Fiche Systèmes d Équations Linéaires

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Fiche Systèmes d Équations Linéaires"

Transcription

1 Fiche Systèmes d Équations Linéaires MOSE Septembre 2014 Table des matières Systèmes de 2 équations à 2 inconnues 1 Méthode des combinaisons linéaires Interprétation géométrique Méthode de Cramer Système de 3 équations à 3 inconnues (et plus) 4 Méthode du pivot de Gauss Interprétation géométrique Systèmes de 2 équations à 2 inconnues Partons d un exemple typique, le système { 5x y = 2 (S) 2x + 3y = 7 dont les deux inconnues x et y sont des quantités à déterminer, satisfaisant simultanément les deux égalités. Définition Un système est linéaire si les équations sont constituées de constantes et de combinaisons linéaires des inconnues. Rappelons qu une combinaison linéaire de plusieurs quantités, par exemple u, v, w est une expression de la forme αu + βv + γw, où α, β, γ sont des réels donnés. Le système { 5x 2 xy = 2 2 sin (x) + 3y = 7 est non-linéaire. Il contient des termes comme x 2, xy, sin (x) qui ne sont pas des termes de combinaisons linéaires. Les méthodes qui s appliquent à ses systèmes sont bien différentes, bien que la théorie linéaire constitue le point de départ. Notre cours n aborde pas de théorie non-linéaire. Le système { 5x + 3 y = 2 5y + x 1 + 2x + 3y = x y 2x

2 est un système linéaire, comme on peut en rencontrer en pratique, mais il n est pas bien présenté, du point de vue de sa résolution. Nous dirons dans ce cours qu un système est bien présenté si Toutes les inconnues sont à gauche et les constantes à droite. Chaque inconnue apparait au plus une fois sur chaque ligne. Les inconnues sont alignées verticalement. Exercice : Bien présenter le système ci-dessus. Méthode des combinaisons linéaires Cette méthode consiste à chercher une combinaison des lignes du système qui élimine une des inconnues. Par exemple si L 1 et L 2 sont les deux lignes de (S), on voit que la combinaison 3L 1 + L 2 élimine l inconnue y. On peut présenter les choses de la façon suivante 5x y = 2 3 2x +3y = 7 1 x = 13 Les termes de la nouvelle lignes viennent de 3 (5x) + 1 (2x) = x et 3 (2) + 1 (7) = 13. On cherche alors une autre combinaison qui élimine l inconnue x, en l occurrence la combinaison 2L 1 5L 2. Cela donne On en déduit que (L 1 ) (L 2 ) Réciproquement, on vérifie bien que 5x y = x +3y = x = 13 y = 31 x = 13 et y = 31 On a donc trouvé la solution unique du système (S) = = 7 Partant du système, on a tiré des conséquences nécessaires pour aboutir à la conclusion que x = 13 et y = 31. C est ce qu on appelle résoudre le système en raisonnant par implication. Ce mode de raisonnement est courant en théorie des équations. Une de ses propriétés générales est qu il ne peut pas perdre de solution du système, par contre il peut produire des fausses solutions qui ne vérifient pas le système initial. Lorsqu on résout un système par implications, il faut donc vérifier systématiquement que les solutions trouvées vérifient le système initial. Lorsque ce n est pas le cas, il peut s agir d une fausse solution à ignorer ou... d une erreur de calcul! Impossibilité. Dans cette méthode, il arrive parfois que les deux inconnues disparaissent simultanément dans une combinaison linéaire, par exemple dans le cas 3x 6y = 2 4 4x +8y = = 9 La nouvelle relation, qui est une conséquence du système, ne peut être satisfaite. On conclut que ce système n admet aucune solution. 2

3 Equations proportionelles. Lorsque les deux inconnues disparaissent simultanément, il arrive qu on voit apparaitre une équation triviale 0 = 0, comme dans le cas suivant 3x 6y = 9 4 4x +8y = = 0 La conclusion à en tirer est que les deux lignes du système sont proportionelles. Ici, L 2 = 4 3 L 1. Le système est alors équivalent à une seule des deux équations, l autre n apportant aucune contrainte supplémentaire sur les inconnues. Interprétation géométrique. ( x On interprète les valeurs inconnues x et y comme les coordonnées d un point P du plan cartésien. y) Propriété ( x Etant donné trois réels a, b, c, l ensemble E des points P du plan vérifiant l équation y) ax + by = c est une droite affine du plan, sauf si a = b = 0, auquel cas E peut valoir l ensemble vide (si c 0) ou le plan tout entier (si c = 0). En conséquence, lorsque les lignes sont non triviales, l ensemble des points solutions du système (S) est l intersection des deux droites affines définies par les deux équations du système. Figure 1 Interprétation géométrique de (S) Cela laisse peu de possibilités pour l ensemble des solutions : 1. Soit les droites sont concourantes en un point et (S) admet une solution unique (on pourrait dire que c est le cas générique) 2. Soit les droites sont parallèles non confondues, il n y a alors pas de point d intersection et donc pas de solution 3. Soit les droites sont confondues, il y a donc une infinité de solutions (une droite entière). Il faut ajouter à ce tableau le cas où il y a une équation de la forme 0 = C, ou C est une constante non nulle, qui rentre dans le cas pas de solution, et le cas où l une des équations, ou les deux, est de la forme 0 = 0, qui rentre dans le cas infinité de solution (une droite ou le plan tout entier). Méthode de Cramer Partons du système théorique suivant { ax + by = u (S t ) cx + dy = v 3

4 Définition On appelle déterminant de (S t ) le nombre det (S t ) = ad bc = a c La notation traditionelle sous forme d un tableau entre deux barres verticales (et non pas des parenthèses ou des crochets) constitue une mnémotechnique utile, la valeur du déterminant est le produit des termes de la diagonale descendante moins le produit des termes de la diagonale montante. b d Théorème Le système (S t ) admet une unique solution si et seulement si Cette unique solution est donnée par les formules de Cramer u b v d ud vb a u c v x = = et y = det (S t ) ad bc det (S t ) det (S t ) 0 (1) = va uc ad bc On se souvient facilement de ces formules si on remarque que les déterminants qui apparaissent aux numérateurs des formules ne sont autres que le déterminant de (S t ) dans lequel on remplace la colonne de x ou de y selon le cas par le second membre du système. Dans le cas du systéme (S) du début, la méthode de Cramer donne det (S) = = ( 1) = 0 Il y a donc une solution unique qui vaut x = = ( 1) = et y = = = 31 Ces formules s obtiennent facilement en appliquant la méthode des combinaisons linéaires au système abstrait : (L 1 ) (L 2 ) ax +by = u d c cx +dy = v b a (ad bc) x = ud vb (ad bc) y = va uc Lorsque le déterminant est nul, on en déduit l impossibilité du système ou la proportionalité des équations, donc aucune solution ou une infinité. Lorsque le déterminant est non nul, on vérifie que l unique solution obtenue n est pas une fausse solution (elle satisfait le système initial), d où le théorème. Dans le cas des systèmes 2x2, la méthode de Cramer est particulièrement conseillée dans les systèmes à paramètres, comme le montrent les feuilles d exercices. Système de 3 équations à 3 inconnues (et plus) A titre d exemple, intéressons nous au système bien présenté ci-dessous x + y + 7z = 1 (S) 2x y + 5z = 5 x 3y 9z = 5 Méthode du pivot de Gauss C est la méthode la plus efficace dans le cas général. Elle se présente sous une forme algorithmique qu on détaille ici. 4

