Chapitre 3 : Exemples de raisonnement par récurrence
|
|
|
- Marie-Anne Lanthier
- il y a 8 ans
- Total affichages :
Transcription
1 Chapitre 3 : Exemples de raisonnement par récurrence Plan de ce chapitre 1 Rappel 11 Mise en place et exemple 1 Mise en garde Exercices 1 comparaison entre n n et n! Démonstration de l inégalité de Bernoulli 3 Démonstration de la formule du binôme de Newton 4 3 divise 4 n 1 1 Rappel 11 Mise en place et exemple Le raisonnement par récurrence peut être utilisé lorsqu on veut montrer qu une propriété dépendant d un entier naturel n est vraie quelque soit cet entier ou pour tout entier supérieur à un certain n 0 donné Principe de récurrence : Soit n 0 un entier naturel et P(n) une propriété dépendant d un entier naturel n Si P(n 0 ) est vraie et si pour tout k n 0, (P(k) est vraie) implique (P(k + 1) est vraie) alors pour tout entier naturel n tel que n n 0, P(n) est vraie Quatre étapes sont nécessaires pour montrer qu une P(n) est vraie pour tout entier naturel n n 0 Nous les précisons sur l exemple suivant Exemple : On veut trouver une expression simple de Première étape : Recherche de P(n) S n n 3 Par le calcul, on a : S 1 1 3, S 9, S 3 36 et S On constate que S 1 1, S 3, S 3 6 et S 4 10 Or, 1 1, 3 3, et On a donc : ( ) 1 ( ) 3 ( ) 3 4 ( ) 4 5 S 1, S, S 3 et S 4 Il semble que ( ) n(n + 1) S n 1
2 ( ) 5 6 ( ) 6 7 Vérifier que S 5 et S 6 Montrons par récurrence que pour tout n 1 : ( ) n(n + 1) P(n) : S n Deuxième étape : On a vu que P(1) est vraie Troisième étape : Soit k 1 un entier quelconque Supposons que et montrons que ( k(k + 1) k 3 ) Par définition de S n, on a : ( ) (k + 1)(k + ) k 3 + (k + 1) 3 S k+1 S k + (k + 1) 3 Or, d après l hypothèse de récurrence on a ( ) k(k + 1) S k D où Ainsi ( ) k(k + 1) S k+1 + (k + 1) 3 ( ) k (k + 1) 4 + k + 1 ( k (k + 1) ) + 4k ( ) (k + 1)(k + ) ( ) (k + 1)(k + ) S k+1 Quatrième étape : On applique le principe de récurrence et on conclut que pour tout entier n 1 : ( ) n(n + 1) n 3 Remarques : - La première étape exige, sauf si la propriété P(n) est bien explicitée dans l énoncé, une conjecture qui n est pas toujours facile ou évidente - L hypothèse de la troisième étape s appelle l hypothèse de récurrence - La troisième étape nécessite que l on précise la propriété P(k + 1) à montrer et que l on ait trouvé un lien entre P(k) et P(k + 1) Ce lien peut être logique ou algébrique
3 1 Mise en garde Toutes les étapes sont importantes et ne peuvent être évitées comme le montre l exemple suivant : oit la propriété P(n) : 3 divise 4 n + 1 La première étape étant ainsi donnée par l énoncé Voyons ce qui se passe si l on saute la deuxième étape (où il faut vérifier que P(n 0 ) est vraie) pour passer directement à la troisième : supposons P(k) vraie, ie : il existe q N tel que 4 k + 1 3q et montrons que P(k + 1) est vraie, c est-à-dire que : En effet, on a il existe q N tel que 4 k q 4 k k (4 k + 1) 3 Or, par hypothèse de récurrence : Il existe q N tel que 4 k + 1 3q D où 4 k q 3 3(4q 1) 3q où l on a posé q 4q 1 Maintenant, en appliquant le principe de récurrence (quatrième étape), on conclut que pour tout entier n N, 4 n + 1 est divisible par 3 Or ceci est faux car 3 ne divise pas , 3 ne divise pas , L erreur vient bien entendue du fait qu on a négligé la deuxième étape Exercices Exercice 1 Comparer n n et n! Corrigé Première étape : Recherche de P(n) Pour n 1, on a 1 1 et 1! 1 donc 1 1 1! Pour n, on a 4 et! donc >! Pour n 3, on a et 3! 6 donc 3 3 > 3! Conjecture : Pour tout entier n, n n > n! Montrons par récurrence que pour tout n : P(n) : n n > n! Deuxième étape : On a vu que P() est vraie Troisième étape : Soit k un entier quelconque Supposons que k k > k! et montrons que (k + 1) k+1 > (k + 1)! 3
