Bloc 11 : La géométrie

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Bloc 11 : La géométrie"

Transcription

1 Bloc 11 : La géométrie Les quadrilatères Carré rectangle parallélogramme 4 côtés égaux 2 hauteurs égales 2 côtés égaux hauteur = côté 2 longueurs égales 2 longueurs égales 2 diagonales égales hauteur = côté hauteur(s) perpendiculaire(s) 2 diagonales égales 2 diagonales inégales Trapèze losange 2 côtés égaux convergents cette figure a 4 côtés égaux 2 longueurs inégales mais parallèles grande et petite diagonale hauteur perpendiculaire à la base perpendiculaires entre elles. Trapèze rectangle Un angle droit (90º), donc une hauteur (perpendiculaire à la base) correspond à un des côtés. 2 longueurs inégales mais parallèles Le triangle Rectangle équilatéral Isocèle Scalène 1 angle 90º 3 côtés égaux 2 côtés égaux 3 côtés inégaux la hauteur est une la hauteur est une perpendiculaire perpendiculaire 39

2 Formules pour trouver le périmètre des figures (on additionne tout simplement tous les côtés) Périmètre du carré ==> P = 4 x c Périmètre du rectangle ==> P = 2 x L + 2 x l b c Périmètre du triangle ==> P = a + b + c a Périmètre du losange ==> P = 4 x c Périmètre du parallélogramme ==> P = 2 x a + 2 x b Périmètre du trapèze ==> P = somme de tous les côtés 40

3 Formules pour trouver l aire des figures Aire du carré ==> A = c x c Aire du rectangle ==> A = L x l h b Aire du triangle ==> A = b x h 2 Aire du losange ==> A = D x d 2 Aire du parallélogramme ==> A = b x h Aire du trapèze ==> A = (B + b) x h 2 41

4 Résumé : FIGURES Caractéristiques Formule périmètre Formule aire Les triangles Trois côtés et trois angles P = C + C + C A = Base x hauteur 2 Le carré 4 côtés égaux 4 angles droits Le rectangle 2 longueurs égales 2 largeurs égales 4 angles droits Le parallélogramme 2 longueurs égales 2 largeurs égales 2 côtés parallèles en longueur 2 côtés parallèles en largeur Le losange 4 côtés égaux 1 grande diagonale et 1 petite diagonale perpendiculaires P = C + C + C + C P = 4C P = 2(longueur + largeur) P = 2(L + l) P = C + C + C + C P = C + C + C + C A = C x C A = C² A = L x l A = B X H Attention : il vous faut tracer la hauteur A = D x d 2 Le trapèze 4 côtés dont 2 côtés parallèles P = C + C + C + C A= (BASE + base) x H 2 42

5 Trouvez le périmètre : 1. D un carré de 4 cm de côté : 2. d un losange de 10 cm de côté : 3. d un rectangle de 4 cm par 6 cm : 4. d un parallélogramme de 5 cm par 8 cm : Pour tous les problèmes suivants : Dessiner la figure, écrire la formule et la démarche EXEMPLE 1. Un carré a un périmètre de 36 cm. Quelle est la mesure d un côté? P = 4 C ou 36 = 4 x C 36 = C 4 Réponse : c = 9 cm 2. Un rectangle a 18 cm de périmètre. On transforme ce rectangle en doublant les mesures de ses côtés. Quel est le périmètre de ce nouveau rectangle? 3. Quel est le périmètre d un rectangle dont la largeur mesure 5 cm et dont la longueur est de 3 cm de plus que la largeur? 4. On a posé une corde autour d une piscine rectangulaire. La corde se vend 18 le mètre. Le coût de la corde utilisée est de 6,12 $. La piscine a une longueur de 11 m. Quelle est sa largueur? 43

6 5. On veut border une nappe de 2,8 m sur 2,5 m de dentelle. La dentelle nécessaire pour faire ce travail a coûté 3,18 $. Combien se vend un mètre de cette dentelle? 6. Les dimensions d un rectangle sont de 6 cm sur 8 cm. À chaque coin, on coupe un coin carré de 1 cm². De combien de cm a-t-on diminué son périmètre? 7. Calculez l aire : - d un rectangle de 8 km par 6 km. - - d un carré qui mesure 6 dm de côté 8. Une fenêtre mesure 2 m sur 1,5 m. - calculez son périmètre. - calculez son aire. 44

7 9. On a peint sur les portes d une grange un losange dont les diagonales mesurent respectivement 4,2 m et 2,4 m. Calculez l aire de ce losange. 10. Mon écran a un problème et l image aperçue a la forme d un parallélogramme. Quelle est l aire de l image, si la hauteur mesure 22 cm, la base 31 cm et le côté 25 cm? 11. Quel est le périmètre d un losange dont les côtés mesurent 4 cm chacun? 45

8 LE VOLUME CUBE PRISME PRISME RECTANGULAIRE TRIANGULAIRE L unité de volume principale est le mètre cubique (m³). Il correspond à l espace compris entre les arêtes du cube, qui mesure chacune 1 m de longueur. Lorsqu on parle de volume, on parle d unités cubiques contenues dans un prisme. N total de cubes (unités) = Nombre de cubes par étage x Nombre d étages V (prisme) = Abase X Hauteur Le volume est égal à l aire de la base multipliée par la hauteur 46

9 Problèmes 1. Un prisme rectangulaire a 6 cm de longueur, 15 cm de largeur et 9 cm de hauteur. Trouvez le volume. 2. Un prisme dont la base est un triangle rectangle a les mesures suivantes : 3 cm, 4 cm et 5 cm. La hauteur du prisme est de 12 cm. Calculez le volume. 3. Trouvez pour chaque figure le volume : 12 cm 12 cm 12 cm 8 cm 3,5 cm 5 cm 3 cm 2 cm 3 cm 12 cm 47

10 4. La somme des longueurs de toutes les arêtes d un cube est de 96 cm. Calculez le volume du cube. 5. M. Dandurand a deux aquariums : celui du salon est deux fois plus long, trois fois plus large et deux fois plus profond que celui de la cuisine. Combien de fois l aquarium du salon est-il plus grand que celui de la cuisine? 6. On place des cubes de 3 cm d arête dans une boîte cube de 24 cm d arête. Combien de cubes pourra-t-on placer? 48