5 Itérations. Étape 1 : On choisit à gauche du système un terme non nul qu on appelle terme pivot. On l encadre dans le système : x + y + 7z = 1 2x y + 5z = 5 x 3y 9z = 5 Ce choix arbitraire de terme pivot définit une ligne pivot (celle qui contient le terme pivot), une colonne pivot (idem) et une variable pivot (l inconnue qui est encadrée). Étape 2 : On ajoute à chacune des autres lignes un multiple de la ligne pivot, par exemple on peut écrire x +y +7z = 1 2x y +5z = 5 1p x 3y 9z = 5 3p pour signifier qu on va ajouter 1 fois la ligne pivot à la ligne 2, et 3 fois la ligne pivot à la ligne 3. Les multiples sont choisis de façon à éliminer la variable pivot dans ces lignes. Cette opération conduit au système x +y +7z = 1 3x +12z = 6 2x 12z = 8 Étape 3 = Étape 1 On recommence à choisir un terme pivot en suivant la règle suivante : ne jamais prendre deux fois un terme pivot dans la même ligne ou dans la même colonne. Naturellement, il faut toujours que le terme pivot soit non nul. x +y +7z = p 3x +12z = p 2x 12z = 8 On a indiqué ici à droite les opérations qu on s apprête à faire. Étape 2 le retour : On obtient maintenant +y +z = 3 6z = 6 2x 12z = 8 On voit le système se creuser peu à peu, avec de plus en plus de termes nuls. Étape 3 = Étape 1, encore On choisit le dernier pivot possible. Pour le bon fonctionnement de la méthode, il importe de répéter les étapes 1 et 2 jusqu à ce qu on ne puisse plus prendre de terme pivot. On prend soin de garder les pivots précédents entourés. 1 +y +z = 3 6 p 6z = 6 2x 12z = 8 2p Étape 2 Il reste maintenant +y = 4 6z = 6 2x = 4 5

6 Dans le déroulement des étapes 1 et 2, il peut apparaître une ligne de la forme 0 = C où C est une constante non nulle (par exemple 0 = 15). Une telle impossibilité, conséquence du système, indique alors que le système n a pas de solution. L algorithme s arrête. Il peut également apparaître des lignes triviales de la forme 0 = 0. On supprime ces lignes, ce qui fait qu il peut y avoir à l arrivée moins d équations qu au départ. Fin de l algorithme. Définition On appelle rang du système (S) le nombre maximal de termes pivots qu on peut prendre dans l algorithme du pivot. Ce rang est noté rg (S). Sur notre exemple, on a rg (S) = 3 Propriété Le rang est toujours au nombre d inconnues du système, et aussi au nombre d équations du système. Le rang ne dépend pas des termes pivots choisis. C est une propriété intrinsèque du système (et même de la seule partie gauche du système). Théorème Le système admet une solution unique si et seulement si il est possible et rg (S) = n, le nombre d inconnues initialement présentes. Théorème Si le système est possible et si rg (S) < n, le nombre initial d inconnues, il admet une infinité de solutions. Sur l exemple ci dessus, il y a une solution unique, qui est immédiatement lisible sur le système creux résultant (qu on appelle un système diagonal) : x = 2 y = 4 z = 1 On peut vérifier que ces valeurs satisfont bien le système initial, ce qui permet le cas échéant de détecter une erreur de calcul (si le système n est pas satisfait). En effet, la méthode du pivot ne peut pas produire de fausse solution, en vertu du théorème suivant : Théorème Les systèmes successivement déduits dans l algorithme du pivot sont tous équivalents entre eux, ce qui signifie qu ils ont tous exactement les mêmes ensembles de solutions. Une bonne nouvelle. Tout ce qui vient d être dit sur la méthode du pivot s applique en fait à un nombre quelconque d équations linéaires à un nombre quelconque d inconnues. Par exemple si un système de 9 équations à 7 inconnues s avère possible et de rang 5 par la méthode du pivot, on peut affirmer qu il a une infinité de solutions. Interprétation géométrique On peut considérer que les trois inconnues x, y, z sont les coordonnées d un point inconnu de l espace affine à 3 dimensions x P y R 3 z 6

7 Propriété Étant donné 4 réels a, b, c, d, tels qu on n ait pas a = b = c = 0, alors l ensemble E des points P de l espace dont les coordonnées vérifient ax + by + cz = d est un plan affine de l espace à 3 dimensions. Lorsque a = b = c = 0, on a E = si d 0, et E = R 3 si d = 0. S il n y a pas d équation impossible, ni d équation triviale 0 = 0, l ensemble des solutions du système (S) est donc l intersection de trois plans affines dans l espace. Or l intersection de 3 plans affines de l espace peut-être vide (si l intersection des deux premiers est parallèle au troisième) un point (c est le cas générique) une droite un plan (si les 3 plans sont confondus) Pour le système (S), cela signifie une fois de plus qu il peut n y avoir aucune solution, ou une solution unique, ou une infinité de solutions. Quand il y a une infinité de solutions, ce peut donc être une droite de solution, ou un plan de solution, ou bien tout l espace dans le cas du système trivial où il n y a que l équation 0 = 0. Dimension de l ensemble des solutions. Lorsqu un système est possible, la dimension de l ensemble des solutions est n rg (S), où n est le nombre d inconnues. Par exemple un système à 3 inconnues de rang 2 qui n est pas impossible a un ensemble de solutions de dimension 3 2 = 1, c est à dire une droite de solutions. 7

Systèmes linéaires. 1. Introduction aux systèmes d équations linéaires Exemple : deux droites dans le plan

