Systèmes d Information Décisionnels RICM5
|
|
|
- Florence Moreau
- il y a 10 ans
- Total affichages :
Transcription
1 Systèmes d Information Décisionnels RICM5 Durée : 2h heures Documents autorisés. Des réponses brèves, mais claires, sont attendues. Problème : Analyse de données d assurances Nous disposons d une base de données «Assurance» donnant la description de 64 contrats d assurance voiture par cinq variables 1 : District : une variable nominale codant les régions de 1 à 4, Age : une variable ordinale indiquant la tranche d âge des assurés de modalités : <25, 25 29, 30 35, >35, Holders : une variable continue indiquant le nombre d assurés Group : une variable ordinale indiquant la catégorie des voitures assurées de modalités : <1 litre, litre, litre, >2 litre, Claim : une variable continue correspondant au nombre de réclamations effectuées. Les données «Assurance» sont illustrées par l extrait de la base suivant : Row nb District Group Age Holders Claims 1 1 <1l < l <1l < l > <1l <1l l > >2l < Partie 1 : Analyse descriptive Considérons les commandes suivantes et les résultats d exécution correspondant : Ins<-Assurance attributes(ins) summary(ins) 1 L. A. Baxter, S. M. Coutts and G. A. F. Ross (1980) Applications of linear models in motor insurance. Proceedings of the 21st International Congress of Actuaries, Zurich pp Systèmes d information décisionnels (Ahlame Douzal) / 7
2 $names [1] "District" "Group" "Age" "Holders" "Claims" $class [1] "data.frame" $row.names [1] [26] [51] > dim(ins) [1] 64 5 District Group Age Holders Claims 1:16 <1l:16 <25 :16 Min. : 3.00 Min. : : l: :16 1st Qu. : st Qu.: : l: :16 Median : Median : :16 >2l:16 >35 :16 Mean : Mean : rd Qu. : rd Qu.: Max. : Max. : a) Interprétez les résultats correspondants aux variables «District» et «Holders» b) Que peut-on dire de la distribution du nombre de contrats d assurance conclus par région, par catégorie de voiture et par âge? Considérons le script suivant ainsi que les résultats associés : par(mfrow=c(1,4)) boxplot(split(ins$group,ins$district),main="group") boxplot(split(ins$age,ins$district),main="age") boxplot(split(ins$holders,ins$district),main="holders") boxplot(split(ins$claims,ins$district),main="claims") Figure 1. Systèmes d information décisionnels (Ahlame Douzal) / 7
3 c) Interprétez les boxplots de la Figure 1. Partie 2 : Classification non-supervisée des données d assurance. Notre objectif est de procéder à une classification non supervisée des 64 observations via deux approches : pam, puis confronter les résultats obtenus avec ceux d une classification hiérarchique. Pour cela, le script suivant est exécuté : 1. par(mfrow=c(1,3)) 2. DistIns<-daisy(Ins[,c(-1,-2)]) 3. si<-c(2:20) 4. for(nbc in 2:20){ 5. resupam<-pam( DistIns,k=nbc) 6. si[nbc-1]<- resupam$silinfo$avg.width 7. } 8. nbc<-c(2:20) 9. plot(nbc,si, type="l", main="evolution de la valeur silhouette") 10 N<-which(si==max(si)) resupam<-pam(distins,k=n) 12. plot(resupam) 13. resuhclust <-hclust(distins) 14. plot(resuhclust, hang=-1) a) Expliquez clairement l intérêt de l instruction à la ligne 2, des instructions entre la ligne 4 et 7, et l instruction 11. b) Interprétez les deux graphiques donnés en Figures 2, 3, et 4. Figure 2. Systèmes d information décisionnels (Ahlame Douzal) / 7
4 Figure 3. Figure 4. c) Quel conclusion en tirer quand au bon nombre de classe. Systèmes d information décisionnels (Ahlame Douzal) / 7
5 Nous visualisons le profil des individus d identifiant 8,24, 12, 4, et 40 District Group Age Holders Claims l > l > l > <1l > l > d) Quel interprétation donner à cette classe. Partie 3. Classification supervisée. Nous procédons à la classification par arbre des données d assurance afin d explorer d éventuelles règles régissant les données d assurance. On utilise le script suivant : par(mfrow=c(1,1)) resutreec<-rpart(ins$claims~., data=ins) plot(resutreec) text(resutreec) resutreeh<-rpart(ins$holders~., data=ins) plot(resutreeh) text(resutreeh) resutreed<-rpart(ins$district~., data=ins) plot(resutreed) text(resutreed) resutreeg<-rpart(ins$group~., data=ins) plot(resutreeg) text(resutreeg) par(mfrow=c(1,1)) resutreea<-rpart(ins$age~., data=ins) plot(resutreea, angle=-90) text(resutreea) a) Lequel des arbres construits minimise l erreur apparente de classement ou de régression? b) Donnez la liste des règles de décision du meilleur arbre trouvé en a). c) Quelle(s) critique(s) méthodologique(s) pouvez-vous formuler concernant la classification par arbre effectuée? Argumentez. Systèmes d information décisionnels (Ahlame Douzal) / 7
6 Arbre Claims~. Systèmes d information décisionnels (Ahlame Douzal) / 7
7 Arbre Holder~. Arbre District~. Arbre Group~. Arbre Age~. Systèmes d information décisionnels (Ahlame Douzal) / 7
Introduction aux Statistiques et à l utilisation du logiciel R
Introduction aux Statistiques et à l utilisation du logiciel R Christophe Lalanne Christophe Pallier 1 Introduction 2 Comparaisons de deux moyennes 2.1 Objet de l étude On a mesuré le temps de sommeil
Organisé par StatSoft France et animé par Dr Diego Kuonen, expert en techniques de data mining.