11 Exercices supplémentaires (aire et périmètre) 7. La grande base d un trapèze mesure 5 cm, la petite base mesure 3 cm, l un des côtés non parallèle mesure 2,23 cm et la hauteur 2 cm. Trouvez le périmètre et l aire du trapèze. 8. Un parallélogramme a une base qui mesure 3 m, une hauteur de 4 m et des côtés de 5 m. Trouvez l aire de la figure. 9. Un nouveau jeu de table a la forme d un carré dont les diagonales mesurent 70 cm. Calculez l aire de la table. 10. Un cerf-volant a la forme d un losange. Sa plus courte diagonale mesure 50 cm et sa plus longue diagonale mesure 30 cm de plus. Quelle est l aire de ce cerf-volant? 11. Un trottoir de 1,5 m de largeur entoure une piscine rectangulaire. Calculez l aire totale du trottoir si la piscine mesure 12 m sur 8 m. 49

12 12. Trouvez l aire de la figure suivante : 2 m 8 m 13. Trouvez l aire de la figure suivante : b AB = 5,3 cm AC = 4,4 cm BD = 4,1 cm a d c 14. Trouvez l aire B D A BC = 7,8 cm AC = 7,5 cm AD = 4,4 cm C 15. Trouvez l aire B A C D AB = 2 cm BC = 3 cm CD = 2,9 cm AD = 5 cm 16. Trouvez l aire B C BC = 2,16 cm CD = 3,1 cm AD = 4 cm CE = 3 cm A E D 50

13 EXERCICES SUPPLEMENTAIRES LE VOLUME Trouvez le volume d un dé de 4 cm de côté. Le périmètre d une face d un cube de rangement est de 8 m. Quel est le volume de ce cube? Trouvez la hauteur d une piscine dont le volume est de 500 m 3 si sa longueur est de 10 m et sa largeur de 6 m? 51

Bloc 11 : La géométrie

Bloc 11 : La géométrie Bloc 11 : La géométrie Trouvez le périmètre : 1. D un carré de 4 cm de côté : 4 x 4 cm = 16 cm. d un losange de 10 cm de côté :4 x 10 cm = 40 cm 3. d un rectangle de 4 cm par 6 cm : ( x 4) + ( x 6) = 0

Plus en détail

I. Polygones : II. Triangles : 1) Définition : Les segments [AC], [AB] et [BC] sont les trois côtés du triangle.

I. Polygones : II. Triangles : 1) Définition : Les segments [AC], [AB] et [BC] sont les trois côtés du triangle. 1 / 6 I. Polygones : Un polygone est une figure fermée dont les côtés sont des segments. II. Triangles : 1) Un triangle est un polygone à trois côtés. Les segments [AC], [AB] et [BC] sont les trois côtés

Plus en détail

CHAPITRE 2 : LES PROPRITES DES FIGURES PLANES

CHAPITRE 2 : LES PROPRITES DES FIGURES PLANES CHAPITRE 2 : LES PROPRITES DES FIGURES PLANES 1. Le carré : le carré est un quadrilatère qui a les côtés égaux et les angles droits. es propriétés : a) Quatre côtés de même longueur ; b) Quatre angles

Plus en détail

Evaluation n 1 : Les polygones. Evaluation n 1 : Les polygones. ! J ai quatre égaux, mes côtés sont parallèles, je n ai pas d angle droit, je suis un.

Evaluation n 1 : Les polygones. Evaluation n 1 : Les polygones. ! J ai quatre égaux, mes côtés sont parallèles, je n ai pas d angle droit, je suis un. Date : Evaluation n 1 : Les polygones Consigne 1 : Complète (orthographe importante). Comment appelle-t-on : L ensemble des polygones à 3 côtés? Les... Prénom et Nom : Date : Evaluation n 1 : Les polygones

Plus en détail

Chapitre 10 - Notions de géométrie

Chapitre 10 - Notions de géométrie Chapitre 10 - Notions de géométrie Activité 1 Exercice 1 Exercice 2 x y a b c x // // S y // // S a // // S b // // S c S S S S // Exercice 3 MATHE 1 re année - Solutionnaire, http://maths.deboeck.com

Plus en détail

Exercices supplémentaires 1

Exercices supplémentaires 1 6.36 Exercices supplémentaires 1 Leçon 1 : Explorer les triangles 1. Construis 3 triangles différents. Mesure la longueur de chaque côté et inscris-la sur le dessin. Indique si chaque triangle est équilatéral,

Plus en détail

TRIANGLES Inégalité triangulaire : Th Dans un triangle, la longueur de chaque côté est inférieure à la somme des longueurs des deux autres côtés.

TRIANGLES Inégalité triangulaire : Th Dans un triangle, la longueur de chaque côté est inférieure à la somme des longueurs des deux autres côtés. TRIANGLES Inégalité triangulaire : Th Dans un triangle, la longueur de chaque côté est inférieure à la somme des longueurs des deux autres côtés. Th Trois longueurs étant données, Si la plus grande est

Plus en détail

Parallélogrammes Particuliers

Parallélogrammes Particuliers Parallélogrammes Particuliers I) Définitions et propriétés Les parallélogrammes particuliers étudiés sont les rectangles, les carrés et les losanges. 1) Le rectangle a) Définition : Un rectangle est un

Plus en détail

Utiliser les propriétés des parallélogrammes et des parallélogrammes particuliers. Objectif 20 Livre e

Utiliser les propriétés des parallélogrammes et des parallélogrammes particuliers. Objectif 20 Livre e 5 e Utiliser les propriétés des parallélogrammes et des parallélogrammes particuliers Objectif 20 Livre 23.4 Mots clefs. Parallélogramme Rectangle Losange Carré Côté Diagonale Axe de symétrie Centre de

Plus en détail

Le vocabulaire de géométrie

Le vocabulaire de géométrie Géom1 Le vocabulaire de géométrie En géométrie, il faut être attentif lors de la lecture des consignes et très précis quand on utilise le vocabulaire : Un point A A X Un segment [AB] (d) Une droite (d)

