Chapitre 3 : aberrations et défauts des objectifs

Dimension: px
Commencer à balayer dès la page:

Download "Chapitre 3 : aberrations et défauts des objectifs"

Transcription

1 Chapitre 3 : aberrations et défauts des objectifs Dans le domaine de l'optique, on appelle aberrations les imperfections des images autres que celles dues à la diffraction. Il existe deux grandes familles d aberrations : Les aberrations d origine physique : elles sont liées à la nature physique de la lumière. Dans ce chapitre, nous nous limiterons à l aberration chromatique. Les aberrations géométriques : elles sont liées au fait que les lentilles (et les miroirs) utilisés en optique ne vérifient pas exactement les conditions de stigmatisme rigoureux. Dans ce chapitre, nous étudierons: l aberration de sphéricité l aberration de coma l aberration d astigmatisme l aberration de courbure de champ l aberration de distorsion Remarque : la distorsion n est pas due à un manque de stigmatisme mais plutôt à un manques de similitude entre objets et images. 1

2 1 Aberrations chromatiques 1.1 Exemples En photographie, l aberration chromatique désigne une aberration optique qui produit une image floue et aux contours irisés. Des franges colorées indésirables apparaissent autour des éléments de l image. Celles-ci s avèrent particulièrement visibles autour des transitions à fort contraste dans des zones relativement neutres de l image. Les aberrations chromatiques apparaissent sous forme de franges colorées quand un objet sombre est photographié sur un arrière-plan plus clair. 2

3 3

4 4

5 1.2 Origine de l aberration chromatique : le phénomène de dispersion Dès que la lumière est composée de radiations de fréquences différentes apparaissent les aberrations chromatiques, dues au phénomène de dispersion des lumières complexes par les matériaux réfringents. 5

6 L origine du phénomène de dispersion de la lumière est que l indice de réfraction n d'une substance varie avec la longueur d'onde λ de la radiation monochromatique utilisée suivant une fonction, généralement décroissante, qui dépend du matériau considéré. Cette fonction peut être approchée par la formule de Cauchy: B C n( λ) = A λ λ oùa,b,c, sontdesconstantespourunmatériaudonné. 6

7 7

8 Cette courbe (ou la formule) montre que les radiations de plus petite longueur d onde (du côté bleu du spectre, donc) sont plus réfractées que les radiations de plus grande longueur d onde(du côté rouge du spectre). Ce phénomène de dispersion est à l origine de l arc-en-ciel, et la théorie de l arc-en-ciel permet de vérifier directement la validité de cette formule: 8

9 1.3 Mesure de la dispersion des verres Traditionnellement,un verre est caractérisé par son indice de réfraction «moyen»n D mesuré pour la radiation jaune du sodium (λ D = 589,3 nm) et par le facteur sans dimension v appelé constringence, ou encore nombre d Abbe, défini par: v = n n F D 1 n C où n F et n C sont les indices de réfraction du verre pour la raie bleue F de l hydrogène (λ=486,1 nm) et pour la raie rouge C de l hydrogène(λ=656,3 nm). Ce nombre sans unité est noté théoriquement de 1 à 100, mais la gamme couverte par les verresoptiquess étendde20à100. Pourv<50,onparledeverrestrèsdispersifs;pourv>50,onparledeverrespeudispersifs. Le pouvoir dispersif aussi appelé indice (ou coefficient) de dispersion est l inverse de la constringence. Le pouvoir dispersif des verres optiques varie entre 0,01 et 0,05 environ Pour la radiation D, l'indice absolu n D de l'eau à 20 C est de 1,333 ; celui d'un verre ordinaire 9 est compris entre 1,511 à 1,535.

10 Matériau Raie F de l H Raie D du Na Raie C de l H Eau 1,337 1,333 1,331 55,5 Verre crown léger Verre flint dense 1,515 1,510 1,507 63,8 1,774 1,755 1, Remarque: il existe deux grandes familles de verres : les «crowns» sont des verres «légers» qui contiennent des oxydes de sodium et de calcium ont un indice n de l'ordre de 1,52 et un pouvoir dispersif vvoisinde60.leverrecrown dispersedoncpeu.des types de verre crown encore moins dispersifs sont disponibles où sont ajoutés des oxydes de baryum ou de lanthane. v les «flints» sont des verres «lourds», avec une proportion importante d'oxyde de plomb ainsi que du silicate de potassium, sont tels que n est de l'ordre de 1,63 et v est voisin de 40. Le verre flint présente donc un fort pouvoir dispersif. 10

11 Constringence du Verre Schott N-BK7. 11

12 Spectre visible, et désignation des longueurs d onde de référence. 12

13 13

14 Le diagramme ci-dessus présente une centaine de verres optiques produits par la société Schott. Chacun des points représente un verre optique différent ; il est placé à l intersection de son indice de réfraction (établi pour la couleur jaune à 587,56 nm) et de sa constringence. On appelle«flint»leverredefaibleconstringence(fortementdispersif).leverre«crown»estde forte constringence (peu dispersif). En moyenne, l indice de réfraction est plus faible pour le flint que pour le crown. Un verre est considéré comme faiblement dispersif lorsque sa constringence est supérieure à 80(certains crowns atteignent 97). 14

15 1.4 Aberration chromatique d une lentille convergente Par conséquent, quand une lentille mince convergente est éclairée par un faisceau parallèle de rayons de lumière blanche, la lumière blanche subit une dispersion lors de sa réfraction par la lentille, et le foyer de la lentille pour les composantes bleues est situé plus près de la lentille que celui pour les composantes rouges (les rayons bleus convergent plus rapidement que les rayons rouges). L'écart entre ces deux foyers dépend de la variation de l'indice n du matériau pour les deux longueurs d'onde correspondant à la lumière bleue et rouge. En effet, la distance focale d'une lentille mince dépend de l'indice de réfraction et des mesures algébriques des rayons de courbure des deux dioptres qui composent la lentille: = ( n 1) f ' R R 1 2 où R 1 = S1C 1 et R 2 = S2C 2 Comme n b >n r, f b <f r. 15

16 16

17 1.5 Aberrations chromatiques longitudinales Pour un point objet éclairé en lumière blanche et situé à l infini, les différents points de focalisation correspondants aux différentes couleurs du spectre se forment à des distances plus ou moins grandes de la lentille. La distance f =F' b F' r mesurée pour les deux longueurs d'onde 486,1 et 656,3 nm s'appelle l'aberration chromatique longitudinale principale ou encore dispersion focale. Il est judicieux pour la suite d étudier la variation V de la vergence lorsqu on passe du rouge au bleu : V = V V B R Comme : V 1 1 = ( n 1) R1 R2 On déduit : VB = ( nb 1 ), VR = ( nr 1 ) et VJ = Vmoyen = ( nj 1) R1 R2 R1 R2 R1 R2 Nous pouvons en déduire que le rapport : verre: V nb nr 1 = = V n 1 v moyen J V V moyen est égal à l inverse de la constringence du 17

18 Ceci entraîne par ailleurs que: f ' 1 = f ' v moyen L aberration chromatique longitudinale est donc proportionnelle à la distance focale moyenne, c est-à-dire dans le jaune, et inversement proportionnelle à la constringence du verre: f ' = f ' v J 18

19 19

20 20

21 Dispersion chromatique longitudinale d'une lentille mince. 21

22 On appelle spectre secondaire ou chromatisme longitudinal le fait que tous les rayons lumineux ne convergent donc pas au même point selon leur couleur et cela représente les variations de la position du foyer en fonction de la couleur. Le spectre secondaire fait donc que la focale de la lentille dépend de la longueur d onde des rayons incidents, ou dit autrement que la courbure du front d onde émergent est variable et dépend de la longueur d onde. 22

23 Delamêmemanière,l imaged unpointsujetasituéàdistancefiniedelalentillevaprésenter un reflet irisé. En effet, si on coupe les faisceaux par un écran passant par l'image monochromatique rouge A r, par exemple, les autres images de A (l'image bleue A b par exemple) présentent un défaut de mise au point, et l'image dans ce plan est un cercle de diffusion irisé dont le diamètre varie avec la dimension de la pupille de sortie de l'objectif. Dans l'exemple choisi, la tachedediffusionestiriséedebleu.elleleseraitderougepourunemiseaupointfaitedansle plan de l'image bleue. La distance orientée A b A r mesurant l étalement du point image selon l axe optique porte le nom d aberration chromatique longitudinale pour le point A. 23

24 1.6 Cercle de moindre aberration chromatique et aberration chromatique transversale L étalement chromatique longitudinal (ou chromatisme de position) s accompagne d un chromatisme de grandeur ou chromatisme transverse. Soit une lentille O donnant d'un objet AB des images A B dont la position est fonction de la longueur d'onde. Le rayon incident BO n'est pas dévié. Les diverses images monochromatiques paraxiales A λb λ sont homothétiques et leur grandeur est fonction de la longueur d'onde. Lié directement au chromatisme de position, le chromatisme de grandeur s'annule en même temps que celui-ci. 24

25 Une lentille diaphragmée fournit d un point objet éclairé en lumière blanche une image pour chaque radiation monochromatique. Cette dispersion est observée en coupant par un écran normal à l axe les faisceaux émergents. Sur l écran apparaît une tache circulaire dont la coloration dépend de la position, car les faisceaux coniques émergents correspondant aux diverses radiations n ont pas le même sommet. Parmi les différentes sections, il en est une de diamètre minimal, moins irisée que les autres (position 2 de l écran), c est le cercle de moindre diffusion chromatique. 25

26 26

27 Le rayon d ouverture de la lentille esth=oi, le rayon du cercle de moindre diffusion est ρ. Sur la figure ci-dessous, ρ =PQ représente l aberration transversale principale. L homothétie des triangles(f C PQ)et(F C OI)d unepart,(f F OI)et(F F PQ)d autrepart,permetd écrire: L aberration transversale principale ρ=pq ne dépend pas de la distance focale, mais est proportionnel au rayon d ouverture h de la lentille. 27

28 Aberration chromatique transversale. 28

29 29

30 30

31 1.7 Aberration chromatique d une lentille divergente Si une lentille divergente est éclairée par un faisceau parallèle de lumière blanche, la déviation est plus importante pour la lumière bleue que pour la lumière rouge (les rayons bleus divergent plus que les rayons rouges). Le foyer image des composantes bleues de la lumièref' b estdoncsituéplusprèsdelalentillequef' r foyerimagedescomposantesrouges de la lumière. En effet, comme pour une lentille convergente, la distance focale d'une lentille mince dépend de l'indice de réfraction et des mesures algébriques des rayons de courbure des deux dioptres qui composent la lentille: = ( n 1) = ( n 1) k f ' R1 R2 Comme n b >n r, et k<0, on a que 0 >f b >f r. et donc f b < f r. 31

32 1.8 Réduction des aberrations chromatiques : le doublet achromatique accolé Les lentilles simples présentent toujours de l'aberration chromatique, et la qualité de l'image est très diminuée. Mais, en associant des systèmes sous-corrigés et sur-corrigés, on peut obtenir des instruments où l'aberration chromatique finale est réduite. Pour réaliser, par exemple, un objectif convergent achromatique, on accole deux lentilles, l'une convergente en crown et l'autre divergente en flint (plus dispersif). Leurs convergences sont choisies pour que l'ensemble demeure convergent. Si l'objet à l'infini sur l'axe est un point A éclairé par une radiation rouge et une radiation bleue, l'image formée par L 1 est constituée par les foyers rougeetbleuf retf b(figurea). L'image d un point blanc A formée par la lentille L 2 (le sens de la lumière étant inversé) serait l'ensemble des deuxpointsa beta r(figureb). 32

33 En choisissant convenablement les verres constituant les lentilles L 1 et L 2, on assure la superpositiondessegmentsa ba retf bf r. Accolons les deux lentilles L 1 et L 2 ; alors F r et F b sont confondus avec les points A b et A ret l'image définitive A de A est «achromatique» (figure c) pour le bleu et le rouge ; elle l'est encore en première approximation, pour les radiations de longueurs d'ondes intermédiaires. 33

34 Le doublet achromatique ou achromat Réalisé au début des années 1830 par l'opticien français Charles Chevalier, l'achromat est constitué de deux lentilles accolées qui possèdent des indices de réfraction et de constringence (inverse du pouvoir dispersif) différents (verres en «flint» et en «crown»). 34

35 1.9 Condition d achromaticité du doublet accolé Pour constituer un doublet achromatique accolé, deux lentilles L 1 et L 2, dont les constringencessontv 1 etv 2 etlesfocalesmoyennesenlumière Dsontf 1 (D)etf 2 (D)doivent vérifier la condition d achromaticité: Remarques: f ' ( D). v = f ' ( D). v le signe négatif qui apparaît dans cette condition d achromaticité est fondamental ; comme les coefficients de dispersion sont définis positifs, il indique que l on doit nécessairement associer une lentille convergente et une lentille divergente pour réaliser la condition d achromaticité. en pratique, la focale en lumière D correspond à 0,2% près à la moyenne géométrique desfocalesenlumièrescetf: f '( D) f '( C). f '( F) En introduisant les vergences moyennes des lentilles V 1 =1/f 1 (D) et V 2 =1/f 2 (D), cette condition d achromaticité peut aussi s écrire sous la forme facile à retenir: V v V + = v

36 Établissons la condition d achromaticité d un doublet non nécessairement accolé : Considérons le cas simple de deux lentilles de vergence V 1 et V 2 et constituées de matériaux de constringences respectives v 1 et v 2. Chaque vergence V 1 et V 2 varie respectivement de V 1 et V 2,lorsqu onpassedelalongueurd onderougeàlalongueurd ondebleue. Ces variations font intervenir le nombre d Abbe via les relations: V V V = et V = v1 v2 LaformuledeGullstrandpermetd écrirepourlavergencevdudoubletformédeslentillesl 1 etl 2 espacéesd unedistanceelarelation: V = V1 + V2 ev1 V2 Nous pouvons ainsi écrire les relations suivantes: Pourquelesfoyersbleuetrougedudoubletcoïncident,ilfautque: La condition d achromaticité est donc: V1 V2 VV 1 2 VV e e = 0 v1 v2 v2 v1 Quiseréduitbienàlaconditionprécédentedanslecasaccolé(e=0): Pour des lentilles non accolées mais taillées dans le même verre, cette condition s écrit : ouencore: 1 2 V + V 2eVV = V = V + V e ( VV ) = V + V ev V ev V V V VV VV = + e e v v v v V = V v 0 V + = 0 v f ' + f ' = 2e 36

37 exemples de doublets achromats : La condition précédente est vérifiée pour le doublet (1,1,1) et par le doublet (3,2,1) de Huygens. Eneffet,danslepremiercas,ona: Ilenestdemêmedanslesecondcas: L oculaire de Huygens est donc corrigé des aberrations chromatiques lorsque les deux lentilles sont taillées dans le même verre. 37