2 jours : Mardi 15 et mercredi 16 novembre 2005 de 9 heures 30 à 17 heures 30 Organisé par StatSoft France et animé par Dr Diego Kuonen, expert en techniques de data mining. Madame, Monsieur, On parle
Gestion des données avec R
Gestion des données avec R Christophe Lalanne & Bruno Falissard Table des matières 1 Introduction 1 2 Importation de fichiers CSV 1 2.1 Structure du fichier de données...................................
Laboratoire 4 Développement d un système intelligent
DÉPARTEMENT DE GÉNIE LOGICIEL ET DES TI LOG770 - SYSTÈMES INTELLIGENTS ÉTÉ 2012 Laboratoire 4 Développement d un système intelligent 1 Introduction Ce quatrième et dernier laboratoire porte sur le développement
ESIEA PARIS 2011-2012
ESIEA PARIS 2011-2012 Examen MAT 5201 DATA MINING Mardi 08 Novembre 2011 Première Partie : 15 minutes (7 points) Enseignant responsable : Frédéric Bertrand Remarque importante : les questions de ce questionnaire
Enjeux mathématiques et Statistiques du Big Data
Enjeux mathématiques et Statistiques du Big Data Mathilde Mougeot LPMA/Université Paris Diderot, [email protected] Mathématique en Mouvements, Paris, IHP, 6 Juin 2015 M. Mougeot (Paris
Introduction au datamining
Introduction au datamining Patrick Naïm janvier 2005 Définition Définition Historique Mot utilisé au départ par les statisticiens Le mot indiquait une utilisation intensive des données conduisant à des
LES DIFFERENTS TYPES DE MESURE
LES DIFFERENTS TYPES DE MESURE Licence - Statistiques 2004/2005 REALITE ET DONNEES CHIFFREES Recherche = - mesure. - traduction d une réalité en chiffre - abouti à des tableaux, des calculs 1) Qu est-ce
Projet SINF2275 «Data mining and decision making» Projet classification et credit scoring
Projet SINF2275 «Data mining and decision making» Projet classification et credit scoring Année académique 2006-2007 Professeurs : Marco Saerens Adresse : Université catholique de Louvain Information Systems
La classification automatique de données quantitatives
La classification automatique de données quantitatives 1 Introduction Parmi les méthodes de statistique exploratoire multidimensionnelle, dont l objectif est d extraire d une masse de données des informations
Un exemple de régression logistique sous
Fiche TD avec le logiciel : tdr341 Un exemple de régression logistique sous A.B. Dufour & A. Viallefont Etude de l apparition ou non d une maladie cardiaque des coronaires 1 Présentation des données Les
Statistique : Résumé de cours et méthodes
Statistique : Résumé de cours et méthodes 1 Vocabulaire : Population : c est l ensemble étudié. Individu : c est un élément de la population. Effectif total : c est le nombre total d individus. Caractère
Arbres binaires de décision
1 Arbres binaires de décision Résumé Arbres binaires de décision Méthodes de construction d arbres binaires de décision, modélisant une discrimination (classification trees) ou une régression (regression
Lire ; Compter ; Tester... avec R
Lire ; Compter ; Tester... avec R Préparation des données / Analyse univariée / Analyse bivariée Christophe Genolini 2 Table des matières 1 Rappels théoriques 5 1.1 Vocabulaire....................................