4 Par définition des puissances, on a : (k + 1) k+1 (k + 1) k (k + 1) D autre part, la fonction x x k est strictement croissante sur R +, donc D où (k + 1) k > k k (k + 1) k+1 > k k (k + 1) Or, k k > k! par hypothèse de récurrence En multipliant l inégalité (k k > k!) par (k + 1), on obtient : k k (k + 1) > k! (k + 1) D où, en vertu de la transitivité de la relation > et du fait que k!(k + 1) (k + 1)!, on a : (k + 1) k+1 > (k + 1)! Quatrième étape : On applique le principe de récurrence et on conclut que pour tout entier n : n n > n! Exercice Etablir par récurrence l inégalité de Bernoulli : Soit x un réel fixé tel que x 1 Pour tout entier n 0, : (x + 1) n nx + 1 Corrigé Première étape : P(n) : (x + 1) n nx + 1 pour tout entier n 0 Deuxième étape : Pour n 0, (x + 1) 0 1 (0 x + 1) 1 donc P(0) est vraie Pour n 1, (x + 1) 1 (1 x + 1) donc P(1) est vraie Comme P(0) et P(1) sont en fait des égalités, on va voir ce qui se passe pour n (x + 1) x + x + 1 x + 1, donc P() est vraie et c est une inégalité stricte sauf si x 0 Troisième étape : Soit k 0 un entier quelconque Supposons que (x + 1) k kx + 1 et montrons que (x + 1) k+1 (k + 1)x + 1 4
5 Par définition des puissances, on a : Or, par hypothèse de récurrence, Et comme (x + 1) 0, on obtient : Par ailleurs, d où (x + 1) k+1 (x + 1) k (x + 1) (x + 1) k kx + 1 (x + 1) k (x + 1) (kx + 1)(x + 1) (kx + 1)(x + 1) kx + (k + 1)x + 1, (kx + 1)(x + 1) (k + 1)x + 1 Ainsi, par transitivité de la relation d ordre, on a : (x + 1) k+1 (k + 1)x + 1 Quatrième étape : On applique le principe de récurrence et on conclut que pour tout entier n 0 : (x + 1) n nx + 1 Exercice 3 Montrer que 3 divise 4 n 1 pour tout entier n 0 Corrigé Par définition, 3 divise 4 n 1 si et seulement si il existe q N tel que 4 n 1 3q Première étape : P(n) : 3 divise 4 n 1 ou encore : q N tel que 4 n 1 3q Deuxième étape : Pour n 0, (ici q 0), donc P(0) est vraie Pour n 1, (ici q 1), donc P(1) est vraie Pour n, (ici q 5), donc P() est vraie Troisième étape : Soit k 0 un entier quelconque Supposons qu il existe q N tel que 4 k 1 3q et montrons qu il existe q N tel que 4 k+1 1 3q En effet, on a : 4 k k (4 k 1) + 3 Or, par hypothèse de récurrence, il existe q N tel que 4 k 1 3q, 5
6 donc 4 k q + 3 3(4q + 1) 3q où l on a posé q 4q + 1 Quatrième étape : On applique le principe de récurrence et on conclut que pour tout entier n 0 3 divise 4 n 1 Exercice 4 Démontrer la formule du binôme de Newton : soit (a, b) R, on a pour tout n N (a + b) n Cna k n k b k où Cn k n! k!(n k)! Corrigé Première étape : P(n) : (a + b) n Cna k n k b k Deuxième étape : Pour n 1, (a + b) 1 a + b C 0 1a + C 1 1b, car C 0 1 C ; donc P(1) est vraie Pour n, (a + b) a + ab + b C 0 a + C 1 ab + C b, car C 0 C 1 et C1 ; donc P() est vraie Troisième étape : Soit n 1 un entier quelconque Supposons que P(n) est vraie, ie (a + b) n Cna k n k b k et montrons que P(n + 1) l est aussi, c est-à-dire : n+1 (a + b) n+1 Cn+1a k n+1 k b k En effet, par définition des puissances (a + b) n+1 (a + b)(a + b) n Or, par hypothèse de récurrence (a + b) n Cna k n k b k 6
7 Donc (a + b) n+1 (a + b) Cna k n k b k ( ) (a + b) a n + Cna k n k b k + b n a n+1 + Cna k n+1 k b k + ab n + ba n + Cna k n k b k+1 + b n+1 a n+1 + a n+1 + a n+1 + ( ) Cna k n+1 k b k + ab n + ( ) Cna k n k b k+1 + ba n + b n+1 Cna k n+1 k b k + Cna k n k b k+1 + b n+1 Cna k n+1 k b k + Cna p n p b p+1 + b n+1 Faisons un changement d indice k p + 1 ; ainsi si p 0 alors k 1 et si p n 1 alors k n D où Par conséquent, Par ailleurs, C k n + C k 1 n Cna p n p b p+1 p0 (a + b) n+1 a n+1 + a n+1 + p0 Cna k n+1 k b k + Cn k 1 a n (k 1) b k Cn k 1 a n+1 k b k C k 1 n a n+1 k b k + b n+1 (C k n + C k 1 n )a n+1 k b k + b n+1 Cn+1 k (voir la preuve ci-dessous) D où (a + b) n+1 a n+1 + Cn+1a k n+1 k b k + b n+1 n+1 Cn+1a k n+1 k b k, c est-à-dire P(n + 1) est vraie Quatrième étape : On applique le principe de récurrence et on conclut que pour tout entier naturel n 1 : (a + b) n Cna k n k b k 7
8 Preuve du résultat : C k n + C k 1 n C k n+1 C k n + C k 1 n n! k!(n k)! + n! (k 1)!(n (k 1))! n! k!(n k)! + n! (k 1)!(n + 1 k)! ( ) n! 1 (k 1)!(n k)! k + 1 n + 1 k n! (k 1)!(n k)! n + 1 k + k k(n + 1 k) n! (n + 1) (k 1)! k (n k)! ((n k) + 1) (n + 1)! k!(n k + 1)! (n + 1)! k!(n + 1 k)! C k n+1 8
Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes.