38 Remarque : les doublets optiques sont des systèmes centrés constitués de deux lentilles L 1 et L 2 caractériséspartroisnombresentiers,positifsounégatifs,notésm,n,ptelsque: f ' 1 e f ' 2 = = = u m n p avec f 1 et f 2 les distances focales images des 2 lentilles ; e distance des centres optiques O 1 eto 2 ;uestl'unitédelongueurdudoublet. Le doublet de Ramsden (3, 2, 3). V 1 = V 2 = 1 /(3 u) et e = 2 u. focaleimage: f i = 9/4 u ; f o = -9/4 u ; plansprincipaux:o 2 H i = -1,5 u ; O 1 H o = 1,5 u ; plansfocaux: O 1 F o = f o ( 1-eV 2 ) = -3/4 u ; O 2 F i = 3/4 u ; Ce doublet est symétrique mais ne vérifie pas la condition d achromaticité pour des verres de compositions identiques. Le doublet de Huygens ( 3, 2, 1). V 1 = 1 / (3 u) ; V 2 =1 /uet e = 2 u. focale image: f i = 1,5 u ; f o = -1,5 u ; plans principaux:o 2 H i = -u ; O 1 H o = 3 u ; plans focaux: O 1 F o = f o ( 1-eV 2 ) = 1,5 u ; O 2 F i = 1/2 u ; Ce doublet satisfait à la condition d'achromatisme relative aux lentilles non accolées : e = ½( f 1 +f 2 ) 38

39 L aberration de chromaticité transverse affecte principalement pour les retrofocus et les téléobjectifs qui sont des objectifs dissymétriques. L aberration de chromaticité longitudinale affecte plutôt les objectifs de grande ouverture. Un objectif non corrigé des aberrations chromatiques est qualifié de chromatique. L œil humain étant plus sensible au vert, quand un objectif chromatique est mis au point, c est plutôt la lumière verte qui est correctement focalisée, et les lumières bleue et rouge qui sont hors focus (cf. figure en haut à gauche). L incorporation d un simple doublet achromatique suffit pour réduire l aberration chromatique. Deux longueurs d onde focalisent au même endroit (passage par zéro sur la figure en haut à droite) et les autres couleurs focalisent autour de ce point : on parle de spectre secondaire. L arrivée de verres exotiques caractérisés par une dispersion faible a permis de réaliser de grands progrès dans la correction de l aberration chromatique. Une configuration qui rassemble en un point trois longueurs d onde est appelée apochromatique. Un objectif superachromatique regroupe au moins 4 longueurs d onde en un point et élimine virtuellement 39 toute frange colorée.

40 À proprement parler, ce n est pas le nombre de zéro de la fonction déterminant la position du foyer en fonction de la longueur d onde qui importe mais plutôt les écarts de position entre ces valeurs particulières, et donc l aire du spectre secondaire. Le terme APO désigne ainsi plutôt aujourd hui un objectif au spectre secondaire réduit, le vrai apochromatisme restant une propriété rare. 40

41 Objectifs apochromatiques Il existe des objectifs, dont la combinaison de lentilles plus complexe (3 ou 4 lentilles) permet la correction du chromatisme pour 3 radiations du spectre visible (B,V et R). On parle alors d objectif apochromatique. Ce sont des objectifs de haute qualité et de haut pouvoir résolvant absolument nécessaire en reproduction et en microphotographie. Sigma Objectif APO mm F2,8 41

42 Cette croix formée de deux bâtons d allumettes montés sur un bouchon a été photographiée avec un Canon EF 85/1,2 a une distance de 1m. La croix a été placée au centre de l image et sur un fond brillant. Le haut contraste et la grande ouverture (1,2) sont responsables de l aberration chromatique longitudinale. Quand l autofocus est utilisé, des franges pourpres apparaissent autour de la croix. En défocalisantlégèrement manuellement, les franges virent au vert. L autofocus (comme les yeux humains) étant particulièrement sensibles à la lumière verte, c est elle qui est le mieux mise au point, ce qui engendre une défocalisationdu bleu et 42du rouge, et donc des franges pourpres (les plus fréquentes, donc).

43 Exemples d aberrations chromatiques transverses : A : 20mm.B: Cosina3.8/20. C: Carl Zeiss Distagon2.8/21. Tous ces objectifs ont été utilisés à f/11 sur un boitier Canon 5D. La même croix a été photographiée avec trois grands angles retrofocus, et placée près du coin supérieur gauche de l image, de sorte que son plus long bras soit dans la direction radiale. Le petit bras est donc dans la direction tangentielle. Pour les trois objectifs, le petit bras présente des franges colorées alors que le grand bras n est pas affecté. La présence simultanée de franges vertes et pourpres des deux côtés opposés du bras pour l objectif A est caractéristique de l aberration chromatique transverse. Les franges bleuâtres et jaunâtres produites par l objectif B sont plus rares. L objectif C, qui présente de légères traces de pourpre et de vert, est très bien corrigé pour un objectif de ce type. 43

44 Les franges vertes et pourpres peuvent s expliquer avec un objectif achromatique, puisque pour une mise au point moyenne (sur le vert, vu la sensibilité de l œil), l image bleue et l image rouge se forment un peu en avant et sont donc plus petites que l image verte, derrière et plus grande (cf. spectre secondaire de l achromat). 44

45 Les aberrations chromatiques longitudinales et transverses peuvent engendrer toutes les deux des franges colorées, mais leurs propriétés sont différentes. L aberration longitudinale provoque des franges tout autour de l objet, alors que l aberration transverse affecte surtout les détails tangentiels. L aberration longitudinale apparaît n importe où dans l image, alors que l aberration transverse est absente au centre de l image et augmente progressivement vers les bords. L aberration longitudinale diminue si l on diaphragme l objectif, alors que l aberration transverse est présente à toutes les ouvertures. L aberration longitudinale provoque des franges de couleurs différentes de part et d autre du meilleur foyer, tandis que l aberration transverse fait apparaître simultanément deux colorations. De part et d autre d un détail tangentiel. Biensûr,lesdeuxaberrationspeuventêtreprésentesenmêmetempsetêtredoncenpartie réduite par une fermeture du diaphragme. L aberration chromatique longitudinale se manifeste souvent en tandem avec l aberration de sphéricité et explique l apparence des «bokeh» qui apparaissent aux grandes ouvertures de l objectif (cf. aberration de sphéricité plus loin dans ce chapitre). L effet combiné de ces deux aberrations porte le nom de sphérochromatisme. 45

46 46

47 47

48 48

49 1.10 Le sphérochromatisme Une troisième manifestation du chromatisme est le sphérochromatisme. Il s avère en effet que le front d onde issue d une lentille sphérique (corrigée de l aberration de sphéricité) n est parfaitement sphérique que pour une seule longueur d onde. Les fronts d onde pour les autres longueurs d onde sont affligés d une aberration de sphéricité. Le sphérochromatisme désigne donc cette aberration de sphéricité liée à la longueur d onde. Le sphérochromatisme est représenté comme l aberration de sphéricité, mais avec plusieurs courbes correspondant aux différentes couleurs. Ici, nous pouvons voir les profils de l aberration de sphéricité longitudinale d une lentille pour le violet profond, le violet, le bleu, le vert, le rouge et l infrarouge proche en fonction de l origine des rayons par rapport à l axe optique. Nous verrons dans l étude de l aberration de sphéricité plus loin qu un front d onde parfaitement sphérique donnerait une ligne verticale puisque l on représente ici uniquement les écarts par rapport à la sphère. 49

50 Correction du chromatisme par l utilisation d un doublet achromatique Comme on peut le voir sur le diagramme de chromatisme longitudinal les deux fronts d onde du bleu et du rouge sont effectivement alignés et à peu prés plats. Néanmoins le vert, s il présente lui aussi un sphérochromatisme très faible, présente un décalage longitudinal de son point focal. 50

51 Si le doublet achromatique donne de bons résultats avec un rapport F/D important, il se dégrade en baissant le rapport F/D et en augmentant donc la puissance des lentilles. Dans ce cas, le sphérochromatisme du rouge et du bleu est moins bien corrigés et surtout le chromatisme latéral devient gênant. Un rapport de F/D:10 devient une limite. 51

52 Correction du chromatisme par l utilisation d un doublet apochromatique Il est possible d optimiser le doublet achromatique pour apporter la correction d une troisième longueur d onde. En revanche ces doublets nécessitent l utilisation de verre Crown à très faible dispersion chromatique, et laissent beaucoup moins de libertés quand à l association des matériaux Flint et Crown. Comme on le voit, le chromatisme longitudinal est très faible (décalage des courbes entre elles). En revanche, le niveau de sphérochromatisme (courbure de chacune des courbes) n est plus totalement négligeable en regard du décalage longitudinal. 52

53 Correction du chromatisme par l utilisation d un triplet apochromatique Il est possible de simplifier la réalisation des lentilles avec des rayons de courbure moins prononcés et par la même de pousser plus loin la correction du sphérochromatisme en ajoutant une seconde lentille Flint, voire une seconde lentille Crown. On obtient un triplet apochromat. Comme on peut le voir, malgré la baisse du rapport F/D à 8 cette fois ci, la correction du chromatisme longitudinal est encore améliorée, et surtout la courbure des fronts d onde est diminuée(sphérochromatisme). 53

54 1.11 Exercices 1.Lafacesphériqued unelentilleplan-convexeaunrayondecourburede50cm.l indicede réfraction du verre dont elle est formée dépend de la longueur d onde de la lumière (en nanomètre) selon la relation n =A+B/λ 2 où A=1,620 et B=8,9.103 nm 2. Calculer l indice de réfraction du verre pour la radiation bleu de longueur d onde 490 nm et la radiation rouge de longueur d onde 660 nm. Calculer les distances focales correspondantes de la lentille. (Rép.:1,657;1,640;0,761m;0,781m) 2. Un rayon de lumière blanche (spectre continu entre 0.4 et 0.7 μm) arrive avec un angle i=45 sur la face AB d un prisme d indice n et d angle A=54. D après la formule de Cauchy l indicederéfractiondépenddelalongueurd ondeselonlaloi: aveca=1.532etb=0.042μm -2. n(λ) = A + B/λ 2 A) Calculer les angles de réfraction r, r et i successifs pour les longueurs d ondes extrêmes du spectre et tracer le cheminement des rayons correspondant. B) On intercepte les rayons émergeant du prisme sur un écran. Qu observe-t-on? 54

55 3. On dispose de deux verres dont les indices de réfraction sont donnés par le tableau ci-contre pour trois longueurs d'ondes particulières. λ Crown B Flint C ,3 nm (C) 1, , ,6 nm (D) 1, , ,1 nm (F) 1, ,69607 Dans le crown B. 1864, on taille une lentille mince L 1 biconvexe de diamètre D = 8 cm. LesrayonsdecourburesdesfacessontR 1 =S 1 C 1 =30cm=etR' 1 =S 1 C 1 =-1,8m. Calculer la distance focale f 1 de cette lentille pour chacune des trois longueurs d'ondes du tableau. On veut réaliser un doublet achromatique en accolant à L 1 une lentille mince L 2 réalisée en flint C. 8132, de sorte que la distance focale du doublet ainsi constitué soit la même pourles deux longueurs d'onde extrêmes du tableau. Commentdoit-on choisirl 2? Calculer sa distance focale ainsi que celle du doublet. Les faces en regard des deux lentilles ont le même rayon de courbure, soit 1,8 m. Calculerlerayondecourburedel'autrefacedeL 2. 55

56 Résolution ladistancefocaleimagesecalculeparlaformuledesfabricantsdelentilles: f ' 1 R. R ' = = n 1 R ' 1 R1 n 1 k1 et on obtient donc f 1 (C)=f 1r =49,88cm, f 1 (D)=49,64cm et f 1 (F)=f 1b =49,11cm (et k 1 =3,89m -1 ). On utilise la relation d achromaticité établie précédemment : f ' ( D). V = f ' ( D). V etonconnaîtf 1 (D)=49,64cmetlescoefficientsdedispersionV 1 =64,51etV 2 =32,05;on obtient donc: f ' ( D ) = 1 m Et la focale du doublet vaut alors f (D)=0,96m. 2 56

57 La focale du doublet achromatique s obtient par la relation habituelle : = + f ' f ' f ' 1 2 Comme f 1 (D)=49,64cm, on trouve par exemple pour la lumière jaune D la valeur de f (D)=0,96m. La lentille L 2 est collée à L 1, donc : R 2=02C 2 =OC 2=OC' 1=R' 1=-1,8 m D autre part, on sait que : 1 1 k = 2 1, 469 m R R ' = 2 2 On déduit donc directement : R ' = S ' C ' O C ' OC ' = 1,09 m Les signes des rayons de courbure indiquent que la lentille L 2 est biconcave. 57

58 2 Rappel : stigmatisme rigoureux d un système 2.1 L image d un point est un point Le système optique est dit rigoureusement stigmatique lorsque tous les rayons utiles issus de ApassentparA (l imaged unpointsujetestunpointimage). Une surface d'onde est définie comme perpendiculaire, en chaque point, au rayon lumineux (cf. théorème de Malus-Dupin, chapitre 2). Une surface d'onde correspondant à un point objet A est une sphère S centrée en A. Une surface d'onde image issue d'un système stigmatique est une sphère S centrée en A. 58

59 Lasurfaced'ondeémergenten'estplusunesphèredèsquelesystèmeperdsesqualitésde stigmatisme. Dès qu un élément optique modifie un front d onde plan pour le transformer en front d onde sphérique d un rayon donné, il s introduit des transformations non souhaitées qui vont faire que le front d onde résultant ne sera pas sphérique dans toutes les conditions, commeparexempleendehorsdel axeoptique.oupeutêtrelerayondelasphèrenesera pas constant selon la longueur d onde. Les déformations de la surface d'onde entraînent une baisse de la qualité de l'image : on parle d aberrations géométriques. 59

60 Si le système optique est aberrant, la surface d'onde en sortie du système n'est pas sphérique mais elle présente un écart normal d'aberration qui est la différence entre la surface d'onde réelle et la surface d'onde sphérique idéale. 60

61 Condition de stigmatisme rigoureux Le miroir plan M est le seul système rigoureusement stigmatique pour tout point objet A quelconque :sonimageestunpointa. 61

62 Le plus souvent, un système n est rigoureusement stigmatique que pour quelques points objets. Un miroir parabolique est stigmatique pour un point situé à l infini sur l axe et pour son foyer. Un miroir elliptique est stigmatique pour un pointobjetetson image situés en ses foyers F etf. 62

63 2.2 Stigmatisme pour deux points voisins Réaliser le stigmatisme pour un couple de points AA conjugués situés sur l'axe d'un système optique est généralement insuffisant. Il est souhaitable d'étendre le stigmatisme à des points voisins de A. Le stigmatisme étant réalisé pour les points A et A, on cherche les conditions pour que le stigmatisme soit conservé pour un couple de points B et B situés perpendiculairement à l axe optique (condition d Abbe ou d aplanétisme) et un couple de points C et C situés longitudinalement selon l axe optique(condition d Herschell). 63

