Lot Quality Assurance Sampling. Elise Naoufal EVARISQ 15 septembre 2011

Dimension: px
Commencer à balayer dès la page:

Download "Lot Quality Assurance Sampling. Elise Naoufal EVARISQ 15 septembre 2011"

Transcription

1 Lot Quality Assurance Sampling LQAS Elise Naoufal EVARISQ 15 septembre

2 LQAS Une question d efficacité? LQAS et santé Méthode et Fondements théoriques Détermination du couple (n,d n,d) Conclusion 2

3 Une question d efficacité? 3

4 - Au commencement, était un industriel moyennement fortuné soucieux de son image - Production: de ronds parfaits - Mais: tous les ronds n étaient pas parfaits: une identification rapide de ces ronds s imposait (afin qu ils puissent être retirés de la vente) - Comment? Création d un nouveau poste de contrôle qualité de chaque rond produit. Vérification scrupuleuse tous les soirs, par l industriel lui-même, de chaque rond produit dans la journée. Ou Qualité de l ensemble des ronds produits dans la journée jugée par l évaluation d un échantillon tiré au sort. 4

5 5

6 LQAS et santé 6

7 Au commencement Industrie: naissance du concept dans les années 1920 Contrôle qualité Moindre coût Rapide Objectif: détecter les éléments qui risquent de ne pas répondre à des critères d acceptabilité 7

8 Ensuite Santé: un intérêt grandissant depuis les années : publication OMS de plusieurs rapports/recommandations utilisation méthode LQAS Depuis: Nb de manuels en augmentation Entre 1984 et 2004: 805 études ayant recours au LQAS : 10/an : 128/an 8

9 LQAS Santé 9

10 LQAS Santé 10

11 LQAS Santé 11

12 LQAS Santé 12

13 LQAS Santé 13

14 LQASSanté: un exemple - Je suis responsable d une campagne de vaccination contre la rougeole (Moyens limités) - Je suis chargée d organiser la vaccination des territoires géographiques où la Couverture vaccinale (CV) est plus faible que celle recommandée par l OMS - Problème: identifier les populations à faible CV - Solution: LQAS 14

15 Démarche générale Cibler une intervention sur une population prioritaire Population totale: Prévalence «vraie» Temps, argent Echantillon: Estimation: risque d erreur Gain de temps et d argent Choix de l échantillon: étape délicate 15

16 LQAS: une problématique différente Positionner un paramètre par rapport à une référence Ex: situer P par rapport à une prévalence jugée intéressante P0 Estimer le paramètre avec une certaine précision. Ex: estimer la valeur de P assortie d un intervalle de confiance, par une méthode de sondage classique 16

17 Méthode et Fondements théoriques 17

18 La méthode LQAS Méthode d évaluation de la qualité Permet principalement de déterminer rapidement et à moindre coût dans une population définie, des groupes d éléments ou de sujets risquant de ne pas répondre à des critères d acceptabilité. 18

19 Lot : N Echantillon aléatoire: n - Règle de décision: détermination d un seuil à (d*+ 1) éltsdéfectueux: Rejet du lot Classement: -Critères de établis a priori -Classement 1 à 1 des éléments de n: Défectueux/acceptable - Détermination d un risque d erreur 19

20 Définitions N: taille du lot n: taille de l échantillon d*+1: nombre d éléments défectueux qui permet de rejeter le lot. P₀= seuil élevé:proportion-seuil d éléments défectueux au-delà de laquelle il faut intervenir Lot défectueux P a = seuil bas:proportion-seuil d éléments défectueux en dessous de laquelle on n intervient pas /proportion maximale d éléments défectueux que l enquêteur accepte pour juger un lot de bonne qualité. (Pa < P0) Lot acceptable α: risque de conclure à tort que le lot n est pas défectueux β: risque de conclure à tort que le lot est défectueux 1 β: puissance 20

21 Hypothèses La méthode LQAS basée sur la réalisation d un test avec: Hypothèse nulle: H 0 : lot inacceptable (intervention nécessaire) P déf P 0 Hypothèse alternative: H a : lot acceptable (pas d intervention) P déf < P 0 Test unilatéral Même sens +++: H 0 =lot inacceptable - Risque santé: risque α - αfixé par le décideur: contrôle 21

22 αet β α : Risque de 1 ère espèce: risque de rejeter à tort H 0 alors que H 0 est vraie Risque de conclure à tort que le lot n est pas défectueux Risque pour les patients/consommateurs Le choix d une valeur faible de α implique une forte sélection et un risque élevé de refus à tort des bons lots. β: Risque de 2ème espèce: risque de ne pas rejeter à tort H 0 alors que H 0 est faux Risque de conclure à tort que le lot est défectueux Risque pour le fournisseur/industriel Risque de refuser des lots qui satisfont au critère qualité (c.à.d. des lots ayant une proportion d éléments défectueux inférieure à P a ) 22

23 Conséquences liées aux conclusions du test Population réelle Décision H 0 : P P 0 H a : P < P 0 Lot inacceptable Lot acceptable Lot jugé inacceptable 1- α Test sensible aux mauvais lots (sensibilité) β Mauvaise décision: risque pour le «fournisseur» ou l industriel Lot jugé acceptable α Mauvaisedécision: risque pour le consommateur ou la communauté 1-β Test reconnaissant les lots convenables (spécificité) 23

24 Conséquences liées aux conclusions du test 24

25 Synthèse: OCC 25

26 Synthèse: courbes OCC 26

27 Synthèse: courbes OCC 27

28 Synthèse: courbes OCC 28

29 Synthèse: courbes OCC 29

30 Fondements théoriques La distribution de d* suit une loi hypergéométrique (tirage sans remise) Probabilité de tirer déléments défectueux dans un échantillon de taille ntiré aléatoirement d un lot de taille Ncontenant une proportion P d éléments défectueux Espérance= np 0 Variance= np 0 (1-P 0 )((N-n)/(N-1)) 30

31 Fondements théoriques approximations possibles de la loi hypergéométrique Loi hypergéométrique Espérance= np et Variance= np(1-p)((n-n/n-1)) Approximation Loi binomiale Loi normale Conditions N>>>n N >>>> Taux de sondage < 10% 0.1< P< 0.9 np> 10 N(1-P) > 10 Paramètres Espérance= np Variance= np(1-p) Espérance= np Variance= np(1-p)((n-n/n-1)) 31

