BENDAHMANE Amine Master2 RFIA 25 octobre 2011
|
|
|
- Eugène Rancourt
- il y a 9 ans
- Total affichages :
Transcription
1 Ministère de l Enseignement Supérieur Et de la Recherche Scientifique Université des Sciences et de la Technologie d Oran - Mohamed Boudiaf Faculté des Sciences - Département d Informatique Le recuit simulé Module : Optimisation avancée BENDAHMANE Amine Master2 RFIA 25 octobre 2011
2 Sommaire 1. Introduction : Les origines : Définition : Algorithme : L algorithme de Metropolis : L'algorithme du recuit simulé : Etat initial de l'algorithme : Variation de la temperature : Amélioration : Exemple d application : Domaines d applications : Avantages et Inconvénients : Avantages : Inconvénients : Conclusion : Bibliographie
3 1. Introduction : Les problèmes NP-complets d'optimisation combinatoire sont caractérisés par une complexité exponentielle ou factorielle, par conséquent ; il est impossible d'énumérer toutes les solutions possibles car cela dépasse la capacité de calcul de n'importe quel ordinateur. Il est donc très difficile de trouver la solution optimale. Pour palier a ces problèmes, les chercheurs ont introduit des méthodes approchées appelées heuristiques, elles présentent l'avantage d'un temps de calcul réduit mais ne donnent aucune information sur la qualité de la solution trouvée, de plus elles ne sont en général applicables qu'a un seul type de problèmes. (Autin, 2006) Par exemple la méthode de la descente consiste à partir d une solution S à choisir une solution S dans un voisinage de S, telle que S améliore la solution. La recherche s arrête donc au premier minimum (ou maximum) local rencontré, c est là son principal défaut. Pour améliorer les résultats, on peut relancer plusieurs fois l algorithme mais la performance de cette technique décroît rapidement. Ce qui a poussé les chercheurs à proposer de nouvelles méthodes générales (applicables à la plupart des problèmes d'optimisation) appelées métaheuristiques, dont la méthode du recuit simulé ; conçu pour rechercher un optimum global parmi plusieurs minimas (ou maximas) locaux. 3
4 Solution trouvée par la descente du gradient Solution optimale Figure 1 : blocage d une heuristique classique dans un minima local 2. Les origines : La méthode du recuit simulé est une généralisation de la méthode Monte- Carlo ; son but est de trouver une solution optimale pour un problème donné. Elle a été mise au point par trois chercheurs de la société IBM : S. Kirkpatrick, C.D. Gelatt et M.P. Vecchi en 1983, et indépendamment par V. Cerny en 1985 à partir de l'algorithme de Metropolis ; qui permet de décrire l'évolution d'un système thermodynamique. (LIACS, 2009) La méthode du recuit simulé est basée sur un processus très utilisé en métallurgie pour obtenir un alliage sans défaut, ce processus est appelé «le recuit». (Autin, 2006) On commence d abord par chauffer le métal jusqu'à une certaine température où il devient liquide (les atomes peuvent donc circuler librement). Après avoir atteint ce stade, on abaisse la température très lentement de sorte à obtenir un solide (Olivier, 2001). Si cette baisse de température est brusque on obtient alors du verre ; si au contraire cette baisse de température est très lente (laissant aux atomes le temps d'atteindre l'équilibre statistique), nous 4
5 obtiendrons des structures de plus en plus régulières, jusqu à atteindre un état d énergie minimale correspondant à la structure parfaite d un Crystal, on dit alors que le système est «gelé». Au cas où cet abaissement de température ne se ferait pas assez lentement, il pourrait apparaitre des défauts. Il faudrait alors les corriger en réchauffant de nouveau légèrement la matière de façon à permettre aux atomes de retrouver la liberté de mouvement, leur facilitant ainsi un éventuel réarrangement conduisant à une structure plus stable. (Olivier, 2001) 3. Définition : L idée principale du recuit simulé tel qu il a été proposé par Metropolis en 1953 est de simuler le comportement de la matière dans le processus du recuit très largement utilisé dans la métallurgie. Le but est d atteindre un état d équilibre thermodynamique, cet état d équilibre (où l énergie est minimale) représente - dans la méthode du recuit simulé la solution optimale d un problème ; L énergie du système sera calculé par une fonction coût (ou fonction objectif) spécifique à chaque problème (Kendall). La méthode va donc essayer de trouver la solution optimale en optimisant une fonction objectif, pour cela, un paramètre fictif de température a été ajouté par Kirkpatrick, Gelatt et Vecchi. En gros le principe consiste à générer successivement des configurations à partir d'une solution initiale S 0 et d'une température initiale T 0 qui diminuera tout au long du processus jusqu'à atteindre une température finale ou un état d équilibre (optimum global). 5