Analyse de grandes bases de données en santé
.. Analyse de grandes bases de données en santé Alain Duhamel Michaël Genin Mohamed Lemdani EA 2694 / CERIM Master 2 Recherche Biologie et Santé Journée Thématique Fouille de Données Plan. 1 Problématique.
SOCLE COMMUN - La Compétence 3 Les principaux éléments de mathématiques et la culture scientifique et technologique
SOCLE COMMUN - La Compétence 3 Les principaux éléments de mathématiques et la culture scientifique et technologique DOMAINE P3.C3.D1. Pratiquer une démarche scientifique et technologique, résoudre des
COMMENT MAITRISER LA GESTION DES APPROVISIONNEMENTS ET DES STOCKS DE MEDICAMENTS
1 sur 9 COMMENT MAITRISER LA GESTION DES APPROVISIONNEMENTS ET DES STOCKS DE MEDICAMENTS (L'article intégral est paru dans Gestions Hospitalières n 357 de juin-juillet 1996) Pour plus d'informations concernant
«Identifier et définir le besoin en recrutement»
«Identifier et définir le besoin en recrutement» LES ETAPES DU RECRUTEMENT Le recrutement est une démarche structurée qui comporte plusieurs étapes aux quelles il faut attacher de l importance. La majorité
La mesure de la qualité des services de communications électroniques en France
La mesure de la qualité des services de communications électroniques en France Jacques Stern ARCEP FRATEL 10 ème Séminaire la mesure de la qualité des services de communications électroniques : approches,
Introduction au Data-Mining
Introduction au Data-Mining Gilles Gasso, Stéphane Canu INSA Rouen -Département ASI Laboratoire LITIS 8 septembre 205. Ce cours est librement inspiré du cours DM de Alain Rakotomamonjy Gilles Gasso, Stéphane
Utilisation du Logiciel de statistique SPSS 8.0
Utilisation du Logiciel de statistique SPSS 8.0 1 Introduction Etude épidémiologique transversale en population générale dans 4 pays d Afrique pour comprendre les différences de prévalence du VIH. 2000
Agenda de la présentation
Le Data Mining Techniques pour exploiter l information Dan Noël 1 Agenda de la présentation Concept de Data Mining ou qu est-ce que le Data Mining Déroulement d un projet de Data Mining Place du Data Mining
Traitement des données avec Microsoft EXCEL 2010
Traitement des données avec Microsoft EXCEL 2010 Vincent Jalby Septembre 2012 1 Saisie des données Les données collectées sont saisies dans une feuille Excel. Chaque ligne correspond à une observation
UNE FORMATION POUR APPRENDRE À PRÉSENTER DES DONNÉES CHIFFRÉES : POUR QUI ET POURQUOI? Bénédicte Garnier & Elisabeth Morand
UNE FORMATION POUR APPRENDRE À PRÉSENTER DES DONNÉES CHIFFRÉES : POUR QUI ET POURQUOI? Bénédicte Garnier & Elisabeth Morand Service méthodes statistiques Institut National d Etudes Démographiques (Ined)
Objectifs : piloter l organisation à travers des indicateurs (regroupés dans un tableau de bord), et informer des résultats la hiérarchie.
C HAPI TRE 8 Tableau de bord et reporting Objectifs : piloter l organisation à travers des indicateurs (regroupés dans un tableau de bord), et informer des résultats la hiérarchie. 1 Principes A Le tableau
Transmission d informations sur le réseau électrique
Transmission d informations sur le réseau électrique Introduction Remarques Toutes les questions en italique devront être préparées par écrit avant la séance du TP. Les préparations seront ramassées en
Mathématiques financières
Mathématiques financières Table des matières 1 Intérêt simple 1 1.1 Exercices........................................ 1 2 Intérêt composé 2 2.1 Taux nominal, taux périodique, taux réel.......................