64 2.2.1 Condition des sinus d Abbe et notion d aplanétisme La conservation du stigmatisme approché dans l espace implique une conservation du stigmatisme approché dans un plan perpendiculaire à l axe du système. Cette considération appliquée au principe de Fermat permettent d établir d une part la loi des sinus d Abbe: Démonstration: Pour un point objet B, voisin de A, situé dans un plan perpendiculaire passant par A, la condition de stigmatisme s écrit: L (BB ) =c ste. n. AB.sin u = n'. A' B 'sin u ' Cette relation exprime la notion d aplanétisme ; ce terme, dont l étymologie grecque (aplanetos, formé de «planetes» et d un alpha privatif) signifie «qui n erre pas», «qui ne dévie pas» traduit donc le fait que l image d un plan perpendiculaire à l axe optique est un plan perpendiculaire à l axe optique. quelquesoitlepointd incidenceisurlafaced entréedusystème. 64

65 La différence des chemins optiques L (AA ) et L (BB ) doit donc être constante (chaque chemin étant constant). Évaluons cette différence en la considérant comme la variation du chemin [AA ] lorsque les pointsaeta sontdéplacésenbetb : avec: L - L = [ AII ' A']-[ BII ' B '] n.( AI - BI) + n'( I ' A'- I ' B ') ( AA') ( BB') AI BI = AH = AB sin u et I ' A' I ' B ' = A' H ' = A' B 'sin u ' Finalement, on obtient: L - L n. AB.sin u n'. A' B 'sin u ' c ( AA') ( BB') ste Cette relation doit être nécessairement satisfaite pour que le système optique stigmatique pour le couple (AA ) soit aussi stigmatique pour le couple (BB ). Elle doit être satisfaite pour touteslesvaleursdeu. La relation précédente s annule si u=0, car le rayon étant confondu avec l axe n est pas dévié ; AB est très petit et reste perpendiculaire à l axe. Pour que la constante de la relation soit indépendante de u, il est nécessaire qu elle reste nulle pour tout couple (u,u ). La condition d aplanétisme pour A, à distance finie, s écrit donc: n. AB.sin u = n '. A' B 'sin u ' u 65

66 2.2.2 Condition d Herschel La conservation du stigmatisme approché dans l espace implique aussi une conservation du stigmatisme approché le long de l axe optique. Si A 1 est situé le long de l axe, toujours grâce au principe de Fermat on établit la condition dite d Herschel telle que: 2 u 2 u ' n. AA1 sin n ' A' A' 1 sin = Démonstration: Quandle pointasedéplace le longde l axejusquea 1,son imagesedéplacele longde l axe jusquea 1 ;pourquelestigmatismesoitconservé,ilfautque: d où: L L = c soit : [ AII ' A'] [ A II ' A' ] c ste ( AA') ( A A ') ste n. AA cos u n' A' A' cos u ' c (1) 1 1 Cette relation doit être vérifiée avec la même constante, pour tous les points d incidence sur la face d entrée du système optique. En choisissant comme cas particulier I sur l axe, les anglesuetu sontnuls,larelation(1)conduità: ste n. AA n' A' A' c (2) 1 1 Ensoustrayantmembreàmembre(2)et(1),ona: ste n' A' A' (1 cos u ') n. AA (1 cos u) = c est-à-dire encore, la relation annoncée : 2 u 2 u ' n. AA1 sin n' A' A' 1 sin =

67 Conditions de stigmatisme et d aplanétisme pour un objectif photographique 67

68 3 Stigmatisme approché d un système, conditions de Gauss Un système optique réel n'étant pas rigoureusement stigmatique, les images de plusieurs surfaces d onde sujet concentriques ne sont pas concentriques; en d autres mots, les rayons issusd'unpointanepassentpastousparsonimagegéométriquea. Même si l'effet de la diffraction est négligeable, l'image est une tache lumineuse dont l'étendue varie avec la position de l'écran d'observation E. Un instrument (représenté sur la figure par sa face de sortie S 2 ) n'étant pas rigoureusement stigmatique, les rayons issus d'un point tel que B, situé ou non sur l'axe, ne convergent plus exactementenb,mais passent auvoisinage de B. Surl émulsion sensible, il y auradoncun autre point image, B. 68

69 Soit B le point d'impact d'un rayon émergent issu de B avec le plan de mise au point perpendiculaire à l'axe, passant par B. La distance B B caractérise l'écart à la condition de stigmatisme pour B et B. On peut définir le segment B B comme la mesure de l'aberration transversale du système. Cette aberration B B est fonction des variables y = AB(éventuellement nulle, si le point est sur l axe) et de α (angle maximal d'un rayon utile avec l'axe), ou encore des grandeurs images correspondantes y et α. 69

70 On étudie le plus souvent les propriétés d'un système centré dans les conditions où cette aberration peut être négligée, et on parle alors de stigmatisme approché pour le système. Ces conditions constituent l approximation de Gauss. Pour que le système soit approximativement stigmatique, on doit se placer dans le cadre de l approximation de Gauss où les rayons lumineux cheminent au voisinage de l'axe optique (aussi sont-ils dits paraxiaux) et leurs angles d'incidence avec les normales aux surfaces restent petits. Ondoitdoncavoir: des faisceaux peu ouverts, des angles d incidence petits. Dans ce cas, les variables y et α sont de faibles valeurs, et les rayons utiles, issus de B passent suffisamment près de B pour que l'énergie apportée par les divers rayons puisse être considérée comme concentrée en ce seul point image. 70

71 3 5 7 θ θ θ sin θ θ ! 5! 7! Mathématiquement, se placer dans l approximation de Gauss revient à assimiler sin θ à θ dans la loi de Snell-Descartes lors de toutes les réfractions. (cf. stigmatisme approché du dioptre plan dans le chapitre 2). Dans le cadre de l'approximation de Gauss, des approximations du premier ordre sont faites, seul le premier terme des développements en série est retenu. Pour des angles inférieurs à 15, l'erreur introduite est inférieure à 1%. Si les deux premiers termes du développement sont conservés, l'écart entre la valeur de sin θ et la valeur approximative au troisième ordre estinférieurà0,3%pourdesanglesdel'ordrede40. 71

72 72

73 Astigmatisme du dioptre sphérique en dehors de l approximation de Gauss 73

74 4 Aberrations géométriques 4.1 Présentation générale Soit B un point objet, de coordonnées y et z dans un plan sujet ; le système S étant de révolution autour de l axe optique, on supposera z nul. Soient B 0 l'image que S donnerait de B en l'absence d'aberration (image paraxiale ou de Gauss) et B le point où un rayon BP quelconque, issu de B rencontre, après traversée du systèmes,leplanimagecomprenantl imageb 0. Soient dy et dz les coordonnées rectangulaires du segment B 0B. Le point P choisi dans le plan de la pupille d'entrée se projette en Q sur l'axe optique ; P est caractérisé par sa distanceàl'axe(qp=h)etparl'angle ϕquefaitqpavecuneparallèleqràl'axedesy. 74

75 Les aberrations transversales dy et dz sont des fonctions de y, h mais pas de ϕ (en raison de la symétrie cylindrique du système optique). Par symétrie, elles se conservent en grandeur, mais changent de signe, lorsqu'on remplace yethrespectivementpar(-y)et(-h). Autrement dit, soit maintenant un point C situé dans le plan de front P, diamétralement opposéaupointbparrapportaupointa.comptetenudelasymétriecylindriquel'image du point C donnée par l'ensemble des rayons situés autour de CJ est en C' située à (-dy') et(-dz')del imagedegaussdec,c'g. 75

76 Un développement en série de dy et dz ne comporte par suite que des termes impairs par rapportàl'ensembledesvariableshety. ( α y ) ( αh ) ( α yyy ) ( αhhh ) ( α yhh ) ( αhyy ) ( β y ) ( βh ) ( β yyy ) ( βhhh ) ( β yhh ) ( βhyy ) dy d y d h d y d h d yh d hy ' = dz d y d h d y d h d yh d hy ' = S arrêter au troisième ordre dans le développement en série des quantités dy et dz revient à assimilerlorsdechaqueréfractionsin θ à θ-θ 3 /6danslaloideSnell-Descartes. Le développement peut être poursuivi jusqu'à des termes de degré plus élevé (cinquième ou septième), mais les termes du troisième ordre fournissent les aberrations les plus représentatives d'un instrument optique non parfait. 76

77 4.2 Coefficients de Seidel Considérons un rayon issu du point B o dans l espace objet et passant par B i dans l espace image. Dans le cadre de l approximation de Gauss le grandissement transverse est défini par: x = γ x et y = γ y i t o i t o ou (x o,y o ) et (x i,y i ) sont les coordonnées des points B o et B i. Ces expressions peuvent être condensées sous la forme: X ou et i = γ X o X o = x + iy X i = x + iy t o o i i sontlescoordonnéesdansleplancomplexedespointsb o etb i. 77

78 Endehorsde l approximationde Gauss,X i dépendaussidesangles(α o,β o )que formeavecl axe optiqueozlesprojectionsdurayonincidentdanslesplansyozetxoz. Commepourlescoordonnéesondéfiniracesanglesaumoyendelavariablecomplexe: χ = α + iβ o o o LavariablecomplexeX i peutsedéfinirsouslaformed undéveloppementpolynomial: ( ) ( ) ( ) ( ) µ * * X i C X o X ν ρ = σ µνρσ o χo χo µ, ν, ρ, σ Dans ce développement les constantes C μνtv sont a priori des nombres complexes et (μ,ν,t,v) des nombres entiers positifs ou nuls. Le système présentant une symétrie de révolution si on change: iθ X en X e et χ en χ e o o o o iθ ce qui exprime une rotation d un angle θ dans le plan objet, alors on doit également observer unerotationθdansleplanimagetelleque: Par identification il vient: ( ) ( ) ν ( ) µ i * ρ θ * X ie = Cµνρσ X o X o χo χo e µ, ν, ρ, σ ( ) σ iθ ( µ ν + ρ σ ) µ ν + ρ σ = 1 soit µ + ρ = 1+ ν + σ Le degré du développement : ( ) m = µ + ν + ρ + σ = 2 ν + σ + 1 est donc impair. 78

79 Pour m=1, ν+σ= 0, donc ν= σ= 0 et µ+ρ= 1. On en déduit alors : X = C X + C χ i 1000 o 0010 o Comme les plans objet et images sont conjugués : C = γ et C = t 0010 On retrouve alors le cadre de l approximation paraxiale. Pour m=3, ν+σ= 1, donc ν= σ= 0 et µ+ρ= 2. D où : L aberration géométrique s évalue donc avec l écart à l approximation paraxiale: tel que : 79

80 Soit en posant : iθo et χ X = r e = ρ e o o o o iϕ o Les 6 coefficients C sont appelés coefficients de Seidel et ils sont réels. 80

81 4.3 Classification des aberrations en défauts d ouverture et défauts de champ Les défauts d ouverture surviennent lorsque l instrument reçoit des faisceaux de large ouverture angulaire, mais dont le rayon moyen est confondu avec l axe ou très peu incliné sur l axe. C est le cas des instruments à petit champ recevant des faisceaux de grande ouverture, comme les objectifs de microscopes, de lunettes astronomiques, les téléobjectifs photographiques. Les défauts de champ se produisent lorsque l instrument reçoit des faisceaux de faible ouverture, mais qui peuvent être très inclinés sur l axe. C est le cas des instruments à grand champ angulaire comme la loupe formée d une lentille mince convergente. Remarque : une aberration d ouverture dépend de la distance h du rayon BP choisi à l axe optique,uneaberrationdechampdépenddelapositionydupointsujetetdoncdelataillede l imagey. 81

82 Les défauts d ouverture sont de deux types: Aberration de sphéricité: Le point objet A est sur l axe et l ouverture est importante ; les rayons issus de A ne passent pas tous par un point image A. L expression aberration sphérique ou défaut de sphéricité traduit la non sphéricité des surfaces d onde émergentes. L aberration sphérique est caractériséeparletermeenh 3 dansledéveloppementprécédent. Défautdecoma: Même si l aberration de sphéricité est corrigée pour A, l image d un point A 1, voisin de A dans son plan de front peut ne pas être ponctuelle. Le terme en h 2 y dans le développement précédent caractérise la coma. C'est une aberration d'ouverture et de champ, l'aberration d'ouverture étant plus importante que l'aberration de champ. 82

83 Si les défauts d ouverture sont négligeables, l angle u étant faible, les aberrations de champ apparaissentpourunobjettrèséloignédel axe.ellessontdedeuxtypes: LesrayonsissusdeBnepassentpastousparunpointimageB (astigmatisme)etdeplusla parfaite image B de B peut ne pas appartenir au plan de front de A (courbure de champ). Le terme en hy 2 caractérise l'aberration d'astigmatisme et de courbure de champ. Il s agit aussi d aberrations d ouverture et de champ, l'aberration de champ étant plus importante que l'aberration d'ouverture. Lorsque le diaphragme d ouverture est mal positionné par rapport au système centré, il se peut que les faisceaux utiles issus de points B1, B2 situés à des distances différentes de l axe traversent le système en des régions plus ou moins éloignées de l axe et soient focalisés différemment;ilenrésulteunedistorsiondel image.letermeeny 3 caractériseladistorsion. C est une aberration exclusivement de champ. Les défauts d ouverture et de champ peuvent coexister. Il est pratiquement impossible de les éliminer, aussi s attache-t-on à corriger les aberrations les plus gênantes, compte tenu de l utilisation du système centré, par exemple: pour un microscope (très petits objets et larges ouverture) il faut corriger en priorité les aberrations sphériques et défauts de coma; pour un objectif grand angulaire d un appareil photographique, il faut principalement corriger l astigmatisme et la courbure de champ. 83

84 5 Aberration de sphéricité 5.1 Exemples Un exemple d aberration de sphéricité : dans les cas extrêmes on peut voir des reflets, des halos se formant autour des points lumineux comme autour des lanternes sur l'exemple cicontre. 84

85 Les miroirs souffrent aussi de cette aberration de sphéricité : voici l image de la galaxie M100 obtenue par le télescope spatial Hubble, avant et après correction de l aberration sphérique de son miroir principal(parabolique). Remarque : dans Hubble, le miroir primaire est parabolique et concave et il renvoie la lumière incidente sur un miroir secondaire hyperbolique convexe. Ces deux miroirs sont placés dans une configuration dite de Cassegrain. 85

86 Effet de la fermeture du diaphragme sur l aberration de sphéricité : objectif de 105 mm, 86 grand ouvert (f 2.5) à gauche et fermé à f4 à droite.