Plus en détail

Cercles et polygones

Cercles et polygones Cercles et polygones I) Le cercle : a) Soit O un point donné et R un nombre décimal positif. On appelle cercle C de centre O et de rayon R, l ensemble des points M situés à la distance R du point O. On

Plus en détail

PRISME DROIT. II- Vue en perspective et vocabulaire: Les triangles ABC et A'B'C' sont les bases du prisme

PRISME DROIT. II- Vue en perspective et vocabulaire: Les triangles ABC et A'B'C' sont les bases du prisme PRISME DROIT I- Patron: En traçant deux triangles et trois rectangles disposés de la manière ci-contre et en pliant, on obtient un prisme droit à base triangulaire II- Vue en perspective et vocabulaire:

Plus en détail

Vocabulaire géométrique (Cm1) Vocabulaire géométrique (Cm2)

Vocabulaire géométrique (Cm1) Vocabulaire géométrique (Cm2) Vocabulaire géométrique (Cm1) La droite : c est un trait qui passe par un nombre infini de points alignés. On ne peut donc pas mesurer une droite. Le point : on le représente par une croix et on le nomme

Plus en détail

«LES QUADRILATÈRES» Fiche pédagogique élaborée par Lidia SARAT

«LES QUADRILATÈRES» Fiche pédagogique élaborée par Lidia SARAT «LES QUADRILATÈRES» Fiche pédagogique élaborée par Lidia SARAT 1. Définition : un quadrilatère est une figure géométrique qui a 4 côtés 2. Définition : un trapèze est un quadrilatère qui a deux côtés parallèles.

Plus en détail

Tracer un cercle. 1 Trace le cercle C de centre A et de rayon 5 cm. Le cercle C coupe la

Tracer un cercle. 1 Trace le cercle C de centre A et de rayon 5 cm. Le cercle C coupe la Tracer un cercle 1 Construire un cercle avec un compas. Utiliser le vocabulaire géométrique: centre d un cercle, rayon, diamètre. 1 Trace le cercle C de centre A et de rayon 5 cm. Le cercle C coupe la

Plus en détail

Géom 1 Connaître le vocabulaire et le codage géométrique

Géom 1 Connaître le vocabulaire et le codage géométrique Géom 1 Connaître le vocabulaire et le codage géométrique En géométrie, il faut être attentif lors de la lecture des consignes et très précis quand on utilise le vocabulaire. La règle sert à mesurer, tracer

Plus en détail

CHAPITRE VI AIRES ET PERIMETRES

CHAPITRE VI AIRES ET PERIMETRES CHAPITRE VI AIRES ET PERIMETRES 1) Recopiez et complétez : a).. 0,019 dm = 0,000 0019... i) 789 ha = 7,89... b). 1 530 mm =... dm j) 5,7 dam =... dm =... ha c) 53,7 a... dm 0,537... k) 5670 m =... a =...

Plus en détail

Polygones, triangles et quadrilatères

Polygones, triangles et quadrilatères Polygones, triangles et quadrilatères I) Les polygones 1) Un polygone est une figure fermée composée de plusieurs segments (au moins trois). 2) Vocabulaire a) Les côtés Chaque segment qui compose ce polygone

Plus en détail

7. Grandeurs et mesures

7. Grandeurs et mesures - 1 - Grandeurs et mesures 7. Grandeurs et mesures 7.1 Longueurs et périmètres Unités de longueur : km hm dam m dm cm mm Figure : Nom de la figure : Périmètre : Carré P= 4 a Rectangle P = a+ b= ( a+ b)

Plus en détail

Droites parallèles et perpendiculaires Groupe 3

Droites parallèles et perpendiculaires Groupe 3 Droites parallèles et perpendiculaires Groupe 3 Objectif: reconnaître et tracer des droites parallèles et perpendiculaires. 1. Trace la droite (d4) passant par A et parallèle à (d2). Trace la droite (d5)

Plus en détail

Droites parallèles et perpendiculaires Groupe 2

Droites parallèles et perpendiculaires Groupe 2 Droites parallèles et perpendiculaires Groupe 2 Objectif: reconnaître et tracer des droites parallèles et perpendiculaires. 1. Réalise le programme de construction suivant sur ta copie. Construis les droites

Plus en détail

Ex 1 : Vrai ou faux. Géom 1

Ex 1 : Vrai ou faux. Géom 1 CONNAITRE LE VOCABULAIRE ET LES INSTRUMENTS GEOMETRIQUES Géom 1 En géométrie, il faut être attentif lors de la lecture des consignes et très précis quand on utilise le vocabulaire. Ex 1 : Vrai ou faux

Plus en détail

LE PÉRIMÈTRE DE FIGURES SIMPLES MATHÉMATIQUES

LE PÉRIMÈTRE DE FIGURES SIMPLES MATHÉMATIQUES LE PÉRIMÈTRE DE FIGURES SIMPLES MATHÉMATIQUES CAHIER D EXERCICES Les Services de la formation professionnelle et de l éducation des adultes FP9803 C201206 2 TABLE DES MATIÈRES 1 EXPLICATION 3 Page 1.1

Plus en détail

La droite Une droite est un trait droit qui n a ni début, ni fin. On écrit une droite avec une lettre et 2 parenthèses : la droite (d) Droite d

La droite Une droite est un trait droit qui n a ni début, ni fin. On écrit une droite avec une lettre et 2 parenthèses : la droite (d) Droite d C3 Géométrie : droite, segment, milieu Leçon Géom1 CM1/2 La droite Une droite est un trait droit qui n a ni début, ni fin. On écrit une droite avec une lettre et 2 parenthèses : la droite (d) Droite d

Plus en détail

Chapitre 23 : Triangles et quadrilatères particuliers

Chapitre 23 : Triangles et quadrilatères particuliers I- Triangles particuliers 1) Ce qu il faut savoir Chapitre 23 : Triangles et quadrilatères particuliers Triangle isocèle Définition : Un triangle isocèle est un triangle qui a deux côtés de même longueur

Plus en détail

TAGE 2 / TAGE MAGE SOUS-TEST : CALCUL

TAGE 2 / TAGE MAGE SOUS-TEST : CALCUL TAGE 2 / TAGE MAGE SOUS-TEST : CALCUL GEOMETRIE AUCUN DOCUMENT N EST AUTORISE CALCULATRICES INTERDITES Le sujet a été réalisé par l équipe pédagogique de Mes Concours Blancs et n engage en rien le concours