Systèmes linéaires. 1. Introduction aux systèmes d équations linéaires Exemple : deux droites dans le plan Sstèmes linéaires Vidéo partie 1 Introduction aux sstèmes d'équations linéaires Vidéo partie Théorie des sstèmes linéaires Vidéo partie 3 Résolution par la méthode du pivot de Gauss Fiche d'exercices Sstèmes

Plus en détail

Chapitre I : Résolution de systèmes d équations linéaires par la méthode du pivot de Gauss

Chapitre I : Résolution de systèmes d équations linéaires par la méthode du pivot de Gauss Chapitre I : Résolution de systèmes d équations linéaires par la méthode du pivot de Gauss I. Equations linéaires A. Définitions B. Résolution d équations linéaires C. Interprétation géométrique d une

Plus en détail

Système d équations linéaires

Système d équations linéaires Système d équations linéaires Bcpst 1 27 février 2017 Notations du chapitre Dans ce chapitre, = ou. On appelle les éléments de des scalaires. n et p sont deux entiers naturels non nuls. I Définitions et

Plus en détail

CHAPITRE 4 Systèmes d équations

CHAPITRE 4 Systèmes d équations CHAPITRE 4 Systèmes d équations 4.1 Généralités et définitions diverses 4.1.1. Equations linéaires à plusieurs inconnues. Définitions : Une équation linéaire est une équation du type : ax = b ax + by =

Plus en détail

Chapitre V La méthode du pivot de Gauss et ses applications

Chapitre V La méthode du pivot de Gauss et ses applications Chapitre V La méthode du pivot de Gauss et ses applications I Présentation 1. Systèmes linéaires Problème : Résoudre les systèmes linéaires à n inconnues et p équations. où les sont les coefficients du

Plus en détail

3. SYSTEMES LINEAIRES

3. SYSTEMES LINEAIRES 3 SYSTEMES LINEAIRES 31 Définition Un système linéaire est un ensemble de m équations linéaires à n variables Il a la forme générale suivante : a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x

Plus en détail

et Systèmes d équations linéaires

et Systèmes d équations linéaires Opérations élémentaires et Systèmes d équations linéaires MPSI-Schwarz Prytanée National Militaire Pascal Delahaye 2 avril 2015 1 Les opérations élémentaires 11 Matrices associées aux OEL et aux OEC Lemme

Plus en détail

Chapitre 4. Systèmes linéaires

Chapitre 4. Systèmes linéaires ECE 1 - Année 016-017 Lycée français de Vienne Mathématiques - F. Gaunard http://frederic.gaunard.com Chapitre 4. Systèmes linéaires L objectif de ce court chapitre est d introduire et de résoudre des

Plus en détail

Fiche Équations différentielles d ordre 1

Fiche Équations différentielles d ordre 1 Fiche Équations différentielles d ordre 1 MOSE 1003 24 Novembre 2014 Table des matières Définitions 1 Résolution de l équation homogène. 2 Méthode de variation de la constante. 3 Structure de l ensemble

Plus en détail

L p B calculer le produit matriciel ligne par ligne, ou bien colonne par colonne.

L p B calculer le produit matriciel ligne par ligne, ou bien colonne par colonne. 40 CHAPITRE 4. MATRICES ligne L M 1,n (K) et d une matrice B M n,q (K) est encore une matrice ligne. De plus, si on note L i la i-ième ligne de A, alors le produit AB est la L 1 B L 2 B matrice (la juxtaposition

Plus en détail

Exercices du chapitre 3 avec corrigé succinct

Exercices du chapitre 3 avec corrigé succinct Exercices du chapitre 3 avec corrigé succinct Exercice III.1 Ch3-Exercice1 Calculer les déterminants suivants : a b c d, 3a 3b c d, 4 2 3 0 3 4 0 0 5, 4 2 3 0 1 2 4 1 2, 4 3 2 0 2 1 4 2 1, 1 2 2 3 1 1

Plus en détail

Géométrie dans l espace

Géométrie dans l espace Géométrie dans l espace I Modes de repérage dans l espace 1 I.A Coordonnées cartésiennes...................... 1 I.B Coordonnées cylindriques...................... 2 I.C Coordonnées sphériques.......................

Plus en détail

Systèmes linéaires et échelonnement

Systèmes linéaires et échelonnement Systèmes linéaires et échelonnement 1 Systèmes linéaires, résolution de systèmes échelonnés. 1 1.1 Équations linéaires........................................... 1 1.2 Systèmes linéaires...........................................

Plus en détail

Lycée Dominique Villars ECE 1 CALCUL MATRICIEL

Lycée Dominique Villars ECE 1 CALCUL MATRICIEL Lycée Dominique Villars ECE 1 COURS CALCUL MATRICIEL 1 Définitions et Notations Soit n N et m N On appelle matrice à n lignes et m colonnes tout tableau de la forme suivant : a 1,1 a 1,2 a 1,m a 2,1 a

Plus en détail

Fiche Inversion de matrice

Fiche Inversion de matrice Fiche Inversion de matrice MOSE 2 Septembre 24 Table des matières Inversion de matrice x Calcul pratique............................................... Vérification à la console scilab.......................................

Plus en détail

EQUATIONS DE DROITES

EQUATIONS DE DROITES EQUTIONS E ROITES I. Equation de droites 1. Caractérisation analytique d une droite Propriété : Soit (O, i, ) un repère du plan. Soit une droite du plan. - Si est parallèle à l axe des ordonnées : alors

Plus en détail

ALGÈBRE LINÉAIRE - SYSTÈMES LINÉAIRES (FIN)

ALGÈBRE LINÉAIRE - SYSTÈMES LINÉAIRES (FIN) ALGÈBRE LINÉAIRE - SYSTÈMES LINÉAIRES (FIN) Michel Rigo http://wwwdiscmathulgacbe/ Année 010 011 THÉORÈME DE ROUCHÉ A K n p et b Kn Les conditions suivantes sont équivalentes I) Le système (S) : Ax = b

Plus en détail

SYSTÈME D ÉQUATIONS DU PREMIER DEGRÉ A PLUSIEURS INCONNUES

SYSTÈME D ÉQUATIONS DU PREMIER DEGRÉ A PLUSIEURS INCONNUES SYSTÈME D ÉQUATIONS DU PREMIER DEGRÉ A PLUSIEURS INCONNUES GÉNÉRALITÉS Considérons une équation à deus inconnues x et y : x 2y + 1 = 0. Si on remplace x par 1, et y par 2, on obtient une égalité numérique