MÉTHODOLOGIE DE L ASSESSMENT CENTRE L INSTRUMENT LE PLUS ADÉQUAT POUR : DES SÉLECTIONS DE QUALITÉ DES CONSEILS DE DÉVELOPPEMENT FONDÉS
MÉTHODOLOGIE DE L ASSESSMENT CENTRE L INSTRUMENT LE PLUS ADÉQUAT POUR : DES SÉLECTIONS DE QUALITÉ ET DES CONSEILS DE DÉVELOPPEMENT FONDÉS 1. Introduction Placer la «bonne personne au bon endroit» représente
MINISTÈRE DU TRAVAIL, DES RELATIONS SOCIALES, DE LA FAMILLE, DE LA SOLIDARITÉ ET DE LA VILLE CONVENTIONS COLLECTIVES. Convention collective nationale
MINISTÈRE DU TRAVAIL, DES RELATIONS SOCIALES, DE LA FAMILLE, DE LA SOLIDARITÉ ET DE LA VILLE CONVENTIONS COLLECTIVES Brochure n o 3054 Convention collective nationale IDCC : 925. DISTRIBUTION ET COMMERCE
Université Paris IX DAUPHINE DATE : 24/04/06
Master Informatique Décisionnelle Application des outils de l'informatique Décisionnelle en entreprise ETUDE SUR LES MARQUES ET LES CONTRUCTEUR DES VÉHICULES APPARTENANT AUX CLIENTS D UNE COMPAGNIE D ASSURANCE
Apprentissage Automatique
Apprentissage Automatique Introduction-I [email protected] www.lia.univ-avignon.fr Définition? (Wikipedia) L'apprentissage automatique (machine-learning en anglais) est un des champs
Exercices M1 SES 2014-2015 Ana Fermin (http:// fermin.perso.math.cnrs.fr/ ) 14 Avril 2015
Exercices M1 SES 214-215 Ana Fermin (http:// fermin.perso.math.cnrs.fr/ ) 14 Avril 215 Les exemples numériques présentés dans ce document d exercices ont été traités sur le logiciel R, téléchargeable par
Evry - M2 MIAGE Entrepôt de données
Evry - M2 MIAGE Entrepôt de données Introduction D. Ploix - M2 Miage - EDD - Introduction 1 Plan Positionnement du BI dans l entreprise Déclinaison fonctionnelle du décisionnel dans l entreprise Intégration
Optimisation des ressources des produits automobile première
EURIA EURo Optimisation produits automobile première Pauline PERROT promotion 2011 EURIA EURo 1 ère partie : contexte MMA (FFSA) MAAF (GEMA) SGAM : COVEA (AFA) GMF (GEMA) MMA : Plus 3 millions clients
Premier colloque international sur la veille stratégique multilingue. Université de Genève (ETI, Suisse) 28-29 mai 2008
Premier colloque international sur la veille stratégique multilingue Université de Genève (ETI, Suisse) 28-29 mai 2008 La Veille multilingue : défense et illustration de la traduction stratégique Mathieu
Analyse discriminante et régression logistique: application au cas de l innovation pour les entreprises du Canton du Tessin
Analyse discriminante et régression logistique: application au cas de l innovation pour les entreprises du Canton du Tessin Sandro Petrillo Université de Neuchâtel - Diplôme Postgrade en Statistique Projet
L ANALYSE COUT-EFFICACITE
L ANALYSE COUT-EFFICACITE 1 Pourquoi utiliser cet outil en évaluation? L analyse coût-efficacité est un outil d aide à la décision. Il a pour but d identifier la voie la plus efficace, du point de vue
Examen de Logiciels Statistiques
G. Hunault Angers, mai 2011 Licence MEF Examen de Logiciels Statistiques On s intéresse ici au dossier EAEF01 qui contient un extrait des données du recensement américain. On trouvera ces données et leur
Zugerberg Asset Management ZAM. Gestion de fortune exclusive principalement basée sur des titres individuels. ZAM Z.