1 Définitions, notations Calcul matriciel Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes. On utilise aussi la notation m n pour le
Pour l épreuve d algèbre, les calculatrices sont interdites.
Les pages qui suivent comportent, à titre d exemples, les questions d algèbre depuis juillet 003 jusqu à juillet 015, avec leurs solutions. Pour l épreuve d algèbre, les calculatrices sont interdites.
Probabilités sur un univers fini
[http://mp.cpgedupuydelome.fr] édité le 7 août 204 Enoncés Probabilités sur un univers fini Evènements et langage ensembliste A quelle condition sur (a, b, c, d) ]0, [ 4 existe-t-il une probabilité P sur
III- Raisonnement par récurrence
III- Raisonnement par récurrence Les raisonnements en mathématiques se font en général par une suite de déductions, du style : si alors, ou mieux encore si c est possible, par une suite d équivalences,
Cours de Probabilités et de Statistique
Cours de Probabilités et de Statistique Licence 1ère année 2007/2008 Nicolas Prioux Université Paris-Est Cours de Proba-Stat 2 L1.2 Science-Éco Chapitre Notions de théorie des ensembles 1 1.1 Ensembles
Coefficients binomiaux
Probabilités L2 Exercices Chapitre 2 Coefficients binomiaux 1 ( ) On appelle chemin une suite de segments de longueur 1, dirigés soit vers le haut, soit vers la droite 1 Dénombrer tous les chemins allant
Triangle de Pascal dans Z/pZ avec p premier
Triangle de Pascal dans Z/pZ avec p premier Vincent Lefèvre (Lycée P. de Fermat, Toulouse) 1990, 1991 1 Introduction Nous allons étudier des propriétés du triangle de Pascal dans Z/pZ, p étant un nombre
Suites numériques 4. 1 Autres recettes pour calculer les limites
Suites numériques 4 1 Autres recettes pour calculer les limites La propriété suivante permet de calculer certaines limites comme on verra dans les exemples qui suivent. Propriété 1. Si u n l et fx) est
Cours 02 : Problème général de la programmation linéaire
Cours 02 : Problème général de la programmation linéaire Cours 02 : Problème général de la Programmation Linéaire. 5 . Introduction Un programme linéaire s'écrit sous la forme suivante. MinZ(ou maxw) =
Exercices - Polynômes : corrigé. Opérations sur les polynômes
Opérations sur les polynômes Exercice 1 - Carré - L1/Math Sup - Si P = Q est le carré d un polynôme, alors Q est nécessairement de degré, et son coefficient dominant est égal à 1. On peut donc écrire Q(X)
6. Les différents types de démonstrations
LES DIFFÉRENTS TYPES DE DÉMONSTRATIONS 33 6. Les différents types de démonstrations 6.1. Un peu de logique En mathématiques, une démonstration est un raisonnement qui permet, à partir de certains axiomes,
Qu est-ce qu une probabilité?
Chapitre 1 Qu est-ce qu une probabilité? 1 Modéliser une expérience dont on ne peut prédire le résultat 1.1 Ensemble fondamental d une expérience aléatoire Une expérience aléatoire est une expérience dont
Raisonnement par récurrence Suites numériques
Chapitre 1 Raisonnement par récurrence Suites numériques Terminale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Raisonnement par récurrence. Limite finie ou infinie d une suite.
DOCM 2013 http://docm.math.ca/ Solutions officielles. 1 2 10 + 1 2 9 + 1 2 8 = n 2 10.