Plus en détail

Géométrie analytique dans l espace

Géométrie analytique dans l espace Généralités Points coplanaires Quatre points de l espace sont dits coplanaires s ils appartiennent à un même plan (rappel : 3 points d un plan sont dits alignés s ils appartiennent à une même droite) Vecteurs

Plus en détail

1 Équations cartésiennes, équations polaires d un ensemble de points

1 Équations cartésiennes, équations polaires d un ensemble de points Plans, cercles, droites et sphères Ce chapitre aborde les objets fondamentaux utilisés en géométrie : droites et cercles dans le plan, plans, droites et sphères dans l espace. Les objectifs du chapitre

Plus en détail

Université du Littoral - Côte d Opale Laurent SMOCH. Septembre 2012

Université du Littoral - Côte d Opale Laurent SMOCH. Septembre 2012 ISCID - PRÉPA 2ème année MATHÉMATIQUES APPLIQUÉES À L ÉCONOMIE ET À LA GESTION 2 Université du Littoral - Côte d Opale Laurent SMOCH Septembre 2012 Laboratoire de Mathématiques Pures et Appliquées Joseph

Plus en détail

Méthodes de géométrie dans l espace

Méthodes de géométrie dans l espace Déterminer une équation cartésienne de plan L équation cartésienne d un plan est du type ax + by + cz + d 0 avec (a ;b ;c) les coordonnées d un vecteur normal du plan. On procède en deux étapes : D abord

Plus en détail

Matrices. () Matrices 1 / 45

Matrices. () Matrices 1 / 45 Matrices () Matrices 1 / 45 1 Matrices : définitions 2 Calcul matriciel 3 Opérations élémentaires sur les lignes d une matrice 4 Transposition On va principalement travailler avec R Mais on peut remplacer

Plus en détail

Vecteurs et applications linéaires

Vecteurs et applications linéaires Vecteurs et applications linéaires (1) (1) () Vecteurs et applications linéaires 1 / 41 1 Familles de vecteurs de R n 2 Sous-espace vectoriels dans R n 3 Base d un sous-espace vectoriel (1) () Vecteurs

Plus en détail

CH XII : Systèmes linéaires

CH XII : Systèmes linéaires CH XII : Systèmes linéaires I Généralités sur les systèmes linéaires Définition Soient n et p deux entiers naturels non nuls On appelle système linéaire de n équations à p inconnues x 1,, x p tout système

Plus en détail

2. Donner des équations paramétriques et cartésiennes des droites passant par A et dirigées par v avec :

2. Donner des équations paramétriques et cartésiennes des droites passant par A et dirigées par v avec : Exo7 Droites du plan ; droites et plans de l espace Fiche corrigée par Arnaud Bodin 1 Droites dans le plan Exercice 1 Soit P un plan muni d un repère R(O, i, j), les points et les vecteurs sont exprimés

Plus en détail

5.1 SYSTÈME D ÉQUATIONS LINÉAIRES. Cours 13

5.1 SYSTÈME D ÉQUATIONS LINÉAIRES. Cours 13 5.1 SYSTÈME D ÉQUATIONS LINÉAIRES Cours 13 Au dernier cours nous avons vus L équations vectoriel et l équation normale d un plan. L intersection de deux plans. L angle entre deux plans. La distance entre

Plus en détail

Sommaire. 1. Equations Différentielles Linéaires du second ordre Equation différentielle linéaire du second ordre

Sommaire. 1. Equations Différentielles Linéaires du second ordre Equation différentielle linéaire du second ordre Equations et systèmes différentiels 3 - Sommaire Eq Différentielles Linéaires du 2 nd ordre Linéaire du second ordre 2 Existence des solutions 2 3 Recherche des solutions 2 4 Recollement de solutions 4

Plus en détail

Systèmes d équations linéaires, Résumé

Systèmes d équations linéaires, Résumé Systèmes d équations linéaires, Résumé ycée Berthollet, PCSI1 2016-17 Exemple introductif (fil rouge) Exemple 1 On considère le système suivant : (S) x +2y 2z +3t = 2 2x +4y 3z +4t = 5 5x +10y 8z +11t

Plus en détail

Laurent Garcin MPSI Lycée Jean-Baptiste Corot

Laurent Garcin MPSI Lycée Jean-Baptiste Corot DÉTERMINANTS Dans tout ce chapitre, n désigne un entier naturel non nul. 1 Groupe symétrique 1.1 Permutation Définition 1.1 Permutation, groupe symétrique On appelle permutation de 1, n toute bijection

Plus en détail

1 Introduction. 2 Où chercher les solutions?

1 Introduction. 2 Où chercher les solutions? 1 Introduction Une équation algébrique est une équation mettant en jeu une inconnue x qui n intervient que par ses puissances. Par exemple, les équation x 2 +5x = 7 et x 6 = x 5 +1 sont algébriques, mais

Plus en détail

pgcd, ppcm dans Z, théorème de Bézout. Applications

pgcd, ppcm dans Z, théorème de Bézout. Applications 7 pgcd, ppcm dans Z, théorème de Bézout. Applications Le théorème de division euclidienne et les sous-groupes de (Z, +) sont supposés connus. Pour tout entier relatif n, on note : nz = {n q q Z} l ensemble

Plus en détail

METHODE DU PIVOT DE GAUSS

METHODE DU PIVOT DE GAUSS METHODE DU PIVOT DE GAUSS La méthode du pivot de Gauss permet la résolution générale des systèmes d équations linéaires à n équations et p inconnues Elle s utilise notamment pour leur résolution numérique

Plus en détail

2 Systèmes linéaires & Matrices

2 Systèmes linéaires & Matrices 2 Systèmes linéaires & Matrices On appelle système linéaire toute famille d équations de la forme a x + a 2 x 2 + + a n x n = b a 2 x + a 22 x 2 + + a 2n x n = b 2 a m x + a m2 x 2 + + a mn x n = b m Si

Plus en détail

Systèmes de deux équations à deux inconnues.