Zugerberg Asset Management ZAM. Gestion de fortune exclusive principalement basée sur des titres individuels. ZAM Z. 1 Mesdames et messieurs, Une gestion de fortune clairvoyante, réaliste et compétente
Introduction à la B.I. Avec SQL Server 2008
Introduction à la B.I. Avec SQL Server 2008 Version 1.0 VALENTIN Pauline 2 Introduction à la B.I. avec SQL Server 2008 Sommaire 1 Présentation de la B.I. et SQL Server 2008... 3 1.1 Présentation rapide
LES SALAIRES DES CADRES EN POSTE
LES SALAIRES DES CADRES EN POSTE les étus l emploi cadre - octobre 2007 PHOTOGRAPHIE DES SALAIRES DES CADRES QUELS PROFILS POUR QUELS SALAIRES? ÉLÉMENTS DÉTERMINANTS DU SALAIRE DES CADRES Enquête auprès
CHAPITRE 2. Les variables
CHAPITRE 2 Les variables 1. La nature des variables Définition 2.1 (Variable). Une variable est une caractéristique étudiée pour une population donnée. Le sexe, la couleur préférée, le nombre de téléviseurs
Introduction au Data-Mining
Introduction au Data-Mining Alain Rakotomamonjy - Gilles Gasso. INSA Rouen -Département ASI Laboratoire PSI Introduction au Data-Mining p. 1/25 Data-Mining : Kèkecé? Traduction : Fouille de données. Terme
Relation entre deux variables : estimation de la corrélation linéaire
CHAPITRE 3 Relation entre deux variables : estimation de la corrélation linéaire Parmi les analyses statistiques descriptives, l une d entre elles est particulièrement utilisée pour mettre en évidence
Analyse de la vidéo. Chapitre 4.1 - La modélisation pour le suivi d objet. 10 mars 2015. Chapitre 4.1 - La modélisation d objet 1 / 57
Analyse de la vidéo Chapitre 4.1 - La modélisation pour le suivi d objet 10 mars 2015 Chapitre 4.1 - La modélisation d objet 1 / 57 La représentation d objets Plan de la présentation 1 La représentation
CLASSIFICATION REPORT OF REACTION TO FIRE PERFORMANCE IN ACCORDANCE WITH EN 13501-1: 2007
1 Introduction This classification report defines the classification assigned to «Paintable wall covering EKOTEX : Exclusief Ecologisch Sprint Excellent Schone Lucht Hygiëne» (as described by the sponsor)
COURS DE DATA MINING 4 : MODELISATION NON-SUPERVISEE CLASSIFICATIONS AUTOMATIQUES
COURS DE DATA MINING 4 : MODELISATION NON-SUPERVISEE CLASSIFICATIONS AUTOMATIQUES EPF 4/ 5 ème année - Option Ingénierie d Affaires et de Projets - Finance Bertrand LIAUDET 4 : Modélisation non-supervisée
Chapitre 3. Les distributions à deux variables
Chapitre 3. Les distributions à deux variables Jean-François Coeurjolly http://www-ljk.imag.fr/membres/jean-francois.coeurjolly/ Laboratoire Jean Kuntzmann (LJK), Grenoble University 1 Distributions conditionnelles
e-recrutement : recherche de mots-clés pertinents dans le titre des annonces d emploi
e-recrutement : recherche de mots-clés pertinents dans le titre des annonces d emploi Julie Séguéla 1, 2, Gilbert Saporta 1, Stéphane Le Viet 2 1 Laboratoire Cédric CNAM 292 rue Saint Martin 75141 Paris
données en connaissance et en actions?
1 Partie 2 : Présentation de la plateforme SPSS Modeler : Comment transformer vos données en connaissance et en actions? SPSS Modeler : l atelier de data mining Large gamme de techniques d analyse (algorithmes)
Structure du cours : Il existe de nombreuses méthodes intéressantes qui couvrent l Analyse des Données
Structure du cours : Il existe de nombreuses méthodes intéressantes qui couvrent l Analyse des Données et le Data Mining Nous suivons le plan suivant : Fonctionnement de Spad Catalogue des méthodes (statistiques
Étude de l application DNS (Domain Name System)
Étude de l application DNS (Domain Name System) RICM 4 - Option Réseaux Pascal Sicard Introduction Le but de ce TP est de comprendre l utilisation et le fonctionnement de l application réseau DNS (Domain
La mise en commun. (D après Michel Barlow, Le travail en groupes des élèves, Paris, A. Colin, 1993, pp. 38-44)
La mise en commun (D après Michel Barlow, Le travail en groupes des élèves, Paris, A. Colin, 1993, pp. 38-44) 1. Définition et buts. Après le travail en groupe d élèves, la mise en commun permet de «reconstituer
STYLE PROFESSIONNEL M(me) Prénom NOM Employeur Date Cette synthèse est confidentielle et ne peut être diffusée sans l accord de la personne évaluée. EXTRAIT DE 17 PAGES SUR 42 AU TOTAL RAPPORT DE SYNTHÈSE
Démonstration des économies et des avantages Le pilote
Démonstration des économies et des avantages Le pilote 1 Résumé 2 2 Coup d envoi 2 2.1 Présentation 3 2.2 Analyse des Avantages Client (AAC) 3 2.3 Règles et Modèles 3 2.4 Procédés pour les contributions
Améliorer les performances du site par l'utilisation de techniques de Web Mining
Améliorer les performances du site par l'utilisation de techniques de Web Mining CLUB SAS 2001 17/18 octobre 2001 Stéfan Galissie LINCOLN [email protected] [email protected] 2001 Sommaire
Lecture critique et pratique de la médecine
1-00.qxp 24/04/2006 11:23 Page 13 Lecture critique appliquée à la médecine vasculaireecture critique et pratique de la médecine Lecture critique et pratique de la médecine Introduction Si la médecine ne
Base de données clients outil de base du CRM
Base de données clients outil de base du CRM Introduction Objectifs SOMMAIRE Constitution de la base de données clients Alimentation Datamart et DataWarehouse Contenu Dimensions Exploitation de la base
OBSERVATOIRE DU REGROUPEMENT DE CREDITS - Sondage PollingVox pour Bourse des Crédits -
OBSERVATOIRE DU REGROUPEMENT DE CREDITS - Sondage PollingVox pour Bourse des Crédits - PollingVox 67, rue Saint-Jacques 75005 Paris pollingvox.com SOMMAIRE Note technique... 3 Synthèse des résultats...