6 4. Algorithme : 4.1. L algorithme de Metropolis : Dans l'algorithme de Metropolis, on part d'une configuration donnée, et on lui fait subir une modification aléatoire. Si cette modification fait diminuer la fonction objectif (ou énergie du système), elle est directement acceptée ; Sinon, elle n'est acceptée qu'avec une probabilité égale à exp( E/T) (avec E=énergie, et T=température), cette règle est appelée critère de Metropolis. (Autin, 2006) 4.2. L'algorithme du recuit simulé : Le recuit simulé applique itérativement l algorithme de Metropolis, pour engendrer une séquence de configurations qui tendent vers l'équilibre thermodynamique : 1) Choisir une température de départ T=T0 et une solution initiale S=S0 ; 2) générer une solution aléatoire dans le voisinage de la solution actuelle ; 3) comparer les deux solutions selon le critère de Metropolis ; 4) répéter 2 et 3 jusqu'a ce que l'équilibre statistique soit atteint ; 5) décroitre la température et répéter jusqu'a ce que le système soit gelé. (Abecasis) Dans un premier temps, T étant généralement choisi très grand, beaucoup de solutions - même celles dégradant la valeur de f - sont acceptées, et l'algorithme équivaut à une visite aléatoire de l'espace des solutions. Mais à mesure que la température baisse, la plupart des solutions augmentant l'énergie sont refusés, et l'algorithme se ramène à une amélioration itérative classique. A température intermédiaire, l'algorithme autorise de temps en temps des transformations qui dégradent la fonction objectif. Il laisse ainsi une chance au système de s'extraire d'un minima local. (Autin, 2006) 6
7 Notons aussi que si la température est égale à 0, seules les solutions optimisant f sont acceptées. L'algorithme se comportera donc comme la méthode de la descente du gradient. Le recuit simulé continue sa recherche Solution trouvée par une heuristique classique Solution trouvée par le recuit simulé après un nombre suffisant d itérations Figure 2 : comparaison entre le recuit simulé et une heuristique classique 4.3. Etat initial de l'algorithme : La solution initiale peut être prise au hasard dans l'espace des solutions possibles, elle peut aussi être générée par une heuristique classique, telle que la descente du gradient ou l algorithme glouton (dans le cas du voyageur du commerce). (Kendall) La température initiale doit être assez élevée, car c'est elle qui fixe la probabilité d'accepter ou de refuser les solutions défavorables à l'optimisation de la fonction f Variation de la temperature : Deux approches sont possibles pour décroitre la température : a) décroissance par paliers : Pour chaque valeur de la température, on itère l'algorithme de Metropolis jusqu'a atteindre un équilibre statistique, puis on diminue la temperature. 7
8 b) Décroissance continue : On fait baisser la température d'une façon continue, le plus courant est d'utiliser la loi suivante : T i+1 = α. T i / α < 1 (en génral α = 0.9 à 0.99) Remarque : Le paramètre α est à choisir avec précaution ; En effet, s il est choisi trop grand, la temperature baissera très rapidement et l'algorithme pourra être bloqué dans un minima local ; Si au contraire il est choisi trop petit, la temperature baissera très lentement et le temps de calcul sera très grand. (Kendall) 4.5. Amélioration : Cet algorithme est parfois amélioré en ajoutant une variable qui mémorise la meilleure valeur rencontrée jusqu à présent ; sans cela, l algorithme pourrait converger vers une certaine solution, alors qu on avait visité auparavant une solution meilleure. (Autin, 2006) 5. Exemple d application : Le problème du voyageur de commerce : Le recuit simulé peut être appliqué au problème du voyageur de commerce. Le but est alors de trouver le circuit hamiltonien de coût minimal dans un graphe. L énergie représentera la distance totale à parcourir, et un état du système représentera le chemin entre les villes. L algorithme va donc tenter de minimiser la longueur totale du chemin, en modifiant l ordre des villes à parcourir. Soit le graphe suivant représentant un ensemble de villes : 8
9 Figure 3 : un ensemble de villes (noeuds) reliés entre eux par des routes (arcs) 4 La solution la plus simple est de parcourir les villes dans l ordre Total = 26 Figure 4 : Une première solution (parcours suivant l'ordre des villes) Total = 21 Figure 5 : Le résultat donné par l algorithme glouton (se délacer d un sommet vers son plus proche voisin) Total = 22 Figure 6 : Le résultat obtenu en échangeant les sommets 2 et 3 Dans la Figure 6 : Le résultat obtenu en échangeant les sommets 2 et 3, la distance totale a augmenté. Pour une heuristique classique cette est solution est rejetée car la distance doit être minimisée, mais le recuit simulé poura l accepter si la temperature est encore elevée, et cette solution qui est «mauvaise» par rapport à la première va lui permettre de trouver une solution meilleure : Total = 18 Figure 7 : Le résultat obtenu en échangeant les sommets 5 et 2 9
10 Le graphique suivant résume les resultats trouvés : Distance totale Fig 8 : les résultats obtenus dans l'exemple En résumé : Le recuit simulé, en acceptant une mauvaise solution, à réussi a échapper au minima local et à obtenir une solution meilleure. 6. Domaines d applications : Comme pour toute méta-heuristique, la méthode du recuit simulé peut être appliquée dans de nombreux problèmes d optimisation, les chercheurs l ont utilisée essentiellement dans : La conception des circuits intégrés (Kirkpatrick, et al., 1988)(problème de placement et de répartition) ; Le routage des paquets dans les réseaux ; La segmentation d'images ; Le problème du voyageur de commerce ; Et, le problème du sac à dos. 7. Avantages et Inconvénients : 7.1. Avantages : Facile à implémenter; Donne généralement de bonnes solutions par rapport aux algorithmes de recherche classiques; 10