Systèmes de deux équations à deux inconnues. Systèmes de deux équations à deux inconnues. 1. Généralités. 1.1. Equation à deux inconnues du premier degré Définition: Soient a, b et c trois nombres réels donnés. Une équation du type une équation à

Plus en détail

EQUATION DE DROITE FONCTIONS AFFINES

EQUATION DE DROITE FONCTIONS AFFINES EQUTION DE DROITE FONCTIONS FFINES I Rappels : équation de droite et fonctions affines I 1 Définitions et propriétés La représentation graphique de la fonction affine f :x mx + p est une droite (d) qui

Plus en détail

Synthèse de cours PanaMaths (Terminale S) Produit scalaire dans l espace

Synthèse de cours PanaMaths (Terminale S) Produit scalaire dans l espace Synthèse de cours PanaMaths (Terminale S) Produit scalaire dans l espace Notes : dans cette synthèse de cours, on suppose connues les notions du programme de 1 ère S relatives au produit scalaire dans

Plus en détail

1. Déterminant d une matrice carrée

1. Déterminant d une matrice carrée Déterminants 2-1 Sommaire 1. Déterminant d une matrice carrée 1 1.1. Déterminant d une matrice carrée A.. 1 1.2. Interprétation en dimensions 2 et 3... 2 1.3. Propriétés élémentaires.......... 2 1.4. Déterminant

Plus en détail

Équations diophantiennes du premier degré

Équations diophantiennes du premier degré du premier degré Z, auctore 3 octobre 2007 Résumé Soient a, b, c trois entiers. Résoudre l équation diophantienne ax + by = c. consiste à déteminer toutes les paires de nombres entiers x et y qui en sont

Plus en détail

Programmation linéaire et Méthode du simplexe (en bref)

Programmation linéaire et Méthode du simplexe (en bref) Université de Versailles Saint-Quentin-en-Yvelines Tahar Z. BOULMEZAOUD boulmeza@math.uvsq.fr Programmation linéaire et Méthode du simplexe (en bref) On appelle programme linéaire un problème d optimisation

Plus en détail

Equations, Inéquations et Systèmes. I] Equations

Equations, Inéquations et Systèmes. I] Equations Chapitre 9 Equations, Inéquations et Systèmes I] Equations a) Rappels sur les équations du er degré à inconnue : Définitions : une équation est une égalité qui contient un nombre inconnu, noté souvent

Plus en détail

3 ème Chapitre A 4 EQUATIONS A UNE INCONNUE 1. I) Equation à une inconnue du 1 er degré. Exemple : Résoudre les équations suivantes :

3 ème Chapitre A 4 EQUATIONS A UNE INCONNUE 1. I) Equation à une inconnue du 1 er degré. Exemple : Résoudre les équations suivantes : 3 ème Chapitre A 4 EQUATIONS A UNE INCONNUE 1 I) Equation à une inconnue du 1 er degré. Exemple : Résoudre les équations suivantes : 4 ( 5x 3 ) + 8x 7 = 3 ( 3 2x ) + 5 20x 12 + 8x 7 = 9 6x + 5 12x 19 =

Plus en détail

Résolution d équations

Résolution d équations Résolution d équations C H A P I T R E 7 Énigme du chapitre. Objectifs du chapitre. Vous êtes au milieu du désert avec vos chameaux et vos dromadaires. Cela fait en tout 13 bosses et 36 pieds. Avez-vous

Plus en détail

EQUATIONS ET INEQUATIONS A DEUX INCONNUES

EQUATIONS ET INEQUATIONS A DEUX INCONNUES Chapitre 7 EQUATIONS ET INEQUATIONS A DEUX INCONNUES 7.1 Equation linéaire à deux inconnues L équation de la forme ax + by + c = 0, avec a, b, c IR est une équation linéaire à deux inconnues. L ensemble

Plus en détail

Chapitre VIII Calcul matriciel

Chapitre VIII Calcul matriciel Chapitre VIII Calcul matriciel Dans ce cours, désigne, ou un corps commutatif quelconque. I Matrices et applications Les matrices sont un outil de calcul et de représentation des applications linéaires.

Plus en détail

x y 2 = 0 4x 2y + z + 2 = 0 z = 1 x = y + 2 = = 7 y = z 10 = 11 z = 1 Conclusion : l intersection des 3 plans est le,point de coordonnées ( 7

x y 2 = 0 4x 2y + z + 2 = 0 z = 1 x = y + 2 = = 7 y = z 10 = 11 z = 1 Conclusion : l intersection des 3 plans est le,point de coordonnées ( 7 CORRECTIONS DES EXERCICES DE GÉOMÉTRIE DANS L ESPACE Exercice () (x, y, z) P P P x y = y + z + = z = x y = 4x y + z + = z = x = y + = + = 7 y = z = z = Conclusion : l intersection des plans est le,point

Plus en détail

Chapitre 2 : Les matrices

Chapitre 2 : Les matrices Chapitre 2 : Les matrices I. Définitions On appelle matrice à lignes et colonnes N, N à coefficients dans =R C un tableau à lignes et colonnes contenant un élément de à l intersection de chaque ligne et

Plus en détail

Exercice I.1 Montrer que la somme de vecteurs et le produit d un vecteur par un nombre réel donnent à IR 3 une structure d espace vectoriel sur IR.

Exercice I.1 Montrer que la somme de vecteurs et le produit d un vecteur par un nombre réel donnent à IR 3 une structure d espace vectoriel sur IR. Exercices avec corrigé succinct du chapitre 1 (Remarque : les références ne sont pas gérées dans ce document, par contre les quelques?? qui apparaissent dans ce texte sont bien définis dans la version

Plus en détail

Résumé de cours sur les équations différentielles.

Résumé de cours sur les équations différentielles. Résumé de cours sur les équations différentielles. Table des matières 1 Préliminaires et vocabulaire 2 2 ED linéaires d ordre 1 à coefficients constants, homogènes 3 2.1 Forme de l équation...................................

Plus en détail

Systèmes linéaires 1

Systèmes linéaires 1 Université Paris-Dauphine Algèbre 1, DU1, 2009-10 Systèmes linéaires 1 Préliminaires : Lisez une première fois ce polycopié de manière rapide, puis relisez-le en essayant de tout comprendre. Le polycopié

Plus en détail

CHAPITRE IV : GÉOMÉTRIE ANALYTIQUE ET DROITES

CHAPITRE IV : GÉOMÉTRIE ANALYTIQUE ET DROITES CHAPITRE IV : GÉOMÉTRIE ANALYTIQUE ET DROITES Configurations du plan Le théorème de Pythagore s applique à un triangle rectangle ; le théorème de Thalès, à une figure qui comprend des droites parallèles

Plus en détail

I - Programmation linéaire

I - Programmation linéaire EOAA - 2009/10 Préliminaires Formulation Exemple de problème bidimensionnel Généralisation Problème sous forme normale Résolution dans le cas général Programmation linéaire en nombres entiers Exercice