L élaboration de la fiche de poste
L élaboration de la fiche de poste 1 Guide pratique pour l élaboration de la fiche de poste Christine SCHMELTZ-OSCABY 40 Allée Ikinoak - 64210 Guethary tél.: 06 07 51 95 97 E-mail :[email protected]
Filière Data Mining (Fouille de données) Pierre Morizet-Mahoudeaux
Filière Data Mining (Fouille de données) Pierre Morizet-Mahoudeaux Plan Objectifs Débouchés Formation UVs spécifiques UVs connexes Enseignants et partenaires Structure générale des études à l UTC Règlement
INDUSTRIALISATION ET RATIONALISATION
INDUSTRIALISATION ET RATIONALISATION A. LA PROBLEMATIQUE La mission de toute production informatique est de délivrer le service attendu par les utilisateurs. Ce service se compose de résultats de traitements
Le métier de chef de projet
Les notes de l observatoire des métiers DIRECTION DES RESSOURCES HUMAINES AVRIL 2003 Le métier de chef de projet FLORENCE BOUYER OBSERVATOIRE DES MÉTIERS CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE Instrumentation
Tâche complexe produite par l académie de Clermont-Ferrand. Mai 2012 LE TIR A L ARC. (d après une idée du collège des Portes du Midi de Maurs)
(d après une idée du collège des Portes du Midi de Maurs) Table des matières Fiche professeur... 2 Fiche élève... 5 1 Fiche professeur Niveaux et objectifs pédagogiques 5 e : introduction ou utilisation
MANIPULATION ET VISUALISATION DE GROSSES BASES DE DONNÉES AVEC R
MANIPULATION ET VISUALISATION DE GROSSES BASES DE DONNÉES AVEC R Jeudi 10 octobre 2013 CHAIGNEAU Alicia GAZAN Rozenn DAUFOUY Camille JOURDAN Sandra Introduction 2 Evolution des outils de collecte Big data
Incertitude et variabilité : la nécessité de les intégrer dans les modèles
Incertitude et variabilité : la nécessité de les intégrer dans les modèles M. L. Delignette-Muller Laboratoire de Biométrie et Biologie Evolutive VetAgro Sup - Université de Lyon - CNRS UMR 5558 24 novembre
.. -... -... Mention : En débat
Page 1 sur 6 Point du programme Domaine d'activité : LE MONDE CONSTRUIT PAR L'HOMME FAIRE ROULER - "Petites Voitures" CYCLE II Objectifs généraux Comment fabriquer une petite voiture capable de rouler
Statistiques Descriptives à une dimension
I. Introduction et Définitions 1. Introduction La statistique est une science qui a pour objectif de recueillir et de traiter les informations, souvent en très grand nombre. Elle regroupe l ensemble des
Fiche pour les étudiants «Comment répondre à une question à développement?»
VOLUME 11, NO 1 AUTOMNE 2012 Cégep de Rimouski Développement pédagogique Annexe 2 du Pédagotrucs no 40 Fiche pour les étudiants «Comment répondre à une question à développement?» Voici un guide qui t aidera
De la production collaborative à la capitalisation des connaissances Le rôle des documentalistes
De la production collaborative à la capitalisation des connaissances Le rôle des documentalistes Le 13 mars 2008 Introduction 2 Le développement de la pratique collaborative dans les entreprises et les
ECTS CM TD TP. 1er semestre (S3)
Organisation du parcours M2 IRS en alternance De façon générale, les unités d enseignements (UE) sont toutes obligatoires avec des ECTS équivalents à 3 sauf le stage sur 27 ECTS et réparties sur deux semestres
Qu est-ce qu une problématique?