32 Détermination du couple (n, d*) En pratique 32

33 La détermination du couple (n,d*) Dépend: du risque (α et β) pris par le décideur Doit répondre à une condition:probabilité d avoir d* éléments défectueux dans n doit être inférieure à α. 33

34 3 types de scénarios possibles avec (P a, β) sans (P a, β) P 0 P 0 P 0 α α α P a N N β d* n n et d* n d* (cas classique) 34

35 1 er scénario, cas classique: Ex: Comparaison d une proportion observée à une valeur théorique Détermination de (n,d*) en fonction de: P a, β, P 0, α Loi hypergéométrique Ou, si conditions de convergence vers la loi normale satisfaites: 1 35

36 1 er scénario: exemple IQSS 2010 Résultats de l enquête IQSS 2010: - P traçabilité douleur = N=600 En posant: - α=0.05 et β=0.2 - P 0 =0.5 - P a =0.3 n=6 et d*=1 36

37 2ème scénario: d* et N fixés Quand le prix d une erreur de type II est considéré comme négligeable. Détermination de n à partir de N, d*, P 0, α. Calcul Tables Ex: N= , d*=4, P 0= 0.2, α=

38 3 ème scénario: n et N fixés Etude multicentrique, ressources limitées Détermination de (n,d*) en fonction de: N, P 0, α, n Calcul de la fonction de répartition de la loi hypergéométrique (N, n, P0) Ex: N=150, P0=0.5, α=0.05 n=10 38

39 LQAS 1 ou 2 degrés LQAS 1 degré: 1 échantillon LQAS2 degrés: Echantillonnage double: (diminution des coûts) Détermination de 2 valeurs critiques d 1 d 2 2 tailles d échantillon n 1 et n 2 étapes: Analyse de l échantillon n 1 : si d* d 1 ou d* > d 2 (résultats extrêmes) arrêt conclusions basées sur le résultat de n1, si d 1 < d* d 2 : analyse du 2 ème échantillon n 2 conclusions basées sur le résultat des 2 échantillons. 39

40 La démarche en résumé 1. Définir le lot 2. LQAS à 1 ou 2 degré(s) 3. Définir les critères de classement (qualité) 4. Définir les seuils en fonction du scénario (P 0, α et ) 5. Déterminer la bonne combinaison du couple (n,d*) 6. Tirage au sort de l échantillon 7. Classement des éléments 8. Décision 40

41 Conclusion 41

42 LQAS Méthode issue du milieu industrielle de + en + utilisée dans différents domaines de la santé. Intérêt: Rapide: arrêt à d*+1 Econome Efficace Méthode adaptée lorsqu il s agit de vérifier qu un objectif est atteint Attention aux spécificités liées à la santé: Importance de bien poser les hypothèses Limiter le risque α 42

43 Références bibliographiques Lemeshaw, Stanley and Scott Taber Lot Quality Assurance Sampling: Single-and Double-Sampling Plans. World Health Statistics Quarterly 44: JutandMA, Salamon R «La technique de sondage par lots appliquée à l assurance qualité: méthode et applications en santé publique». Revue d épidémiologie et de santé publique. 48, Robertson, Susan E and Joseph J Valadez Global Review of Health Care Surveys using Lot Quality Assurance Sampling (LQAS), Social Science and Medicine 63(6): RhodaD, Fernandez S, FitchD, LemeshowS «LQAS: User Beware». International journal of Epidemiology; 39:60:68. Olives C, Pagano M «Bayes-LQAS: classifyingthe prevalence of global acute malnutrition». Emerging themes in epidemiology. 7:3. RabarijaonaLP, AndriamarosonBJ, RavaoalimalalaVE, RavoniarimbininaP, MiglianiR «Identification des communautés cibles en zone de bilharziose urinaire par la méthode de Lot Quality Assurance Sampling à Madagascar». Arch Inst Pasteur de Madagascar; 67 (1&2) :

44 Merci de votre attention 44

11. Tests d hypothèses (partie 1/2)

11. Tests d hypothèses (partie 1/2) 11. Tests d hypothèses (partie 1/2) MTH2302D S. Le Digabel, École Polytechnique de Montréal H2015 (v1) MTH2302D: tests d hypothèses 1/30 Plan 1. Introduction 2. Hypothèses et erreurs 3. Tests d hypothèses

Plus en détail

Chapitre 3 : Principe des tests statistiques d hypothèse. José LABARERE

Chapitre 3 : Principe des tests statistiques d hypothèse. José LABARERE UE4 : Biostatistiques Chapitre 3 : Principe des tests statistiques d hypothèse José LABARERE Année universitaire 2010/2011 Université Joseph Fourier de Grenoble - Tous droits réservés. Plan I. Introduction

Plus en détail

Principe des tests statistiques

Principe des tests statistiques Principe des tests statistiques Jean Vaillant Un test de signification est une procédure permettant de choisir parmi deux hypothèses celles la plus probable au vu des observations effectuées à partir d

Plus en détail

La problématique des tests. Cours V. 7 mars 2008. Comment quantifier la performance d un test? Hypothèses simples et composites

La problématique des tests. Cours V. 7 mars 2008. Comment quantifier la performance d un test? Hypothèses simples et composites La problématique des tests Cours V 7 mars 8 Test d hypothèses [Section 6.1] Soit un modèle statistique P θ ; θ Θ} et des hypothèses H : θ Θ H 1 : θ Θ 1 = Θ \ Θ Un test (pur) est une statistique à valeur

Plus en détail

CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE. Cinquième épreuve d admissibilité STATISTIQUE. (durée : cinq heures)

CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE. Cinquième épreuve d admissibilité STATISTIQUE. (durée : cinq heures) CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE Cinquième épreuve d admissibilité STATISTIQUE (durée : cinq heures) Une composition portant sur la statistique. SUJET Cette épreuve est composée d un

Plus en détail

Le Data Mining au service du Scoring ou notation statistique des emprunteurs!