Plus en détail

Géométrie dans l espace à trois dimensions

Géométrie dans l espace à trois dimensions Géométrie dans l espace à trois dimensions Prof. Vladimir Roubtsov vladimir.roubtsov@univ-angers.fr 4 février 2016 1. Vecteurs Soit E 3 l espace à trois dimensions. En tant qu ensemble, il s agit de R

Plus en détail

1 Calcul vectoriel. 2 Vecteurs colinéaires. 1.1 coordonnées d un vecteur dans un repère. 1.2 Caractérisation du milieu d un segment

1 Calcul vectoriel. 2 Vecteurs colinéaires. 1.1 coordonnées d un vecteur dans un repère. 1.2 Caractérisation du milieu d un segment Chapitre : Géométrie plane 1 Calcul vectoriel 1.1 coordonnées d un vecteur dans un repère Définition 1. Soit #» u un vecteur du plan. Pour tout point O du plan, il existe un unique point M tel que OM #»

Plus en détail

Systèmes linéaires. I) Définitions

Systèmes linéaires. I) Définitions 3 Cours - Systèmes linéairesnb / Systèmes linéaires I) Définitions ) Equation linéaire à p inconnues ) Système de n équations linéaire à p inconnues 3) Système homogène associé 4) Interprétation géométrique

Plus en détail

Exercices du chapitre XI avec corrigé succinct

Exercices du chapitre XI avec corrigé succinct Exercices du chapitre XI avec corrigé succinct Exercice XI. Soient : 3 2 6 2 A, B et C 2 4 3 3 2 4 4 2 2 x, y, y 2 et z 3. Calculer Ax et Bx, que remarque t-on par rapport à la multiplication usuelle dans

Plus en détail

Chapitre N o 4 : Le pivot de Gauss

Chapitre N o 4 : Le pivot de Gauss POIRET Aurélien Ingénierie Numérique MPSI Chapitre N o 4 : Le pivot de Gauss Dans ce chapitre, on présente divers algorithmes de calcul matriciel et on évalue leurs complexités 1 Le type «matriciel» sous

Plus en détail

1 ère S Équations de droites et systèmes

1 ère S Équations de droites et systèmes ère S Équations de droites et systèmes Plan du chapitre : Objectifs : - consolider les connaissances de seconde ; - approfondir la notion d équation de droite ; - étudier de nouvelles méthodes Dans tout

Plus en détail

Calcul littéral, équations, inéquations

Calcul littéral, équations, inéquations Calcul littéral, équations, inéquations 1) Calcul littéral a. Égalités des expressions littérales Des expressions sont littérales quand elles sont écrites avec des lettres. Elles sont égales quand elles

Plus en détail

Seconde 7 Chapitre 3 : Equations, inéquations 1

Seconde 7 Chapitre 3 : Equations, inéquations 1 Seconde 7 Chapitre 3 : Equations, inéquations 1 Chapitre 3 : Equations et inéquations dans IR 1 Equations dans IR 1.1 Vérifier qu un nombre est solution d une équation Dans chaque cas, dire si le réel

Plus en détail

EQUATIONS DU PREMIER DEGRE

EQUATIONS DU PREMIER DEGRE Chapitre 3 ALGEBRE EQUATIONS DU PREMIER DEGRE 1 ) Résoudre une équation du premier degré à une inconnue. Une équation du premier degré à une inconnue peut s écrire sous la forme : ax + b 0, où x représente

Plus en détail

Chapitre 4: Géométrie analytique dans l'espace

Chapitre 4: Géométrie analytique dans l'espace GEOMETRIE ANALYTIQUE DANS L'ESPACE 35 Chapitre 4: Géométrie analytique dans l'espace Prérequis: Géom. vectorielle dans V 3, géom. analytique dans le plan Requis pour: Algèbre linéaire, examen de maturité.

Plus en détail

Chapitre 3 Systèmes d équations. Notation matricielle. avec. U. Laval Dept. Math & Stat MAT-2910 Chapitre 3

Chapitre 3 Systèmes d équations. Notation matricielle. avec. U. Laval Dept. Math & Stat MAT-2910 Chapitre 3 Systèmes d équations On cherche solution de Notation matricielle avec 1 Les 3 propositions suivantes sont équivalentes et garantissent l existence d une solution du problème la matrice est de rang maximal

Plus en détail

Produit scalaire de l'espace. Applications.

Produit scalaire de l'espace. Applications. 1.... p2 2. Équations cartésienne d'un plan... p4 3. Perpendiculaire commune à deux droites non coplanaires... p9 Copyright meilleurenmaths.com. Tous droits réservés 1. Produit scalaire de l'espace 1.1.

Plus en détail

Équations de droites

Équations de droites Équations de droites Christophe ROSSIGNOL Année scolaire 2015/2016 Table des matières 1 Équations de droites 2 1.1 Rappels sur les fonctions affines..................................... 2 1.2 Équations

Plus en détail

M5. Méthodes en RESOLUTION GRAPHIQUE de problèmes

M5. Méthodes en RESOLUTION GRAPHIQUE de problèmes CRPE M5. Méthodes en RESOLUTION GRAPHIQUE de problèmes Nous avons vu en S6 et en M4 que la mise en équation d un problème va permettre la mise en œuvre d une procédure de résolution algébrique. Cependant

Plus en détail

Calcul matriciel. Julien Reichert. m1;1 m 1;2 m 1;3 m 2;1 m 2;2 m 2;3

Calcul matriciel. Julien Reichert. m1;1 m 1;2 m 1;3 m 2;1 m 2;2 m 2;3 Calcul matriciel Julien Reichert Notions de base Une matrice est un tableau comportant m lignes et n colonnes, dont les cellules contiennent des réels. La dimension de la matrice est m n, on parle alors

Plus en détail

V. Quelques équations diophantiennes

V. Quelques équations diophantiennes V. Quelques équations diophantiennes V. Quelques équations diophantiennes Philippe TILLEUIL Le Monde Perdu S.B.P.M. 27 août 2014 1 / 37 V. Quelques équations diophantiennes L équation du premier degré

Plus en détail

Vecteurs et colinéarité. Angles orientés et trigonométrie

Vecteurs et colinéarité. Angles orientés et trigonométrie DERNIÈRE IMPRESSION LE février 07 à 0:5 Vecteurs et colinéarité. ngles orientés et trigonométrie Table des matières Rappels sur les vecteurs. Définition.................................. Opérations sur