Fiche méthodologique préparée par Cécile Vigour octobre 2006 1 Qu est-ce qu une problématique? Trois étapes : 1. Définition de la problématique 2. Qu est-ce qu une bonne problématique? 3. Comment problématiser?
Spécificités, Applications et Outils
Spécificités, Applications et Outils Ricco Rakotomalala Université Lumière Lyon 2 Laboratoire ERIC Laboratoire ERIC 1 Ricco Rakotomalala [email protected] http://chirouble.univ-lyon2.fr/~ricco/data-mining
distribution quelconque Signe 1 échantillon non Wilcoxon gaussienne distribution symétrique Student gaussienne position
Arbre de NESI distribution quelconque Signe 1 échantillon distribution symétrique non gaussienne Wilcoxon gaussienne Student position appariés 1 échantillon sur la différence avec référence=0 2 échantillons
PROGRAMME DE MANAGEMENT DES ORGANISATIONS
PROGRAMME DE MANAGEMENT DES ORGANISATIONS Cycle terminal de la série sciences et technologies du management et de la gestion I. INDICATIONS GÉNÉRALES L enseignement de management des organisations vise
Workflow/DataWarehouse/DataMining. 14-09-98 LORIA - Université d automne 1998 - Informatique décisionnelle - L. Mirtain 1
Workflow/DataWarehouse/DataMining 14-09-98 LORIA - Université d automne 1998 - Informatique décisionnelle - L. Mirtain 1 plan Workflow DataWarehouse Aide à la décision DataMinig Conclusion 14-09-98 LORIA
M. GUILLAUME ^ Alimentation en eau potable /} ( de la Ville de Metz Implantation de nouvelles stations de pompage dans la région de La Maxe-Thur;y
M. GUILLAUME ^ Alimentation en eau potable /} ( de la Ville de Metz Implantation de nouvelles stations de pompage dans la région de La Maxe-Thur;y 15 Octobre 1954 BUREAU DE RECHERCHES GEOLOGIQUES GEOPHYSIQUES
Données longitudinales et modèles de survie
ANALYSE DU Données longitudinales et modèles de survie 5. Modèles de régression en temps discret André Berchtold Département des sciences économiques, Université de Genève Cours de Master ANALYSE DU Plan
td3a correction session7az
td3a correction session7az August 19, 2015 1 Séance 7 : PIG et JSON et streaming avec les données vélib (correction avec Azure) Plan Récupération des données Connexion au cluster et import des données
REDIGER UNE BIBLIOGRAPHIE
Service documentation 2011/2012 REDIGER UNE BIBLIOGRAPHIE 1. Présentation 2. La bibliographie 2.1 Règles de présentation pour les documents imprimés 2.2 Règles de présentation pour les documents électroniques
FPSTAT 2 í La dçecision statistique. 1. Introduction ça l'infçerence. 1
INTRODUCTION ça L'INFçERENCE STATISTIQUE 1. Introduction 2. Notion de variable alçeatoire íprçesentation ívariables alçeatoires discrçetes ívariables alçeatoires continues 3. Reprçesentations d'une distribution
Spécifications, Développement et Promotion. Ricco RAKOTOMALALA Université Lumière Lyon 2 Laboratoire ERIC
Spécifications, Développement et Promotion Ricco RAKOTOMALALA Université Lumière Lyon 2 Laboratoire ERIC Ricco? Enseignant chercheur (CNU.27) En poste à l Université Lyon 2 Faculté de Sciences Eco. Recherche
Data Mining. Vincent Augusto 2012-2013. École Nationale Supérieure des Mines de Saint-Étienne. Data Mining. V. Augusto.
des des Data Mining Vincent Augusto École Nationale Supérieure des Mines de Saint-Étienne 2012-2013 1/65 des des 1 2 des des 3 4 Post-traitement 5 représentation : 6 2/65 des des Définition générale Le
Les conducteurs automobiles évaluent-ils correctement leur risque de commettre un accident?