Le Data Mining au service du Scoring ou notation statistique des emprunteurs! France Le Data Mining au service du Scoring ou notation statistique des emprunteurs! Comme le rappelle la CNIL dans sa délibération n 88-083 du 5 Juillet 1988 portant adoption d une recommandation relative

Plus en détail

La nouvelle planification de l échantillonnage

La nouvelle planification de l échantillonnage La nouvelle planification de l échantillonnage Pierre-Arnaud Pendoli Division Sondages Plan de la présentation Rappel sur le Recensement de la population (RP) en continu Description de la base de sondage

Plus en détail

Tests de comparaison de moyennes. Dr Sahar BAYAT MASTER 1 année 2009-2010 UE «Introduction à la biostatistique»

Tests de comparaison de moyennes. Dr Sahar BAYAT MASTER 1 année 2009-2010 UE «Introduction à la biostatistique» Tests de comparaison de moyennes Dr Sahar BAYAT MASTER 1 année 2009-2010 UE «Introduction à la biostatistique» Test de Z ou de l écart réduit Le test de Z : comparer des paramètres en testant leurs différences

Plus en détail

ASI (L2) : TP3 Calculs probabilistes avec Excel et Rstat

ASI (L2) : TP3 Calculs probabilistes avec Excel et Rstat ASI (L2) : TP3 Calculs probabilistes avec Excel et Rstat Objectifs du TP : Savoir utiliser Excel et Rstat pour calculer des moyennes pondérées, des variances pondérées et savoir faire des approximations

Plus en détail

UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire 2013 2014 MATHS/STATS. 1 Généralités sur les tests statistiques 2

UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire 2013 2014 MATHS/STATS. 1 Généralités sur les tests statistiques 2 UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire 2013 2014 Master d économie Cours de M. Desgraupes MATHS/STATS Document 4 : Les tests statistiques 1 Généralités sur les tests

Plus en détail

L essentiel sur les tests statistiques

L essentiel sur les tests statistiques L essentiel sur les tests statistiques 21 septembre 2014 2 Chapitre 1 Tests statistiques Nous considérerons deux exemples au long de ce chapitre. Abondance en C, G : On considère une séquence d ADN et

Plus en détail

Estimation et tests statistiques, TD 5. Solutions

Estimation et tests statistiques, TD 5. Solutions ISTIL, Tronc commun de première année Introduction aux méthodes probabilistes et statistiques, 2008 2009 Estimation et tests statistiques, TD 5. Solutions Exercice 1 Dans un centre avicole, des études

Plus en détail

Estimateur et Estimation Prof Franck Bonnetain Unité de méthodologie & de qualité de vie en cancérologie (EA3181) CHRU Besançon

Estimateur et Estimation Prof Franck Bonnetain Unité de méthodologie & de qualité de vie en cancérologie (EA3181) CHRU Besançon PACES - APEMK UE 4 Evaluation des méthodes d analyses appliquées aux sciences de la vie et de la santé Estimateur et Estimation Prof Franck Bonnetain Unité de méthodologie & de qualité de vie en cancérologie

Plus en détail

Introduction au cours STA 102 Analyse des données : Méthodes explicatives

Introduction au cours STA 102 Analyse des données : Méthodes explicatives Analyse des données - Méthodes explicatives (STA102) Introduction au cours STA 102 Analyse des données : Méthodes explicatives Giorgio Russolillo giorgio.russolillo@cnam.fr Infos et support du cours Slide

Plus en détail

LE RÔLE DE LA STATISTIQUE DANS UN PROCESSUS DE PRISE DE DÉCISION

LE RÔLE DE LA STATISTIQUE DANS UN PROCESSUS DE PRISE DE DÉCISION LE RÔLE DE LA STATISTIQUE DANS UN PROCESSUS DE PRISE DE DÉCISION Sylvie Gervais Service des enseignements généraux École de technologie supérieure (sylvie.gervais@etsmtl.ca) Le laboratoire des condensateurs

Plus en détail

Méthodes Statistiques Appliquées à la Qualité et à la Gestion des Risques - Le Contrôle Statistique

Méthodes Statistiques Appliquées à la Qualité et à la Gestion des Risques - Le Contrôle Statistique Méthodes Statistiques Appliquées à la Qualité et à la Gestion des Risques - Le Contrôle Statistique Jean Gaudart Laboratoire d Enseignement et de Recherche sur le Traitement de l Information Médicale jean.gaudart@univmed.fr

Plus en détail

Lois de probabilité. Anita Burgun

Lois de probabilité. Anita Burgun Lois de probabilité Anita Burgun Problème posé Le problème posé en statistique: On s intéresse à une population On extrait un échantillon On se demande quelle sera la composition de l échantillon (pourcentage

Plus en détail

Licence Pro Amélioration Végétale

Licence Pro Amélioration Végétale Analyse de données Licence Pro Amélioration Végétale Marc Bailly-Bechet Université Claude Bernard Lyon I France marc.bailly-bechet@univ-lyon1.fr 1 marc.bailly-bechet@univ-lyon1.fr Analyse de données Des

Plus en détail

Introduction à l approche bootstrap

Introduction à l approche bootstrap Introduction à l approche bootstrap Irène Buvat U494 INSERM buvat@imedjussieufr 25 septembre 2000 Introduction à l approche bootstrap - Irène Buvat - 21/9/00-1 Plan du cours Qu est-ce que le bootstrap?

Plus en détail

Evaluation d un test diagnostique - Concordance

Evaluation d un test diagnostique - Concordance Evaluation d un test diagnostique - Concordance Michaël Genin Université de Lille 2 EA 2694 - Santé Publique : Epidémiologie et Qualité des soins michaelgenin@univ-lille2fr Plan 1 Introduction 2 Evaluation

Plus en détail

STATISTIQUES. Cours I : Test d hypothèses. Télécom Physique Strasbourg Module 2101. Fabrice Heitz. Octobre 2014

STATISTIQUES. Cours I : Test d hypothèses. Télécom Physique Strasbourg Module 2101. Fabrice Heitz. Octobre 2014 Télécom Physique Strasbourg Module 2101 STATISTIQUES Cours I : Test d hypothèses Fabrice Heitz Octobre 2014 Fabrice Heitz (Télécom PS) Statistiques 2014 1 / 75 Cours I TESTS D HYPOTHÈSES Fabrice Heitz

