CORRIGÉ DU DEVOIR SURVEILLÉ
|
|
|
- Geoffrey Henry
- il y a 8 ans
- Total affichages :
Transcription
1 CORRIGÉ DU DEVOIR SURVEILLÉ DE MATHÉMATIQUES Exercice 1 (5 points) : 1/10
2 Exercice 2 (Pondichéry, avril 2013) (5 points) : 1. Construisez un arbre pondéré décrivant la situation. En référence aux données de l'énoncé, on peut construire l'arbre de probabilité ci dessous. 2/10
3 2. Calculez P( L C ). P( L C )=P( L ) P L (C )=0,55 0,95=0, Montrez que P(C )=0,5675. Au regard de la propriété des probabilités P (C)=P(L L )+P ( L C )=0,55 0,95+0,45 0,1=0,5675. totales, nous avons 4. Calculez PC (L ). P ( L C ) 0,5225 PC (L )= = 0,9207 P (C ) 0, On interroge successivement quatre élèves pris au hasard parmi les élèves de l établissement. On admet que le nombre de lycéens est suffisamment grand pour que ces choix soient assimilés à des tirages indépendants avec remise. Soit X la variable aléatoire qui donne le nombre d élèves favorables à une répartition des cours plus étalée sur l année scolaire. a. Quelle est la loi de probabilités de X? Précisez les paramètres de cette loi. Le choix des quatre élèves peut être considéré comme la répétition de quatre expériences identiques (avec remise) et indépendantes (mot directement dans énoncé), la loi de probabilité de la variable aléatoire X est donc la loi binomiale de paramètres 4 et P(C)=0,5675. b. Calculez la probabilité qu aucun des quatre élèves interrogés ne soit favorable à une répartition des cours plus étalée sur l année scolaire. P( X =0 )=(1 0,5675) 4 0,0350 c. Calculez la probabilité qu exactement deux élèves soient favorables à une répartition des cours plus étalée sur l année scolaire. P(X =2)= 4 0, ( 1 0,5675) 2 calculatrice 0, () d. Calculez la probabilité qu au plus deux élèves soient favorables à une répartition des cours plus étalée sur l année scolaire. P( X 2) calculatrice 0,5801 3/10
4 Exercice 3 (réservé aux élèves n ayant pas suivi l enseignement de spécialité Polynésie, juin 2013) (5 points) : 1. Montrer que le taux d évolution annuel moyen des montants à l exportation des produits perliers de Polynésie entre 2008 et 2011 est 8,06% arrondi au centième par défaut. Notons tm ce taux d'évolution moyen de 2008 à 2011 en pourcentage (trois années), on a alors t m tm (1+ )= =( ) soit t m=100 [( soit 1+ ) 1] calcualtrice = 8,06 à par défaut. 2. a. Donnez la nature de la suite (u n). Une baisse relative de 8% chaque année revient à être multiplié chaque année par 0,92. Par définition, la suite (un) est la suite géométrique de raison 0,92 et de premier terme u0 = b. Exprimez, pour tout entier naturel n, u n en fonction de n. En référence au cours sur les suites géométriques, on déduit que pour n entier, on a n u n= ,92. c. Avec ce modèle, quel montant peut on prévoir pour l exportation des produits perliers de Polynésie Française en 2016? On arrondira le résultat au millier d euros. Répondre à cette question revient à calculer u5. Avec la calculatrice, u 5= , L exportation des produits perliers de Polynésie Française en 2016 sera d'environ milliers d euros. 3. On considère l algorithme suivant dont l'objectif est de déterminer à partir de quelle année les montants deviennent inférieurs ou égaux à une valeur «seuil» paramétrable avec la variable notée P. Une ligne a été oubliée dans cet algorithme pour qu'il soit fonctionnel. a. Écrivez sur votre copie la ligne oubliée. Affecter la valeur N+1 à la variable N b. Si on saisit P = en entrée, qu obtient on en sortie par cet algorithme? Interprétez ce résultat dans le contexte de la production de perles. On obtient N=2014 ce qui signifie qu'à partir de 2 014, l exportation des produits perliers de Polynésie Française sera en deçà de 50 millions d euros. 4. Calculez le montant cumulé des produits perliers exportés que l on peut prévoir avec ce modèle à partir de 2011 (comprise) jusqu à 2020 (comprise). On donnera une valeur approchée au millier d euros (la réponse doit être justifiée par des propriétés sur les suites géométriques, la calculatrice et les listes ne pouvant servir que de vérification). Au regard de la propriété sur la somme des termes consécutifs d'une suite géométrique, on a que 4/10