Plus en détail

PARALLELES ET PERPENDICULAIRES

PARALLELES ET PERPENDICULAIRES PARALLELES ET PERPENDICULAIRES Je sais définir et construire deux droites perpendiculaires Je sais définir et construire deux droites parallèles Je comprends les propriétés permettant de démontrer que

Plus en détail

Ce document vous permettra de réviser certaines notions mathématiques préalables au cours MAT

Ce document vous permettra de réviser certaines notions mathématiques préalables au cours MAT Mathématique FBC Révision des préalables au cours MAT-2101 101-3 Révision des préalables en Mathématique MAT 2101 101-3 Modélisation algébrique Ce document vous permettra de réviser certaines notions mathématiques

Plus en détail

Vocabulaire de base de la géométrie

Vocabulaire de base de la géométrie Géom 1 Vocabulaire de base de la géométrie Un point En géométrie, un point est représenté par une petite croix. On lui donne le nom d une lettre en majuscule, qu on écrit juste à côté. X A Un segment C

Plus en détail

Proprié té s dé gé omé trié plané

Proprié té s dé gé omé trié plané Proprié té s dé gé omé trié plané Droites Si deux droites sont parallèles à une même troisième alors elles sont parallèles entre elles (fig.1). Si deux droites sont perpendiculaires à une même troisième

Plus en détail

I Définition. Un quadrilatère est une figure constituée de quatre côtés. Le quadrilatère ABCD a : Quatre sommets : les points A, B, C et D.

I Définition. Un quadrilatère est une figure constituée de quatre côtés. Le quadrilatère ABCD a : Quatre sommets : les points A, B, C et D. QUADRILATERES I Définition Un quadrilatère est une figure constituée de quatre côtés. Le quadrilatère ABCD a : Quatre sommets : les points A, B, C et D. Quatre côtés : les segments [AB], [BC], [CD] et

Plus en détail

GEOMETRIE. Point, droite, segment

GEOMETRIE. Point, droite, segment GEOMETRIE Gé 1 Point, droite, segment Le point : - Il désigne un endroit bien précis. - Il est représenté par une croix. - On le nomme avec une lettre majuscule. La droite : A X Le point B est situé exactement

Plus en détail

DEMONTRER. 1) Démontrer qu un point est le milieu d un segment. 2) Démontrer que deux droites sont parallèles

DEMONTRER. 1) Démontrer qu un point est le milieu d un segment. 2) Démontrer que deux droites sont parallèles DEMONTRER 1) Démontrer qu un point est le milieu d un segment 2) Démontrer que deux droites sont parallèles 3) Démontrer que deux droites sont perpendiculaires 4) Démontrer qu un triangle est rectangle

Plus en détail

I. Parallélogrammes :

I. Parallélogrammes : 1 / 5 I. Parallélogrammes : Un parallélogramme est un quadrilatère dont les côtés opposés sont parallèles. Si un quadrilatère est un parallélogramme, alors : Ses côtés opposés sont parallèles et de même

Plus en détail

1) Une demi-droite est une partie d une droite délimitée par un point appelé origine de cette demidroite

1) Une demi-droite est une partie d une droite délimitée par un point appelé origine de cette demidroite 6 ème - 5 ème Géométrie de base Notation : On note un point à l aide d une croix pour indiquer le lieu et d une lettre MAJUSCULE à côté pour indiquer son nom Attention : Une MÊME lettre ne peut désigner

Plus en détail

Clé de correction. en Mathématique. Section 5 : Les propriétés de diverses figures géométriques. Révision des préalables

Clé de correction. en Mathématique. Section 5 : Les propriétés de diverses figures géométriques. Révision des préalables Mathématique FBC Révision des préalables au cours MAT-2101 101-3 Révision des préalables en Mathématique MAT 2101 101-3 Modélisation algébrique Section 5 : Les propriétés de diverses figures géométriques

Plus en détail

Géom1. Connaitre le vocabulaire et les instruments géométriques

Géom1. Connaitre le vocabulaire et les instruments géométriques Connaitre le vocabulaire et les instruments géométriques Géom1 En géométrie, il faut être attentif lors de la lecture des consignes et très précis quand on utilise le vocabulaire. La règle sert à mesurer,

Plus en détail

J ai 3 côtés de même longueur. J ai 4 côtés égaux, 4 angles droits et mes diagonales sont de même longueur et perpendiculaires. J ai 2 côtés de même longueur. J ai 4 angles droits et mes côtés opposés

Plus en détail

PARTIE NUMÉRIQUE MATHÉMATIQUE. Classe de Troisième CORRECTION DU BREVET BLANC EXERCICE N 2 : Année 2012

PARTIE NUMÉRIQUE MATHÉMATIQUE. Classe de Troisième CORRECTION DU BREVET BLANC EXERCICE N 2 : Année 2012 Classe de Troisième CORRECTION DU BREVET BLANC Année 2012 MATHÉMATIQUE PARTIE NUMÉRIQUE EXERCICE N 1 : Un nombre entier : - Est compris entre 100 et 150 ; - Est divisible par 3 ; - N est pas divisible

Plus en détail

GEOMETRIE CM1. Gé1 Points alignés et droites Pour représenter un point, on dessine une croix et on lui donne une lettre qu on écrit à côté.