Plus en détail

Master 1 Informatique Éléments de statistique inférentielle

Master 1 Informatique Éléments de statistique inférentielle Master 1 Informatique Éléments de statistique inférentielle Faicel Chamroukhi Maître de Conférences UTLN, LSIS UMR CNRS 7296 email: chamroukhi@univ-tln.fr web: chamroukhi.univ-tln.fr 2014/2015 Faicel Chamroukhi

Plus en détail

Points méthodologiques Adapter les méthodes statistiques aux Big Data

Points méthodologiques Adapter les méthodes statistiques aux Big Data Points méthodologiques Adapter les méthodes statistiques aux Big Data I. Répétition de tests et inflation du risque alpha II. Significativité ou taille de l effet? 2012-12-03 Biomédecine quantitative 36

Plus en détail

Chapitre 3 : INFERENCE

Chapitre 3 : INFERENCE Chapitre 3 : INFERENCE 3.1 L ÉCHANTILLONNAGE 3.1.1 Introduction 3.1.2 L échantillonnage aléatoire 3.1.3 Estimation ponctuelle 3.1.4 Distributions d échantillonnage 3.1.5 Intervalles de probabilité L échantillonnage

Plus en détail

CONTEXTE ET JUSTIFICATION

CONTEXTE ET JUSTIFICATION CONTEXTE ET JUSTIFICATION Le tabagisme est l une des plus grandes menaces actuelles pour la santé mondiale. Il crée une forte dépendance chez les consommateurs habituels qu il finit par tuer, et présente

Plus en détail

Principe d un test statistique

Principe d un test statistique Biostatistiques Principe d un test statistique Professeur Jean-Luc BOSSON PCEM2 - Année universitaire 2012/2013 Faculté de Médecine de Grenoble (UJF) - Tous droits réservés. Objectifs pédagogiques Comprendre

Plus en détail

Activité 1 : échantillonnage

Activité 1 : échantillonnage Activité échantillonnage, intervalle de fluctuation, prise de décision (à partir d un même thème) Les trois activités qui suivent s inspirent du document «ressources pour la classe de première générale

Plus en détail

TUTORAT UE4 2010-2011 Biostatistiques Concours Blanc

TUTORAT UE4 2010-2011 Biostatistiques Concours Blanc TUTORAT UE4 2010-2011 Biostatistiques Concours Blanc Lorsque cela n est pas précisé (explicitement ou implicitement), les tests sont réalisés à 5% en bilatéral QCM n 1 : Généralités sur les probabilités

Plus en détail

Méthodologie d échantillonnage et Échantillonneur ASDE

Méthodologie d échantillonnage et Échantillonneur ASDE Méthodologie d échantillonnage et Échantillonneur ASDE Par Michel Rochon L énoncé suivant définit de façon générale la méthodologie utilisée par Échantillonneur ASDE pour tirer des échantillons téléphoniques.

Plus en détail

Collecte de données. Laurent Dorey

Collecte de données. Laurent Dorey Laurent Dorey Mercredi 16 Décembre 2014 Programme : Recensement & Echantillonnage Étapes pour sélectionner un échantillon La population observée La base de sondage Les unités d enquête La taille de l échantillon

Plus en détail

dans le présent contexte que l activité physique et la nutrition.

dans le présent contexte que l activité physique et la nutrition. Contrat de santé sous forme de calendrier : un outil pour les professionnels de la santé Fiche No 48 pour intervenir avec les personnes âgées Haber D., and Looney C. (2000) Health Contract Calendars: A

Plus en détail

Estimation: intervalle de fluctuation et de confiance. Mars 2012. IREM: groupe Proba-Stat. Fluctuation. Confiance. dans les programmes comparaison

Estimation: intervalle de fluctuation et de confiance. Mars 2012. IREM: groupe Proba-Stat. Fluctuation. Confiance. dans les programmes comparaison Estimation: intervalle de fluctuation et de confiance Mars 2012 IREM: groupe Proba-Stat Estimation Term.1 Intervalle de fluctuation connu : probabilité p, taille de l échantillon n but : estimer une fréquence

Plus en détail

TABLE DES MATIERES. C Exercices complémentaires 42

TABLE DES MATIERES. C Exercices complémentaires 42 TABLE DES MATIERES Chapitre I : Echantillonnage A - Rappels de cours 1. Lois de probabilités de base rencontrées en statistique 1 1.1 Définitions et caractérisations 1 1.2 Les propriétés de convergence

Plus en détail

Chapitre VI Échantillonages et simulations

Chapitre VI Échantillonages et simulations Chapitre VI Commentaires : Récursivement, les commentaires ne sont pas à l attention des élèves.. Fluctuation d échantillonnage Définition : En statistiques, un échantillon de taille n est la liste des

Plus en détail

Tests paramétriques de comparaison de 2 moyennes Exercices commentés José LABARERE

Tests paramétriques de comparaison de 2 moyennes Exercices commentés José LABARERE Chapitre 5 UE4 : Biostatistiques Tests paramétriques de comparaison de 2 moyennes Exercices commentés José LABARERE Année universitaire 2010/2011 Université Joseph Fourier de Grenoble - Tous droits réservés.

Plus en détail

Travaux Dirigés de Probabilités - Statistiques, TD 4. Lois limites ; estimation.

Travaux Dirigés de Probabilités - Statistiques, TD 4. Lois limites ; estimation. Travaux Dirigés de Probabilités - Statistiques, TD 4 Lois limites ; estimation. Exercice 1. Trois machines, A, B, C fournissent respectivement 50%, 30%, 20% de la production d une usine. Les pourcentages

Plus en détail

Document d orientation sur les allégations issues d essais de non-infériorité

Document d orientation sur les allégations issues d essais de non-infériorité Document d orientation sur les allégations issues d essais de non-infériorité Février 2013 1 Liste de contrôle des essais de non-infériorité N o Liste de contrôle (les clients peuvent se servir de cette

Plus en détail

Enquête sur l industrie des ser. vices de taxi et de limousine. Système de documentation des données statistiques Numéro de référence 4707

Enquête sur l industrie des ser. vices de taxi et de limousine. Système de documentation des données statistiques Numéro de référence 4707 Enquête sur l industrie des ser vices de taxi et de services limousine Système de documentation des données statistiques Numéro de référence 4707 Concepts Énoncé de la qualité des données Enquête unifiée

Plus en détail

Les dossiers techniques du CRTA. Comment réaliser une carte de contrôle?