11 Peut être utilisé dans la plupart des problèmes d'optimisation; Il converge vers un optimum global (lorsque le nombre d itérations tend vers l infini (Autin, 2006)). Cela fait de lui une option attrayante pour les problèmes d'optimisation difficiles Inconvénients : Le principal inconvénient du recuit simulé est qu'une fois l'algorithme piégé à basse température dans un minimum local, il lui est impossible de s'en sortir. Plusieurs solutions ont été proposées pour tenter de résoudre ce problème, par exemple en acceptant une brusque remontée de la température de temps en temps, pour relancer la recherche sur d autres régions plus éloignées. (Autin, 2006) Appart cela on peut citer quelques autres inconvénients comme : La difficulté de déterminer la température initiale : Si elle est trop basse, la qualité de recherche sera mauvaise. Si elle est trop haute, le temps de calcul sera élevé. L'impossibilité de savoir si la solution trouvée est optimale ; Dégradation des performances pour les problèmes où il y a peu de minimas locaux (comparé avec les heuristiques classiques comme la descente du gradient par exemple). 8. Conclusion : Nous avons vu que les heuristiques classiques n'étaient pas très satisfaisantes pour résoudre les problèmes d optimisation, car les solutions générées n étaient pas de bonne qualité. L intelligence artificielle s est donc tournée vers la nature pour créer de nouvelles méthodes : plus générales et plus efficaces. 11
12 Bibliographie AI Methods - Simulated Annealing [Rapport] : complément de cours / aut. Kendall Graham / CS - Nottingham University. Les métaheuristiques en optimisation combinatoire [Rapport] : Mémoire de fin d'etudes / aut. Autin Baptiste / Conservatoire National Des Arts et Metiers. - PARIS : [s.n.], Méthode du recuit simulé [Rapport] : complément TD/TP Recherche stochastique / aut. Olivier D Optimization by Simulated Annealing [Article] / aut. Kirkpatrick, Gelatt et Vecchi // Science, New Series Mai pp Simulated Annealing [Rapport] / aut. LIACS / Natural Computing Group ; Leiden University Simulated Annealing, cours Biostatistiques - chapitre19 [En ligne] / aut. Abecasis Goncalo octobre
Cours des Méthodes de Résolution Exactes Heuristiques et Métaheuristiques
Université Mohammed V, Faculté des Sciences de Rabat Laboratoire de Recherche Mathématiques, Informatique et Applications Cours des Méthodes de Résolution Exactes Heuristiques et Métaheuristiques MASTER
Algorithmes de recherche
Algorithmes de recherche 1 Résolution de problèmes par recherche On représente un problème par un espace d'états (arbre/graphe). Chaque état est une conguration possible du problème. Résoudre le problème
Optimisation Combinatoire (Méthodes approchées) II. Recherche Locale simple (Les bases)
Optimisation Combinatoire (Méthodes approchées) II. Recherche Locale simple (Les bases) Heuristique Constructive Itérativement, ajoute de nouvelles composantes à une solution partielle candidate Espace
Jean-Philippe Préaux http://www.i2m.univ-amu.fr/~preaux
Colonies de fourmis Comment procèdent les colonies de fourmi pour déterminer un chemin presque géodésique de la fourmilière à un stock de nourriture? Les premières fourmis se déplacent au hasard. Les fourmis
Une application des algorithmes génétiques à l ordonnancement d atelier
Une application des algorithmes génétiques à l ordonnancement d atelier VACHER Jean-Philippe - GALINHO Thierry - MAMMERI Zoubir Laboratoire d Informatique du Havre Université du Havre 25, Rue Philippe
Objectifs du cours d aujourd hui. Informatique II : Cours d introduction à l informatique et à la programmation objet. Complexité d un problème (2)
Objectifs du cours d aujourd hui Informatique II : Cours d introduction à l informatique et à la programmation objet Complexité des problèmes Introduire la notion de complexité d un problème Présenter
Introduction. I Étude rapide du réseau - Apprentissage. II Application à la reconnaissance des notes.
Introduction L'objectif de mon TIPE est la reconnaissance de sons ou de notes de musique à l'aide d'un réseau de neurones. Ce réseau doit être capable d'apprendre à distinguer les exemples présentés puis
Sommaire. Introduction.2. 1. Définition..2. 2. Historique.2. 3. Domaine d application.2. 4.Les Travaux réalisés sur les domaines d application.
Sommaire Introduction.2 1. Définition..2 2. Historique.2 3. Domaine d application.2 4.Les Travaux réalisés sur les domaines d application.3 5.Algorithme 4 6.Exemple d application 5 7. Avantage et inconvénient..6
Méthaheuristiques pour l optimisation combinatoire et l affectation sous contraintes
Méthaheuristiques pour l optimisation combinatoire et l affectation sous contraintes Jin-Kao Hao *, Philippe Galinier **, Michel Habib *** * LERIA, U.F.R. Sciences, Université d Angers, 2 bd Lavoisier,
Hela Boukef. To cite this version: HAL Id: tel-00577101 https://tel.archives-ouvertes.fr/tel-00577101
Sur l ordonnancement d ateliers job-shop flexibles et flow-shop en industries pharmaceutiques : optimisation par algorithmes génétiques et essaims particulaires Hela Boukef To cite this version: Hela Boukef.
Resolution limit in community detection
Introduction Plan 2006 Introduction Plan Introduction Introduction Plan Introduction Point de départ : un graphe et des sous-graphes. But : quantifier le fait que les sous-graphes choisis sont des modules.