GEOMETRIE CM1. Gé1 Points alignés et droites Pour représenter un point, on dessine une croix et on lui donne une lettre qu on écrit à côté. Gé1 Points alignés et droites Pour représenter un point, on dessine une croix et on lui donne une lettre qu on écrit à côté. x I x K x F Une droite est un alignement infini de points. On la désigne par

Plus en détail

Figures usuelles et axes de symétrie

Figures usuelles et axes de symétrie Chapitre 4 Figures usuelles et axes de symétrie I. Figures usuelles 1) Triangles un triangle est un polygone ayant 3 côtés. Vocabulaire : ABC est un triangle. A A, B et C sont ses 3 sommets. [AB], [AC]

Plus en détail

M1 Droites et segments

M1 Droites et segments M1 Droites et segments Le segment [AB] comprend: -Le point A. -Le point B. -Tous les points alignés avec A et B et situés entre A et B. La droite (CD) comprend: -Le point C. -Le point D. -Tous les points

Plus en détail

Généralités de Géométrie

Généralités de Géométrie Les droites rouges sont parallèles entre elles ainsi que les droites vertes. La droite bleue est perpendiculaire à la droite rouge du bas. Enfin la droite verte du haut partage l angle b en b 1 et b 2

Plus en détail

Géom 1 Connaître le vocabulaire et le codage géométrique

Géom 1 Connaître le vocabulaire et le codage géométrique Géom 1 Connaître le vocabulaire et le codage géométrique La géométrie exige rigueur et précision dans le vocabulaire utilisé. Une droite est formée par un nombre infini de points alignés : on ne peut donc

Plus en détail

Géométrie. Quadrilatères, constructions et mesures

Géométrie. Quadrilatères, constructions et mesures Géométrie Quadrilatères, constructions et mesures 1. Quadrilatères et caractéristiques Un quadrilatère est une figure plane qui a quatre côtés, quatre angles et quatre sommets: Il existe différentes sortes

Plus en détail

CORRECTION DE L EXAMEN DE FIN D ANNEE 2003 EPREUVE DE MATHEMATIQUES

CORRECTION DE L EXAMEN DE FIN D ANNEE 2003 EPREUVE DE MATHEMATIQUES CORRECTION DE L EXAMEN DE FIN D ANNEE 003 EPREUVE DE MATHEMATIQUES 1. PARTIE NUMERIQUE : 1 points Exercice 1 Effectue les calculs suivants en inscrivant toutes les étapes : A = [ - ( - 6 + 7 ) + ( - 3

Plus en détail

Géométrie CM1/CM2 - FH

Géométrie CM1/CM2 - FH Gm1 : Connaître le vocabulaire et les instruments de géométrie. En géométrie, il faut être attentif lors de la lecture des consignes et très précis quand on utilise le vocabulaire. Gm2 : Identifier et

Plus en détail

Fiche(1) Trigonométrie. Exercice 1. Exercice 2. Exercice 3. Exercice 4. Exercice 5

Fiche(1) Trigonométrie. Exercice 1. Exercice 2. Exercice 3. Exercice 4. Exercice 5 Trigonométrie Fiche(1) La droite (PP ) est le support de la bissectrice de l angle. (RR ) est perpendiculaire à (PP ). 1) Par quels réels sont repérés chacun des points P, P, R, R sur le cercle trigonométrique?

Plus en détail

LES FIGURES GÉOMÉTRIQUES COMPLEXES

LES FIGURES GÉOMÉTRIQUES COMPLEXES LES FIGURES GÉOMÉTRIQUES COMPLEXES I - Quelques définitions générales Les quadrilatères Un quadrilatère est une figure géométrique à quatre cotés. De manière générale on représente un quadrilatère quelconque,

Plus en détail

Les angles LNO et ÎLz sont correspondants. LNO = LON le triangle LNO est isocèle en L LN = LO. Les angles ÔLI et LON sont alternes internes

Les angles LNO et ÎLz sont correspondants. LNO = LON le triangle LNO est isocèle en L LN = LO. Les angles ÔLI et LON sont alternes internes 5 ème Devoir Maison Parallélogrammes Correction 07/05/12 Exercice 81 page 196 (6 points) 1. a. LION est un parallélogramme, donc : (NL)//(OI) Les angles LNO et ÎOx sont correspondants LNO = ÎOx b. D après

Plus en détail

SOMMAIRE. Fiche 2 : Démontrer que deux droites sont perpendiculaires. Fiche 6 : Démontrer qu un quadrilatère est un parallélogramme

SOMMAIRE. Fiche 2 : Démontrer que deux droites sont perpendiculaires. Fiche 6 : Démontrer qu un quadrilatère est un parallélogramme SOMMAIRE Fiche 1 : Démontrer que deux droites sont parallèles Fiche 2 : Démontrer que deux droites sont perpendiculaires Fiche 3 : Démontrer qu un triangle est équilatéral Fiche 4 : Démontrer qu un triangle

Plus en détail

Les polygones. Les polygones en CM2 Construire une hauteur d un triangle. Reproduire un triangle à l aide d instruments.

Les polygones. Les polygones en CM2 Construire une hauteur d un triangle. Reproduire un triangle à l aide d instruments. en CM1/CM2 Vérifier la nature d une figure plane simple en utilisant la règle graduée, l équerre, le compas. (carré, rectangle, losange, parallélogramme, triangles) Décrire une figure en vue de l identifier

Plus en détail

I. Les figures élémentaires :

I. Les figures élémentaires : I. Les figures élémentaires : A. Les triangles : Triangle isocèle Un triangle isocèle est un triangle qui a deux de ses côtés de. un triangle est isocèle les deux côtés issus du sommet principal ont. un

Plus en détail

QUE RETENIR DE L ANNEE DE CINQUIEME?

QUE RETENIR DE L ANNEE DE CINQUIEME? Organisation d un calcul Méthodes Dans un calcul sans parenthèses : on effectue les multiplications et les divisions en premier, puis les additions et les soustractions (de la gauche vers la droite). Dans

Plus en détail

CORRIGÉ. b) L hypoténuse mesure 76,32 cm et une cathète mesure 58,42 cm ; l autre cathète mesure

CORRIGÉ. b) L hypoténuse mesure 76,32 cm et une cathète mesure 58,42 cm ; l autre cathète mesure EXERCICES DE RÉVISION PYTHAGORE ET LES SOLIDES La relation de Pythagore et sa réciproque 1. Comment se nomme : a) le côté opposé à l angle droit d un triangle rectangle? Hypoténuse. b) chacun des côtés

Plus en détail

PROPRIETES, THEOREME DE GEOMETRIE

PROPRIETES, THEOREME DE GEOMETRIE PROPRIETES, THEOREME DE GEOMETRIE Droites Si deux droites sont parallèles à une même troisième, alors elles sont parallèles entre elles. (6ème) Si deux droites sont perpendiculaires à une même troisième,

Plus en détail

Angle et parallèles. Si 2 droites sont perpendiculaires à une même droite, alors elles sont parallèles entre elles.