87 Avec une ouverture faible, l'aberration de sphéricité disparaît.. 87

88 88

89 Aberration de sphéricité pour un objectif photographique 89

90 5.2 Origine et description Comme l aberration de sphéricité ne dépend que de h (et non de y), elle est déjà présente dans l'image d'un point objet situé sur l'axe optique d'un instrument S qui pour nous est assimilable à une lentille convergente unique. A 0estl'imagedeGauss(paraxiale)d'unpointsujetA. Augmentons le diamètre du diaphragme P de l instrument ; les rayons traversant le diaphragme à une même hauteur h, qui n'est plus infiniment petite, convergent en un même pointimagea hdel'axe. La position de ce point dépend uniquement de la valeur de h (ce qui montre qu il s agit bien d une aberration d'ouverture) et évolue entre deux positions extrêmes, les images paraxiale A 0(ouA P )etmarginalea m. Les rayons marginaux convergent plus que les rayons centraux. Pourquoi? 90

91 On peut comprendre simplement, par analogie, le fait qu une lentille épaisse est plus convergente aux bords qu au centre. On peut en effet considérer qu'une lentille mince est constituée d'une succession de petits prismes d'angles au sommet de plus en plus faible au fur et à mesure que l'on se déplace de l'extrémité de la lentille vers son centre optique. Or la déviation D d'un rayon lumineux parunprismed'indicen,defaibleangleausommetaestproportionnelleàa : ( 1) D = n A Par conséquent les rayons marginaux sont plus déviés et convergent plus que les rayons paraxiaux. Pour un point objet situé à l infini, les rayons marginaux convergent en un point F' m appelé foyermarginaletlesrayonscentrauxenunpointf' p appeléfoyerparaxial. Il est évident que cette aberration sera d autant plus marquée que le faisceau de rayons parallèles à l axe optique qui entrant dans l objectif sera large, et par conséquent, 91 l aberration de sphéricité pourra être réduite en diaphragmant.

92 Construisons l image par une lentille plan-sphérique de 5 rayons issus d un point de l axe optique: On trouve plusieurs points images(situés aux intersections des rayons images) En augmentant le nombre de rayons (31 ici), le nombre de points images augmente aussi : 92

93 Loi de Snell-Descatres, et une de ses applications avec la mise en évidence de l'aberration de sphéricité d'une lentille convergente. 93

94 Les rayons images s'appuient sur une surface de révolution enveloppe (c est-à-dire tangente aux rayons lumineux d un faisceau issu d un même point) appelée caustique de réfraction La caustique est composée de deux nappes (portion d un seul tenant de la surface courbe) appelées caustique axiale ou sagittale et la caustique tangentielle. Chaque rayon esttangentàchacune des nappes de la caustique. Chacune de ces nappes peut être réelle ou virtuelle. Si la nappe est réelle, elle correspond à une accumulation d énergie lumineuse (caustique signifie brûler), car c est à son contact que les rayons lumineux sont les plus rapprochés. Pourtrouverlaformedecesdeuxnappes,onenvisagedeuxmodesdegroupementdesrayons émergents. 94

95 5.2.1 Aberration sphérique longitudinale: Les rayons incidents qui sont tous inclinés du même angle u par rapport à l axe forment un cône de révolution de sommet A. Après avoir traversé le système, les rayons émergents correspondant forment une nappe conique de révolution de sommet A, point appartenant à l axe, et d ouverture 2u : En faisant varier l angle 2u, l angle au sommet du faisceau incident, de 0 à 2U, il est possible de rencontrer tous les rayons du faisceau émergent. Lorsque 2u varie, le point A décrit une portion(a m A o )del axe.lesegmenta m A o estl unedesnappesdelacaustique,c estlanappe axiale (ou nappe sagittale), A m est le point de convergence des rayons marginaux ; A o est le point de convergence des rayons quasi axiaux (u très petit). C est l image de A dans l approximation de Gauss. 95

96 Par exemple, pour observer cette nappe axiale, on place après le système [S] uniformément éclairé un disque percé de petits trous disposés selon un diamètre. Les faisceaux issus de deux trous symétriques par rapport à l axe optique convergent en un point A de l axe. On constate que tous les points de convergence des faisceaux sont alignés sur l axe. 96

97 5.2.2 Aberration sphérique transversale Tous les rayons incidents situés dans un plan passant par l axe le restent après avoir traversé le système.enfaisanttournerceplanautourdel axedusystème,onrencontretouslesrayonsdu faisceau, quel que soit l angle u. Ces rayons émergents sont tangents à une surface engendrée lors de la rotation du plan par une courbe [γ] qui présente un point de rebroussement en A o (image de Gauss). Cette surface est la deuxième nappe de la surface caustique, laquelle est donc de révolution autour de l axe optique. C est la nappe tangentielle de la caustique, qui présente donc une forme de calice ou de trompette. 97

98 5.2.3 Description de l image et mesure de l aberration de sphéricité 98

99 L'image du point objet A situé sur l'axe n'est pas un point mais une tache de diffusion circulaire dont l'aspect dépend de la position de l'écran E par rapport à la lentille. La figure précédente illustre ces différents aspects de l image. L écran étant suffisamment éloigné, la tache observée est quasiment ponctuelle: c est l image de Gauss. Si on rapproche l écran de la lentille, on observe une tache centrale entourée d un cercle lumineux, dont le rayon augmente quand la distance entre l écran et la lentille diminue. À plus courte distance, la structure du faisceau lumineux disparaît. Quand l'écran est situé en position (3) le diamètre de la tache de diffusion est minimum, celle-ci porte le nom de cercle de moindre diffusion. D un point de vue pratique, l aberration de sphéricité se manifeste par la répartition inégale de la lumière dans les images observées dans des plans perpendiculaires à l axe, de part et d autredea o (imageparaxiale)pourunpointobjeta. On décrit le phénomène d aberration de sphéricité par deux longueurs: Lalongueurl=A' m A' p delanappeaxialemesurel'aberrationsphériquelongitudinale. Le rayon t du cercle obtenu en coupant le faisceau par le plan de front de l image paraxiale A o mesurel aberrationtransversaledesphéricitépourlepointobjeta;onabiensûr: t = l tan U ' 99

100 Pour un système donné, les aberrations l et t dépendent de la position du point A. Lorsque A est rejeté à l infini, A o vient en F o (foyer principal image), A m vient en F m. Les aberrations sont dites aberrations sphériques principales

101 Front d onde non sphérique produit par l aberration sphérique d une lentille 101

102 Taches images d un point objet formés par un système d aberration sphérique négative (audessus), nulle(au milieu) et positive(en bas). Vues longitudinales de la caustique de réfraction formée par une lentille présentant une aberration sphérique négative (au-dessus), nulle (au milieu) et positive (en-dessous). La lentille est située àgauchedanstouslescas. 102

103 103

104 104

105 De telles distributions anormales de lumière peuvent se manifester dans les parties «hors focus» d une photographie. Par exemple, la figure ci-dessous montre le centre d une cible formée de points blancs sur un fond noir reproduite à l échelle 1:1 avec un objectif de 85/1,4.Quandlefilmest5mmderrièrele«meilleurfocus»,ledisquefloumontreunbord brillant. Quand le film est 5mm devant le foyer (c est-à-dire plus près de l objectif), le flou se caractérise par un centre brillant et un halo diffus. Ici, l aberration de sphéricité est surcorrigée. 105

106 Comparaison d un système avec aberration de sphéricité à un système corrigé Aucune paire de rayon ne se croise après le point de croisement des rayons centraux. Par contre,ladensitéderayonsaprèscepointestmoindredanslecasaberrantquedanslecas idéal. Le cercle de confusion est donc plus large après ce point (à droite) que dans la théorie géométrique, et la brillance de la tache floue décroît de l intérieur de la tache vers l extérieur. Inversement, avant ce point (à gauche), le cercle image est plus petit mais est bordé d une zone plus lumineuse. Après le point de croisement des rayons centraux (à droite), le cercle image a une bordure plutôt verte puisque les rayons de lumière qui focalisent le plus près de la lentille sont les bleus et les verts (aberration chromatique). Par contre, avant ce point (à gauche), dans la zone brillante, ce sont plutôt les rayons rouges. 106

107 Flou d avant plan (à gauche) et d arrière plan (à droite) obtenu avec le Sonnar ZM 1,5/50, un objectif sous-corrigé pour l aberration de sphéricité. 107

108 Différentes formes du bokeh 1. Mauvaisbokeh:lebord,beaucouppluslumineuxquelecentre,esttrèsbiendéfini 2. Bokeh neutre: l'intensité est uniforme, le bord est bien défini 3. Beaubokeh:lecentreesttrèslumineux,lebordestindéfini L'étude de ces formes peut se faire grâce à une représentation, avec une courbe, de l'évolution de l'intensité qui traverse le cercle. Le schéma ci-dessous nous montre le résultat: 108

109 Evolution de l image d une croix pour des distances de mise au point entourant la meilleure mise au point. Le film est déplacé par pas de 1mm de 4mm avant le meilleur foyer (position 0mm) à 4mm après. L aberration de sphéricité est responsable de l aspect plus rugueux du flou pour des distances négatives et plus doux après. Strictement parlant, les artefacts colorés apparaissant avant et après le foyer ne devraient pas être qualifiés d aberrations chromatiques, comme cette aberration est définie seulement dans le plan du foyer, mais la 109 cause est la même (phénomène de dispersion).

110 Diagrammes usuels pour présenter l aberration de sphéricité longitudinale : l axe vertical indique le point de départ d un rayon dans le plan de la pupille par la mesure de la distance à l axe optique, et l axe horizontal indique la variation de position sur l axe du point de focalisation de ces rayons par rapport à celle des rayons centraux. Le diagramme de gauche montre un système fortement souscorrigé. 110

111 5.3 Corrections de l aberration de sphéricité : Puisque cette aberration est d autant plus marquée que les faisceaux de rayons entrants sont larges, on peut la réduire en diaphragmant. En effet, mathématiquement, nousavonsvuquelesvaleursdes x etdes y décroissentquandnaugmente. D autre part, comme S x et S y dépendent de la focale f (avec son signe), on peut chercher à compenser l aberration de sphéricité d une lentille divergente par l aberration de sphéricité d une lentille divergente. En fait, une lentille divergente «diverge plus au bordqu ensoncentre»:lacaustiquederéfractionprendlaforme: Un doublet formé d une lentille convergente et d une lentille divergente permet de faire coïncider 2 foyers (par exemple le foyer paraxial et un rayon intermédiaire). Les rayons de courbure et les indices des matériaux du doublet sont choisis de telle sorte que les aberrations des deux lentilles convergente et divergente se compensent exactement. La réalisation d'un doublet permet, si les indices et les rayons de courbure sont judicieusement choisis, de corriger simultanément l'aberration chromatique et sphérique. 111

112 On peut utiliser une lentille asphérique, c est-à-dire dont l une des faces n est pas une calotte sphérique. Il faut en fait usiner des lentilles dont la forme des surfaces compensent le fait que sin θ n'est pas égal à θ sauf pour un angle de 0, mais la réalisation de surfaces asphériques est très complexe et par conséquent onéreuse. 112

113 Effet de l utilisation de lentilles de contact asphériques 113

114 le faisceau réfléchi par un miroir sphérique présente uniquement l aberration de sphéricité. On peut, dans le cas du miroir utilisé dans un télescope, diaphragmer le faisceau non plus par le bord du miroir, mais par une ouverture circulaire dont le centre coïncide avec le centre de courbure C du miroir. On corrige l aberration principale en plaçant sur le diaphragme une lame de Schmidt. C est une lame mince de forme circulaire, en verre ou en quartz, d épaisseur non uniforme. Une face est plane et l autre légèrement creusée dans sa partie moyenne : le centre se comporte comme une lentille convergente, la périphérie comme une lentille divergente. Il en résulte que tous les rayons réfléchis coupent l axe au même point : il y a donc stigmatisme rigoureux. La forme la plus utilisée est schématisée sur la figure ci-contre. Dans ce cas, selon Schmidt, la petite variation d épaisseur e à une distance h de l axe est telleque: e = h h ( D ) 2 3 4( n 1) R où D est le diamètre de la lame, n son indice et R est le rayon du miroir. 114

115 Pour une seule lentille, formée de deux dioptres de rayons de courbures R 1 et R 2, la valeur des aberrations sphériques longitudinale et transverse dépend du facteur de formeqdéfinidelafaçonsuivante: R1 + R2 q = R R 2 1 Comme il y a une infinité de manières de choisir le couple de rayons de courbures pour obtenir une focale f donnée, on peut sélectionner le couple de cambrures qui minimise l une ou l autre des aberrations sphériques. Par exemple, l aberration longitudinale est minimale (pour un objet situé à l infini et une image dans le plan focal) lorsque q 0,7 c est-à-dire quandr 2 =-6R 1. Le facteur de forme q optimal dépend du couple de plans conjugués considérés. Ainsi, pour le couple de plans conjugués situés à la position 2f-2f' (correspondants à la reproduction grandeur nature) l'aberration sphérique est minimale lorsque la lentille est symétrique. 115

116 6 Aberration de coma (ou d aigrette) Dans le cas général, à l aberration de sphéricité se superpose une aberration de coma. Mais cette aberration n apparaît vraiment dans un système que si l aberration de sphéricité a été corrigée(stigmatismepouraeta o ). 6.1 Origine et forme de l aberration Cette aberration apparaît pour un faisceau large issu d un point situé légèrement hors de l axe (donc y et h diffèrent de zéro ici). On va donc considérer un point B, situé sur la perpendiculaire à l axe passant par A, avec AB petit et un faisceau de grande ouverture. Lorsqu un système est stigmatique pour un couple de points de l axe (A,A ) mais n est pas aplanétique pour ces points, les rayons provenant de B situé hors de l axe enveloppent une caustique admettant le plan méridien de B comme seul plan de symétrie. La caustique se forme car la lentille sphérique est plus convergente aux bords qu au centre (cf. aberration de sphéricité). Toutefois, contrairement à l aberration de sphéricité, la caustique n est cette fois plus de révolution (=plus d axe de symétrie). Les sections perpendiculaires à l axe optique de cette caustique ne seront plus circulaires ; par conséquent, la tache image d un point sujet présentera un aspect allongé caractéristique, en forme de comète, d où le nom donné à ce 116 type d aberration.