A1 Trouvez l entier positif n qui satisfait l équation suivante: Solution 1 2 10 + 1 2 9 + 1 2 8 = n 2 10. En additionnant les termes du côté gauche de l équation en les mettant sur le même dénominateur
Probabilités sur un univers fini
[http://mp.cpgedupuydelome.fr] édité le 10 août 2015 Enoncés 1 Proailités sur un univers fini Evènements et langage ensemliste A quelle condition sur (a,, c, d) ]0, 1[ 4 existe-t-il une proailité P sur
Logique. Plan du chapitre
Logique Ce chapitre est assez abstrait en première lecture, mais est (avec le chapitre suivant «Ensembles») probablement le plus important de l année car il est à la base de tous les raisonnements usuels
Comparaison de fonctions Développements limités. Chapitre 10
PCSI - 4/5 www.ericreynaud.fr Chapitre Points importants 3 Questions de cours 6 Eercices corrigés Plan du cours 4 Eercices types 7 Devoir maison 5 Eercices Chap Et s il ne fallait retenir que si points?
Fonctions de plusieurs variables
Module : Analyse 03 Chapitre 00 : Fonctions de plusieurs variables Généralités et Rappels des notions topologiques dans : Qu est- ce que?: Mathématiquement, n étant un entier non nul, on définit comme
Distribution Uniforme Probabilité de Laplace Dénombrements Les Paris. Chapitre 2 Le calcul des probabilités
Chapitre 2 Le calcul des probabilités Equiprobabilité et Distribution Uniforme Deux événements A et B sont dits équiprobables si P(A) = P(B) Si il y a équiprobabilité sur Ω, cad si tous les événements
Développement décimal d un réel
4 Développement décimal d un réel On rappelle que le corps R des nombres réels est archimédien, ce qui permet d y définir la fonction partie entière. En utilisant cette partie entière on verra dans ce
1 Définition et premières propriétés des congruences
Université Paris 13, Institut Galilée Département de Mathématiques Licence 2ème année Informatique 2013-2014 Cours de Mathématiques pour l Informatique Des nombres aux structures Sylviane R. Schwer Leçon
Chapitre 3. Mesures stationnaires. et théorèmes de convergence
Chapitre 3 Mesures stationnaires et théorèmes de convergence Christiane Cocozza-Thivent, Université de Marne-la-Vallée p.1 I. Mesures stationnaires Christiane Cocozza-Thivent, Université de Marne-la-Vallée
Suites numériques 3. 1 Convergence et limite d une suite
Suites numériques 3 1 Convergence et limite d une suite Nous savons que les termes de certaines suites s approchent de plus en plus d une certaine valeur quand n augmente : par exemple, les nombres u n
Introduction à l étude des Corps Finis
Introduction à l étude des Corps Finis Robert Rolland (Résumé) 1 Introduction La structure de corps fini intervient dans divers domaines des mathématiques, en particulier dans la théorie de Galois sur
Initiation à la programmation en Python
I-Conventions Initiation à la programmation en Python Nom : Prénom : Une commande Python sera écrite en caractère gras. Exemples : print 'Bonjour' max=input("nombre maximum autorisé :") Le résultat de
Chapitre 2. Eléments pour comprendre un énoncé
Chapitre 2 Eléments pour comprendre un énoncé Ce chapitre est consacré à la compréhension d un énoncé. Pour démontrer un énoncé donné, il faut se reporter au chapitre suivant. Les tables de vérité données
Chapitre 2 Le problème de l unicité des solutions
Université Joseph Fourier UE MAT 127 Mathématiques année 2011-2012 Chapitre 2 Le problème de l unicité des solutions Ce que nous verrons dans ce chapitre : un exemple d équation différentielle y = f(y)
* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours
Exo7 Continuité (étude globale). Diverses fonctions Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france.fr * très facile ** facile *** difficulté moyenne **** difficile *****
Université Paris-Dauphine DUMI2E 1ère année, 2009-2010. Applications
Université Paris-Dauphine DUMI2E 1ère année, 2009-2010 Applications 1 Introduction Une fonction f (plus précisément, une fonction réelle d une variable réelle) est une règle qui associe à tout réel x au
Chapitre 2. Matrices
Département de mathématiques et informatique L1S1, module A ou B Chapitre 2 Matrices Emmanuel Royer emmanuelroyer@mathuniv-bpclermontfr Ce texte mis gratuitement à votre disposition a été rédigé grâce
Première partie. Préliminaires : noyaux itérés. MPSI B 6 juin 2015
Énoncé Soit V un espace vectoriel réel. L espace vectoriel des endomorphismes de V est désigné par L(V ). Lorsque f L(V ) et k N, on désigne par f 0 = Id V, f k = f k f la composée de f avec lui même k
De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que
Introduction. On suppose connus les ensembles N (des entiers naturels), Z des entiers relatifs et Q (des nombres rationnels). On s est rendu compte, depuis l antiquité, que l on ne peut pas tout mesurer
Moments des variables aléatoires réelles
Chapter 6 Moments des variables aléatoires réelles Sommaire 6.1 Espérance des variables aléatoires réelles................................ 46 6.1.1 Définition et calcul........................................