Angle et parallèles. Si 2 droites sont perpendiculaires à une même droite, alors elles sont parallèles entre elles. Angle et parallèles Si 2 droites sont perpendiculaires à une même droite, alors elles sont parallèles entre elles. Si 2 droites sont perpendiculaires, toute parallèle à l une est perpendiculaire à l autre.

Plus en détail

Universités de Rennes 1 / Rennes Licence 2 - UED : Mathématiques

Universités de Rennes 1 / Rennes Licence 2 - UED : Mathématiques Universités de Rennes 1 / Rennes 2 2006-2007 Licence 2 - UED : Mathématiques Géométrie 2 Quadrilatères Exercice n 1 Construire à la règle et au compas un parallélogramme BCD sachant que : B = 7 cm, D=

Plus en détail

2 Pour identifier que 2 droites sont perpendiculaires, j utilise le signe sur le dessin.

2 Pour identifier que 2 droites sont perpendiculaires, j utilise le signe sur le dessin. Les droites perpendiculaires éfinition (e) eux droites sont perpendiculaires si elles se coupent en formant un angle droit. (f) Pour identifier que droites sont perpendiculaires, j utilise le signe sur

Plus en détail

I. Le carré. II. Le rectangle PLANCHE-MATH APPLICATION ET EXECUTION DES TÂCHES N 2 : NOTE : Il n -1- C= côté

I. Le carré. II. Le rectangle PLANCHE-MATH APPLICATION ET EXECUTION DES TÂCHES N 2 : NOTE : Il n -1- C= côté -1- PLANCHE-MATH MATH4- Calcul d aires Dans ce chapitre nous étudions les formules de calcul d aires des figures planes classiques. Dans tout ce chapitre nous notons l aire d une figure. NOTE : Il n Il

Plus en détail

Ch.G5 : Pyramides et cônes

Ch.G5 : Pyramides et cônes 4 e A - programme 2011 mathématiques ch.g5 cahier élève Page 1 sur 8 Ch.G5 : Pyramides et cônes Activité n 1 page 20 De l'ancien vers le nouveau On a représenté, ci-dessous, des solides en perspective

Plus en détail

EXERCICES. EXERCICE N 1 : Voici 7 surfaces, il s agit de les classer de la plus petite à la plus grande :

EXERCICES. EXERCICE N 1 : Voici 7 surfaces, il s agit de les classer de la plus petite à la plus grande : EC 9A : ELEMENTS DE MATHEMATIQUES DES GRANDEURS AUX MESURES EXERCICES EXERCICE N 1 : Voici 7 surfaces, il s agit de les classer de la plus petite à la plus grande : EXERCICE N 2 : Voici un énoncé : «Si

Plus en détail

5. Définition. Arc de cercle. Un arc de cercle est une portion de cercle comprise entre deux points quelconques de ce cercle.

5. Définition. Arc de cercle. Un arc de cercle est une portion de cercle comprise entre deux points quelconques de ce cercle. 6 e Décrire des figures usuelles Objectif 04 Livre 12 Mots clefs. Cercle Rayon, diamètre, corde et arc d un cercle Équidistance Triangle, triangle isocèle, triangle rectangle, triangle équilatéral Base

Plus en détail

LES QUADRILATERES COMMENT DEMONTRER QU UN QUADRILATERE EST...

LES QUADRILATERES COMMENT DEMONTRER QU UN QUADRILATERE EST... THEME : LES QUADRILATERES COMMENT DEMONTRER QU UN QUADRILATERE EST... SOMMAIRE : PARALLELOGRAMME? RECTANGLE? LOSANGE? CARRE? PARALLELOGRAMME? Vous disposez principalement de deux méthodes, une concernant

Plus en détail

1 Les solides de 6e et de 5e.

1 Les solides de 6e et de 5e. 1 Les solides de 6e et de 5e. 1.1 Le pavé droit et le cube Le pavé droit a six faces rectangulaires, 8 sommets et 12 arêtes (3 dimensions d arêtes). Vue en perspective cavalière : Patron : Aire : l aire

Plus en détail

I Rappels sur les symétries :

I Rappels sur les symétries : I Rappels sur les symétries : I. 1 Symétrie axiale : On note I le milieu de [ AB ]. On appelle médiatrice du segment [ AB ] la droite perpendiculaire en I à ( AB ). Propriétés : La médiatrice de [ AB ]

Plus en détail

Exercices supplémentaires

Exercices supplémentaires Unités 10.1 à 10,4 Périmètre et l aire des figures planes Conversion des unités de longueur et d aire Les expressions algébriques et la résolution d équations Exercices supplémentaires Mathématiques 2

Plus en détail

CLÉ DE CORRECTION MAT-P104-4 : REPRÉSENTATIONS GÉOMÉTRIQUES. Une visite au musée. Perception de figures. Liens web sur les figures géométriques :

CLÉ DE CORRECTION MAT-P104-4 : REPRÉSENTATIONS GÉOMÉTRIQUES. Une visite au musée. Perception de figures. Liens web sur les figures géométriques : MAT-P104-4 : REPRÉSENTATIONS GÉOMÉTRIQUES SA1 Une visite au musée Perception de figures CLÉ DE CORRECTION Liens web sur les figures géométriques : http://matoumatheux.ac-rennes.fr/geom/figure/cm1/exemplescm1.htm

Plus en détail

Évaluation géométrie - mesure CM1 N 1

Évaluation géométrie - mesure CM1 N 1 Évaluation géométrie - mesure CM1 N 1 Exercice 1 Trace le segment [AU] = 4 cm qui est perpendiculaire à [AB] passant par A. Marque le point I milieu de [AB]. perpendiculaires Trace le segment [IP] = 3

Plus en détail

MAT Géométrie III (isométries et similitudes) FORME A (Partie 1)

MAT Géométrie III (isométries et similitudes) FORME A (Partie 1) PRÉ-TEST -1 Géométrie III (isométries et similitudes) FORME A (Partie 1) août 2004 Note : la durée est de 2 heures 30 PRÉPARÉ par Huguette Morin VÉRIFIÉ par Georges Zwierzchowski Ajusté par Claire Fafard

Plus en détail

Les bases des mathématiques : Maîtrise de l'ordre des opérations. Maîtrise des opérations dans Z (nombres relatifs)

Les bases des mathématiques : Maîtrise de l'ordre des opérations. Maîtrise des opérations dans Z (nombres relatifs) Les bases des mathématiques : Calcul numérique : Maîtrise de l'ordre des opérations Maîtrise des opérations dans Z (nombres relatifs) Maîtrise des opérations dans Q ((nombres fractionnaires) Maîtrise des

Plus en détail

Les formules de la géométrie spaciale

Les formules de la géométrie spaciale Troisième, chapitre n o 1 Les formules de la géométrie spaciale L'ensemble des formules permettent de déterminer les volumes et les surfaces des solides usuels. L'étude s'enrichit du cas de la sphère.