Les dossiers techniques du CRTA. Comment réaliser une carte de contrôle? Les dossiers techniques du CRTA Comment réaliser une carte de contrôle? Comment réaliser une carte de contrôle Les enjeux du contrôle Au-delà du prix de vente, la satisfaction du client passe de manière

Plus en détail

CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Probabilités Épreuve de Bernoulli, loi de Bernoulli.

CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Probabilités Épreuve de Bernoulli, loi de Bernoulli. 1 ère - 3 Chap.9 : Loi binomiale. Échantillonnage. 1 ère - Chapitre 9 : LOI BINOMIALE. ÉCHANTILLONNAGE. Textes officiels (30 septembre 2010) : CONTENU CAPACITÉ ATTENDUE COMMENTAIRE Probabilités Épreuve

Plus en détail

Exploitation et analyse des données appliquées aux techniques d enquête par sondage. Introduction.

Exploitation et analyse des données appliquées aux techniques d enquête par sondage. Introduction. Exploitation et analyse des données appliquées aux techniques d enquête par sondage. Introduction. Etudes et traitements statistiques des données : le cas illustratif de la démarche par sondage INTRODUCTION

Plus en détail

CALCUL D UN SCORE ( SCORING) Application de techniques de discrimination LES OBJECTIFS DU SCORING

CALCUL D UN SCORE ( SCORING) Application de techniques de discrimination LES OBJECTIFS DU SCORING CALCUL D UN SCORE ( SCORING) Application de techniques de discrimination LES OBJECTIFS DU SCORING SÉLECTION DES RISQUES PRÉVISION DES DÉFAUTS SUIVI ET CONTRÔLE Pierre-Louis GONZALEZ Différents types de

Plus en détail

Estimation. Anita Burgun

Estimation. Anita Burgun Estimation Anita Burgun Estimation Anita Burgun Contenu du cours Sondages Mesures statistiques sur un échantillon Estimateurs Problème posé Le problème posé en statistique: On s intéresse à une population

Plus en détail

TESTS D'HYPOTHESES Etude d'un exemple

TESTS D'HYPOTHESES Etude d'un exemple TESTS D'HYPOTHESES Etude d'un exemple Un examinateur doit faire passer une épreuve type QCM à des étudiants. Ce QCM est constitué de 20 questions indépendantes. Pour chaque question, il y a trois réponses

Plus en détail

Quatre stratégies principales ont été définies pour maintenir une réduction de la mortalité liée à la rougeole

Quatre stratégies principales ont été définies pour maintenir une réduction de la mortalité liée à la rougeole Termes de Reference Recrutement d un bureau d étude ou une institution pour l Enquête de Couverture Vaccinale (ECV) post campagne Rougeole en Mauritanie 1. CONTEXTE ET JUSTIFICATION Lors de l assemblée

Plus en détail

201-DUA-05 Probabilités et statistique

201-DUA-05 Probabilités et statistique 1. La longueur de tiges usinées est une variable de moyenne 47,0 cm et d écart-type 0,36 cm. (a) Si l on prélève un échantillon aléatoire de taille 51, alors quelle est la probabilité que la moyenne échantillonnale

Plus en détail

4.5.3. Positionnement par rapport à l évolution dans le temps de deux valeurs d un ES :... 13

4.5.3. Positionnement par rapport à l évolution dans le temps de deux valeurs d un ES :... 13 Guide méthodologique de production des résultats comparatifs des indicateurs de qualité et de sécurité des soins sur la plateforme QUALHAS - Campagne nationale IPAQSS 2013 1. OBJECTIF :... 3 2. CONDITIONS

Plus en détail

EPIDEMIOLOGIE DES PATHOLOGIES BUCCO- DENTAIRES DES ENFANTS DE 6 ANS ET DE 12 ANS EN CORSE

EPIDEMIOLOGIE DES PATHOLOGIES BUCCO- DENTAIRES DES ENFANTS DE 6 ANS ET DE 12 ANS EN CORSE EPIDEMIOLOGIE DES PATHOLOGIES BUCCO- DENTAIRES DES ENFANTS DE 6 ANS ET DE 12 ANS EN CORSE Dans le cadre d un programme d observation du vivant en Corse (Bioscope Corse-Méditerranée), l INSERM a mené, en

Plus en détail

PROBABILITÉS STATISTIQUES

PROBABILITÉS STATISTIQUES PROBABILITÉS ET STATISTIQUES Probabilités et Statistiques PAES 0-03 L FOUCA Sommaire Chapitre Statistique descriptive 4 La statistique et les statistiques 4 Généralités sur les distributions statistiques

Plus en détail

TP N 57. Déploiement et renouvellement d une constellation de satellites

TP N 57. Déploiement et renouvellement d une constellation de satellites TP N 57 Déploiement et renouvellement d une constellation de satellites L objet de ce TP est d optimiser la stratégie de déploiement et de renouvellement d une constellation de satellites ainsi que les

Plus en détail

Chapitre 7 Tests d hypothèse (partie 1)

Chapitre 7 Tests d hypothèse (partie 1) Chapitre 7 Tests d hypothèse (partie 1) I Qu est ce qu un test statistique? La philosophie est toujours la même : déterminer des informations sur une population à partir d informations sur un échantillon

Plus en détail

Comment Randomiser (II)

Comment Randomiser (II) Comment Randomiser (II) William Parienté J-PAL povertyactionlab.org Plan du cours Méthodes de randomisation (récapitulatif) Unités de randomisation et d observation Stratification Comment randomiser en

Plus en détail

STA108 Enquêtes et sondages. Sondages àplusieurs degrés et par grappes

STA108 Enquêtes et sondages. Sondages àplusieurs degrés et par grappes STA108 Enquêtes et sondages Sondages àplusieurs degrés et par grappes Philippe Périé, novembre 2011 Sondages àplusieurs degrés et par grappes Introduction Sondages à plusieurs degrés Tirage des unités

Plus en détail

Chapitre III. M.Reghioui - 2011 1

Chapitre III. M.Reghioui - 2011 1 Chapitre III Gestion des stocks M.Reghioui - 2011 1 Contenu du chapitre Introduction Stocks et paramètres Politiques d approvisionnement Conclusion M.Reghioui - 2011 2 1. Introduction M.Reghioui - 2011

Plus en détail

Simulation d un système d assurance automobile

Simulation d un système d assurance automobile Simulation d un système d assurance automobile DESSOUT / PLESEL / DACHI Plan 1 Introduction... 2 Méthodes et outils utilisés... 2.1 Chaines de Markov... 2.2 Méthode de Monte Carlo... 2.3 Méthode de rejet...