5 1 0, Le montant cumulé des produits perliers exportés 1 0,92 calculatrice que l on peut prévoir sera donc d'environ milliers d euros. u0 +u u 8 +u 9 =u0 Exercice 3 (réservé aux élèves ayant suivi l enseignement de spécialité) (5 points) : Le graphe ci-dessous représente les autoroutes entre les principales villes du Sud de la France : Bordeaux (B), Clermont-Ferrand (C), Lyon (L), Marseille (M), Montpellier (P), Brive (R), Toulouse (T), Valence (V) et Biarritz (Z). 1. Pour cette question, on justifiera chaque réponse. a. Déterminez l'ordre du graphe. L'ordre du graphe est le nombre de sommets présents dans le graphe. L'ordre de ce graphe est donc 9. b. Déterminez si le graphe est connexe. Tout couple de sommets de ce graphe est relié par au moins une chaîne ; par définition, ce graphe est connexe. c. Déterminez si le graphe est complet. Les sommets T et V ne sont pas reliés par une arête ; par définition, ce graphe n'est pas complet. 2. Un touriste atterrit à l'aéroport de Lyon et loue une voiture. Déterminez, en justifiant, s'il pourra visiter toutes les villes en empruntant une et une seule fois chaque autoroute. Les sommets B,R et C sont de degré 3. En référence au lien dans les graphes connexes entre la parité des degrés des sommets et l'existence de chaînes eulériennes, nous en déduisons qu'un tel parcours n'est pas possible. 3. Il décide finalement d'aller seulement de Lyon à Biarritz. On note N la matrice associée au graphe, les sommets étant rangés dans l'ordre alphabétique : B, C, L, M, P, R, T, V, Z. 5/10
6 Voici les matrices N et N 3 : a. En détaillant le calcul, déterminez le coefficient de la troisième ligne et dernière colonne de la matrice N4. On multiplie successivement les termes de la troisième ligne de N par les termes de la dernière colonne de N 3. On obtient =4. b. En donnez une interprétation. Cela nous donne le nombre de chaînes de longueur 4 joignant les sommets L et Z ; autrement dit, il existe exactement quatre trajets entre Lyon et Biarritz comprenant exactement quatre tronçons d'autoroute. 4. Sur les arêtes du graphe sont maintenant indiqués les prix des péages en euro. a. À l'aide de l'algorithme de Dijkstra, déterminez le chemin que doit prendre le touriste pour minimiser le coût des péages de Lyon à Biarritz. 6/10
7 Étape 1 Étape 2 Étape 3 Étape 4 Étape 5 Étape 6 Étape 7 Étape 8 Étape 9 L 0 V C M P R T B (L ; 7,1) (L ; 10,7) (L ; 10,7) (V ; 22,8) (V ; 23,3) (V ; 22,8) (C ; 19,3) (C ; 22,2) (V ; 22,8) (C ; 22,2) (P ; 38,9) (V ; 22,8) (R ; 36,8) (R ; 33,7) (R ; 36,8) (R ; 33,7) (R ; 36,8) (B (B Un trajet possible est L-C-R-B-Z avec un poids de 38,1. b. Déterminez ce coût en euro. Le coût minimum en péage pour ce trajet sera donc de 38,10 euros. 7/10 Z ; 38,1) ; 38,1)
8 Exercice 4 (5 points) : 8/10
9 9/10
10 10/10
Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé
Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé A. P. M. E. P. Exercice 1 5 points 1. Réponse d. : 1 e Le coefficient directeur de la tangente est négatif et n est manifestement pas 2e
Baccalauréat ES 2013. L intégrale d avril à novembre 2013
Baccalauréat ES 2013 L intégrale d avril à novembre 2013 Pour un accès direct cliquez sur les liens bleus Pondichéry 15 avril 2013.......................................................... 3 Amérique du
Baccalauréat ES Antilles Guyane 12 septembre 2014 Corrigé
Baccalauréat ES Antilles Guyane 12 septembre 2014 Corrigé EXERCICE 1 5 points Commun à tous les candidats 1. Réponse c : ln(10)+2 ln ( 10e 2) = ln(10)+ln ( e 2) = ln(10)+2 2. Réponse b : n 13 0,7 n 0,01
Baccalauréat ES/L Amérique du Sud 21 novembre 2013
Baccalauréat ES/L Amérique du Sud 21 novembre 2013 A. P. M. E. P. EXERCICE 1 Commun à tous les candidats 5 points Une entreprise informatique produit et vend des clés USB. La vente de ces clés est réalisée
Baccalauréat ES/L Métropole La Réunion 13 septembre 2013 Corrigé
Baccalauréat S/L Métropole La Réunion 13 septembre 2013 Corrigé A. P. M.. P. XRCIC 1 Commun à tous les candidats Partie A 1. L arbre de probabilité correspondant aux données du problème est : 0,3 0,6 H
Baccalauréat ES Pondichéry 7 avril 2014 Corrigé