Problèmes de Mathématiques Filtres et ultrafiltres
Énoncé Soit E un ensemble non vide. On dit qu un sous-ensemble F de P(E) est un filtre sur E si (P 0 ) F. (P 1 ) (X, Y ) F 2, X Y F. (P 2 ) X F, Y P(E) : X Y Y F. (P 3 ) / F. Première Partie 1. Que dire
Polynômes à plusieurs variables. Résultant
Polynômes à plusieurs variables. Résultant Christophe Ritzenthaler 1 Relations coefficients-racines. Polynômes symétriques Issu de [MS] et de [Goz]. Soit A un anneau intègre. Définition 1.1. Soit a A \
Souad EL Bernoussi. Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/
Recherche opérationnelle Les démonstrations et les exemples seront traités en cours Souad EL Bernoussi Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/ Table des matières 1 Programmation
3. Conditionnement P (B)
Conditionnement 16 3. Conditionnement Dans cette section, nous allons rappeler un certain nombre de définitions et de propriétés liées au problème du conditionnement, c est à dire à la prise en compte
CHAPITRE V SYSTEMES DIFFERENTIELS LINEAIRES A COEFFICIENTS CONSTANTS DU PREMIER ORDRE. EQUATIONS DIFFERENTIELLES.
CHAPITRE V SYSTEMES DIFFERENTIELS LINEAIRES A COEFFICIENTS CONSTANTS DU PREMIER ORDRE EQUATIONS DIFFERENTIELLES Le but de ce chapitre est la résolution des deux types de systèmes différentiels linéaires
La fonction exponentielle
DERNIÈRE IMPRESSION LE 2 novembre 204 à :07 La fonction exponentielle Table des matières La fonction exponentielle 2. Définition et théorèmes.......................... 2.2 Approche graphique de la fonction
UNIVERSITE IBN ZOHR Faculté des sciences Agadir. Filière SMA & SMI. Semestre 1. Module : Algèbre 1
UNIVERSITE IBN ZOHR Faculté des sciences Agadir Filière SMA & SMI Semestre 1 Module : Algèbre 1 Année universitaire : 011-01 A. Redouani & E. Elqorachi 1 Contenu du Module : Chapitre 1 : Introduction Logique
Chapitre 7. Récurrences
Chapitre 7 Récurrences 333 Plan 1. Introduction 2. Applications 3. Classification des récurrences 4. Résolution de récurrences 5. Résumé et comparaisons Lectures conseillées : I MCS, chapitre 20. I Rosen,
1 Première section: La construction générale
AMALGAMATIONS DE CLASSES DE SOUS-GROUPES D UN GROUPE ABÉLIEN. SOUS-GROUPES ESSENTIEL-PURS. Călugăreanu Grigore comunicare prezentată la Conferinţa de grupuri abeliene şi module de la Padova, iunie 1994
Le produit semi-direct
Le produit semi-direct Préparation à l agrégation de mathématiques Université de Nice - Sophia Antipolis Antoine Ducros Octobre 2007 Ce texte est consacré, comme son titre l indique, au produit semi-direct.
Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé.
Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé. I- ACTIVITES NUMERIQUES (12 points) Exercice 1 (3 points) On considère
Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé
Baccalauréat S ntilles-guyane 11 septembre 14 Corrigé EXERCICE 1 6 points Commun à tous les candidats Une entreprise de jouets en peluche souhaite commercialiser un nouveau produit et à cette fin, effectue
3 Approximation de solutions d équations
3 Approximation de solutions d équations Une équation scalaire a la forme générale f(x) =0où f est une fonction de IR dans IR. Un système de n équations à n inconnues peut aussi se mettre sous une telle
Cours d arithmétique Première partie
Cours d arithmétique Première partie Pierre Bornsztein Xavier Caruso Pierre Nolin Mehdi Tibouchi Décembre 2004 Ce document est la première partie d un cours d arithmétique écrit pour les élèves préparant
Méthodes de quadrature. Polytech Paris-UPMC. - p. 1/48
Méthodes de Polytech Paris-UPMC - p. 1/48 Polynôme d interpolation de Preuve et polynôme de Calcul de l erreur d interpolation Étude de la formule d erreur Autres méthodes - p. 2/48 Polynôme d interpolation
Bureau N301 (Nautile) [email protected]
Pre-MBA Statistics Seances #1 à #5 : Benjamin Leroy-Beaulieu Bureau N301 (Nautile) [email protected] Mise à niveau statistique Seance #1 : 11 octobre Dénombrement et calculs de sommes 2 QUESTIONS
Exemple 4.4. Continuons l exemple précédent. Maintenant on travaille sur les quaternions et on a alors les décompositions
Exemple 4.4. Continuons l exemple précédent. Maintenant on travaille sur les quaternions et on a alors les décompositions HQ = He 1 He 2 He 3 He 4 HQ e 5 comme anneaux (avec centre Re 1 Re 2 Re 3 Re 4
Compte sur livret. Mots clés : Sommaire : Compte sur livret. 1. Qui peut bénéficier d un compte sur livret? 2. Le compte sur livret au quotidien
- 1 - Compte sur livret Mots clés :! Compte! Epargne! Versements! Rémunération! Livret! Fiscalité Sommaire : 1. Qui peut bénéficier d un compte sur livret? 1.1 Un produit d épargne ouvert à tous 1.2 Les
Programmation linéaire et Optimisation. Didier Smets
Programmation linéaire et Optimisation Didier Smets Chapitre 1 Un problème d optimisation linéaire en dimension 2 On considère le cas d un fabricant d automobiles qui propose deux modèles à la vente, des
Eteindre. les. lumières MATH EN JEAN 2013-2014. Mme BACHOC. Elèves de seconde, première et terminale scientifiques :