Problème à résoudre. min f(s) s.c. s S
Métaheuristiques Le mot métaheuristique est dérivé de la composition de deux mots grecs: - heuristique qui vient du verbe heuriskein (ευρισκειν) et qui signifie trouver - meta qui est un suffixe signifiant
Optimisation Combinatoire et Colonies de Fourmis Nicolas Monmarche April 21, 1999 Sommaire Inspiration biologiques Ant Colony Optimization Applications TSP QAP Flow Shop Problemes dynamiques 1 Historique
Modélisation multi-agents - Agents réactifs
Modélisation multi-agents - Agents réactifs Syma cursus CSI / SCIA Julien Saunier - [email protected] Sources www-lih.univlehavre.fr/~olivier/enseignement/masterrecherche/cours/ support/algofourmis.pdf
ALGORITHME GENETIQUE ET MODELE DE SIMULATION POUR L'ORDONNANCEMENT D'UN ATELIER DISCONTINU DE CHIMIE
ALGORITHME GENETIQUE ET MODELE DE SIMULATION POUR L'ORDONNANCEMENT D'UN ATELIER DISCONTINU DE CHIMIE P. Baudet, C. Azzaro-Pantel, S. Domenech et L. Pibouleau Laboratoire de Génie Chimique - URA 192 du
Système Immunitaire Artificiel Parallèle appliqué aux Flow Shop Hybride (FSH)
République Algérienne Démocratique et Populaire Ministère de l Enseignement Supérieur et de la Recherche Scientifique Université des Sciences et de la Technologie d Oran -Mohamed Boudiaf USTO-MB Faculté
LES MÉTA-HEURISTIQUES : quelques conseils pour en faire bon usage
LES MÉTA-HEURISTIQUES : quelques conseils pour en faire bon usage Alain HERTZ Ecole Polytechnique - GERAD Département de mathématiques et de génie industriel CP 679, succ. Centre-ville, Montréal (QC) H3C
Figure 3.1- Lancement du Gambit
3.1. Introduction Le logiciel Gambit est un mailleur 2D/3D; pré-processeur qui permet de mailler des domaines de géométrie d un problème de CFD (Computational Fluid Dynamics).Il génère des fichiers*.msh
PROBLEMES D'ORDONNANCEMENT AVEC RESSOURCES
Leçon 11 PROBLEMES D'ORDONNANCEMENT AVEC RESSOURCES Dans cette leçon, nous retrouvons le problème d ordonnancement déjà vu mais en ajoutant la prise en compte de contraintes portant sur les ressources.
Coup de Projecteur sur les Réseaux de Neurones
Coup de Projecteur sur les Réseaux de Neurones Les réseaux de neurones peuvent être utilisés pour des problèmes de prévision ou de classification. La représentation la plus populaire est le réseau multicouche
Pourquoi l apprentissage?
Pourquoi l apprentissage? Les SE sont basés sur la possibilité d extraire la connaissance d un expert sous forme de règles. Dépend fortement de la capacité à extraire et formaliser ces connaissances. Apprentissage
Christophe CANDILLIER Cours de DataMining mars 2004 Page 1
Christophe CANDILLIER Cours de DataMining mars 2004 age 1 1. Introduction 2. rocessus du DataMining 3. Analyse des données en DataMining 4. Analyse en Ligne OLA 5. Logiciels 6. Bibliographie Christophe
Détection et suivi d'objets dans une séquence d'images par contours actifs
Détection et suivi d'objets dans une séquence d'images par contours actifs A. Fekir (1), N. Benamrane (2) et A. Taleb-Ahmed (3) (1) Département d informatique, Université de Mustapha Stambouli, BP 763,
Le théorème de Perron-Frobenius, les chaines de Markov et un célèbre moteur de recherche
Le théorème de Perron-Frobenius, les chaines de Markov et un célèbre moteur de recherche Bachir Bekka Février 2007 Le théorème de Perron-Frobenius a d importantes applications en probabilités (chaines
TP1 Méthodes de Monte Carlo et techniques de réduction de variance, application au pricing d options
Université de Lorraine Modélisation Stochastique Master 2 IMOI 2014-2015 TP1 Méthodes de Monte Carlo et techniques de réduction de variance, application au pricing d options 1 Les options Le but de ce
Cours de Master Recherche
Cours de Master Recherche Spécialité CODE : Résolution de problèmes combinatoires Christine Solnon LIRIS, UMR 5205 CNRS / Université Lyon 1 2007 Rappel du plan du cours 16 heures de cours 1 - Introduction
Texte Agrégation limitée par diffusion interne
Page n 1. Texte Agrégation limitée par diffusion interne 1 Le phénomène observé Un fût de déchets radioactifs est enterré secrètement dans le Cantal. Au bout de quelques années, il devient poreux et laisse
Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications
Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications A. Optimisation sans contrainte.... Généralités.... Condition nécessaire et condition suffisante
Laboratoire d Automatique et Productique Université de Batna, Algérie
Anale. Seria Informatică. Vol. IX fasc. 2 Annals. Computer Science Series. 9 th Tome st Fasc. 2 La sélection de paramètres d un système industriel par les colonies de fourmis Ouahab Kadri, L. Hayet Mouss,
Cours de Recherche Opérationnelle IUT d Orsay. Nicolas M. THIÉRY. E-mail address: [email protected] URL: http://nicolas.thiery.