Plus en détail

Devoir Surveillé n 5 BTS 2009 groupement B

Devoir Surveillé n 5 BTS 2009 groupement B EXERCICE 1 (12 points) Devoir Surveillé n 5 BTS 2009 groupement B Les trois parties de cet exercice peuvent être traitées de façon indépendante. A. Résolution d une équation différentielle On considère

Plus en détail

DEFINITION et PROPRIETES des PRINCIPALES LOIS de PROBABILITES

DEFINITION et PROPRIETES des PRINCIPALES LOIS de PROBABILITES Université Paris1, Licence 00-003, Mme Pradel : Principales lois de Probabilité 1 DEFINITION et PROPRIETES des PRINCIPALES LOIS de PROBABILITES Notations Si la variable aléatoire X suit la loi L, onnoterax

Plus en détail

Baccalauréat ES Antilles Guyane 12 septembre 2014 Corrigé

Baccalauréat ES Antilles Guyane 12 septembre 2014 Corrigé Baccalauréat ES Antilles Guyane 12 septembre 2014 Corrigé EXERCICE 1 5 points Commun à tous les candidats 1. Réponse c : ln(10)+2 ln ( 10e 2) = ln(10)+ln ( e 2) = ln(10)+2 2. Réponse b : n 13 0,7 n 0,01

Plus en détail

Chapitre 6 Test de comparaison de pourcentages χ². José LABARERE

Chapitre 6 Test de comparaison de pourcentages χ². José LABARERE UE4 : Biostatistiques Chapitre 6 Test de comparaison de pourcentages χ² José LABARERE Année universitaire 2010/2011 Université Joseph Fourier de Grenoble - Tous droits réservés. Plan I. Nature des variables

Plus en détail

INTRODUCTION A LA RECHERCHE QUANTITATIVE

INTRODUCTION A LA RECHERCHE QUANTITATIVE INTRODUCTION A LA RECHERCHE QUANTITATIVE Deuxième partie : de la base de données aux résultats Juin 2010 Julien Gelly, Caroline Huas, Josselin Le Bel Plan 2 1. Introduction 2. Saisie des données : Epi

Plus en détail

LA MÉTHODE S.P.C. (STATISTICAL PROCESS CONTROL)

LA MÉTHODE S.P.C. (STATISTICAL PROCESS CONTROL) 1GM Sciences et Techniques Industrielles Page 1 sur 5 Productique - Cours Génie Mécanique Première LA MÉTHODE S.P.C. (STATISTICAL PROCESS CONTROL) Née aux USA, la méthode S. P. C. est traduite le plus

Plus en détail

Objectif Conditions de recueil des données Mode de présentation des IQSS par ES

Objectif Conditions de recueil des données Mode de présentation des IQSS par ES Guide méthodologique de production des résultats comparatifs des indicateurs de qualité et de sécurité des soins sur la plateforme QUALHAS - Campagne nationale IPAQSS 2013 Juin 2013 Objectif Conditions

Plus en détail

Table des cas d entreprise et enquêtes. Avant-propos Nos choix d adaptation Visite guidée La 4 e édition Remerciements

Table des cas d entreprise et enquêtes. Avant-propos Nos choix d adaptation Visite guidée La 4 e édition Remerciements Table des matières Table des cas d entreprise et enquêtes Avant-propos Nos choix d adaptation Visite guidée La 4 e édition Remerciements xiii xiii xiv xv xv Première partie Les fondements de la comptabilité

Plus en détail

Séminaire de Statistique

Séminaire de Statistique Master 1 - Economie & Management Séminaire de Statistique Support (2) Variables aléatoires & Lois de probabilité R. Abdesselam - 2013/2014 Faculté de Sciences Economiques et de Gestion Université Lumière

Plus en détail

La méthode des quotas

La méthode des quotas La méthode des quotas Oliviero Marchese, décembre 2006 1 La méthode des quotas Principe de la méthode Point de départ et but recherché Caractère «intuitif» de la méthode A quoi ressemble une feuille de

Plus en détail

NOTE SUR LA MODELISATION DU RISQUE D INFLATION

NOTE SUR LA MODELISATION DU RISQUE D INFLATION NOTE SUR LA MODELISATION DU RISQUE D INFLATION 1/ RESUME DE L ANALYSE Cette étude a pour objectif de modéliser l écart entre deux indices d inflation afin d appréhender le risque à très long terme qui

Plus en détail

Le bootstrap expliqué par l exemple

Le bootstrap expliqué par l exemple Le bootstrap expliqué par l exemple 1 Le bootstrap expliqué par l exemple 1. Les concepts du bootstrap 2. Des variantes adaptées au contexte 3. Comparaison des différentes méthodes 4. Les cas sensibles

Plus en détail

Ch.12 : Loi binomiale

Ch.12 : Loi binomiale 4 e - programme 2007 - mathématiques ch.12 - cours Page 1 sur 5 1 RÉPÉTITION D'EXPÉRIENCES INDÉPENDANTES Lancer plusieurs fois un dé et noter les résultats successifs. Ch.12 : Loi binomiale Prélever des

Plus en détail

La survie nette actuelle à long terme Qualités de sept méthodes d estimation

La survie nette actuelle à long terme Qualités de sept méthodes d estimation La survie nette actuelle à long terme Qualités de sept méthodes d estimation PAR Alireza MOGHADDAM TUTEUR : Guy HÉDELIN Laboratoire d Épidémiologie et de Santé publique, EA 80 Faculté de Médecine de Strasbourg

Plus en détail

Impact de l introduction du vaccin hexavalent sur la couverture contre l hépatite B à Bruxelles et en Wallonie