Plus en détail

CHAP 9 : PERIMETRES, AIRES ET VOLUMES 2016/2017

CHAP 9 : PERIMETRES, AIRES ET VOLUMES 2016/2017 Plan du chapitre : 1. Périmètres et aires 2. Le triangle 3. Le parallélogramme 4. Le trapèze 5. Le losange et le cercle 6. Les volumes Complète les phrases suivantes à l aide des mots périmètre, aire ou

Plus en détail

Bilan de géométrie n 5. Dans le plan

Bilan de géométrie n 5. Dans le plan Groupe 1 Bilan de géométrie n 5 Dans le plan Nom : Prénom : Date : / / Reconnaître, décrire, nommer et reproduire, tracer des figures planes en utilisant la règle graduée, l'équerre, le compas. S.C A B

Plus en détail

Justifier. 2) Comment déceler des transformations dans une figure? 7-8

Justifier. 2) Comment déceler des transformations dans une figure? 7-8 Justifier 1) Comment justifier que page a) un quadrilatère est un parallélogramme, 2 b) un quadrilatère est un rectangle, 3 c) un quadrilatère est un losange, 4 d) un quadrilatère est un carré, 4 e) un

Plus en détail

Petit dictionnaire de géométrie plane

Petit dictionnaire de géométrie plane Petit dictionnaire de géométrie plane Le point 'est l'élément de base de la géométrie. eux droites qui se coupent définissent un point à leur intersection. xemple : Les droites (a) et (b) définissent le

Plus en détail

Chapitre 6 : Angles, triangles et quadrilatères

Chapitre 6 : Angles, triangles et quadrilatères Chapitre 6 : Angles, triangles et quadrilatères Nommer un angle Donner la nature d'un angle Mesurer un angle (gabarit, rapporteur) Construire un angle Calculer des mesures d'angles Bissectrices Triangles

Plus en détail

Parallélogrammes particuliers

Parallélogrammes particuliers Parallélogrammes particuliers C H A P I T R E 16 Énigme du chapitre. Construire un parallélogramme ABCD de périmètre 36 cm de périmètre et dont la longueur AB est le double de la longueur BC. Objectifs

Plus en détail

Chapitre 02 : Quadrilatères particuliers

Chapitre 02 : Quadrilatères particuliers Chapitre 02 : Quadrilatères particuliers I] Le parallélogramme (Rappels) et propriétés Un parallélogramme est un quadrilatère dont les côtés opposés sont deux à deux parallèles. Si un quadrilatère est

Plus en détail

CST. Mathématiques CST - Figures planes équivalentes - Figures planes équivalentes. Deux figures planes sont équivalentes si elles ont la même aire.

CST. Mathématiques CST - Figures planes équivalentes - Figures planes équivalentes. Deux figures planes sont équivalentes si elles ont la même aire. - Figures planes équivalentes - Figures planes équivalentes Deux figures planes sont équivalentes si elles ont la même aire. Ex. : A A D 4 cm 2 cm B 3 cm C B 3 cm C A = A = A = b x h 2 3 x 4 2 2 A = b

Plus en détail

FICHES OUTILS GEOMETRIE CM2

FICHES OUTILS GEOMETRIE CM2 FICHES OUTILS GEOMETRIE Constructions pour le plaisir avec des cercles: page 25: la cible page 26: la rosace page 27: la rosace double page 28: la rose page 29: le mandala Pages 2 à 9: 1 Les instruments

Plus en détail

Angles : Définitions utiles. Angles : Propriétés utiles. Triangle : Droite des milieux. Triangle : Généralités

Angles : Définitions utiles. Angles : Propriétés utiles. Triangle : Droite des milieux. Triangle : Généralités Angles : Définitions utiles Angles : Propriétés utiles D1: Deux angles qui ont un sommet commun et un côté commun sont dits adjacents. Sur la figure ci contre, l angle en rouge et l angle en vert ont en

Plus en détail

D après des exemples tirés des manuels Cap Maths, sauf mention contraire

D après des exemples tirés des manuels Cap Maths, sauf mention contraire 1 / 6 Exemples d'activités géométriques D après des exemples tirés des manuels Cap Maths, sauf mention contraire Reproduction de figures Activité 1 : Avec la règle, sans mesurer... On a commencé à reproduire

Plus en détail

ÉLÉMENTS DE GÉOMÉTRIE PLANE

ÉLÉMENTS DE GÉOMÉTRIE PLANE ÉLÉMENTS DE GÉOMÉTRIE PLANE I. DROITE ET SEGMENT 1. Généralités Il existe une droite et une seule passant par deux points A et B distincts donnés, on la note (AB). On peut dire que la droite passe par

Plus en détail

Ex 1 : Complète avec les mots de la leçon a)on le représente par une croix : c est. Géom 1 CONNAITRE LE VOCABULAIRE ET LE CODAGE EN GEOMETRIE

Ex 1 : Complète avec les mots de la leçon a)on le représente par une croix : c est. Géom 1 CONNAITRE LE VOCABULAIRE ET LE CODAGE EN GEOMETRIE CONNAITRE LE VOCABULAIRE ET LE CODAGE EN GEOMETRIE La géométrie exige rigueur et précision dans le vocabulaire utilisé. Géom 1 Ex 1 : Complète avec les mots de la leçon a)on le représente par une croix