Cours de Recherche Opérationnelle IUT d Orsay Nicolas M. THIÉRY E-mail address: [email protected] URL: http://nicolas.thiery.name/ CHAPTER 1 Introduction à l optimisation 1.1. TD: Ordonnancement
Etude d Algorithmes Parallèles de Data Mining
REPUBLIQUE TUNISIENNE MINISTERE DE L ENSEIGNEMENT SUPERIEUR, DE LA TECHNOLOGIE ET DE LA RECHERCHE SCIENTIFIQUE UNIVERSITE DE TUNIS ELMANAR FACULTE DES SCIENCES DE TUNIS DEPARTEMENT DES SCIENCES DE L INFORMATIQUE
Exemples de problèmes et d applications. INF6953 Exemples de problèmes 1
Exemples de problèmes et d applications INF6953 Exemples de problèmes Sommaire Quelques domaines d application Quelques problèmes réels Allocation de fréquences dans les réseaux radio-mobiles Affectation
Principes d implémentation des métaheuristiques
Chapitre 2 Principes d implémentation des métaheuristiques Éric D. Taillard 1 2.1 Introduction Les métaheuristiques ont changé radicalement l élaboration d heuristiques : alors que l on commençait par
Ebauche Rapport finale
Ebauche Rapport finale Sommaire : 1 - Introduction au C.D.N. 2 - Définition de la problématique 3 - Etat de l'art : Présentatio de 3 Topologies streaming p2p 1) INTRODUCTION au C.D.N. La croissance rapide
Optimisation multi-objectif par colonies de fourmis : cas des problèmes de sac à dos
Optimisation multi-objectif par colonies de fourmis : cas des problèmes de sac à dos Inès Alaya To cite this version: Inès Alaya. Optimisation multi-objectif par colonies de fourmis : cas des problèmes
Nouvelles propositions pour la résolution exacte du problème de sac à dos bi-objectif unidimensionnel en variables binaires
Nouvelles propositions pour la résolution exacte du problème de sac à dos bi-objectif unidimensionnel en variables binaires Julien Jorge, Xavier Gandibleux Laboratoire d Informatique de Nantes Atlantique
Mario Geiger octobre 08 ÉVAPORATION SOUS VIDE
ÉVAPORATION SOUS VIDE 1 I SOMMAIRE I Sommaire... 2 II Évaporation sous vide... 3 III Description de l installation... 5 IV Travail pratique... 6 But du travail... 6 Principe... 6 Matériel... 6 Méthodes...
Apprentissage par renforcement (1a/3)
Apprentissage par renforcement (1a/3) Bruno Bouzy 23 septembre 2014 Ce document est le chapitre «Apprentissage par renforcement» du cours d apprentissage automatique donné aux étudiants de Master MI, parcours
Sommaire. Introduction. I. Notions de routage a) Technologies actuelles b) Avantages et désavantages
Sommaire Introduction I. Notions de routage a) Technologies actuelles b) Avantages et désavantages II. Routage et fourmis a) Principe et avantages b) Structure du simulateur III.Implémentation a) Présentation
MCMC et approximations en champ moyen pour les modèles de Markov
MCMC et approximations en champ moyen pour les modèles de Markov Gersende FORT LTCI CNRS - TELECOM ParisTech En collaboration avec Florence FORBES (Projet MISTIS, INRIA Rhône-Alpes). Basé sur l article:
Renforcement des trois compétences : compréhension orale, expression orale et expression écrite à partir de documents et vidéos.
Master Mathématiques et Applications Spécialité : Ingénierie mathématique et modélisation Parcours : Mathématique et Informatique : Statistique, Signal, Santé (MI3S) 2015-2016 RÉSUMÉ DES COURS : (dernière
Annexe 6. Notions d ordonnancement.
Annexe 6. Notions d ordonnancement. APP3 Optimisation Combinatoire: problèmes sur-contraints et ordonnancement. Mines-Nantes, option GIPAD, 2011-2012. [email protected] Résumé Ce document
Conception de réseaux de télécommunications : optimisation et expérimentations
Conception de réseaux de télécommunications : optimisation et expérimentations Jean-François Lalande Directeurs de thèse: Jean-Claude Bermond - Michel Syska Université de Nice-Sophia Antipolis Mascotte,
THÈSE DE DOCTORAT DE L UNIVERSITÉ PARIS 12-VAL DE MARNE UFR de Sciences et Technologie. par. Walid TFAILI. pour obtenir le grade de
THÈSE DE DOCTORAT DE L UNIVERSITÉ PARIS 12-VAL DE MARNE UFR de Sciences et Technologie par Walid TFAILI pour obtenir le grade de DOCTEUR EN SCIENCES Spécialité : SCIENCES DE L INGÉNIEUR Option : Optimisation
OPTIMISATION À UNE VARIABLE
OPTIMISATION À UNE VARIABLE Sommaire 1. Optimum locaux d'une fonction... 1 1.1. Maximum local... 1 1.2. Minimum local... 1 1.3. Points stationnaires et points critiques... 2 1.4. Recherche d'un optimum
La programmation à mémoire adaptative ou l évolution des algorithmes évolutifs
La programmation à mémoire adaptative ou l évolution des algorithmes évolutifs Éric D. Taillard 1 Luca M. Gambardella 1 Michel Gendreau 2 Jean-Yves Potvin 2 1 IDSIA, Corso Elvezia 36, CH-6900 Lugano. E-mail
LE PROBLEME DU PLUS COURT CHEMIN
LE PROBLEME DU PLUS COURT CHEMIN Dans cette leçon nous définissons le modèle de plus court chemin, présentons des exemples d'application et proposons un algorithme de résolution dans le cas où les longueurs
Souad EL Bernoussi. Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/
Recherche opérationnelle Les démonstrations et les exemples seront traités en cours Souad EL Bernoussi Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/ Table des matières 1 Programmation
Plus courts chemins, programmation dynamique
1 Plus courts chemins, programmation dynamique 1. Plus courts chemins à partir d un sommet 2. Plus courts chemins entre tous les sommets 3. Semi-anneau 4. Programmation dynamique 5. Applications à la bio-informatique
Deux stratégies parallèles de l'optimisation par colonie de fourmis
4 th International Conference: Sciences of Electronic, Technologies of Information and Telecommunications March 25-29, 2007 TUNISIA Deux stratégies parallèles de l'optimisation par colonie de fourmis HERNANE
Algorithmes d'apprentissage
Algorithmes d'apprentissage 1 Agents qui apprennent à partir d'exemples La problématique : prise de décision automatisée à partir d'un ensemble d'exemples Diagnostic médical Réponse à une demande de prêt
La NP-complétude. Johanne Cohen. PRISM/CNRS, Versailles, France.