MTH EN JEN 2013-2014 Elèves de seconde, première et terminale scientifiques : Lycée Michel Montaigne : HERITEL ôme T S POLLOZE Hélène 1 S SOK Sophie 1 S Eteindre Lycée Sud Médoc : ROSIO Gauthier 2 nd PELGE
Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer
Pour commencer Exercice 1 - Ensembles de définition - Première année - 1. Le logarithme est défini si x + y > 0. On trouve donc le demi-plan supérieur délimité par la droite d équation x + y = 0.. 1 xy
ÉPREUVE COMMUNE DE TIPE 2008 - Partie D
ÉPREUVE COMMUNE DE TIPE 2008 - Partie D TITRE : Les Fonctions de Hachage Temps de préparation :.. 2 h 15 minutes Temps de présentation devant le jury :.10 minutes Entretien avec le jury :..10 minutes GUIDE
UEO11 COURS/TD 1. nombres entiers et réels codés en mémoire centrale. Caractères alphabétiques et caractères spéciaux.
UEO11 COURS/TD 1 Contenu du semestre Cours et TDs sont intégrés L objectif de ce cours équivalent a 6h de cours, 10h de TD et 8h de TP est le suivant : - initiation à l algorithmique - notions de bases
Rappels sur les suites - Algorithme
DERNIÈRE IMPRESSION LE 14 septembre 2015 à 12:36 Rappels sur les suites - Algorithme Table des matières 1 Suite : généralités 2 1.1 Déition................................. 2 1.2 Exemples de suites............................
Cours d Analyse. Fonctions de plusieurs variables
Cours d Analyse Fonctions de plusieurs variables Licence 1ère année 2007/2008 Nicolas Prioux Université de Marne-la-Vallée Table des matières 1 Notions de géométrie dans l espace et fonctions à deux variables........
Définition : On obtient les nombres entiers en ajoutant ou retranchant des unités à zéro.
Chapitre : Les nombres rationnels Programme officiel BO du 8/08/08 Connaissances : Diviseurs communs à deux entiers, PGCD. Fractions irréductibles. Opérations sur les nombres relatifs en écriture fractionnaire.
Relation d ordre. Manipulation des relations d ordre. Lycée Pierre de Fermat 2012/2013 Feuille d exercices
Lycée Pierre de Fermat 2012/2013 MPSI 1 Feuille d exercices Manipulation des relations d ordre. Relation d ordre Exercice 1. Soit E un ensemble fixé contenant au moins deux éléments. On considère la relation
1.6- Génération de nombres aléatoires
1.6- Génération de nombres aléatoires 1- Le générateur aléatoire disponible en C++ 2 Création d'un générateur aléatoire uniforme sur un intervalle 3- Génération de valeurs aléatoires selon une loi normale
Cours arithmétique et groupes. Licence première année, premier semestre
Cours arithmétique et groupes. Licence première année, premier semestre Raphaël Danchin, Rejeb Hadiji, Stéphane Jaffard, Eva Löcherbach, Jacques Printems, Stéphane Seuret Année 2006-2007 2 Table des matières
Fibonacci et les paquerettes
Fibonacci et les paquerettes JOLY Romain & RIVOAL Tanguy Introduction Quand on entend dire que l on peut trouver le nombre d or et la suite de Fibonacci dans les fleurs et les pommes de pin, on est au
PRIME D UNE OPTION D ACHAT OU DE VENTE
Université Paris VII - Agrégation de Mathématiques François Delarue) PRIME D UNE OPTION D ACHAT OU DE VENTE Ce texte vise à modéliser de façon simple l évolution d un actif financier à risque, et à introduire,
IUT de Laval Année Universitaire 2008/2009. Fiche 1. - Logique -
IUT de Laval Année Universitaire 2008/2009 Département Informatique, 1ère année Mathématiques Discrètes Fiche 1 - Logique - 1 Logique Propositionnelle 1.1 Introduction Exercice 1 : Le professeur Leblond
Nombre dérivé et tangente
Nombre dérivé et tangente I) Interprétation graphique 1) Taux de variation d une fonction en un point. Soit une fonction définie sur un intervalle I contenant le nombre réel a, soit (C) sa courbe représentative
Exercices - Nombres complexes : corrigé. Formes algébriques et trigonométriques, module et argument
Formes algébriques et trigonométriques, module et argument Exercice - - L/Math Sup - On multiplie le dénominateur par sa quantité conjuguée, et on obtient : Z = 4 i 3 + i 3 i 3 = 4 i 3 + 3 = + i 3. Pour
TESTS D'HYPOTHESES Etude d'un exemple
TESTS D'HYPOTHESES Etude d'un exemple Un examinateur doit faire passer une épreuve type QCM à des étudiants. Ce QCM est constitué de 20 questions indépendantes. Pour chaque question, il y a trois réponses
EXPLOITATIONS PEDAGOGIQUES DU TABLEUR EN STG
Exploitations pédagogiques du tableur en STG Académie de Créteil 2006 1 EXPLOITATIONS PEDAGOGIQUES DU TABLEUR EN STG Commission inter-irem lycées techniques contact : [email protected] La maquette
I. Polynômes de Tchebychev
Première épreuve CCP filière MP I. Polynômes de Tchebychev ( ) 1.a) Tout réel θ vérifie cos(nθ) = Re ((cos θ + i sin θ) n ) = Re Cn k (cos θ) n k i k (sin θ) k Or i k est réel quand k est pair et imaginaire
Exercices de dénombrement
Exercices de dénombrement Exercice En turbo Pascal, un entier relatif (type integer) est codé sur 6 bits. Cela signifie que l'on réserve 6 cases mémoires contenant des "0" ou des "" pour écrire un entier.