Baccalauréat ES Pondichéry 7 avril 204 Corrigé EXERCICE 4 points Commun à tous les candidats. Proposition fausse. La tangente T, passant par les points A et B d abscisses distinctes, a pour coefficient
Correction du baccalauréat STMG Polynésie 17 juin 2014
Correction du baccalauréat STMG Polynésie 17 juin 2014 EXERCICE 1 Cet exercice est un Q.C.M. 4 points 1. La valeur d une action cotée en Bourse a baissé de 37,5 %. Le coefficient multiplicateur associé
BACCALAUREAT GENERAL MATHÉMATIQUES
BACCALAUREAT GENERAL FEVRIER 2014 MATHÉMATIQUES SERIE : ES Durée de l épreuve : 3 heures Coefficient : 5 (ES), 4 (L) 7(spe ES) Les calculatrices électroniques de poche sont autorisées, conformement à la
Probabilités conditionnelles Loi binomiale
Exercices 23 juillet 2014 Probabilités conditionnelles Loi binomiale Équiprobabilité et variable aléatoire Exercice 1 Une urne contient 5 boules indiscernables, 3 rouges et 2 vertes. On tire au hasard
Probabilités Loi binomiale Exercices corrigés
Probabilités Loi binomiale Exercices corrigés Sont abordés dans cette fiche : (cliquez sur l exercice pour un accès direct) Exercice 1 : épreuve de Bernoulli Exercice 2 : loi de Bernoulli de paramètre
TESTS D'HYPOTHESES Etude d'un exemple
TESTS D'HYPOTHESES Etude d'un exemple Un examinateur doit faire passer une épreuve type QCM à des étudiants. Ce QCM est constitué de 20 questions indépendantes. Pour chaque question, il y a trois réponses
Correction du baccalauréat ES/L Métropole 20 juin 2014
Correction du baccalauréat ES/L Métropole 0 juin 014 Exercice 1 1. c.. c. 3. c. 4. d. 5. a. P A (B)=1 P A (B)=1 0,3=0,7 D après la formule des probabilités totales : P(B)=P(A B)+P(A B)=0,6 0,3+(1 0,6)
Probabilités conditionnelles Loi binomiale
Fiche BAC ES 05 Terminale ES Probabilités conditionnelles Loi binomiale Cette fiche sera complétée au fur et à mesure Exercice n 1. BAC ES. Centres étrangers 2012. [RÉSOLU] Un sondage a été effectué auprès
TSTI 2D CH X : Exemples de lois à densité 1
TSTI 2D CH X : Exemples de lois à densité I Loi uniforme sur ab ; ) Introduction Dans cette activité, on s intéresse à la modélisation du tirage au hasard d un nombre réel de l intervalle [0 ;], chacun
Logistique, Transports
Baccalauréat Professionnel Logistique, Transports 1. France, juin 2006 1 2. Transport, France, juin 2005 2 3. Transport, France, juin 2004 4 4. Transport eploitation, France, juin 2003 6 5. Transport,
GEA II Introduction aux probabilités Poly. de révision. Lionel Darondeau
GEA II Introduction aux probabilités Poly. de révision Lionel Darondeau Table des matières Énoncés 4 Corrigés 10 TD 1. Analyse combinatoire 11 TD 2. Probabilités élémentaires 16 TD 3. Probabilités conditionnelles
Probabilités et Statistiques. Feuille 2 : variables aléatoires discrètes
IUT HSE Probabilités et Statistiques Feuille : variables aléatoires discrètes 1 Exercices Dénombrements Exercice 1. On souhaite ranger sur une étagère 4 livres de mathématiques (distincts), 6 livres de
Exercices types Algorithmique et simulation numérique Oral Mathématiques et algorithmique Banque PT
Exercices types Algorithmique et simulation numérique Oral Mathématiques et algorithmique Banque PT Ces exercices portent sur les items 2, 3 et 5 du programme d informatique des classes préparatoires,
C f tracée ci- contre est la représentation graphique d une
TLES1 DEVOIR A LA MAISON N 7 La courbe C f tracée ci- contre est la représentation graphique d une fonction f définie et dérivable sur R. On note f ' la fonction dérivée de f. La tangente T à la courbe
Chaînes de Markov au lycée
Journées APMEP Metz Atelier P1-32 du dimanche 28 octobre 2012 Louis-Marie BONNEVAL Chaînes de Markov au lycée Andreï Markov (1856-1922) , série S Problème 1 Bonus et malus en assurance automobile Un contrat
mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques SÉRIE ES ANNALES DES SUJETS DE MATHÉMATIQUES SESSION 2013
mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques
Probabilités conditionnelles Exercices corrigés
Terminale S Probabilités conditionnelles Exercices corrigés Exercice : (solution Une compagnie d assurance automobile fait un bilan des frais d intervention, parmi ses dossiers d accidents de la circulation.
Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures)
Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures) Eercice 1 (5 points) pour les candidats n ayant pas choisi la spécialité MATH Le tableau suivant donne l évolution du chiffre
Probabilités (méthodes et objectifs)
Probabilités (méthodes et objectifs) G. Petitjean Lycée de Toucy 10 juin 2007 G. Petitjean (Lycée de Toucy) Probabilités (méthodes et objectifs) 10 juin 2007 1 / 19 1 Déterminer la loi de probabilité d
Lois de probabilité. Anita Burgun
Lois de probabilité Anita Burgun Problème posé Le problème posé en statistique: On s intéresse à une population On extrait un échantillon On se demande quelle sera la composition de l échantillon (pourcentage
Exercices de dénombrement
Exercices de dénombrement Exercice En turbo Pascal, un entier relatif (type integer) est codé sur 6 bits. Cela signifie que l'on réserve 6 cases mémoires contenant des "0" ou des "" pour écrire un entier.
Atelier Transversal AT11. Activité «Fourmis» Pierre Chauvet. [email protected]
Atelier Transversal AT11 Activité «Fourmis» Pierre Chauvet [email protected] Ant : un algorithme inspiré de l éthologie L éthologie Etude scientifique des comportements animaux, avec une perspective
Les probabilités. Chapitre 18. Tester ses connaissances
Chapitre 18 Les probabilités OBJECTIFS DU CHAPITRE Calculer la probabilité d événements Tester ses connaissances 1. Expériences aléatoires Voici trois expériences : - Expérience (1) : on lance une pièce
POKER ET PROBABILITÉ
POKER ET PROBABILITÉ Le poker est un jeu de cartes où la chance intervient mais derrière la chance il y a aussi des mathématiques et plus précisément des probabilités, voici une copie d'écran d'une main
BACCALAURÉAT GÉNÉRAL SESSION 2012 OBLIGATOIRE MATHÉMATIQUES. Série S. Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE
BACCALAURÉAT GÉNÉRAL SESSION 2012 MATHÉMATIQUES Série S Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE Les calculatrices électroniques de poche sont autorisées, conformément à la
chapitre 4 Nombres de Catalan
chapitre 4 Nombres de Catalan I Dénitions Dénition 1 La suite de Catalan (C n ) n est la suite dénie par C 0 = 1 et, pour tout n N, C n+1 = C k C n k. Exemple 2 On trouve rapidement C 0 = 1, C 1 = 1, C
Introduction. I Étude rapide du réseau - Apprentissage. II Application à la reconnaissance des notes.
Introduction L'objectif de mon TIPE est la reconnaissance de sons ou de notes de musique à l'aide d'un réseau de neurones. Ce réseau doit être capable d'apprendre à distinguer les exemples présentés puis
Calculs de probabilités conditionelles
Calculs de probabilités conditionelles Mathématiques Générales B Université de Genève Sylvain Sardy 20 mars 2008 1. Indépendance 1 Exemple : On lance deux pièces. Soit A l évènement la première est Pile
Soit la fonction affine qui, pour représentant le nombre de mois écoulés, renvoie la somme économisée.
ANALYSE 5 points Exercice 1 : Léonie souhaite acheter un lecteur MP3. Le prix affiché (49 ) dépasse largement la somme dont elle dispose. Elle décide donc d économiser régulièrement. Elle a relevé qu elle
Raisonnement par récurrence Suites numériques
Chapitre 1 Raisonnement par récurrence Suites numériques Terminale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Raisonnement par récurrence. Limite finie ou infinie d une suite.
mathématiques mathématiques mathématiques mathématiques
mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques
Les devoirs en Première STMG
Les devoirs en Première STMG O. Lader Table des matières Devoir sur table 1 : Proportions et inclusions....................... 2 Devoir sur table 1 : Proportions et inclusions (corrigé)..................