Les conducteurs automobiles évaluent-ils correctement leur risque de commettre un accident? Nathalie LEPINE GREMAQ, Université de Toulouse1, 31042 Toulouse, France GRAPE, Université Montesquieu-Bordeaux
Accenture Software. IDMF Insurance Data Migration Factory. La migration en toute confiance de vos données d assurance
Accenture Software IDMF Insurance Data Factory La migration en toute confiance de vos données d assurance Plus de 60 millions de contrats migrés avec succès Les compagnies d assurance sont régulièrement
Etude des propriétés empiriques du lasso par simulations
Etude des propriétés empiriques du lasso par simulations L objectif de ce TP est d étudier les propriétés empiriques du LASSO et de ses variantes à partir de données simulées. Un deuxième objectif est
Extrait de Plan de Continuation d'activité Octopuce
v. 2 décembre 2012 Extrait de Plan de Continuation d'activité Octopuce Introduction Octopuce est un hébergeur d'infrastructures web, opérateur Internet indépendant, et fournisseur d'infogérance pour ses
Table des matières. 1. Établir une facture... 1. 2. Recevoir une facture... 17. 3. La TVA... 23
Table des matières 1. Établir une facture... 1 1.1. Quand devez-vous établir une facture?... 1 1.1.1. L obligation de facturer... 1 1.1.2. La date ultime de facturation... 2 1.2. Que devez-vous indiquer
COR-E : un modèle pour la simulation d agents affectifs fondé sur la théorie COR
COR-E : un modèle pour la simulation d agents affectifs fondé sur la théorie COR SABRINA CAMPANO DIRECTION: NICOLAS SABOURET ENCADREMENT : NICOLAS SABOURET, VINCENT CORRUBLE, ETIENNE DE SEVIN SOUTENANCE
BTS MANAGEMENT DES UNITES COMMERCIALES GUIDE DU TUTEUR
BTS MANAGEMENT DES UNITES COMMERCIALES GUIDE DU TUTEUR Vous êtes tuteur d un étudiant en BTS management des unités commerciales. Ce guide vous est destiné : il facilite votre préparation de l arrivée du
Terminale STMG Lycée Jean Vilar 2014/2015. Terminale STMG. O. Lader
Terminale STMG O. Lader Table des matières Interrogation 1 : Indice et taux d évolution........................... 2 Devoir maison 1 : Taux d évolution................................ 4 Devoir maison 1
Décision de la Chambre de Résolution des Litiges (CRL)
Décision de la Chambre de Résolution des Litiges (CRL) ayant siégé à Zurich, Suisse, le 16 novembre 2012, dans la composition suivante: Geoff Thompson (Angleterre), Président Theo van Seggelen (Pays-Bas),
Déroulement d un projet en DATA MINING, préparation et analyse des données. Walid AYADI
1 Déroulement d un projet en DATA MINING, préparation et analyse des données Walid AYADI 2 Les étapes d un projet Choix du sujet - Définition des objectifs Inventaire des données existantes Collecte, nettoyage
Magnitudes des étoiles
Magnitudes des étoiles 24/03/15 Observatoire de Lyon 24/03/15 () Magnitudes des étoiles Observatoire de Lyon 1 / 14 Magnitude apparente d une étoile Avant la physique... Hipparque, mathématicien et astronome
Algorithmique et langages du Web
Cours de Algorithmique et langages du Web Jean-Yves Ramel Licence 1 Peip Biologie Groupe 7 & 8 Durée totale de l enseignement = 46h [email protected] Bureau 206 DI PolytechTours Organisation de la partie
Avertissement. Copyright 2014 Accenture All rights reserved. 2
Avertissement Ce document et les informations contenues sont la propriété d Accenture. Ce document en totalité ou en partie, ne peut être reproduit sous aucune forme ni par aucun moyen sans autorisation
Comprendre ITIL 2011
Editions ENI Comprendre ITIL 2011 Normes et meilleures pratiques pour évoluer vers ISO 20000 Collection DataPro Extrait 54 Comprendre ITIL 2011 Normes et meilleures pratiques pour évoluer vers ISO 20000
Dell Software International Limited City Gate Park Mahon Cork Ireland
Formation Big Data Analytics Séminaire de Méthodologie en Data Science Transformez Vos Données en Actions 2 jours : Mardi 8 et Mercredi 9 Décembre 2015 + 1 jour en option : «Mains sur le Clavier» Lieu
Evaluer l ampleur des économies d agglomération
Pierre-Philippe Combes GREQAM - Université d Aix-Marseille Ecole d Economie de Paris CEPR Janvier 2008 Supports de la présentation Combes, P.-P., T. Mayer et J.-T. Thisse, 2006, chap. 11. Economie Géographique,