La NP-complétude Johanne Cohen PRISM/CNRS, Versailles, France. Références 1. Algorithm Design, Jon Kleinberg, Eva Tardos, Addison-Wesley, 2006. 2. Computers and Intractability : A Guide to the Theory of
Optimisation for Cloud Computing and Big Data
1 / 23 Optimisation for Cloud Computing and Big Data Olivier Beaumont, Lionel Eyraud-Dubois 2 / 23 Aujourd hui Problèmes de fiabilité on va oublier la dynamicité Placement de VMs en programmation par contraintes
Chapitre 9. Algorithmique. Quelques définitions. L'informatique au lycée. http://ow.ly/36jth
L'informatique au lycée http://ow.ly/36jth On désigne par algorithmique l'ensemble des activités logiques qui relèvent des algorithmes ; en particulier, en informatique, cette discipline désigne l'ensemble
Atelier Transversal AT11. Activité «Fourmis» Pierre Chauvet. [email protected]
Atelier Transversal AT11 Activité «Fourmis» Pierre Chauvet [email protected] Ant : un algorithme inspiré de l éthologie L éthologie Etude scientifique des comportements animaux, avec une perspective
4 Exemples de problèmes MapReduce incrémentaux
4 Exemples de problèmes MapReduce incrémentaux 1 / 32 Calcul des plus courtes distances à un noeud d un graphe Calcul des plus courts chemins entre toutes les paires de noeuds d un graphe Algorithme PageRank
La classification automatique de données quantitatives
La classification automatique de données quantitatives 1 Introduction Parmi les méthodes de statistique exploratoire multidimensionnelle, dont l objectif est d extraire d une masse de données des informations
Approche d'évaluation pour les problèmes d'ordonnancement multicritères : Méthode d'agrégation avec direction de recherche dynamique
Approche d'évaluation pour les problèmes d'ordonnancement multicritères : Méthode d'agrégation avec direction de recherche dynamiue D. BERKOUNE 2, K. MESGHOUNI, B. RABENASOLO 2 LAGIS UMR CNRS 846, Ecole
Optimisation et programmation mathématique. Professeur Michel de Mathelin. Cours intégré : 20 h
Télécom Physique Strasbourg Master IRIV Optimisation et programmation mathématique Professeur Michel de Mathelin Cours intégré : 20 h Programme du cours d optimisation Introduction Chapitre I: Rappels
chapitre 4 Nombres de Catalan
chapitre 4 Nombres de Catalan I Dénitions Dénition 1 La suite de Catalan (C n ) n est la suite dénie par C 0 = 1 et, pour tout n N, C n+1 = C k C n k. Exemple 2 On trouve rapidement C 0 = 1, C 1 = 1, C
Sujet 1 : Diagnostique du Syndrome de l apnée du sommeil par des techniques d analyse discriminante.