Eteindre. les. lumières MATH EN JEAN 2013-2014. Mme BACHOC. Elèves de seconde, première et terminale scientifiques :
MTH EN JEN 2013-2014 Elèves de seconde, première et terminale scientifiques : Lycée Michel Montaigne : HERITEL ôme T S POLLOZE Hélène 1 S SOK Sophie 1 S Eteindre Lycée Sud Médoc : ROSIO Gauthier 2 nd PELGE
Probabilités. Rappel : trois exemples. Exemple 2 : On dispose d un dé truqué. On sait que : p(1) = p(2) =1/6 ; p(3) = 1/3 p(4) = p(5) =1/12
Probabilités. I - Rappel : trois exemples. Exemple 1 : Dans une classe de 25 élèves, il y a 16 filles. Tous les élèves sont blonds ou bruns. Parmi les filles, 6 sont blondes. Parmi les garçons, 3 sont
Loi binomiale Lois normales
Loi binomiale Lois normales Christophe ROSSIGNOL Année scolaire 204/205 Table des matières Rappels sur la loi binomiale 2. Loi de Bernoulli............................................ 2.2 Schéma de Bernoulli
Introduction à la théorie des graphes. Solutions des exercices
CAHIERS DE LA CRM Introduction à la théorie des graphes Solutions des exercices Didier Müller CAHIER N O 6 COMMISSION ROMANDE DE MATHÉMATIQUE 1 Graphes non orientés Exercice 1 On obtient le graphe biparti
Classement Raid 2015
Classement Raid 2015 Table des matières Classement Général... 1 Classement Actif... 2 Classement Etudiant... 3 Classement J1... 4 Classement J2... 6 Classement J3... 8 Classement Général Rang Nom de l
NOTIONS DE PROBABILITÉS
NOTIONS DE PROBABILITÉS Sommaire 1. Expérience aléatoire... 1 2. Espace échantillonnal... 2 3. Événement... 2 4. Calcul des probabilités... 3 4.1. Ensemble fondamental... 3 4.2. Calcul de la probabilité...
CH.6 Propriétés des langages non contextuels
CH.6 Propriétés des langages non contetuels 6.1 Le lemme de pompage 6.2 Les propriétés de fermeture 6.3 Les problèmes de décidabilité 6.4 Les langages non contetuels déterministes utomates ch6 1 6.1 Le
BANQUES DE DONNÉES PÉDAGOGIQUES
223 Daniel BURET, Jean-Claude BLANCHARD. HISTORIQUE L'EPI a entrepris en 1989 de créer des bases d'énoncés mathématiques destinées aux enseignants pour la production de documents et accompagnées d'un outil
Estimation: intervalle de fluctuation et de confiance. Mars 2012. IREM: groupe Proba-Stat. Fluctuation. Confiance. dans les programmes comparaison
Estimation: intervalle de fluctuation et de confiance Mars 2012 IREM: groupe Proba-Stat Estimation Term.1 Intervalle de fluctuation connu : probabilité p, taille de l échantillon n but : estimer une fréquence
108y= 1 où x et y sont des entiers
Polynésie Juin 202 Série S Exercice Partie A On considère l équation ( ) relatifs E :x y= où x et y sont des entiers Vérifier que le couple ( ;3 ) est solution de cette équation 2 Déterminer l ensemble
Travaux pratiques. Compression en codage de Huffman. 1.3. Organisation d un projet de programmation
Université de Savoie Module ETRS711 Travaux pratiques Compression en codage de Huffman 1. Organisation du projet 1.1. Objectifs Le but de ce projet est d'écrire un programme permettant de compresser des
La simulation probabiliste avec Excel
La simulation probabiliste avec Ecel (2 e version) Emmanuel Grenier [email protected] Relu par Kathy Chapelain et Henry P. Aubert Incontournable lorsqu il s agit de gérer des phénomènes aléatoires
François Émond psychologue 2003 Centre François-Michelle. Liste des 24 catégories de connaissances et compétences à développer
Programme par Cœur François Émond psychologue 2003 Centre François-Michelle Trousse de consolidation des connaissances et compétences scolaires Attention, mémoire, raisonnement, stratégies, habiletés linguistiques
Réseau SCEREN. Ce document a été numérisé par le CRDP de Bordeaux pour la. Base Nationale des Sujets d Examens de l enseignement professionnel.