117 Aberration de coma pour un objectif photographique 117

118 6.2 Exemples Taches de diffraction théoriques obtenues pour l image d une étoile par un télescope de Newton, montrant l augmentation de la coma lorsque l étoile s éloigne du bord du champ. Cliché de la galaxie M33 pris au foyer d un télescope de 256mm de diamètre et de 1187mm de distance focale (F/D= 4,6). C'est une pose de 45mn sur TP2415 hypersensibilisé. Il ne représente qu'une partie du cliché de 24x36mm et pourtant la coma est déjà sensible sur les étoiles situées sur le bord de l'image de la galaxie. 118

119 119

120 6.3 description générale de la forme de l image Pour comprendre l origine de la forme de l image, considérons un système dépourvu d'aberrations sphériques formant l'image d un point sujet B situé à faible distance de l'axe. On peut décomposer la pupille d entrée du système en imaginant sur la pupille un diaphragme forméparunpetittroucentraltetunanneauderayonh. LesrayonsparaxiauxpassantparTformentuneimageponctuelleB 0. Les rayons transmis par l'anneau coupent le plan image du plan de mise (contenant le point B 0)suivantune circonférence image de centre C (d autant plus proche de B 0 quehestpetit) dont on montre que le rayon est r = B 0C /2 (il diminue donc quand C se rapproche de B 0 ) ; de plus, ce cercle est parcouru deux fois lorsque le point d'incidence du rayon décrit l'anneau tracé sur la pupille. 120

121 121

122 La pupille d entrée entière est considérée comme une juxtaposition d'anneaux concentriques à T. Les circonférences de diffusion correspondantes sont homothétiques par rapport à B 0 ettangentesàdeuxdroitesformantunanglede60. Leur ensemble, qui rappelle un peu une comète, est l'image d'un point lumineux en présence de coma. 122

123 Lorsque le point objet B s écarte de l axe, l image présente les aspects successifs indiqués sur la figure cidessous. Lorsque B est confondu avec A, la section du faisceau est une tache circulaire avec un point brillant au centre (cas de l aberration de sphéricité). Quand le point B s éloigne de l axe, le point brillant B O se déplace vers le bord de la tache qui prend progressivement l aspect d une comète. Exemples de taches obtenues pour différentes places de l écran 123

124 124

125 6.4 Explication plus détaillée de la forme de l image Pour comprendre mieux le phénomène et la forme de l image, on considère un masque constitué d'un écran opaque percé de deux petits trous diamétralement opposé, placé contre le système optique. Dans le plan image on observe un point de convergence bien défini pour différentes positions angulaires du masque mais la position du point image dépend des différentes positions angulaires du masque. Lepoint1dansleplanimage(figurec)estobtenuaveclemasqueenposition1(figureb). Une rotation du masque pour amener les deux trous en position 2 fait passer le point de focalisationen2etainsidesuite. 125

126 Par conséquent, une ouverture de forme annulaire (figure d) donne de la lumière répartie suruncercleimagedontlediamètredépenddurayondel'anneau(figuree).auniveaudu plan image, le cercle de plus grand diamètre est obtenu avec le masque annulaire de plus grand diamètre. Lorsque ce masque est enlevé, une image ayant la forme d'une comète (d'où le nom de «coma» donné à ce type d'aberration) est obtenue par la superposition des différents cercles images résultant des différents masques a,b,c. 126

127 6.5 Corrections de l aberration de coma Pour corriger ce défaut, il est nécessaire (et suffisant) que les points conjugués A et A vérifient la relation d Abbe: nabsin u = n' A' B 'sin u ' Dans le cas d un objectif photographique, pour corriger à la fois l aberration de sphéricité, l aberration de coma (et l aberration chromatique), on peut disjoindre les deux lentilles qui forment le doublet achromatique(achromat). Un tel doublet possède quatre degrés de liberté (2 focales et deux cambrures arbitraires, une fois les focales fixées), et on impose quatre contraintes (focale résultante du doublet, minimiser l aberration chromatique longitudinale, une des aberrations de sphéricité et l aberration de coma). Une autre possibilité de correction est d utiliser un triplet de lentilles accolées(au lieu de deux lentilles disjointes). Remarque : pour plus de liberté, on peut toujours utiliser aussi des verres de compositions chimiques différentes. L objectif apochromatique est corrigé de l'aberration chromatique pour trois longueurs d'onde, de l'aberration sphérique et de la coma Un système optique corrigé de l'aberration sphérique et de la coma est donc dit aplanétique. Un tel système permet d'obtenir pour des objets transversaux de petites dimensions de bonnes images même pour des rayons fortement inclinés par rapport à l'axe optique. Typiquement un objectif de microscope est aplanétique. 127

128 Le défaut de coma s observe avec un miroir parabolique, rigoureusement stigmatique pour lecouple depointsconjuguésformédupointde l axeàl infini(a )etdufoyer(f )maisnon pour les autres points (même les points à l infini, comme B ). Le miroir n est aplanétique pour aucun couple. 128

129 Aberrations géométriques de sphéricité et de coma 129

130 7 Aberrations de champ Les instruments à grand champ objet, comme les objectifs photographiques grands angulaires ou les objectifs de projection sont fortement diaphragmés pour que les faisceaux utiles issus des points objets écartés de l axe soient des pinceaux étroits desquels les rayons paraxiaux sont éliminés. Le système optique est supposé corrigé des aberrations d ouverture ; les conditions de Gauss sont satisfaites pour les points axiaux et quasi axiaux. Le stigmatisme approché est réalisé pour ces points de la partie centrale de l objet étendu. Les images des autres points sont d autant plus défectueuses qu ils sont écartés de l axe. Dans ces conditions, les défauts de l image sont l astigmatisme, la courbure de champ et la distorsion. 130

131 7.1 astigmatisme L aberration d astigmatisme se manifeste particulièrement sur l image d un objet structuré, par exemple une mire quadrillée ou mieux, une roue à rayons ; si la mise au point est faite sur les rayons de la roue, la roue en elle même présente un flou maximum et réciproquement: Cette constatation implique que des rayons lumineux voyageant dans des plans sujets aux orientations différentes ne sont pas déviés de la même manière par l objectif et focalisent à des distances différentes au long de l axe optique de l objectif: 131

132 L'astigmatisme a pour conséquence que la netteté dépend de la direction des détails photographiés. Cet effet est plus visible sur les bords de l'image(comme l astigmatisme dépend de la variable dechampy 2 ). Un changement de mise au point permet d'obtenir l'une ou l'autre des directions nette, mais paslesdeuxàlafois. L'astigmatisme se traduit par une détérioration de la qualité de l'image et dans les cas extrêmes, par un aplatissement des images des points lumineux. Diaphragmer permet de réduire ce problème (puisque l astigmatisme dépend de la variable d ouverture h) mais pas de l'éliminer. 132

133 Illustration du phénomène d astigmatisme de l œil 133

134 Pourrendrecomptedecettedifférencedemiseaupointselonladirectiondesrayonsdans l espace sujet,considérons la réfraction parun premierdioptre sphérique (centré en C 1 ) de différents rayons issus d un point objet P, situé hors axe optique. Appelons rayon principal lerayonpo. Si on envisage des rayons se propageant dans le plan (yz) (ce plan, contenant l axe optique et le rayon principal oblique est appelé plan sagittal ou méridien), ces rayons rencontrent ledioptresphériqueselonunarcdegrandcercle (c est-à-dire un méridien)derayonr=c 1 B (ce sont les rayons représentés en noir, s appuyant sur les extrémités du diaphragme). Par contre, des rayons issus de P et se propageant dans un plan perpendiculaire au plan sagittal, et contenant le rayon principal oblique (ce plan est appelé plan tangentiel) rencontrent la surface du dioptre sphérique selon un arc de petit cercle (un parallèle) de 134 rayonr=cainférieuràr=c 1 Bsurleschéma.

135 135

136 Comme mentionné dans l introduction, le phénomène d'astigmatisme provient du fait que les rayons contenus dans le plan tangentiel ne convergent pas à la même distance du système optique que les rayons contenus dans le plan sagittal. En fait, les rayons de lumière qui se propagent dans la surface sagittale vont être moins réfracté que les rayons qui se propagent dans la surface tangentielle (l image tangentielle P T se formera avant l image sagittale (ou méridienne) P S =P M ). Ceci peut s expliquer par le fait que pour une lentille, formée de deux dioptres accolés, la distance focale est reliée aux rayons de courbure par la formule du fabricant : ( n 1) = f ' R R ' 136

137 137

138 Description de l image d un point sujet en présence d astigmatisme Coupons le faisceau réfracté par un plan perpendiculaire au rayon image moyen. Les sections obtenues sont sensiblement des droites S et T dites focales sagittale et tangentielle. Entre ces deux droites, la section du faisceau est une tache de diffusion elliptique,quiseréduitàunpetitcerclec pourunplandemiseaupointsituésensiblement à mi-distance de S et de T. Ce cercle, la meilleure image que l'on peut obtenir d'un point, est le cercle de moindre diffusion(ou la pseudo image). 138

139 Modifications de la tache de diffraction idéale dues à l astigmatisme 139

140 140

141 141

142 142

143 Dans l'astigmatisme, les foyers des images sagittales et tangentielles ne coïncident pas dans la zone de moindre confusion. L'image d'un objet circulaire prend alors la forme d'une croix. Mise au point d un télescope astigmate 143

144 144

145 Les images des étoiles ne sont pas ponctuelles mais présentent des aigrettes. Les grandes aigrettes, qui ne sont pas à symétrie de révolution autour de l axe optique, sont dues à la diffraction de la lumière sur l araignée du télescope, les plus petites aigrettes, présentant145 une symétrie de révolution, sont dues à l astigmatisme.

146 Mise en évidence de l astigmatisme de l objectif Carl Zeiss Planar 1.4/50 Mise au point au centre du champ ; on note la dégradation des croix vers le bord du champ, surtout dans la direction tangentielle (/ sur croix 3), moins dans la direction sagittale (\ sur croix 3). Pour un déplacement du plan image de 1,5 mm, on note que la barre sagittale 3s (\) est tout à fait nette maintenant, de même que la barre tangentielle2t(/). 146

147 Un déplacement de 4,5 mm du plan image amène le foyer tangentiel en 3T. Toutes les directions sagittales sont floues. 147

148 Les rayons se propageant dans des plans intermédiaires entre le plan sagittal et le plan tangentiel vont être réfractés vers un point intermédiaire entre P T et P S =P M : le point objet Paura donc une infinité d images,réparties surle segmentp T P S. Selon la position de l écran, onauradoncunetacheimagedeformedifférente: Si l'écran est positionné à proximité de l'image sagittale P S, l'image du point apparaîtra comme une ellipse très fortement aplatie de grand axe contenu dans le plan tangentiel. Si l'écran est positionné au voisinage de l'image méridienne (ou sagittale) P M, l'image du point est une ellipse de grand axe contenu dans le plan tangentiel. La distance entre ces deux images s'appelle la distance d'astigmatisme. Elle dépend fortement des couples de plans 148 conjugués considérés et de la distance du point objet à l'axe.

149 149

150 Mise en évidence de l astigmatisme d un objectif Planar1,4/50 ouvert à 1,4 et mis au point au centre

151 7.2 Courbure de champ C'est une aberration essentiellement de champ qui provient du fait que l'image d'un objet plandegrandedimensionseformesurunesurfaceparaboloïdaleetnonsurunplan. L'écart dx' varie comme la dimension au carré de l'objet (y 2 ) et en fonction du rayon d ouverture h. Pour comprendre l origine de cette déformation, considérons, par exemple, une lentille plan-convexe fortement diaphragmée: Surleconjugué durayon issudebsontsituéesles focales sagittale S, tangentielle T et le cercle de moindre diffusion C. Lorsque B décrit le plan de front objet, S, T et C s'appuient sur des surfaces de révolution tangentes entre elles sur l'axe. Le lieu de C, constitue la meilleure image d'un objet planet,engénéral,s'écarteduplannormalàl'axe passant par A. Cette aberration est la courbure de champ. 151

152 . L image d un plan n est pas un plan, mais une surface sphérique concave (lentille convergente) ou convexe(lentille divergente)

153 Un effet de la courbure de champ est qu un film placé exactement sur le plan image capture une image dont le milieu est net, mais les bords flous dû au fait que les rayons lumineux se rencontrent en aval du plan. Si on modifie la mise au point (et ainsi la position du film par rapport au plan image) on peut obtenirlesbordsnets,maisc'estlecentrequiseraflou. L image de droite par exemple, perd de sa netteté sur les bords de l'image alors que celle de gaucheestnetteauxbords,maispasaucentre. 153

154 L'objectif d'un microscope ne sera en général pas corrigé de la courbure de champ lors d'une observation visuelle car l'expérimentateur peut facilement ajuster la distance de miseaupointpouruneobservationaubordduchamp. Par contre pour réaliser de la microphotographie l'objectif aplanétique devra être corrigé aussidelacourburedechamp.cesobjectifsontditsplans. Pour une lentille convergente le rayon de courbure de la surface paraboloïdale est négatif ; pour une lentille divergente le rayon de courbure de la surface paraboloïdale est positif. Ici encore, pour corriger cette aberration, on associe lentilles convergentes et divergentes. 154

155 7.3 Correction de l astigmatisme et de la courbure de champ La correction de l astigmatisme et de la courbure de champ est très complexe et n a pu être atteinte de façon satisfaisante que grâce au développement considérable des nouveaux verres optiques et aux méthodes de calcul numérique. On parle alors d objectifs anastigmats. Toutefois, de nombreux objectifs actuels dérivent des tout premiers anastigmats, comme le triplet de Taylor, développé par Taylor en 1893, qui fournissait une netteté remarquable pour l'époque. En théorie, pour cet objectif, la courbure de Petzval permet de corriger au mieux les aberrations, notamment l'astigmatisme, à l'aide, comme c'est ici le cas, de seulement trois lentilles. Cependant, la plupart des objectifs actuels dérivant de ce type possèdent au moins quatre lentilles. L'utilisation combinée de trois types de verre à constringence différente permet une réduction notable de l'aberration chromatique(pas d achromat ici). L'anastigmat le plus célèbre est le Tessar, qui a été mis au point par Rudolph en Il a été longtemps surnommé par ses utilisateurs «l'œil d'aigle», en raison du pouvoir séparateur de cet objectif. Il dérive du triplet de Taylor, où la dernière lentille a été savamment remplacée par un achromat. Cette combinaison a l'avantage de réduire l'aberration chromatique et la courbure de Petzval sans pour autant augmenter l'aberration sphérique et la coma. 155

156 Notons encore que les objectifs classiques sont corrigés pour des mises au point sur l infini, ce qui donne ne général des résultats valables dans le domaine de la photo normale. Pour les objectifs d emploi particulier, les corrections sont effectuées pour des distances correspondant aux conditions normales d emploi. Deux configurations correspondant à des anastigmats modernes. 156

157 157

158 158

159 159

160 160

161 Complete removal of astigmatism is difficult, but can occur in optical systems when the two curves, S and T, become flatter and coincide (Figure 3(c)), and the image is then formed in a region near the Petzval surface (P). 161

162 8 Distorsion 8.1 Aspect de la distorsion La distorsion, aberration uniquement fonction de la position du point objet dans le champ (aberrationdechamp,termeeny' 3 ),n'affectepaslaqualitédel'imaged'unpoint.l'image d'un point sujet reste ponctuelle, seule la position du point image est modifiée. La distorsion provoque une déformation globale de l'image, de sorte qu'un objet carré apparaît dans l'image sous la forme d'un coussinet ou d'un barillet. Tout se passe comme si le grandissement dépendait de la distance du point objet à l'axe optique. Distorsion en barillet Distorsion en coussinet (ou en croissant) 162

163 Distorsion en barillet Distorsion en coussinet 163

164 8.2 Mesure de la distorsion Si on appelle l la flèche maximale de la déformation de l image de la mire de largeur L, la distorsionsemesureparlaquantitéd t définiepar: Les distorsions sont en général comprises entre-2% et +4% selon les objectifs. 164