Impact de l introduction du vaccin hexavalent sur la couverture contre l hépatite B à Bruxelles et en Wallonie Impact de l introduction du vaccin hexavalent sur la couverture contre l hépatite B à Bruxelles et en Wallonie Emmanuelle Robert (MPH) Béatrice Swennen (Dr, MPH) Politiques et systèmes de santé, santé

Plus en détail

Livraison de colis pour des clients du e-commerce : modèles de Wardrop, et Logit simple ou imbriqué

Livraison de colis pour des clients du e-commerce : modèles de Wardrop, et Logit simple ou imbriqué Séminaire du LGI Centrale Paris Livraison de colis pour des clients du e-commerce : modèles de Wardrop, et Logit simple ou imbriqué Y. Hayel 1, D. Quadri 2, T. Jimenez 1, L. Brotcorne 3, B. Tousni 3 LGI,

Plus en détail

Séminaire de statistique version 1.0

Séminaire de statistique version 1.0 Séminaire de statistique version 1.0 Plan 1 2 3 4 Approche décisionnelle Test classique Choisir l une des 2 décisions suivantes : Approche décisionnelle Test classique Choisir l une des 2 décisions suivantes

Plus en détail

Objectifs d'insertion en emploi 2006-2017 Population autochtone, région du Québec Notes de lecture, calculs et résultats

Objectifs d'insertion en emploi 2006-2017 Population autochtone, région du Québec Notes de lecture, calculs et résultats Commission de développement des ressources humaines des Premières Nations du Québec (EDRHA de l'apnql) Collectif des services d'emploi et de formation de 29 communautés de Premières nations et de 4 centres

Plus en détail

EVALUATION DE LA QUALITE DES SONDAGES EN LIGNE : CAS D UN SONDAGE D OPINION AU BURKINA FASO

EVALUATION DE LA QUALITE DES SONDAGES EN LIGNE : CAS D UN SONDAGE D OPINION AU BURKINA FASO EVALUATION DE LA QUALITE DES SONDAGES EN LIGNE : CAS D UN SONDAGE D OPINION AU BURKINA FASO Auteur Baguinébié Bazongo 1 Ingénieur Statisticien Economiste Chef de l Unité de recherche à l Institut national

Plus en détail

L ASSURANCE QUALITE AU LABORATOIRE DE DIAGNOSTIC

L ASSURANCE QUALITE AU LABORATOIRE DE DIAGNOSTIC L ASSURANCE QUALITE AU LABORATOIRE DE DIAGNOSTIC ATELIER DE FORMATION SUR LE DIAGNOSTIC DE LA FIEVRE APHTEUSE 21 mai 2012 Labib BAKKALI KASSIMI Labib.bakkali-kassimi@anses.fr Agence Nationale de Sécurité

Plus en détail

Probabilités. I- Expérience aléatoire, espace probabilisé : ShotGun. 1- Définitions :

Probabilités. I- Expérience aléatoire, espace probabilisé : ShotGun. 1- Définitions : Probabilités I- Expérience aléatoire, espace probabilisé : 1- Définitions : Ω : Ensemble dont les points w sont les résultats possibles de l expérience Des évènements A parties de Ω appartiennent à A une

Plus en détail

Le test triangulaire

Le test triangulaire Le test triangulaire Objectif : Détecter l absence ou la présence de différences sensorielles entre 2 produits. «les 2 produits sont-ils perçus comme différents?» Contexte : la différence sensorielle entre

Plus en détail

STA240 : Tests statistiques

STA240 : Tests statistiques STA240 : Tests statistiques 1 Règle de décision, seuil et p-valeur Dans un test, l hypothèse nulle H 0 est celle dont on choisit de maîtriser la probabilité de rejet à tort. C est celle à laquelle on tient

Plus en détail

Planification d'essais randomisés séquentiels ayant comme critère de jugement un délai de survie à l'aide de la fonction plansurvct.

Planification d'essais randomisés séquentiels ayant comme critère de jugement un délai de survie à l'aide de la fonction plansurvct. 1 eres Rencontres R Bordeaux 2-3 Juillet 2012 Planification d'essais randomisés séquentiels ayant comme critère de jugement un délai de survie à l'aide de la fonction plansurvct.func J.Gal 1, A.Kramar

Plus en détail

LA NOTATION STATISTIQUE DES EMPRUNTEURS OU «SCORING»

LA NOTATION STATISTIQUE DES EMPRUNTEURS OU «SCORING» LA NOTATION STATISTIQUE DES EMPRUNTEURS OU «SCORING» Gilbert Saporta Professeur de Statistique Appliquée Conservatoire National des Arts et Métiers Dans leur quasi totalité, les banques et organismes financiers

Plus en détail

La régression logistique. Par Sonia NEJI et Anne-Hélène JIGOREL

La régression logistique. Par Sonia NEJI et Anne-Hélène JIGOREL La régression logistique Par Sonia NEJI et Anne-Hélène JIGOREL Introduction La régression logistique s applique au cas où: Y est qualitative à 2 modalités Xk qualitatives ou quantitatives Le plus souvent

Plus en détail

Sondage stratifié. Myriam Maumy-Bertrand. Master 2ème Année 12-10-2011. Strasbourg, France

Sondage stratifié. Myriam Maumy-Bertrand. Master 2ème Année 12-10-2011. Strasbourg, France 1 1 IRMA, Université de Strasbourg Strasbourg, France Master 2ème Année 12-10-2011 Ce chapitre s appuie essentiellement sur deux ouvrages : «Les sondages : Principes et méthodes» de Anne-Marie Dussaix

Plus en détail

PROJET DE SDAGE 2016-2021 ETAT DES LIEUX RISQUES DE NON ATTEINTE DES OBJECTIFS DES MASSES D EAUX SOUTERRAINES

PROJET DE SDAGE 2016-2021 ETAT DES LIEUX RISQUES DE NON ATTEINTE DES OBJECTIFS DES MASSES D EAUX SOUTERRAINES PROJET DE SDAGE 2016-2021 ETAT DES LIEUX RISQUES DE NON ATTEINTE DES OBJECTIFS DES MASSES D EAUX SOUTERRAINES I Objectifs qualitatifs (5) Risque non atteinte des objectifs des Pas de dépassement du seuil

Plus en détail

Les zones à environnement contrôlé : conception, mise en place et maintien de zones à environnement contrôlé :