Sujet 1 : Diagnostique du Syndrome de l apnée du sommeil par des techniques d analyse discriminante. Objectifs et formulation du sujet Le syndrome de l apnée du sommeil (SAS) est un problème de santé publique
Simulation de variables aléatoires
Chapter 1 Simulation de variables aléatoires Références: [F] Fishman, A first course in Monte Carlo, chap 3. [B] Bouleau, Probabilités de l ingénieur, chap 4. [R] Rubinstein, Simulation and Monte Carlo
Analyse de la variance Comparaison de plusieurs moyennes
Analyse de la variance Comparaison de plusieurs moyennes Biostatistique Pr. Nicolas MEYER Laboratoire de Biostatistique et Informatique Médicale Fac. de Médecine de Strasbourg Mars 2011 Plan 1 Introduction
Etude d un cas industriel : Optimisation de la modélisation de paramètre de production
Revue des Sciences et de la Technologie RST- Volume 4 N 1 /janvier 2013 Etude d un cas industriel : Optimisation de la modélisation de paramètre de production A.F. Bernate Lara 1, F. Entzmann 2, F. Yalaoui
Ordonnancement en temps réel d un jobshop par métaheuristique hybride : étude comparative
Ordonnancement en temps réel d un jobshop par métaheuristique hybride : étude comparative Y. Houbad, M. Souier, A. Hassam, Z.Sari Laboratoire d automatique Tlemcen Faculté de technologie, Université Abou
DES FOURMIS POUR LIVRER DU MAZOUT
DES FOURMIS POUR LIVRER DU MAZOUT É. D. Taillard (1), G. Agazzi (2), L.-M. Gambardella (3) Résumé La livraison de certains biens peut engendrer des coûts non négligeables par rapport à la valeur de la
Système immunitaire artificiel
République Algérienne Démocratique et Populaire Ministère de l Enseignement Supérieure Université des Sciences et de la Technologie D Oran Mohammed Boudiaf (USTO) Faculté des Sciences Département d Informatique
INTRODUCTION AUX SYSTEMES D EXPLOITATION. TD2 Exclusion mutuelle / Sémaphores
INTRODUCTION AUX SYSTEMES D EXPLOITATION TD2 Exclusion mutuelle / Sémaphores Exclusion mutuelle / Sémaphores - 0.1 - S O M M A I R E 1. GENERALITES SUR LES SEMAPHORES... 1 1.1. PRESENTATION... 1 1.2. UN
FIMA, 7 juillet 2005
F. Corset 1 S. 2 1 LabSAD Université Pierre Mendes France 2 Département de Mathématiques Université de Franche-Comté FIMA, 7 juillet 2005 Plan de l exposé plus court chemin Origine du problème Modélisation
Chapitre 2 : Systèmes radio mobiles et concepts cellulaires
Chapitre 2 : Systèmes radio mobiles et concepts cellulaires Systèmes cellulaires Réseaux cellulaires analogiques de 1ère génération : AMPS (USA), NMT(Scandinavie), TACS (RU)... Réseaux numériques de 2ème
Sujet proposé par Yves M. LEROY. Cet examen se compose d un exercice et de deux problèmes. Ces trois parties sont indépendantes.
Promotion X 004 COURS D ANALYSE DES STRUCTURES MÉCANIQUES PAR LA MÉTHODE DES ELEMENTS FINIS (MEC 568) contrôle non classant (7 mars 007, heures) Documents autorisés : polycopié ; documents et notes de
Ordonnancement temps réel
Ordonnancement temps réel [email protected] Version 1.5 Problématique de l ordonnancement temps réel En fonctionnement normal, respecter les contraintes temporelles spécifiées par toutes les tâches
TP N 57. Déploiement et renouvellement d une constellation de satellites
TP N 57 Déploiement et renouvellement d une constellation de satellites L objet de ce TP est d optimiser la stratégie de déploiement et de renouvellement d une constellation de satellites ainsi que les
Nombre de marches Nombre de facons de les monter 3 3 11 144 4 5 12 233 5 8 13 377 6 13 14 610 7 21 15 987 8 34 16 1597 9 55 17 2584 10 89
Soit un escalier à n marches. On note u_n le nombre de façons de monter ces n marches. Par exemple d'après l'énoncé, u_3=3. Pour monter n marches, il faut d'abord monter la première. Soit on la monte seule,
Centre d'etudes Nucléaires de Fontenay-aux-Roses Direction des Piles Atomiques Département des Etudes de Piles
CEA-N-1195 Note CEA-N-1195 Centre d'etudes Nucléaires de Fontenay-aux-Roses Direction des Piles Atomiques Département des Etudes de Piles Service d'etudes de Protections de Piles PROPAGATION DES NEUTRONS
Communications collectives et ordonnancement en régime permanent pour plates-formes hétérogènes
Loris MARCHAL Laboratoire de l Informatique du Parallélisme Équipe Graal Communications collectives et ordonnancement en régime permanent pour plates-formes hétérogènes Thèse réalisée sous la direction
Pair-à-Pair: Architectures et Services
Pair-à-Pair: Architectures et Services Fabrice Le Fessant [email protected] Équipe ASAP (Réseaux très large échelle) INRIA Saclay Île de France Octobre 2008 Fabrice Le Fessant () Architectures
UNIVERSITÉ DU QUÉBEC À CHICOUTIMI UNIVERSITÉ DU QUÉBEC À MONTRÉAL
UNIVERSITÉ DU QUÉBEC À CHICOUTIMI UNIVERSITÉ DU QUÉBEC À MONTRÉAL MÉTAHEURISTIQUES HYBRIDES POUR LA RÉSOLUTION DU PROBLÈME D'ORDONNANCEMENT DE VOITURES DANS UNE CHAÎNE D'ASSEMBLAGE AUTOMOBILE MÉMOIRE PRÉSENTÉ
TABLE DES MATIÈRES. PRINCIPES D EXPÉRIMENTATION Planification des expériences et analyse de leurs résultats. Pierre Dagnelie
PRINCIPES D EXPÉRIMENTATION Planification des expériences et analyse de leurs résultats Pierre Dagnelie TABLE DES MATIÈRES 2012 Presses agronomiques de Gembloux [email protected] www.pressesagro.be
Chapitre 6 Apprentissage des réseaux de neurones et régularisation