165 Distorsion d une grille en barillet ou en coussinet 165

166 On affirme souvent que des valeurs négatives du taux de distorsion (noté D ici) correspond à une distorsion en barillet (barrel) et que des valeurs positives correspondent à une distorsion en coussinet (pincushion). C est vrai pour des courbes de distorsion simple, mais certains objectifs ont des courbes de distorsion plus complexes, qui ne suivent pas cette règle simple. Considérons par exemple le Distagon 2,8/21 qui donne d une grille l image avec distorsion ci-contre, décrite par la courbe de la figure ci-dessous. Même si la courbe de distorsion (figure A ci-dessous) est négative partout (ce qui est généralement associé à une distorsion en barillet), l étude de la grille révèle de la distorsion en croissant vers les coins. Courbe de distorsion (A) pour le Distagon2,8/21 et sa dérivée (B) En fait, ce n est pas le signe de D qui détermine le type de distorsion mais la pente de la courbe de distorsion. Une pente négative (partie claire à gauche de la courbe A) correspond à une distorsion en barillet et une pente positive (partie sombre à droite de la courbe B) correspond à une distorsion en croissant. Plus la pente est importante, plus la distorsion est grande. 166

167 Les figures précédentes montrent donc que jusqu à 15mm du centre de l image, la distorsion est en barillet (pente négative). De 15mm au bord de l image, la distorsion est en croissant (pente positive). Comme cette dernière pente est plus raide que la première, la distorsion périphérique en croissant est plus marquée que la distorsion centrale en barillet. C est donc lapentedelacourbequiindiqueletypeetl importancedeladistorsion. Mathématiquement, la distorsion varie avec la distance h selon la formule: LavariationrelativeDestdoncdutype: h' h= ah 3 + bh D=(h' h)/h= ah 2 + bh 4 + Le coefficient a est positif pour une distorsion en croissant et négatif pour une distorsion en barillet. Habituellement, le terme quadratique domine les autres termes, dégradant progressivement l image vers les bords quand h augmente ; mais dans certains grands angles (comme le Distagon cité avant), le terme quartique devient suffisamment grand pour dominer le terme quadratique. Cela conduit à la courbe de distorsion décrite précédemment, que l on qualifie de distorsion en moustache ou en forme d onde. 167

168 8.3 Origine de la distorsion Ces déformations de l image sontdues au fait que le rapportde grandissementgn est pas lemêmepourlespointséloignésdel axeoptiquequepourlespointssituésauvoisinagede cet axe. La distorsion provient des aberrations de sphéricité résiduelles. En effet, soit une lentille L diaphragmée en P. Prenons pour objet un point du quadrillage régulier centré sur l'axe optique et éclairé par une source ponctuelle située à l'infini. La grandeur de l'image y d'un objet y est déterminée par la relation paraxiale G = y /y. La lentille étant entachée d'aberration sphérique résiduelle, le rayon conjugué du rayon parallèle à l'axe cheminant à une hauteur d'incidence y ne passe pas par le foyer paraxial, l'imagedebn'estpasl'imageparaxialeb 0,maisunpointB.LadistanceB 0B estfonction de y ; dans le cas de la figure ci-dessus, G a augmenté puisque B est situé plus loin de l axe que B 0 : la distorsion est en coussinet. Dans d'autres cas, si G diminue, la distorsion 168 peut être en barillet.

169 8.4 Distorsion en fonction de la position du diaphragme En fait, la modification du rapport de grandissement G est lié à l emplacement du diaphragme principal par rapport au centre optique de l objectif : une distorsion en barillet correspond à un diaphragme placé en avant du centre optique, tandis qu une distorsion en coussinet apparaît lorsque le diaphragme est placé après le centre optique. Si le diaphragme est placé en avantdu centre optique : En l absence d aberration de sphéricité résiduelle, le rayon BM serait réfracté selon la directionmd c (passantparl imageparaxialeb dupointb) À cause des aberrations de sphéricité résiduelles, le rayon BM qui atteint la lentille sur une zone marginale va se réfracter plus fort pour rencontrer l axe optique en D m, image marginale de D. Par conséquent, A B <A B et le grandissement G a diminué: la distorsion est en barillet. 169

170 Si le diaphragme est placé aprèsle centre optique : Dans ce cas, l image obtenue A B est plus grande que l image A B non déformée. Le grandissement G a donc augmenté: la distorsion est en coussinet. 170

171 171

172 8.5 Correction de la distorsion On dit que l on a réalisé l orthoscopie lorsqu un objectif est corrigé pour la distorsion. En pratique, pour obtenir l orthoscopie, lorsqu on a éliminé au maximum les aberrations de sphéricité pour un objectif, on peut encore tenter de réduire la distorsion par une des techniques suivantes: Pour un objectif symétrique : puisque la distorsion dépend de l emplacement du diaphragme et qu un diaphragme placé en avant d un groupe de lentille cause une distorsion opposée à celle d un diaphragme placé en arrière d un groupe de lentilles, on peut compenser l aberration en coussinet du groupe de lentilles placé avant le diaphragme d un objectif symétrique par l aberration en barillet du groupe de lentilles placé après le diaphragme. En pratique, l orthoscopie est réalisée pour un rapport de grandissement, mais la correction s avère suffisante pour toutes les autres valeurs de G pour lesquelles on peut utiliser l objectif. Pourunobjectifhémisymétrique:leprincipedecorrectionrestelemême(unobjectif hémi symétrique est un objectif tel que les deux moitiés entourant le diaphragme sont de dimensions différentes, mais géométriquement semblables). Pour un objectif dissymétrique : de nombreux anastigmats modernes sont dissymétriques. Ces objectifs sont conçus pour réaliser l orthoscopie pour des faisceaux d une obliquité donnée par rapport à l axe optique. En général, la correction est suffisante pour les autres inclinaisons de rayons. 172

173 173

174 174

175 175

176 176

177 177

178 178

Introduction aux aberrations optiques

Introduction aux aberrations optiques Introduction aux aberrations optiques 1 Aberrations Les aberrations sont les défauts d'un système optique simple qui font que l'image d'un point ou d'un objet étendu obtenu par l'intermédiaire de ce système

Plus en détail

Chap.3 Lentilles minces sphériques

Chap.3 Lentilles minces sphériques Chap.3 Lentilles minces sphériques 1. Les différents types de lentilles minces sphériques 1.1. Les différentes formes de lentilles sphériques 1.2. Lentilles minces Centre optique 1.3. Lentille convergente

Plus en détail

1 Lentilles sphériques minces

1 Lentilles sphériques minces Lentilles sphériques minces et miroirs Lentilles sphériques minces. Définition Définition : Une lentille sphérique est une portion de MHT I limitée par deux dioptres sphériques ou une dioptre sphérique

Plus en détail

Formation des images dans les conditions de Gauss

Formation des images dans les conditions de Gauss ormation des images dans les conditions de Gauss Table des matières 1 Définitions 3 1.1 Système optique............................... 3 1.2 Objet-Image................................. 3 1.2.1 Objet................................

Plus en détail

3LESLENTILLESMINCES. http://femto-physique.fr/optique_geometrique/opt_c3.php

3LESLENTILLESMINCES. http://femto-physique.fr/optique_geometrique/opt_c3.php 3LESLENTILLESMINCES Cette fiche de cours porte sur les lentilles minces. L approche est essentiellement descriptive et repose sur la maîtrise de la construction des rayons lumineux. Ce chapitre est accessible

Plus en détail

TP Physique n 1. Spécialité TS. I. Généralités sur les lentilles minces: Convention:

TP Physique n 1. Spécialité TS. I. Généralités sur les lentilles minces: Convention: TP Physique n 1 Spécialité TS Convention: Dans cet exposé, la lumière est supposée se déplacer de la gauche vers la droite. I. Généralités sur les lentilles minces: Une lentille est un milieu transparent

Plus en détail

Lentilles Détermination de distances focales

Lentilles Détermination de distances focales Lentilles Détermination de distances focales Résumé Les lentilles sont capables de faire converger ou diverger un faisceau lumineux. La distance focale f d une lentille caractérise cette convergence ou

Plus en détail

Chapitre 5 : Les lentilles et les instruments d optique

Chapitre 5 : Les lentilles et les instruments d optique Exercices Chapitre 5 : Les lentilles et les instruments d optique E. (a) On a 33, 2 0cm et 20 cm. En utilisant l équation 5.2, on obtient 33 0 cm 33 20 cm 858 cm Le chat voit le poisson à 858 cm derrière

Plus en détail

O 2 Formation d images par un système optique.

O 2 Formation d images par un système optique. par un système optique. PCS 2015 2016 Définitions Système optique : un système optique est formé par une succession de milieux homogènes, transparents et isotropes (MHT) séparés par des dioptres (et /

Plus en détail

Licence IOVIS 2011/2012. Optique géométrique. Lucile Veissier lucile.veissier@spectro.jussieu.fr

Licence IOVIS 2011/2012. Optique géométrique. Lucile Veissier lucile.veissier@spectro.jussieu.fr Licence IOVIS 2011/2012 Optique géométrique Lucile Veissier lucile.veissier@spectro.jussieu.fr Table des matières 1 Systèmes centrés 2 1.1 Vergence................................ 2 1.2 Eléments cardinaux..........................

Plus en détail

Chapitre II-3 La dioptrique

Chapitre II-3 La dioptrique Chapitre II-3 La dioptrique A- Introduction Quelques phénomènes causés par la réfraction de la lumière : quelqu'un dans une piscine semble plus petit... un règle en partie immergée semble brisée... un

Plus en détail

Chapitre 6 : LES LENTILLES MINCES S 3 F

Chapitre 6 : LES LENTILLES MINCES S 3 F Chapitre 6 : LES LENTILLES MINCES S 3 F I) Généralité sur l optique géométrique : 1) Rappel sur les faisceaux lumineux : A partir d'une source de lumière, nous observons un faisceau lumineux qui peut être

Plus en détail

Exercices, dioptres sphériques et lentilles

Exercices, dioptres sphériques et lentilles 1 exercices, dioptres sphériques et lentilles Exercices, dioptres sphériques et lentilles 1 Lentille demi-boule Considérons une lentille demi-boule de centre O, de sommet S, de rayon R = OS = 5cm, et d'indice

Plus en détail

OPTIQUE. 1. Loi de la réflexion. Un rayon lumineux incident sur une surface transparente, se comporte comme illustré ci-dessous: rayon incident

OPTIQUE. 1. Loi de la réflexion. Un rayon lumineux incident sur une surface transparente, se comporte comme illustré ci-dessous: rayon incident OPTIQUE Un rayon lumineux incident sur une surface transparente, se comporte comme illustré ci-dessous: rayon incident AIR rayon réfléchi EAU rayon réfracté A l'interface entre les deux milieux, une partie

Plus en détail

Opt 3 : LENTILLES SPHERIQUES MINCES DANS LES

Opt 3 : LENTILLES SPHERIQUES MINCES DANS LES Opt 3 : LENTILLES SPHERIQUES MINCES DNS LES CONDITIONS D PPROXIMTION DE GUSS. Les lentilles sont des systèmes optiques destinés à former des images par transmission et non par réflexion (contrairement

Plus en détail

OPTIQUE GEOMETRIQUE SPÉ MP I STIGMATISME DES SYSTEMES CATADIOPTRIQUES: 1 ) Cas du miroir parabolique

OPTIQUE GEOMETRIQUE SPÉ MP I STIGMATISME DES SYSTEMES CATADIOPTRIQUES: 1 ) Cas du miroir parabolique I STIGMATISME DES SYSTEMES CATADIOPTRIQUES: 1 ) Cas du miroir parabolique n est plus sur l axe, il n y a plus très denses au voisinage d une courbe Pour un point à distance finie, il n y a plus stigmatisme:

Plus en détail

Chapitre II: lentilles

Chapitre II: lentilles Chapitre II: lentilles II.1) Système optique idéal II.2) Les lentilles et les miroirs II.1) Système optique idéal Surface d onde (1) Surface d onde S: Tous les points de S sont en phase Dans ce cas, S

Plus en détail

Nous nous intéresserons ici à une version simplifiée du modèle corpusculaire pour décrire l optique géométrique.

Nous nous intéresserons ici à une version simplifiée du modèle corpusculaire pour décrire l optique géométrique. OPTIQUE GEOMETRIQUE Définitions : L optique est la science qui décrit les propriétés de la propagation de la lumière. La lumière est un concept extrêmement compliqué et dont la réalité physique n est pas

Plus en détail

Cours S6. Formation d une image

Cours S6. Formation d une image Cours S6 Formation d une image David Malka MPSI 2015-2016 Lycée Saint-Exupéry http://www.mpsi-lycee-saint-exupery.fr Table des matières 1 Le miroir plan 1 1.1 Le miroir plan...............................................

Plus en détail

FORMATION DES IMAGES ET STIGMATISME

FORMATION DES IMAGES ET STIGMATISME OPTIQUE GEOMETRIQUE R.DUPERRAY Lycée F.BUISSON PTSI FORMATION DES IMAGES ET STIGMATISME «Qui voit la figure humaine correctement? Le photographe, le miroir ou le peintre?» Pablo Picasso I Les objets et

Plus en détail

Surface sphérique : Miroir, dioptre et lentille. Pr Hamid TOUMA Département de Physique Faculté des Sciences de Rabat Université Mohamed V

Surface sphérique : Miroir, dioptre et lentille. Pr Hamid TOUMA Département de Physique Faculté des Sciences de Rabat Université Mohamed V Surface sphérique : Miroir, dioptre et lentille Pr Hamid TOUMA Département de Physique Faculté des Sciences de Rabat Université Mohamed V Définition : Les miroirs sphériques Un miroir sphérique est une

Plus en détail

VIII. FOYERS DES LENTILLES SPHERIQUES MINCES

VIII. FOYERS DES LENTILLES SPHERIQUES MINCES page VIII-1 VIII. YERS DES LENTILLES SPHERIQUES MINCES Nous étudions les lentilles sphériques minces dans les conditions de Gauss. Nous allons définir les lentilles minces puis les caractériser par deux

Plus en détail

DEVOIR SURVEILLE N 1

DEVOIR SURVEILLE N 1 Année 2011/2012 - PCSI-2 DS 01 : Optique 1 DEVOIR SURVEILLE N 1 Samedi 24 Septembre 2011 Durée 3h00 Le candidat attachera la plus grande importance à la clarté, à la précision et à la concision de la rédaction.

Plus en détail

OPTIQUE GEOMETRIQUE II.- THEORIE. Définition : L indice de réfraction n caractérise le milieu dans lequel se propage la lumière.

