison de fonctions Développements limités. Chapitre 10
PCSI - 4/5 www.ericreynaud.fr Chapitre Points importants 3 Questions de cours 6 Eercices corrigés Plan du cours 4 Eercices types 7 Devoir maison 5 Eercices Chap Et s il ne fallait retenir que si points?
C f tracée ci- contre est la représentation graphique d une
TLES1 DEVOIR A LA MAISON N 7 La courbe C f tracée ci- contre est la représentation graphique d une fonction f définie et dérivable sur R. On note f ' la fonction dérivée de f. La tangente T à la courbe
Continuité d une fonction de plusieurs variables
Chapitre 2 Continuité d une fonction de plusieurs variables Maintenant qu on a défini la notion de limite pour des suites dans R n, la notion de continuité s étend sans problème à des fonctions de plusieurs
FICHE DE DESCRIPTION DE POSTE SOUS DIRECTION DES PERSONNELS CONTRACTUELS BUREAU DES VOLONTAIRES INTERNATIONAUX RH3D DESCRIPTION DU POSTE
FICHE DE DESCRIPTION DE POSTE SOUS DIRECTION DES PERSONNELS CONTRACTUELS BUREAU DES VOLONTAIRES INTERNATIONAUX RH3D ( à retourner dactylographiée 4 mois avant la date de recrutement souhaitée) PAYS : CHINE
Thème 1. Quelles sont les relations entre le droit et l entreprise?
S O M M A I R E Thème. Quelles sont les relations entre le droit et l entreprise? CHAPITRE Qu est-ce que l «entreprise» pour le droit aujourd hui? 9 Le principe d unité des règles de droit... 0 Le statut
Catalogue des connaissances de base en mathématiques dispensées dans les gymnases, lycées et collèges romands.
Catalogue des connaissances de base en mathématiques dispensées dans les gymnases, lycées et collèges romands. Pourquoi un autre catalogue en Suisse romande Historique En 1990, la CRUS (Conférences des
O b s e r v a t o i r e E V A P M. Taxonomie R. Gras - développée
O b s e r v a t o i r e E V A P M É q u i p e d e R e c h e r c h e a s s o c i é e à l ' I N R P Taxonomie R. Gras - développée Grille d'analyse des objectifs du domaine mathématique et de leurs relations
Problème 1 : applications du plan affine
Problème 1 : applications du plan affine Notations On désigne par GL 2 (R) l ensemble des matrices 2 2 inversibles à coefficients réels. Soit un plan affine P muni d un repère (O, I, J). Les coordonnées
Corrigé des TD 1 à 5
Corrigé des TD 1 à 5 1 Premier Contact 1.1 Somme des n premiers entiers 1 (* Somme des n premiers entiers *) 2 program somme_entiers; n, i, somme: integer; 8 (* saisie du nombre n *) write( Saisissez un
LIVRET PERSONNEL DE COMPÉTENCES
Nom... Prénom... Date de naissance... Note aux parents Le livret personnel de compétences vous permet de suivre la progression des apprentissages de votre enfant à l école et au collège. C est un outil
Gestion commerciale LCA.8Z. Information : (514) 376-1620, poste 419
Gestion LCA.8Z Information : (514) 376-1620, poste 419 Programme de formation Type de sanction Attestation d études collégiales permettant de cumuler 35 unités 1/3. Buts généraux du programme Ce programme