Ce document a été numérisé par le CRDP de Bordeaux pour la Base Nationale des Sujets d Examens de l enseignement professionnel. Campagne 2013 Ce fichier numérique ne peut être reproduit, représenté, adapté
DENOMBREMENT-COMBINATOIRE-PROBABILITES GENERALES
BTS GPN ERE ANNEE-MATHEMATIQUES-DENOMBREMENT-COMBINATOIRE-EXERCICE DE SYNTHESE EXERCICE RECAPITULATIF (DE SYNTHESE) CORRIGE Le jeu au poker fermé DENOMBREMENT-COMBINATOIRE-PROBABILITES GENERALES On joue
Ressources pour le lycée général et technologique
éduscol Ressources pour le lycée général et technologique Ressources pour la classe de terminale générale et technologique Exercices de mathématiques Classes de terminale S, ES, STI2D, STMG Ces documents
Fluctuation d une fréquence selon les échantillons - Probabilités
Fluctuation d une fréquence selon les échantillons - Probabilités C H A P I T R E 3 JE DOIS SAVOIR Calculer une fréquence JE VAIS ÊTRE C APABLE DE Expérimenter la prise d échantillons aléatoires de taille
SONDAGE CVCI - CCIG LA CONSTRUCTION D UNE 3E VOIE D AUTOROUTE ENTRE LAUSANNE ET GENÈVE Phone Marketing Business SA Place de la Riponne 1 1000
SONDAGE CVCI - CCIG LA CONSTRUCTION D UNE 3E VOIE D AUTOROUTE ENTRE LAUSANNE ET GENÈVE Phone Marketing Business SA Place de la Riponne 1 1000 Lausanne 17 021/ 317 07 07 Fabio Mulone février 2007 TABLE
Annexe B : Exemples. Avis de vente aux enchères liées Système de plafonnement et d échange de droits d émission de gaz à effet de serre (GES)
Annexe B : Exemples Avis de vente aux enchères liées Système de plafonnement et d échange de droits d émission de gaz à effet de serre (GES) Ce document fournit des exemples sur la façon de déterminer
Seconde et première Exercices de révision sur les probabilités Corrigé
I_ L'univers. _ On lance simultanément deux dés indiscernables donc il n'y a pas d'ordre. Il y a répétition, les dbles. On note une issue en écrivant le plus grand chiffre puis le plus petit. 32 signifie
Capacité d un canal Second Théorème de Shannon. Théorie de l information 1/34
Capacité d un canal Second Théorème de Shannon Théorie de l information 1/34 Plan du cours 1. Canaux discrets sans mémoire, exemples ; 2. Capacité ; 3. Canaux symétriques ; 4. Codage de canal ; 5. Second
Algorithmes de recherche
Algorithmes de recherche 1 Résolution de problèmes par recherche On représente un problème par un espace d'états (arbre/graphe). Chaque état est une conguration possible du problème. Résoudre le problème
La NP-complétude. Johanne Cohen. PRISM/CNRS, Versailles, France.
La NP-complétude Johanne Cohen PRISM/CNRS, Versailles, France. Références 1. Algorithm Design, Jon Kleinberg, Eva Tardos, Addison-Wesley, 2006. 2. Computers and Intractability : A Guide to the Theory of
9 5 2 5 Espaces probabilisés
BCPST2 9 5 2 5 Espaces probabilisés I Mise en place du cadre A) Tribu Soit Ω un ensemble. On dit qu'un sous ensemble T de P(Ω) est une tribu si et seulement si : Ω T. T est stable par complémentaire, c'est-à-dire
Plan général du cours
BTS GPN 1ERE ANNEE-MATHEMATIQUES-PROBABILITES-DENOMBREMENT,COMBINATOIRE PROBABILITES Plan général du cours 1. Dénombrement et combinatoire (permutations, arrangements, combinaisons). 2. Les probabilités
Exemple On lance une pièce de monnaie trois fois de suite. Calculer la probabilité d obtenir exactement deux fois pile.
Probabilités Définition intuitive Exemple On lance un dé. Quelle est la probabilité d obtenir un multiple de 3? Comme il y a deux multiples de 3 parmi les six issues possibles, on a chances sur 6 d obtenir
Renouvellement des infrastructures ferroviaires de la ligne Paris - Limoges - Toulouse en gare de Limoges, 25 juin 2009
Renouvellement des infrastructures ferroviaires de la ligne Paris - Limoges - Toulouse en gare de Limoges, 25 juin 2009 LE RENOUVELLEMENT DU RÉSEAU : UNE PRIORITÉ DE RÉSEAU FERRÉ DE FRANCE Le Plan de rénovation
Feuille TD n 1 Exercices d algorithmique éléments de correction
Master Sciences, Technologies, Santé Mention Mathématiques, spécialité Enseignement des mathématiques Algorithmique et graphes, thèmes du second degré Feuille TD n 1 Exercices d algorithmique éléments
Estimation et tests statistiques, TD 5. Solutions
ISTIL, Tronc commun de première année Introduction aux méthodes probabilistes et statistiques, 2008 2009 Estimation et tests statistiques, TD 5. Solutions Exercice 1 Dans un centre avicole, des études
Mode d emploi base de données AIFRIS : Commande et inscriptions
Mode d emploi base de données AIFRIS : Commande et inscriptions Vous trouverez dans les pages qui suivent la démarche à suivre pour les inscriptions en ligne au congrès de l AIFRIS. La présentation suit
BTS Groupement A. Mathématiques Session 2011. Spécialités CIRA, IRIS, Systèmes électroniques, TPIL
BTS Groupement A Mathématiques Session 11 Exercice 1 : 1 points Spécialités CIRA, IRIS, Systèmes électroniques, TPIL On considère un circuit composé d une résistance et d un condensateur représenté par
Solution de jeu concours «Scratch2Win»
Solution de jeu concours «Scratch2Win» VALORYS Media SARL au capital de 10.000 RCS 478799448 LE MANS TVA intra : FR46478799448 Siège social : 16 bis rue Gambetta 72000 LE MANS / Bureaux : 4 rue Hauréau
Introduction a l'algorithmique des objets partages. Robert Cori. Antoine Petit. Lifac, ENS Cachan, 94235 Cachan Cedex. Resume
Introduction a l'algorithmique des objets partages Bernadette Charron{Bost Robert Cori Lix, Ecole Polytechnique, 91128 Palaiseau Cedex, France, [email protected] [email protected] Antoine
Probabilités. Une urne contient 3 billes vertes et 5 billes rouges toutes indiscernables au toucher.