OPTIQUE GEOMETRIQUE II.- THEORIE. Définition : L indice de réfraction n caractérise le milieu dans lequel se propage la lumière. 31 O1 OPTIQUE GEOMETRIQUE I.- INTRODUCTION L optique est une partie de la physique qui étudie la propagation de la lumière. La lumière visible est une onde électromagnétique (EM) dans le domaine de longueur

Plus en détail

Corrigés de la séance 13 Chap 25-26: La lumière, l optique géométrique

Corrigés de la séance 13 Chap 25-26: La lumière, l optique géométrique Corrigés de la séance 13 Chap 25-26: La lumière, l optique géométrique Questions pour réfléchir chap. 26 Q3. Expliquez pourquoi la distance focale d une lentille dépend en réalité de la couleur de la lumière

Plus en détail

XII. ASSOCIATIONS DE LENTILLES SPHERIQUES MINCES

XII. ASSOCIATIONS DE LENTILLES SPHERIQUES MINCES page XII- XII. ASSOCIATIONS DE LENTILLES SPHERIQUES MINCES Le but de ce chapitre est de rencontrer quelques-unes des nombreuses associations de lentilles sphériques minces tout en manipulant les connaissances

Plus en détail

Notes du Cours d Optique

Notes du Cours d Optique Ecole Polytechnique de l Université de Nice - Sophia Antipolis CiP1 Notes du Cours d Optique Patrizia Vignolo Laurent Labonté Sommaire : Les fondements de l optique géométrique page 1 Imagerie. Exemple

Plus en détail

Chapitre III : lentilles minces

Chapitre III : lentilles minces Chapitre III : lentilles minces Les lentilles minces sont les systèmes optiques les plus utilisés, du fait de leur utilité pour la confection d instruments d optique tels que microscopes, télescopes ou

Plus en détail

OPTIQUE GEOMETRIQUE / CARACTERISTISQUES GENERALES DES INSTRUMENTS D OPTIQUE / Page 1 sur 26 PLAN DU COURS 1. DEFINITIONS... 2

OPTIQUE GEOMETRIQUE / CARACTERISTISQUES GENERALES DES INSTRUMENTS D OPTIQUE / Page 1 sur 26 PLAN DU COURS 1. DEFINITIONS... 2 OPTIQUE GEOMETRIQUE / CARACTERISTISQUES GENERALES DES INSTRUMENTS D OPTIQUE / Page 1 sur 26 PLAN DU COURS 1. DEFINITIONS.... 2 2. GRANDISSEMENT TRANSVERSAL... 3 3. DISTANCE FOCALE DE GAUSS... 3 4. PUISSANCE...

Plus en détail

TP spécialité N 3 La Lunette Astronomique 1 / 7

TP spécialité N 3 La Lunette Astronomique 1 / 7 TP spécialité N 3 La Lunette Astronomique / 7 I- Matériel disponible. - Un banc d optique avec accessoires : Une lanterne avec la lettre «F», deux supports pour lentille, un porte écran, un miroir plan,

Plus en détail

Première S Chapitre 12. Images formées par les systèmes optiques. I. Image donnée par un miroir. II. Images données par une lentille convergente

Première S Chapitre 12. Images formées par les systèmes optiques. I. Image donnée par un miroir. II. Images données par une lentille convergente Première S Chapitre mages formées par les systèmes optiques.. mage donnée par un miroir.. Lois de la réflexion Soit un rayon lumineux issu dun point lumineux S et qui rencontre en le miroir plan M. l donne,

Plus en détail

Formation des images, lentilles et miroirs

Formation des images, lentilles et miroirs Formation des images, lentilles et miroirs 1 Pourquoi faut-il une optique afin de créer une image? 2 Préambule: chaque point d un dun objet et la source d un ensembles de rayons Point source fronts d onde

Plus en détail

Vision industrielle Dispositif optique

Vision industrielle Dispositif optique Vision industrielle Dispositif optique Plan du cours L objectif La focale L ouverture La mise au point Qualité d image Choix de l objectif Cours de Vision Industrielle Nicolas Vandenbroucke 2 Constitution

Plus en détail

CPGE MPSI Programme de khôlle. Programme de khôlle. - Semaines 7 et 8 - (24/10 au 10/11) Bases de l optique géométrique

CPGE MPSI Programme de khôlle. Programme de khôlle. - Semaines 7 et 8 - (24/10 au 10/11) Bases de l optique géométrique Programme de khôlle - Semaines 7 et 8 - (24/10 au 10/11) Bases de l optique géométrique 1. Savoir que la lumière est une onde électromagnétique, se propagent de manière omnidirectionnelle à partir d une

Plus en détail

1) Sources de lumières

1) Sources de lumières TP COURS OPTIQUE GEOMETRIQUE Lycée F.BUISSON PTSI CONNAISSANCE DE BASES EN OPTIQUE GEOMETRIQUE 1) Sources de lumières 1-1) Sources à spectre de raies ou spectre discontinu Ces sources émettent un spectre

Plus en détail

LES LENTILLES MINCES

LES LENTILLES MINCES LES LENTILLES MINCES I. GÉNÉRALITÉS Une lentille est un milieu transparent, homogène et isotrope limité par deux dioptres sphériques ou un dioptre sphérique et un dioptre plan. n distingue deux types de

Plus en détail

Chapitre 4 Les lentilles minces

Chapitre 4 Les lentilles minces Chapitre 4 Les lentilles minces Sidi M. Khefif Département de Physique EPST Tlemcen 10 février 2013 1. Généralités 1.1. Description Définition : Une lentille est un milieu transparent limité par deux dioptres,

Plus en détail

MR, 2007 Optique 1/20 MR, 2007 Optique 2/20

MR, 2007 Optique 1/20 MR, 2007 Optique 2/20 Sources de lumière Sources naturelles Soleil Étoiles Sources artificielles Bougie Ampoule MR, 2007 Optique 1/20 Origine de la lumière Incandescence La lumière provient d un corps chauffé à température

Plus en détail

Fiche guide Formation des images

Fiche guide Formation des images Fiche guide Formation des images Cette fiche guide «Formation des images» vous sera utile pour les TP O1 et O2. Elle contient l essentiel de ce que vous devez savoir et savoir-faire. Vous n y aurez pas

Plus en détail

Exercices. Sirius 1 re S - Livre du professeur Chapitre 1. Œil, lentilles minces et images. Exercices d application. 5 minutes chrono!

Exercices. Sirius 1 re S - Livre du professeur Chapitre 1. Œil, lentilles minces et images. Exercices d application. 5 minutes chrono! Exercices Exercices d application 5 minutes chrono!. Mots manquants a. transparents ; rétine b. le centre optique c. à l'axe optique d. le foyer objet e. OF ' f. l'ensemble des milieux transparents; la

Plus en détail

Lentilles minces convergentes

Lentilles minces convergentes Lentilles minces convergentes Lors de la rédaction, il est nécessaire de faire des schémas très soignés, au crayon, sur lesquels vous indiquerez avec précision les caractéristiques de la lentille, de l'objet

Plus en détail

MONJAUD Robin (monjaud@efrei.fr)

MONJAUD Robin (monjaud@efrei.fr) 1 MONJAUD Robin (monjaud@efrei.fr) Mme L Hernault 2 MONJAUD Robin (monjaud@efrei.fr) Mme L Hernault 3 MONJAUD Robin (monjaud@efrei.fr) Mme L Hernault 4 MONJAUD Robin (monjaud@efrei.fr) Mme L Hernault 5

Plus en détail

ETUDE DES LENTILLES MINCES

ETUDE DES LENTILLES MINCES ETUDE DES LENTILLES MINCES I ) Définitions Une lentille est un milieu transparent limité par deux surfaces dont l une au moins n est pas plane. Parmi les lentilles minces, on distingue deux catégories

Plus en détail

ABERRATIONS ET GEOMETRIE DES VERRES

ABERRATIONS ET GEOMETRIE DES VERRES 1 ABERRATIONS ET GEOMETRIE DES VERRES Dans toute notre étude des lentilles sphériques, nous avons considéré qu elles étaient stigmatiques, ce qui sous entendait qu elles étaient utilisées dans les conditions

Plus en détail

3B SCIENTIFIC PHYSICS

3B SCIENTIFIC PHYSICS 3B SCIENTIFIC PHYSICS Jeu d optique laser de démonstration U17300 et jeu complémentaire Manuel d utilisation 1/05 ALF Sommaire Page Exp. n o Expérience Jeu d appareils 1 Introduction 2 Eléments fournis

Plus en détail

ANNALE 2005-2006 FILERE FAS

ANNALE 2005-2006 FILERE FAS Première Année Premier Cycle ANNALE 2005-2006 FILERE FAS INSTITUT NATIONAL DES SCIENCES APPLIQUEES DE LYON Par M.Rey marie.rey@insa-lyon Physique 1 Filière FAS TABLE DES MATIERES PROPAGATION DE LA LUMIERE...

Plus en détail

Table des matières. Chapitre 1. Introduction à l optique géométrique...1. Chapitre 2. Formation des images... 13. Chapitre 3

Table des matières. Chapitre 1. Introduction à l optique géométrique...1. Chapitre 2. Formation des images... 13. Chapitre 3 Cours d'optique non linéaire Table des matières Chapitre 1 Introduction à l optique géométrique...1 Chapitre 2 Formation des images... 13 Chapitre 3 Lentilles minces sphériques... 21 1. Propagation de

Plus en détail

Capsule théorique sur l optique géométrique (destinée au personnel)

Capsule théorique sur l optique géométrique (destinée au personnel) Capsule théorique sur l optique géométrique (destinée au personnel) Octobre 2014 Table des matières Spectre électromagnétique... 3 Rayons lumineux... 3 Réflexion... 3 Réfraction... 3 Lentilles convergentes...

Plus en détail

b. L'image est trois fois plus grande que l'objet car en valeur absolue, le grandissement est égal à 3,0.

b. L'image est trois fois plus grande que l'objet car en valeur absolue, le grandissement est égal à 3,0. 1. Mots manquants a. grandissement ; l'image ; l'objet b. conjugaison ; l'image ; distance focale c. son image ; la rétine d. déforme ; la rétine ; accommode e. la rétine f. l'objectif ; à la pellicule

Plus en détail

Lentilles I. 2-2 Détermination de la distance focale d une lentille mince convergente

Lentilles I. 2-2 Détermination de la distance focale d une lentille mince convergente Lentilles I - UT DE L MNIPULTIN La manipulation consiste à déterminer, par différentes méthodes, la distance focale f d'une lentille mince convergente (on admettra que la lentille est utilisée dans les

Plus en détail

Feuille d'exercices : optique géométrique

Feuille d'exercices : optique géométrique Feuille d'exercices : optique géométrique P Colin 2015/2016 Formulaire : Rappel des relations de conjugaison pour une lentille mince L de centre O, de foyer objet F, de foyer image F et de distance focale

Plus en détail

O 3 Lentilles minces sphériques dans les conditions de Gauss

O 3 Lentilles minces sphériques dans les conditions de Gauss 3 dans les conditions de Gauss PCSI 205 206 I Lentille mince sphérique. Généralités Définition : une lentille sphérique est un système optique centré résultant de l association de deux dioptres sphériques.

Plus en détail

SP4 Formation des images & Approximation de Gauss

SP4 Formation des images & Approximation de Gauss SP4 Formation des images & Approximation de Gauss Objectifs de cette leçon : Définitions d un objet, d une image et d un système optique. Notions d objets et d images étendues Notions d objets et d images

Plus en détail

FICHE 5A LES LENTILLES MINCES. 1. Définition d une lentille. 2. Différents types de lentilles. Lentilles à bords minces. Lentilles à bords épais

FICHE 5A LES LENTILLES MINCES. 1. Définition d une lentille. 2. Différents types de lentilles. Lentilles à bords minces. Lentilles à bords épais FICHE 5A LES LENTILLES MINCES. Définition d une lentille Une lentille est un milieu transparent limité par deux dioptres dont l'un au moins est sphérique. D: diamètre d'ouverture. e: épaisseur. Une lentille

Plus en détail

6. Ondes électromagnétiques et rayons lumineux

6. Ondes électromagnétiques et rayons lumineux 6. Ondes électromagnétiques et rayons lumineux Ce chapitre contient des rappels d optique géométrique et vise à faire le lien entre les notions d ondes étudiées au début du cours et l optique géométrique.

Plus en détail

Approche documentaire n 1 : autour de l appareil photographique numérique

Approche documentaire n 1 : autour de l appareil photographique numérique Approche documentaire n 1 : autour de l appareil photographique numérique But : «En comparant des images produites par un appareil photographique numérique, discuter l influence de la focale, de la durée

Plus en détail

Séance de TP 4 Lentilles minces. Romain BEL 3 janvier 2002

Séance de TP 4 Lentilles minces. Romain BEL 3 janvier 2002 Séance de TP 4 Lentilles minces Romain BEL 3 janvier 2002 1 Table des matières 1 Lentilles minces, stigmatisme, relations de conjugaison 3 1.1 Lentilles minces............................. 3 1.2 L'approximation

Plus en détail

Lentilles et miroirs. Instruments fondamentaux. Exercice 5 : Oculaires. Exercice 1 : Zones d une lentille divergente et d un miroir concave

Lentilles et miroirs. Instruments fondamentaux. Exercice 5 : Oculaires. Exercice 1 : Zones d une lentille divergente et d un miroir concave MPSI2, Louis le Grand ormation des images, instruments d optique Semaine du 8 au 15 octobre On prendra n = 1 pour l air dans tous les exercices. On produira une figure soignée pour chaque situation étudiée.

Plus en détail

fig 1 - télescope Schmitt-Cassegrain

fig 1 - télescope Schmitt-Cassegrain OPTIQUE GEOMETRIQUE 1 Pour former l'image de la réalité, on utilise un système optique, généralement constitué d'un objectif (système réfractant). Le système optique complet est plus complexe pour certaines

Plus en détail

Faisceau gaussien. A = a 0 e ikr e i k. 2R (x2 +y 2 )

Faisceau gaussien. A = a 0 e ikr e i k. 2R (x2 +y 2 ) Faisceau gaussien 1 Introduction La forme du faisceau lumineux émis par un laser est particulière, et correspond à un faisceau gaussien, ainsi nommé car l intensité décroît suivant une loi gaussienne lorsqu

Plus en détail

SYSTÈMES CENTRÉS DANS LES CONDITIONS

SYSTÈMES CENTRÉS DANS LES CONDITIONS YTÈME ENTRÉ DAN LE ONDITION DE GAU Table des matières 1 ystèmes centrés focaux 2 1.1 oyer image Plan focal image................................ 2 1.2 oyer objet Plan focal objet.................................

Plus en détail

UNE LENTILLE MINCE CONVERGENTE

UNE LENTILLE MINCE CONVERGENTE TS Spécialité-ptique 1-formation d une image T.P-cours de Physique n 1 : IMGE RMEE PR UNE LENTILLE MINCE CNVERGENTE Partie : Produire des Il faudra être capable de : images et observer Positionner sur

Plus en détail

Le microscope simplifié. TP : Le microscope. Objectif : Réaliser et exploiter un montage permettant d'illustrer le fonctionnement d'un microscope.