La rémunération de l apprenti :
F I C H E P R A T I Q U E N 2 R E M U N E R A T I O N E T A I D E S L I E E S A U C O N T R A T D A P P R E N T I S S A G E L apprenti est titulaire d un contrat de travail de type particulier : il est
Cryptographie et fonctions à sens unique
Cryptographie et fonctions à sens unique Pierre Rouchon Centre Automatique et Systèmes Mines ParisTech [email protected] Octobre 2012 P.Rouchon (Mines ParisTech) Cryptographie et fonctions
D'UN THÉORÈME NOUVEAU
DÉMONSTRATION D'UN THÉORÈME NOUVEAU CONCERNANT LES NOMBRES PREMIERS 1. (Nouveaux Mémoires de l'académie royale des Sciences et Belles-Lettres de Berlin, année 1771.) 1. Je viens de trouver, dans un excellent
Équations non linéaires
Équations non linéaires Objectif : trouver les zéros de fonctions (ou systèmes) non linéaires, c-à-d les valeurs α R telles que f(α) = 0. y f(x) α 1 α 2 α 3 x Equations non lineaires p. 1/49 Exemples et
Comment démontrer des formules sans effort? exposé de maîtrise
Comment démontrer des formules sans effort? exposé de maîtrise Marc Mezzarobba Sam Zoghaib Sujet proposé par François Loeser Résumé Nous exposons un ensemble de méthodes qui permettent d évaluer «en forme
Extrait du poly de Stage de Grésillon 1, août 2010
MINI-COURS SUR LES POLYNÔMES À UNE VARIABLE Extrait du poly de Stage de Grésillon 1, août 2010 Table des matières I Opérations sur les polynômes 3 II Division euclidienne et racines 5 1 Division euclidienne
I. Cas de l équiprobabilité
I. Cas de l équiprobabilité Enoncé : On lance deux dés. L un est noir et l autre est blanc. Calculer les probabilités suivantes : A «Obtenir exactement un as» «Obtenir au moins un as» C «Obtenir au plus
TD1 PROPAGATION DANS UN MILIEU PRESENTANT UN GRADIENT D'INDICE
TD1 PROPAGATION DANS UN MILIEU PRESENTANT UN GRADIENT D'INDICE Exercice en classe EXERCICE 1 : La fibre à gradient d indice On considère la propagation d une onde électromagnétique dans un milieu diélectrique
Initiation à l algorithmique
Informatique S1 Initiation à l algorithmique procédures et fonctions 2. Appel d une fonction Jacques TISSEAU Ecole Nationale d Ingénieurs de Brest Technopôle Brest-Iroise CS 73862-29238 Brest cedex 3 -
Texte Agrégation limitée par diffusion interne
Page n 1. Texte Agrégation limitée par diffusion interne 1 Le phénomène observé Un fût de déchets radioactifs est enterré secrètement dans le Cantal. Au bout de quelques années, il devient poreux et laisse
L exclusion mutuelle distribuée
L exclusion mutuelle distribuée L algorithme de L Amport L algorithme est basé sur 2 concepts : L estampillage des messages La distribution d une file d attente sur l ensemble des sites du système distribué
NOMBRES COMPLEXES. Exercice 1 :
Exercice 1 : NOMBRES COMPLEXES On donne θ 0 un réel tel que : cos(θ 0 ) 5 et sin(θ 0 ) 1 5. Calculer le module et l'argument de chacun des nombres complexes suivants (en fonction de θ 0 ) : a i( )( )(1
Cours Fonctions de deux variables
Cours Fonctions de deux variables par Pierre Veuillez 1 Support théorique 1.1 Représentation Plan et espace : Grâce à un repère cartésien ( ) O, i, j du plan, les couples (x, y) de R 2 peuvent être représenté
Cours de mathématiques Première année. Exo7
Cours de mathématiques Première année Eo7 2 Eo7 Sommaire Logique et raisonnements 9 Logique 9 2 Raisonnements 4 2 Ensembles et applications 9 Ensembles 20 2 Applications 23 3 Injection, surjection, bijection
Chapitre 5. Le ressort. F ext. F ressort
Chapitre 5 Le ressort Le ressort est un élément fondamental de plusieurs mécanismes. Il existe plusieurs types de ressorts (à boudin, à lame, spiral etc.) Que l on comprime ou étire un ressort, tel que