Chapitre 6 : Apprentissage des réseaux de neurones et régularisation 77 Chapitre 6 Apprentissage des réseaux de neurones et régularisation Après une introduction rapide aux réseaux de neurones et à la
Optimisation de la compression fractale D images basée sur les réseaux de neurones
Optimisation de la compression fractale D images basée sur les réseaux de neurones D r BOUKELIF Aoued Communication Networks,Architectures and Mutimedia laboratory University of S.B.A [email protected]
Notice d Utilisation du logiciel Finite Element Method Magnetics version 3.4 auteur: David Meeker
Notice d Utilisation du logiciel Finite Element Method Magnetics version 3.4 auteur: David Meeker DeCarvalho Adelino [email protected] septembre 2005 Table des matières 1 Introduction
Quatrième partie IV. Test. Test 15 février 2008 1 / 71
Quatrième partie IV Test Test 15 février 2008 1 / 71 Outline Introduction 1 Introduction 2 Analyse statique 3 Test dynamique Test fonctionnel et structurel Test structurel Test fonctionnel 4 Conclusion
1.6- Génération de nombres aléatoires
1.6- Génération de nombres aléatoires 1- Le générateur aléatoire disponible en C++ 2 Création d'un générateur aléatoire uniforme sur un intervalle 3- Génération de valeurs aléatoires selon une loi normale
LES MÉTHODES DE POINT INTÉRIEUR 1
Chapitre XIII LES MÉTHODES DE POINT INTÉRIEUR 1 XIII.1 Introduction Nous débutons par un rappel de la formulation standard d un problème d optimisation 2 linéaire et donnons un bref aperçu des différences
Les colonies de fourmis : apprentissage coopératif pour le problème du voyageur de commerce
: apprentissage coopératif pour le problème du voyageur de commerce Alexandre Bargeton Benjamin Devèze Université Pierre et Marie Curie Présentation du projet ANIMAT 1 Comportements collectifs des insectes
La conversion de données : Convertisseur Analogique Numérique (CAN) Convertisseur Numérique Analogique (CNA)
La conversion de données : Convertisseur Analogique Numérique (CAN) Convertisseur Numérique Analogique (CNA) I. L'intérêt de la conversion de données, problèmes et définitions associés. I.1. Définitions:
Algorithmes de Transmission et de Recherche de l Information dans les Réseaux de Communication. Philippe Robert INRIA Paris-Rocquencourt
Algorithmes de Transmission et de Recherche de l Information dans les Réseaux de Communication Philippe Robert INRIA Paris-Rocquencourt Le 2 juin 2010 Présentation Directeur de recherche à l INRIA Institut
Algorithme des fourmis appliqué à la détection et au suivi de contours dans une image
IN52-IN54 A2008 Algorithme des fourmis appliqué à la détection et au suivi de contours dans une image Etudiants : Nicolas MONNERET Alexandre HAFFNER Sébastien DE MELO Responsable : Franck GECHTER Sommaire
La Recherche du Point Optimum de Fonctionnement d un Générateur Photovoltaïque en Utilisant les Réseaux NEURO-FLOUS
Rev. Energ. Ren. : Chemss 2000 39-44 La Recherche du Point Optimum de Fonctionnement d un Générateur Photovoltaïque en Utilisant les Réseaux NEURO-FLOUS D.K. Mohamed, A. Midoun et F. Safia Département
LES DIFFÉRENTS FORMATS AUDIO NUMÉRIQUES
LES DIFFÉRENTS FORMATS AUDIO NUMÉRIQUES Compétences mises en jeu durant l'activité : Compétences générales : S'impliquer, être autonome. Compétence(s) spécifique(s) : Reconnaître des signaux de nature
Méthodes de Simulation
Méthodes de Simulation JEAN-YVES TOURNERET Institut de recherche en informatique de Toulouse (IRIT) ENSEEIHT, Toulouse, France Peyresq06 p. 1/41 Remerciements Christian Robert : pour ses excellents transparents
Analyse stochastique de la CRM à ordre partiel dans le cadre des essais cliniques de phase I
Analyse stochastique de la CRM à ordre partiel dans le cadre des essais cliniques de phase I Roxane Duroux 1 Cadre de l étude Cette étude s inscrit dans le cadre de recherche de doses pour des essais cliniques
Nouvelles propositions pour la résolution exacte du sac à dos multi-objectif unidimensionnel en variables binaires
Nouvelles propositions pour la résolution exacte du sac à dos multi-objectif unidimensionnel en variables binaires Julien Jorge [email protected] Laboratoire d Informatique de Nantes Atlantique,
Dimensionnement Introduction
Dimensionnement Introduction Anthony Busson Dimensionnement Pourquoi dimensionner? Création d un système informatique ou réseau Problème de décision (taille des différents paramètres) Evaluer les performances
Pi, poker et informatique ; une «épuisante» alliance pour des projets en mathématiques
Pi, poker et informatique ; une «épuisante» alliance pour des projets en mathématiques Jean Fradette et Anik Trahan, Cégep de Sherbrooke Résumé Dans un cours intégrateur en mathématiques, des étudiants
Programmation Linéaire - Cours 1
Programmation Linéaire - Cours 1 P. Pesneau [email protected] Université Bordeaux 1 Bât A33 - Bur 265 Ouvrages de référence V. Chvátal - Linear Programming, W.H.Freeman, New York, 1983.
Francis BISSON (06 794 819) Kenny CÔTÉ (06 836 427) Pierre-Luc ROGER (06 801 883) IFT702 Planification en intelligence artificielle
Francis BISSON (06 794 819) Kenny CÔTÉ (06 836 427) Pierre-Luc ROGER (06 801 883) PLANIFICATION DE TÂCHES DANS MS PROJECT IFT702 Planification en intelligence artificielle Présenté à M. Froduald KABANZA