Le microscope simplifié. TP : Le microscope. Objectif : Réaliser et exploiter un montage permettant d'illustrer le fonctionnement d'un microscope. Le microscope simplifié TP : Le microscope Objectif : Réaliser et exploiter un montage permettant d'illustrer le fonctionnement d'un microscope. Description : Un microscope est constitué entre autres de

Plus en détail

Organisation des appareils et des systèmes: Le domaine de l optique

Organisation des appareils et des systèmes: Le domaine de l optique Université Bordeaux Segalen Organisation des appareils et des systèmes: Bases physiques des méthodes d exploration UE 3A Le domaine de l optique Dr JC DELAUNAY PACES- année 2011/2012 OPTIQUE GEOMETRIQUE

Plus en détail

Lycée Clemenceau. PCSI 1 - Physique. PCSI 1 (O.Granier) Lycée. Clemenceau. Les lentilles minces (approximation de Gauss) Olivier GRANIER

Lycée Clemenceau. PCSI 1 - Physique. PCSI 1 (O.Granier) Lycée. Clemenceau. Les lentilles minces (approximation de Gauss) Olivier GRANIER Lycée Clemenceau PCSI (O.Granier) Les lentilles minces (approximation de Gauss) Définitions, lentilles convergentes et divergentes : Dioptre sphérique : on appelle «dioptre sphérique» une surface sphérique

Plus en détail

Le modèle des lentilles minces convergentes

Le modèle des lentilles minces convergentes 1 Le modèle des lentilles minces convergentes LES LENTILLES MINCES CNVERGENTES résumés de cours Définition Une lentille est un milieu transparent limité par deux faces dont l'une au moins est sphérique.

Plus en détail

Chapitre 3 : Lentilles

Chapitre 3 : Lentilles 2 e B et C 3 Lentilles convergentes 1 3.1 Définitons Chapitre 3 : Lentilles Les surfaces des lentilles sont sphériques. La droite joignant les centres C 1 et C 2 des deux calottes donne l axe optique de

Plus en détail

Chp4 lentilles C4-1. La loi de la réfraction s écrit dans l approximation des petits angles : b g b g + =

Chp4 lentilles C4-1. La loi de la réfraction s écrit dans l approximation des petits angles : b g b g + = Chp4 lentilles C4-1 Chapitre 4 dioptres & lentilles C4.1 Réfraction par un dioptre sphérique : source ponctuelle Rappelons qu'un dioptre est constitué par deux milieux transparents d'indices de réfraction

Plus en détail

1 ) Composants de base permettant de modifier les caractéristiques géométriques d'un faisceau lumineux : miroirs, fibres optiques, lentilles

1 ) Composants de base permettant de modifier les caractéristiques géométriques d'un faisceau lumineux : miroirs, fibres optiques, lentilles II.2 ptique 1 ) Composants de base permettant de modifier les caractéristiques géométriques d'un faisceau lumineux : miroirs, fibres optiques, lentilles 1.1) Définitions 1.1.1) Rayons et faisceaux lumineux

Plus en détail

Module de Physique OPTIQUE GEOMETRIQUE OPTIQUE GEOMETRIQUE LENTILLES. Professeur M. CHEREF. Faculté de Médecine Alger I Université d Alger

Module de Physique OPTIQUE GEOMETRIQUE OPTIQUE GEOMETRIQUE LENTILLES. Professeur M. CHEREF. Faculté de Médecine Alger I Université d Alger Module de Physique OPTIQUE GEOMETRIQUE OPTIQUE GEOMETRIQUE LENTILLES Professeur M. CHEREF Faculté de Médecine Alger I Université d Alger I- Les Lentilles (1) : Généralités (1) Lentille : définition MILIEU

Plus en détail

TP01 IMAGE FORMEE PAR UNE LENTILLE MINCE CONVERGENTE

TP01 IMAGE FORMEE PAR UNE LENTILLE MINCE CONVERGENTE TP0 IMAGE FORMEE PAR UNE LENTILLE MINCE CONVERGENTE I. QU EST-CE QU UNE LENTILLE CONVERGENTE?. Caractéristiques des lentilles disponibles avec le matériel d optique: Définitions : Une lentille est un solide

Plus en détail

Réfraction dans les lentilles

Réfraction dans les lentilles Réfraction dans les lentilles Coupe transversale d un Nikon D3 AF-S Nikkor 12-24mm lens 1- Une lentille fonctionne par réfraction en déviant les rayons lumineux (loi des sinus) vidéo : laser rouge en translation

Plus en détail

Le microscope optique ou photonique

Le microscope optique ou photonique Le microscope optique ou photonique I description : Le microscope est composé de deux systèmes optiques, l objectif et l oculaire, chacun pouvant être considéré comme une lentille mince convergente L objectif

Plus en détail

TRAVAUX DIRIGÉS DE O 3

TRAVAUX DIRIGÉS DE O 3 TRVUX DIRIGÉS DE O 3 Exercice : Constructions graphiques Pour chacune des figures, déterminer la position de l objet ou de son image par la lentille mince. Les points situés sur l axe optique sont les

Plus en détail

Oraux : optique géométrique

Oraux : optique géométrique Extraits de rapports de jury : - Le tracé de rayons, dans des cas les plus triviaux, engendre de nombreuses erreurs et imprécisions, même avec une seule lentille (tracé de l'émergent pour un incident quelconque,

Plus en détail

Télescopes et Lunettes astronomiques

Télescopes et Lunettes astronomiques Télescopes et Lunettes astronomiques Les télescopes et les lunettes astronomiques sont constitués: D une monture. D une optique. Avec des options. Motorisations. Des systèmes informatiques GOTO. Des systèmes

Plus en détail

POLY-PREPAS Centre de Préparation aux Concours Paramédicaux. - Section i-prépa annuel -

POLY-PREPAS Centre de Préparation aux Concours Paramédicaux. - Section i-prépa annuel - POLY-PREPAS Centre de Préparation aux Concours Paramédicaux - Section i-prépa annuel - Chapitre 19 : Partie 2 - Lentilles et instruments d optique 1. Conditions de Gauss : système optique : il est défini

Plus en détail

CHAPITRE 1 LA LUMIERE ET L OPTIQUE GEOMETRIQUE

CHAPITRE 1 LA LUMIERE ET L OPTIQUE GEOMETRIQUE CHAPITRE 1 LA LUMIERE ET L OPTIQUE GEOMETRIQUE I Qu est-ce que la lumière? Historique : théorie ondulatoire et théorie corpusculaire II Aspect ondulatoire Figure 1-1 : (a) Onde plane électromagnétique

Plus en détail

La focométrie, pour les nuls! Première partie : théorie. par Charles Rydel, Société Astronomique de France. http://www.astrosurf.

La focométrie, pour les nuls! Première partie : théorie. par Charles Rydel, Société Astronomique de France. http://www.astrosurf. La focométrie, pour les nuls! Première partie : théorie. par Charles Rydel, Société Astronomique de France. http://www.astrosurf.com/astroptics Banc optique Pellin (XIXe siècle). Ici pour mesures photométriques

Plus en détail

G.P. DNS Septembre 2008. Optique géométrique de base I. Miroirs sphériques

G.P. DNS Septembre 2008. Optique géométrique de base I. Miroirs sphériques DNS Sujet Optique géométrique de base... 1 I.Miroirs sphériques...1 A.Position de l image et grandissement transversal... 1 B.Le télescope de Cassegrain...2 II.Lentilles minces... 3 A.Position de l image

Plus en détail

Cours n 6 Lentilles minces convergentes et divergentes

Cours n 6 Lentilles minces convergentes et divergentes Cours n 6 Lentilles minces convergentes et divergentes Les verres de lunettes sont des lentilles qui permettent de palier aux défauts de vision de nombre d entre nous. Les lentilles permettent aussi de

Plus en détail

TD d optique n o 3 Lentilles sphériques minces

TD d optique n o 3 Lentilles sphériques minces Lycée rançois Arago Perpignan M.P.S.I. - TD d optique n o Lentilles sphériques minces Exercice - Constructions de rayons émergents. Représenter les rayons émergents correspondants aux rayons incidents

Plus en détail

Lentilles. IV 35. Viseur. 1) Un viseur est constitué d un objectif formé par une lentille mince convergente L 1, de distance focale f 1 = 10 cm et

Lentilles. IV 35. Viseur. 1) Un viseur est constitué d un objectif formé par une lentille mince convergente L 1, de distance focale f 1 = 10 cm et Lentilles I 77. Phare. Un phare est constitué par un filament lumineux de cm de long et par une lentille de diamètre cm. Lorsque celleci est à cm du filament, elle en donne une image nette sur un écran

Plus en détail

Chap. II suite : IV LES LENTILLES MINCES

Chap. II suite : IV LES LENTILLES MINCES Chap. II suite : IV LES LENTILLES MINCES 1 Définitions: Qu est ce qu une lentille? 1 Chap. II suite : IV LES LENTILLES MINCES 1 Définitions: Rappel: dioptre =???? Lentille =?? dioptres Lentille mince =??

Plus en détail

1 Les instruments d'optique

1 Les instruments d'optique Les instruments d'optique. LES ACCESSOIRES : LENTILLES ET MIROIRS.. Lentilles minces convergentes Qu'est-ce que c'est? Une lentille mince est caractérisée par trois points singuliers et deux grandeurs

Plus en détail

1L : Représentation visuelle du monde Chapitre 2 : L œil et ses défauts

1L : Représentation visuelle du monde Chapitre 2 : L œil et ses défauts 1L : Représentation visuelle du monde Chapitre 2 : L œil et ses défauts Cours I. Modélisation d un œil : 1. Schéma de l œil et vision : L œil est un récepteur de lumière sensible aux radiations lumineuses

Plus en détail

1L : Représentation visuelle du monde Chapitre 1 : Formation des images par une lentille

1L : Représentation visuelle du monde Chapitre 1 : Formation des images par une lentille 1L : Représentation visuelle du monde Chapitre 1 : Formation des images par une lentille Cours 1. Vision d un objet : Un objet ne peut être vu que s il émet de la lumière et que celle-ci pénètre dans l

Plus en détail

Introduction à la physique du laser. 1ère partie : les caractéristiques des faisceaux gaussiens.

Introduction à la physique du laser. 1ère partie : les caractéristiques des faisceaux gaussiens. Introduction à la physique du laser. 1ère partie : les caractéristiques des faisceaux gaussiens. Objectifs Connaître les caractéristiques de la structure gaussienne d un faisceau laser (waist, longueur

Plus en détail

Les LENTILLES et les INSTRUMENTS D OPTIQUE

Les LENTILLES et les INSTRUMENTS D OPTIQUE Les LENTILLES et les INSTRUMENTS D OPTIQUE L analyse de plusieurs instruments d optique repose sur les lois de la réflexion et, plus particulièrement, de la réfraction. Nous appliquerons l optique géométrique

Plus en détail

TP-Cours : Instruments d optique A. MARTIN. Sources lumineuses. Miroirs Lentilles. Projection Autocollimation. Instruments d optique

TP-Cours : Instruments d optique A. MARTIN. Sources lumineuses. Miroirs Lentilles. Projection Autocollimation. Instruments d optique et et 1/21 1 / 21 et Lumière blanche Lampe à incandescence : lumière blanche Source thermique : Fonctionnement basé sur le rayonnement électromagnétique spontané d un corps chauffé à haute température,

Plus en détail

TP focométrie. Ce TP est évalué à l'aide du compte-rendu pré-imprimé.

TP focométrie. Ce TP est évalué à l'aide du compte-rendu pré-imprimé. TP focométrie Ce TP est évalué à l'aide du compte-rendu pré-imprimé. Objectifs : déterminer la distance focale de divers lentilles minces par plusieurs méthodes. 1 Rappels 1.1 Lentilles... Une lentille

Plus en détail

Thème : Modèle et modélisation. Problématique : Comment fonction les lentilles optiques et à quoi servent-elles?

Thème : Modèle et modélisation. Problématique : Comment fonction les lentilles optiques et à quoi servent-elles? PENET François LAMARCQ Simon DELAHAYE Nicolas Les lentilles optiques Thème : Modèle et modélisation. Problématique : Comment fonction les lentilles optiques et à quoi servent-elles? Sommaire : Introduction

Plus en détail

2003 Antilles Exercice 3 Spécialité Le télescope de Newton 4pts

2003 Antilles Exercice 3 Spécialité Le télescope de Newton 4pts 2003 Antilles Exercice 3 Spécialité Le télescope de Newton 4pts Un télescope de Newton est constitué de trois éléments optiques principaux : - l'objectif ( miroir concave convergent noté M 1 ), - le miroir

Plus en détail

Module 1, chapitre 4 : LES LENTILLES

Module 1, chapitre 4 : LES LENTILLES Module 1, chapitre 4 : LES LENTILLES Nom : 4.1 Les différents types de lentilles Laboratoire: Les types de lentilles But : Découvrir les caractéristiques principales de divers types de lentilles. Matériel

Plus en détail

POLY-PREPAS Centre de Préparation aux Concours Paramédicaux

POLY-PREPAS Centre de Préparation aux Concours Paramédicaux POLY-PREPAS Centre de Préparation aux Concours Paramédicaux - Sections : L1 Santé / L0 Santé - Olivier CAUDRELIER oc.polyprepas@orange.fr 1 Partie 1 : Propagation de la lumière 1. Conditions de visibilité

Plus en détail

Instruments d optique

Instruments d optique Préparation à l agrégation de Sciences-Physiques ENS Physique Instruments d optique HOUARD : Optique SEXTANT : Optique expérimentale GRECIAS : Physique SUP PCSI 1 I) Appareil photo Nous commençons l étude

Plus en détail

Cours Physique Interaction onde-matière classe : 4ème Maths 3+Tech 1 Introduction :

Cours Physique Interaction onde-matière classe : 4ème Maths 3+Tech 1 Introduction : Cours Physique Interaction onde-matière classe : 4 ème Maths 3+Tech I- Introduction : En laissant l œil semi-ouvert lors de la réception de la lumière on observe des annaux alternativement brillants et

Plus en détail

De la lentille au miroir.

De la lentille au miroir. De la lentille au miroir. De la lentille au miroir. Qu est ce qu un objectif, qu il soit réfracteur ou réflecteur? De la lentille au miroir. Qu est ce qu un objectif, qu il soit réfracteur ou réflecteur?

Plus en détail

TD de Physique n o 10 : Interférences et cohérences

TD de Physique n o 10 : Interférences et cohérences E.N.S. de Cachan Département E.E.A. M2 FE 3 e année Physique appliquée 2011-2012 TD de Physique n o 10 : Interférences et cohérences Exercice n o 1 : Interférences à deux ondes, conditions de cohérence

Plus en détail

Technique de l image, finalité photographie, première et deuxième année Optique photo : questions d examen

Technique de l image, finalité photographie, première et deuxième année Optique photo : questions d examen Technique de l image, finalité photographie, première et deuxième année Optique photo : questions d examen Les questions sont présentées par chapitre et en deux colonnes. La première colonne est relative

Plus en détail