Plus en détail

Numéro de candidat : Ce questionnaire doit être agrafé à la copie du candidat. Mathématiques. Durée de l épreuve : 2h00

Numéro de candidat : Ce questionnaire doit être agrafé à la copie du candidat. Mathématiques. Durée de l épreuve : 2h00 ième Brevet blanc Mai 009 Numéro de candidat : Ce questionnaire doit être agrafé à la copie du candidat Mathématiques Durée de l épreuve : h00 I- Activités numériques points II- Activités géométriques

Plus en détail

Vocabulaire de la géométrie

Vocabulaire de la géométrie GEOM 1 Vocabulaire de la géométrie 1 Le point Le point est un endroit précis du plan. On le représente par une croix dont il est le centre et on le nomme avec une lettre majuscule. 2 Droite Trois points

Plus en détail

MAT-4111 Complément et synthèse I Pré-test A Questionnaire

MAT-4111 Complément et synthèse I Pré-test A Questionnaire EUCLIDE d'aleandrie, mathématicien grec, -330?/-260? Auteur des Éléments, ouvrage qui est le fondement de la géométrie dite euclidienne. Pour en savoir plus : www.chronomath.com MAT-4111 Complément et

Plus en détail

Chapitre 11 : Symétrie axiale.

Chapitre 11 : Symétrie axiale. Chapitre 11 : Symétrie axiale. I Approche expérimentale. Définition : Deux figures sont symétriques par rapport à une droite si, en pliant suivant cette droite, les deux figures se superposent. Cette droite

Plus en détail

S12. Autour des POLYGONES Quadrilatères et polygones réguliers convexes. Un quadrilatère qui a deux côtés parallèles est un parallélogramme

S12. Autour des POLYGONES Quadrilatères et polygones réguliers convexes. Un quadrilatère qui a deux côtés parallèles est un parallélogramme CRPE Mise en route 1. Trouver l intrus. Justifier. 2. Voici des polygones convexes S12. Autour des POLYGONES Quadrilatères et polygones réguliers convexes 1 2 3 4 5 6 7 8 Lesquels sont : des quadrilatères?

Plus en détail

Chapitre 2 Géométrie NOTES DE COURS ET EXERCICES. Programme Local

Chapitre 2 Géométrie NOTES DE COURS ET EXERCICES. Programme Local Chapitre 2 Géométrie NOTES DE COURS ET EXERCICES Programme Local Mathématique 5 e secondaire CST Collège Regina Assumpta 2016 2017 Nom : Groupe : NOTES DE COURS 2 1. RAPPEL A) Nom des polygones réguliers

Plus en détail

Calcul mental-minitest: triangles et quadrilatères

Calcul mental-minitest: triangles et quadrilatères Calcul mental-minitest: triangles et quadrilatères triangles et quadrilatères Lycée Français de Barcelone sixième (LFB - sixième) Calcul mental-minitest: triangles et quadrilatères sixième 1 / 21 Question

Plus en détail

MATHEMATIQUES - GEOMETRIE

MATHEMATIQUES - GEOMETRIE FICHE GE.13 Objectif : Reconnaître un rectangle Utilise tes instruments et vérifie s il s agit ou non de carré, puis colorie les carrés. FICHE GE.14 Objectif : Connaître les propriétés du carré 1/ Explique

Plus en détail

GÉOMÉTRIE PLANE. On écrit : AB = 4cm et pas [AB] = 4cm On écrit : (AB) l (CD) et pas [AB] l [CD].

GÉOMÉTRIE PLANE. On écrit : AB = 4cm et pas [AB] = 4cm On écrit : (AB) l (CD) et pas [AB] l [CD]. GÉOMÉTRIE PLANE Langage géométrique : notations et vocabulaire. [ ] = segment [AB] = segment d extrémités A et B. AB = longueur du segment AB (ou parfois la distance de A à B). ( ) = droite (AB) = droite

Plus en détail

Mathématiques Stage n

Mathématiques Stage n Mathématiques Stage n A Sommet A B Côté BC C Angle ACB Le triangle (ABC) C.F.A du bâtiment Ermont 1 Rappel de quelques évidences : Un triangle est une forme géométrique fermée à 3 côtés. Il a également

Plus en détail

QUADRILATERES. Exercice 1. Sur la figure ci-contre, on a : (AC) (AB) et (BD) (AB). 1) Montrer que (AC) et (ED) sont parallèles.

QUADRILATERES. Exercice 1. Sur la figure ci-contre, on a : (AC) (AB) et (BD) (AB). 1) Montrer que (AC) et (ED) sont parallèles. Exercice 1 Sur la figure ci-contre, on a : (AC) (AB) et (BD) (AB). 1) Montrer que (AC) et (ED) sont parallèles. A B 70 E 2) Montrer que (AE) et (CD) sont parallèles. 3) En déduire que AEDC est un parallélogramme.

Plus en détail

Module 9 : Aire et volume de solides

Module 9 : Aire et volume de solides RÉDUCTION DES ÉCARTS DE RENDEMENT 9 e année Module 9 : Aire et volume de solides Guide de l élève Module 9 Aire et volume de solides Évaluation diagnostique...3 Volume de prismes...6 Volume de cylindres...13

Plus en détail

Comment démontrer que deux droites sont parallèles

Comment démontrer que deux droites sont parallèles F1 Comment démontrer que deux droites sont parallèles P : Si deux droites sont parallèles, alors toute parallèle à l une est parallèle à l autre. P : Si deux droites sont perpendiculaires à une même troisième,

Plus en détail

MAT-P104-4 : REPRÉSENTATIONS GÉOMÉTRIQUES. Détermination de mesures liées au périmètre et à l aire de polygones convexes CLÉ DE CORRECTION

MAT-P104-4 : REPRÉSENTATIONS GÉOMÉTRIQUES. Détermination de mesures liées au périmètre et à l aire de polygones convexes CLÉ DE CORRECTION MAT-P104-4 : REPRÉSENTATIONS GÉOMÉTRIQUES SA3 Des maisons qui se ressemblent Détermination de mesures liées au périmètre et à l aire de polygones convexes CLÉ DE CORRECTION Corrigé/MATP104-4 /SA3 Des terrains

Plus en détail