Plus en détail

Problèmes de Mathématiques Matrices et carrés magiques

Problèmes de Mathématiques Matrices et carrés magiques Énoncé Dans tout le problème, n est un entier supérieur ou égal à 2. On désigne par M n (IR) l algèbre des matrices carrées d ordre n à coefficients réels. Pour tout A de M n (IR), on note a ij le coefficient

Plus en détail

Université Joseph Fourier, Grenoble I Mathématiques, Informatique et Mathématiques Appliquées Licence Sciences et Technologies 1 e année

Université Joseph Fourier, Grenoble I Mathématiques, Informatique et Mathématiques Appliquées Licence Sciences et Technologies 1 e année Université Joseph Fourier, Grenoble I Mathématiques, Informatique et Mathématiques Appliquées Licence Sciences et Technologies 1 e année Systèmes linéaires Bernard Ycart Si vous savez déjà résoudre un

Plus en détail

1 ère S Exercices sur le second degré

1 ère S Exercices sur le second degré ère S Eercices sur le second degré Résoudre dans l équation 0. Si m..., alors l équation (E). Si m..., alors l équation (E). Si m..., alors l équation (E). Résoudre dans l équation 0. Résoudre dans l équation.

Plus en détail

Chapitre 2. Introduction aux matrices

Chapitre 2. Introduction aux matrices L1 2012-2013 Université Paris 13 Algèbre linéaire Chapitre 2 Introduction aux matrices Référence: Liret-Martinais [2], chapitre 4 Nous avons déjà rencontré des tableaux de nombres, ou matrices Nous allons

Plus en détail

DE - DETERMINANTS. Rappels sur la méthode du pivot

DE - DETERMINANTS. Rappels sur la méthode du pivot DE - DETERMINANTS Rappels sur la méthode du pivot Si A est une matrice de M(n,m; R), les opérations intervenant dans la méthode du pivot s interprètent comme le produit de A par des matrices particulières

Plus en détail

Mathématiques L2 Cours de Sophie Jallais et Muriel Pucci

Mathématiques L2 Cours de Sophie Jallais et Muriel Pucci Mathématiques L Cours de Sophie Jallais et Muriel Pucci 06-07 PLAN DES DOSSIERS DE TD Dossier Systèmes d équations linéaires : résolution par la méthode du pivot de Gauss et représentation matricielle.

Plus en détail

Calculer l inverse d une matrice

Calculer l inverse d une matrice Méthodes et techniques des exercices Calculer l inverse d une matrice Définition. On dit qu une matrice A carrée n n à cœfficients dans un corps K est inversible si il existe une matrice carrée n n, B

Plus en détail

LFA / Terminale S SPÉCIALITÉ MATHS Mme MAINGUY. Les nombres contenus dans ce tableau sont appelés les coefficients de la matrice.

LFA / Terminale S SPÉCIALITÉ MATHS Mme MAINGUY. Les nombres contenus dans ce tableau sont appelés les coefficients de la matrice. Les matrices chapitre 2 : calcul matriciel I / Définitions Soit n et p deux entiers naturels non nuls Une matrice n p (on dit aussi de format n ; p ( ) est un tableau de nombres réels à n lignes et p colonnes

Plus en détail

Chapitre 9 Équations de droites. Table des matières. Chapitre 9 Équations de droites TABLE DES MATIÈRES page -1

Chapitre 9 Équations de droites. Table des matières. Chapitre 9 Équations de droites TABLE DES MATIÈRES page -1 Chapitre 9 Équations de droites TABLE DES MATIÈRES page -1 Chapitre 9 Équations de droites Table des matières I Exercices I-1 1................................................ I-1 2................................................

Plus en détail

OPTIMISATION. Table des matières. 2 Programmation linéaire LICENCE MATHÉMATIQUE ET GESTION Optimisation linéaire

OPTIMISATION. Table des matières. 2 Programmation linéaire LICENCE MATHÉMATIQUE ET GESTION Optimisation linéaire OPTIMISATION LICENCE MATHÉMATIQUE ET GESTION 2013-2014 Table des matières 2 Programmation linéaire 1 2.1 Optimisation linéaire................................. 1 2.2 Polytopes.......................................

Plus en détail

Mathématiques appliquées aux sciences sociales - Algèbre matricielle -

Mathématiques appliquées aux sciences sociales - Algèbre matricielle - CHAPITRE 2 LES DETERMINANTS... 2 I DEFINITIONS... 2 A Définition simple d un déterminant... 2 B Les déterminants mineurs d une matrice... 3 C Cofacteur d une matrice... 3 II CALCULS DES DETERMINANTS PAR

Plus en détail

NOMBRES COMPLEXES. 1. Calculer le module et l argument des nombres complexes suivants : z 1 = 1 + i, z 2 = 1 i, z 3 = 1 + i 3, z 4 = 1 + i 3 1 i

NOMBRES COMPLEXES. 1. Calculer le module et l argument des nombres complexes suivants : z 1 = 1 + i, z 2 = 1 i, z 3 = 1 + i 3, z 4 = 1 + i 3 1 i NOMBRES COMPLEXES 1 Calculer le module et l argument des nombres complexes suivants : z 1 = 1 + i z = 1 i z = 1 + i z 4 = 1 + i 1 i Calculer les nombres complexes suivants : w 1 = (1 + i) 1 w = ( 1 + i

Plus en détail

Opérations élémentaires et déterminants

Opérations élémentaires et déterminants 10 Opérations élémentaires et déterminants On note toujours K le corps de réels ou des complexes On se donne un entier n 1 et M n (K désigne l espace vectoriel des matrices carrées d ordre n à coefficients

Plus en détail

Équations et inéquations Page 1

Équations et inéquations Page 1 Équations et inéquations Page 1 1 Rappel sur la résolution d une équation à une inconnue du 1 er degré Rappels Pour résoudre une équation du 1 er degré à une inconnue, la méthode vue en 4 consiste à isoler

Plus en détail

Méthodes directes de résolution du système linéaire Ax = b

Méthodes directes de résolution du système linéaire Ax = b Chapitre 3 Méthodes directes de résolution du système linéaire Ax = b 3.1 Introduction Dans ce chapitre, on étudie quelques méthodes directes permettant de résoudre le système Ax = b (3.1) où A M n (R),

Plus en détail

Math206 Equations aux Dérivées Partielles Feuille d Exercices 1

Math206 Equations aux Dérivées Partielles Feuille d Exercices 1 Université de Paris Sud 11 L MPI Mathématiques ème semestre 14/15 Math06 Equations aux Dérivées Partielles Feuille d Exercices 1 NB. Ces exercices, et les corrigés qui suivent, sont issus du site http://www.bibmath.net