Recherche dans un tableau
Chapitre 3 Recherche dans un tableau 3.1 Introduction 3.1.1 Tranche On appelle tranche de tableau, la donnée d'un tableau t et de deux indices a et b. On note cette tranche t.(a..b). Exemple 3.1 : 3 6
Dualité dans les espaces de Lebesgue et mesures de Radon finies
Chapitre 6 Dualité dans les espaces de Lebesgue et mesures de Radon finies Nous allons maintenant revenir sur les espaces L p du Chapitre 4, à la lumière de certains résultats du Chapitre 5. Sauf mention
Code du Travail, Art. L6222-23 à L6222-33
F I C H E P R A T I Q U E N 2 R E M U N E R A T I O N E T A I D E S L I E E S A U C O N T R A T D A P P R E N T I S S A G E L apprenti est titulaire d un contrat de travail de type particulier : il est
Autour des nombres et des polynômes de Bernoulli
Autour des nobres et des polynôes de Bernoulli Gaëtan Bisson d après un cours de Don Zagier Résué En athéatiques, les nobres de Bernoulli ont d abord été étudiés en cherchant à calculer les soes du type
1/24. I passer d un problème exprimé en français à la réalisation d un. I expressions arithmétiques. I structures de contrôle (tests, boucles)
1/4 Objectif de ce cours /4 Objectifs de ce cours Introduction au langage C - Cours Girardot/Roelens Septembre 013 Du problème au programme I passer d un problème exprimé en français à la réalisation d
EXERCICE 4 (7 points ) (Commun à tous les candidats)
EXERCICE 4 (7 points ) (Commun à tous les candidats) On cherche à modéliser de deux façons différentes l évolution du nombre, exprimé en millions, de foyers français possédant un téléviseur à écran plat
ANALYSE GÉNÉRALE - PROPOSITION DE CORRIGÉ. Exercice 1
ANALYSE GÉNÉRALE - PROPOSITION DE CORRIGÉ OLIVIER COLLIER Exercice 1 Le calcul de la banque. 1 Au bout de deux ans, la banque aurait pu, en prêtant la somme S 1 au taux d intérêt r pendant un an, obtenir
Leçon 01 Exercices d'entraînement
Leçon 01 Exercices d'entraînement Exercice 1 Etudier la convergence des suites ci-dessous définies par leur terme général: 1)u n = 2n3-5n + 1 n 2 + 3 2)u n = 2n2-7n - 5 -n 5-1 4)u n = lnn2 n+1 5)u n =
Correction de l examen de la première session
de l examen de la première session Julian Tugaut, Franck Licini, Didier Vincent Si vous trouvez des erreurs de Français ou de mathématiques ou bien si vous avez des questions et/ou des suggestions, envoyez-moi
Théorie de la mesure. S. Nicolay
Théorie de la mesure S. Nicolay Année académique 2011 2012 ii Table des matières Introduction v 1 Mesures 1 1.1 Sigma-algèbres................................. 1 1.2 Mesures.....................................
Module 2 : Déterminant d une matrice
L Mth Stt Module les déterminnts M Module : Déterminnt d une mtrice Unité : Déterminnt d une mtrice x Soit une mtrice lignes et colonnes (,) c b d Pr définition, son déterminnt est le nombre réel noté
108y= 1 où x et y sont des entiers
Polynésie Juin 202 Série S Exercice Partie A On considère l équation ( ) relatifs E :x y= où x et y sont des entiers Vérifier que le couple ( ;3 ) est solution de cette équation 2 Déterminer l ensemble
Chapitre 3. Quelques fonctions usuelles. 1 Fonctions logarithme et exponentielle. 1.1 La fonction logarithme
Chapitre 3 Quelques fonctions usuelles 1 Fonctions logarithme et eponentielle 1.1 La fonction logarithme Définition 1.1 La fonction 7! 1/ est continue sur ]0, +1[. Elle admet donc des primitives sur cet
Chapitre 5 : Le travail d une force :
Classe de 1èreS Chapitre 5 Physique Chapitre 5 : Le travail d une force : Introduction : fiche élève Considérons des objets qui subissent des forces dont le point d application se déplace : Par exemple