Lycée Jean Bart PCSI Année 2013-2014 17 février 2014 Probabilités Probabilités basiques Exercice 1. Vous savez bien qu un octet est une suite de huit chiffres pris dans l ensemble {0; 1}. Par exemple 01001110
Chapitre 1 : Évolution COURS
Chapitre 1 : Évolution COURS OBJECTIFS DU CHAPITRE Savoir déterminer le taux d évolution, le coefficient multiplicateur et l indice en base d une évolution. Connaître les liens entre ces notions et savoir
MATHEMATIQUES TES 2012-2013 Corrigés des devoirs
MATHEMATIQUES TES 2012-2013 Corrigés des devoirs DS1 26/09/2012 page2 DV 09/10/2012 page 6 DS 24/10/2012 page 8 DV 30/11/2012 page 14 DV 14/12/2012 page 16 BAC BLANC 18/01/2013 page 17 DV 05/02/2013 page
PROBLEMES D'ORDONNANCEMENT AVEC RESSOURCES
Leçon 11 PROBLEMES D'ORDONNANCEMENT AVEC RESSOURCES Dans cette leçon, nous retrouvons le problème d ordonnancement déjà vu mais en ajoutant la prise en compte de contraintes portant sur les ressources.
Théorie des Graphes Cours 3: Forêts et Arbres II / Modélisation
IFIPS S7 - informatique Université Paris-Sud 11 1er semestre 2009/2010 Théorie des Graphes Cours 3: Forêts et Arbres II / 1 Forêts et arbres II Théorème 1.1. Les assertions suivantes sont équivalentes
RÉALISATION DE GRAPHIQUES AVEC OPENOFFICE.ORG 2.3
RÉALISATION DE GRAPHIQUES AVEC OPENOFFICE.ORG 2.3 Pour construire un graphique : On lance l assistant graphique à l aide du menu Insérer è Diagramme en ayant sélectionné au préalable une cellule vide dans
www.jpad.fr.st JPAD portage - portage 1/5 Pour qui? Comment? Les avantages Portage - Pour qui?
JPAD portage - portage 1/5 Pour qui? Comment? Les avantages Portage - Pour qui? Une nouvelle façon de travailler : le portage permet à des consultants (experts ou formateurs) d'être salariés pour une mission
Mathématiques Première L, ES, S, Concours Post-Bac Equations et inéquations du second degré FORMAV
Mathématiques Première L, ES, S, Concours Post-Bac Equations et inéquations du second degré Méthode et exercices corrigés générés aléatoirement Pour un meilleur rendu ouvrir ce document avec TeXworks FORMAV
LE PROBLEME DU PLUS COURT CHEMIN
LE PROBLEME DU PLUS COURT CHEMIN Dans cette leçon nous définissons le modèle de plus court chemin, présentons des exemples d'application et proposons un algorithme de résolution dans le cas où les longueurs
Simulation de variables aléatoires
Chapter 1 Simulation de variables aléatoires Références: [F] Fishman, A first course in Monte Carlo, chap 3. [B] Bouleau, Probabilités de l ingénieur, chap 4. [R] Rubinstein, Simulation and Monte Carlo
La classification automatique de données quantitatives
La classification automatique de données quantitatives 1 Introduction Parmi les méthodes de statistique exploratoire multidimensionnelle, dont l objectif est d extraire d une masse de données des informations
Chapitre 5 : Flot maximal dans un graphe
Graphes et RO TELECOM Nancy A Chapitre 5 : Flot maximal dans un graphe J.-F. Scheid 1 Plan du chapitre I. Définitions 1 Graphe Graphe valué 3 Représentation d un graphe (matrice d incidence, matrice d
Jean-Philippe Préaux http://www.i2m.univ-amu.fr/~preaux
Colonies de fourmis Comment procèdent les colonies de fourmi pour déterminer un chemin presque géodésique de la fourmilière à un stock de nourriture? Les premières fourmis se déplacent au hasard. Les fourmis
t 100. = 8 ; le pourcentage de réduction est : 8 % 1 t Le pourcentage d'évolution (appelé aussi taux d'évolution) est le nombre :
Terminale STSS 2 012 2 013 Pourcentages Synthèse 1) Définition : Calculer t % d'un nombre, c'est multiplier ce nombre par t 100. 2) Exemples de calcul : a) Calcul d un pourcentage : Un article coûtant
Logiciel SCRATCH FICHE 02
1. Reprise de la fiche 1: 1.1. Programme Figure : Logiciel SCRATCH FICHE 02 SANS ORDINATEUR : Dessiner à droite le dessin que donnera l'exécution de ce programme : Unité : 50 pas : Remarque : vous devez
SINE QUA NON. Découverte et Prise en main du logiciel Utilisation de bases
SINE QUA NON Découverte et Prise en main du logiciel Utilisation de bases Sine qua non est un logiciel «traceur de courbes planes» mais il possède aussi bien d autres fonctionnalités que nous verrons tout
Probabilité. Table des matières. 1 Loi de probabilité 2 1.1 Conditions préalables... 2 1.2 Définitions... 2 1.3 Loi équirépartie...