Plus en détail

AL3 - Matrices Séance de TD n 1 - Corrigés des exercices -

AL3 - Matrices Séance de TD n 1 - Corrigés des exercices - AL3 - Matrices Séance de TD n - Corrigés des exercices - QCM GI FC8/6 03 TEST - SYSTEME 3 GI FA 0 TEST - SYSTEME 3 4 GI FA 0 TEST SYSTEME 4 5 GI FA 03 TEST SYSTEME 5 6 GI FC 8/6 04 TEST VECTEURS, APPLICATION

Plus en détail

CHAPITRE 2 MATRICES ET RÉSOLUTION DE SYSTÈMES D ÉQUATIONS LINÉAIRES EXERCICE 1 (CHAPITRE 2-I) 1

CHAPITRE 2 MATRICES ET RÉSOLUTION DE SYSTÈMES D ÉQUATIONS LINÉAIRES EXERCICE 1 (CHAPITRE 2-I) 1 CHAPITRE 2 MATRICES ET RÉSOLUTION DE SYSTÈMES D ÉQUATIONS LINÉAIRES EXERCICE 1 (CHAPITRE 2-I) 1 Déterminer les matrices élargies des systèmes S1, S2, S5 et S6 du chapitre précédent. La matrice élargie

Plus en détail

Programmation Linéaire : Résumé examen janvier 08

Programmation Linéaire : Résumé examen janvier 08 Programmation Linéaire : Résumé examen janvier 08 Introduction aux problèmes linéaires On nous donne un problème industriel, il faut le modéliser en problème linéaire afin de le résoudre et de trouver

Plus en détail

UNIVERSITE DE LIEGE EXAMEN D ADMISSION AUX ETUDES D INGENIEUR CIVIL. Enoncés et solutions de l examen de première session 2010

UNIVERSITE DE LIEGE EXAMEN D ADMISSION AUX ETUDES D INGENIEUR CIVIL. Enoncés et solutions de l examen de première session 2010 UNIVERSITE DE LIEGE EXAMEN D ADMISSION AUX ETUDES D INGENIEUR CIVIL Géométrie et géométrie analytique Enoncés et solutions de l examen de première session 010 Enoncés On demandait de résoudre trois questions

Plus en détail

Equations et inéquations du premier degré

Equations et inéquations du premier degré Equations et inéquations du premier degré I) Equation du premier degré à une inconnue 1) définitions Définition 1 : Une équation du premier degré à une inconnue est une égalité comprenant un nombre inconnu

Plus en détail

Systèmes d équations. Objectifs du chapitre. Énigme du chapitre.

Systèmes d équations. Objectifs du chapitre. Énigme du chapitre. Systèmes d équations C H A P I T R E 5 Énigme du chapitre. Au début d un spectacle de danses folkloriques, il y a trois fois plus de danseurs que de danseuses. Après le départ de 8 couples, il reste sur

Plus en détail

Géométrie vectorielle

Géométrie vectorielle Géométrie vectorielle L1 SPC, semestre 2 Année 2012 1 Généralités L objectif de ce chapitre est de faire un rapide survol des éléments essentiels de géométrie vectorielle (et un peu affine). Il s agit

Plus en détail

Génie Mécanique / Science et Génie des Matériaux Semestre d hiver

Génie Mécanique / Science et Génie des Matériaux Semestre d hiver EPFL - Section de Mathématiques Algèbre Linéaire Prof. E. Bayer-Fluckiger Génie Mécanique / Science et Génie des Matériaux Semestre d hiver 2007-2008 Série 1 21.09.2007 Énoncés et corrigés Exercice 1 A

Plus en détail

Exercices Corrigés Matrices 1 2 A = 2 1

Exercices Corrigés Matrices 1 2 A = 2 1 Exercices Corrigés Matrices Exercice Considérons les matrices à coefficients réels : A =, B = 4 C =, D = 0, E = Si elles ont un sens, calculer les matrices AB, BA, CD, DC, AE, CE Exercice extrait partiel

Plus en détail

Colinéarité de vecteurs Équation cartésienne d une droite

Colinéarité de vecteurs Équation cartésienne d une droite Colinéarité de vecteurs Équation cartésienne d une droite Christophe ROSSIGNOL Année scolaire 204/205 Table des matières Rappels sur les vecteurs 3. Égalité de deux vecteurs.........................................

Plus en détail

Espaces vectoriels de dimension finie

Espaces vectoriels de dimension finie Espaces vectoriels de dimension finie 1.1) Famille génératrice (rappel) Exemple 1 On considère par exemple l'espace vectoriel R² et les vecteurs 1,1, 1, et,3. Soit un élément quelconque de R²,,. Peut-on

Plus en détail

Calcul matriciel. 1.1 Définitions Matrices carrées particulières... 3

Calcul matriciel. 1.1 Définitions Matrices carrées particulières... 3 Chapitre 10 Calcul matriciel 1 Généralités 2 11 Définitions 2 12 Matrices carrées particulières 3 2 Opérations sur les matrices 4 21 L espace vectoriel M np (R 4 22 Produit de deux matrices 5 23 Transposée

Plus en détail

HLMA101 : Algèbre linéaire et Analyse 1

HLMA101 : Algèbre linéaire et Analyse 1 HLMA101 : Algèbre linéaire et Analyse 1 PARTIE B Algèbre linéaire et Géométrie Chapitre B.2 Systèmes linéaires B.2.A) NOTION DE SYSTÈME LINÉAIRE. Recherche d intersection d espaces affines Exercice. Soit

Plus en détail

Le pivot de Gauss. La matrice A est équivalente à une matrice triangulaire sans 0 sur la diagonale donc A est inversible.

Le pivot de Gauss. La matrice A est équivalente à une matrice triangulaire sans 0 sur la diagonale donc A est inversible. Le pivot de Gauss I Principe général Le pivot de Gauss est une méthode qui peut s appliquer sur des matrices ou sur des systèmes d équation. Le but de cette méthode est de transformer notre matrice ou

Plus en détail

Calcul matriciel. matrices-ligne et colonne : on appelle matrice-ligne toute matrice n ayant qu une seule ligne. On peut identifier

Calcul matriciel. matrices-ligne et colonne : on appelle matrice-ligne toute matrice n ayant qu une seule ligne. On peut identifier Calcul matriciel Dans ce qui suit, K désigne R ou C. 1 Petite visite au zoo matriciel 1.1 matrices générales notion de matrice : une matrice à coefficients dans K est une liste d éléments de K disposés

Plus en détail