1 Probabilité Table des matières 1 Loi de probabilité 2 1.1 Conditions préalables........................... 2 1.2 Définitions................................. 2 1.3 Loi équirépartie..............................
Série TD 3. Exercice 4.1. Exercice 4.2 Cet algorithme est destiné à prédire l'avenir, et il doit être infaillible! Exercice 4.3. Exercice 4.
Série TD 3 Exercice 4.1 Formulez un algorithme équivalent à l algorithme suivant : Si Tutu > Toto + 4 OU Tata = OK Alors Tutu Tutu + 1 Tutu Tutu 1 ; Exercice 4.2 Cet algorithme est destiné à prédire l'avenir,
Arithmétique binaire. Chapitre. 5.1 Notions. 5.1.1 Bit. 5.1.2 Mot
Chapitre 5 Arithmétique binaire L es codes sont manipulés au quotidien sans qu on s en rende compte, et leur compréhension est quasi instinctive. Le seul fait de lire fait appel au codage alphabétique,
Statistiques Descriptives à une dimension
I. Introduction et Définitions 1. Introduction La statistique est une science qui a pour objectif de recueillir et de traiter les informations, souvent en très grand nombre. Elle regroupe l ensemble des
TP N 57. Déploiement et renouvellement d une constellation de satellites
TP N 57 Déploiement et renouvellement d une constellation de satellites L objet de ce TP est d optimiser la stratégie de déploiement et de renouvellement d une constellation de satellites ainsi que les
Probabilités sur un univers fini
[http://mp.cpgedupuydelome.fr] édité le 7 août 204 Enoncés Probabilités sur un univers fini Evènements et langage ensembliste A quelle condition sur (a, b, c, d) ]0, [ 4 existe-t-il une probabilité P sur
Votre quotidien à Blanche
Votre quotidien à Blanche Les locaux de la CPGE (Bat B et CDI) vous sont accessibles tous les soirs jusqu à 20h, et le vendredi jusqu à 18h Vincent Frotier est présent au CDI de 15h à 20h pour vous encadrer
Baccalauréat ES Amérique du Nord 4 juin 2008
Baccalauréat ES Amérique du Nord 4 juin 2008 EXERCICE 1 Commun à tous les candidats f est une fonction définie sur ] 2 ; + [ par : 4 points f (x)=3+ 1 x+ 2. On note f sa fonction dérivée et (C ) la représentation
Exemples de problèmes et d applications. INF6953 Exemples de problèmes 1
Exemples de problèmes et d applications INF6953 Exemples de problèmes Sommaire Quelques domaines d application Quelques problèmes réels Allocation de fréquences dans les réseaux radio-mobiles Affectation
I. Introduction aux fonctions : les fonctions standards
Chapitre 3 : Les fonctions en C++ I. Introduction aux fonctions : les fonctions standards A. Notion de Fonction Imaginons que dans un programme, vous ayez besoin de calculer une racine carrée. Rappelons
Travaux dirigés d introduction aux Probabilités
Travaux dirigés d introduction aux Probabilités - Dénombrement - - Probabilités Élémentaires - - Variables Aléatoires Discrètes - - Variables Aléatoires Continues - 1 - Dénombrement - Exercice 1 Combien
LES GENERATEURS DE NOMBRES ALEATOIRES
LES GENERATEURS DE NOMBRES ALEATOIRES 1 Ce travail a deux objectifs : ====================================================================== 1. Comprendre ce que font les générateurs de nombres aléatoires
Propagation sur réseau statique et dynamique
Université de la Méditerranée UFR Sciences de Luminy Rapport de stage informatique pour le Master 2 de Physique, Parcours Physique Théorique et Mathématique, Physique des Particules et Astroparticules.