Les zones à environnement contrôlé : conception, mise en place et maintien de zones à environnement contrôlé : Les zones à environnement contrôlé : conception, mise en place et maintien de zones à environnement contrôlé : partie II : Les exigences du contrôle de qualité Prof. P.ODOU Institut de Pharmacie du CHRU

Plus en détail

StatEnAction 2009/10/30 11:26 page 111 #127 CHAPITRE 10. Machines à sous

StatEnAction 2009/10/30 11:26 page 111 #127 CHAPITRE 10. Machines à sous StatEnAction 2009/0/30 :26 page #27 CHAPITRE 0 Machines à sous Résumé. On étudie un problème lié aux jeux de hasard. Il concerne les machines à sous et est appelé problème de prédiction de bandits à deux

Plus en détail

Principes clés de l orientation future du cadre réglementaire canadien de suffisance des capitaux en assurances multirisques Document produit par le

Principes clés de l orientation future du cadre réglementaire canadien de suffisance des capitaux en assurances multirisques Document produit par le Principes clés de l orientation future du cadre réglementaire canadien de suffisance des capitaux en assurances multirisques Document produit par le Comité consultatif sur le Test du capital minimal Page

Plus en détail

Statistique. Jean-Yves Tourneret (1) (1) Université of Toulouse, ENSEEIHT-IRIT-TéSA Thème 1 : Analyse et Synthèse de l Information jyt@n7.

Statistique. Jean-Yves Tourneret (1) (1) Université of Toulouse, ENSEEIHT-IRIT-TéSA Thème 1 : Analyse et Synthèse de l Information jyt@n7. Statistique Jean-Yves Tourneret (1) (1) Université of Toulouse, ENSEEIHT-IRIT-TéSA Thème 1 : Analyse et Synthèse de l Information jyt@n7.fr Cours Statistique, 2010 p. 1/52 Plan du cours Chapitre 1 : Estimation

Plus en détail

Docteur José LABARERE

Docteur José LABARERE UE7 - Santé Société Humanité Risques sanitaires Chapitre 3 : Epidémiologie étiologique Docteur José LABARERE Année universitaire 2010/2011 Université Joseph Fourier de Grenoble - Tous droits réservés.

Plus en détail

Mise à l essai des stratégies de collecte pour les enquêtes en ligne fondées sur l autodéclaration

Mise à l essai des stratégies de collecte pour les enquêtes en ligne fondées sur l autodéclaration Recueil du Symposium 2014 de Statistique Canada Au-delà des méthodes traditionnelles d enquêtes : l adaptation à un monde en évolution Mise à l essai des stratégies de collecte pour les enquêtes en ligne

Plus en détail

CONCEPTION ET TIRAGE DE L ÉCHANTILLON

CONCEPTION ET TIRAGE DE L ÉCHANTILLON CHAPITRE 4 CONCEPTION ET TIRAGE DE L ÉCHANTILLON Ce chapitre technique 1 s adresse principalement aux spécialistes de sondage, mais aussi au coordinateur et aux autres responsables techniques de l enquête.

Plus en détail

Cours (7) de statistiques à distance, élaboré par Zarrouk Fayçal, ISSEP Ksar-Said, 2011-2012 LES STATISTIQUES INFERENTIELLES

Cours (7) de statistiques à distance, élaboré par Zarrouk Fayçal, ISSEP Ksar-Said, 2011-2012 LES STATISTIQUES INFERENTIELLES LES STATISTIQUES INFERENTIELLES (test de Student) L inférence statistique est la partie des statistiques qui, contrairement à la statistique descriptive, ne se contente pas de décrire des observations,

Plus en détail

Fiche qualité relative à l enquête Santé et Itinéraire Professionnel 2010 (SIP) Carte d identité de l enquête

Fiche qualité relative à l enquête Santé et Itinéraire Professionnel 2010 (SIP) Carte d identité de l enquête Fiche qualité relative à Santé et Itinéraire Professionnel 2010 (SIP) Nom Années de Périodicité Panel (suivi d échantillon) Services concepteurs Service réalisant Sujets principaux traités dans Carte d

Plus en détail

Échantillonnage et estimation

Échantillonnage et estimation Échantillonnage et estimation Dans ce chapitre, on s intéresse à un caractère dans une population donnée dont la proportion est notée. Cette proportion sera dans quelques cas connue (échantillonnage),

Plus en détail

VoIP, Mobile Office & M2M Equipements et projets d équipements

VoIP, Mobile Office & M2M Equipements et projets d équipements VoIP, Mobile Office & M2M Equipements et projets d équipements Etude de marché réalisée par Novatris/Harris Interactive pour le compte de Tarsus Développement et diffusée sur le salon IP Convergence Expo

Plus en détail

NORME CAMEROUNAISE NC 235 : 2005 06

NORME CAMEROUNAISE NC 235 : 2005 06 NC 235 : 2005 06 REPUBLIQUE DU CAMEROUN REPUBLIC OF CAMEROON Paix Travail Patrie Peace Work Fatherland ========= ========= MINISTERE DE L INDUSTRIE, DES MINES ET DU MINISTRY OF INDUSTRY, MINES AND DEVELOPPEMENT

Plus en détail

Cours (8) de statistiques à distance, élaboré par Zarrouk Fayçal, ISSEP Ksar-Said, 2011-2012. Test du Khi 2

Cours (8) de statistiques à distance, élaboré par Zarrouk Fayçal, ISSEP Ksar-Said, 2011-2012. Test du Khi 2 Test du Khi 2 Le test du Khi 2 (khi deux ou khi carré) fournit une méthode pour déterminer la nature d'une répartition, qui peut être continue ou discrète. Domaine d application du test : Données qualitatives

Plus en détail

Contributions de la statistique à la maîtrise de la qualité dans l industrie de la défense: de la conformité aux gains d avantages concurrentiels

Contributions de la statistique à la maîtrise de la qualité dans l industrie de la défense: de la conformité aux gains d avantages concurrentiels Photo : Sgt Norm McLean, Combat Camera - DND ref.: IS2013-0004-6464 Contributions de la statistique à la maîtrise de la qualité dans l industrie de la défense: de la conformité aux gains d avantages concurrentiels

Plus en détail

Niveau d assurance de stérilité (NAS) Hôpital Neuchâtelois Sylvie Schneider Novembre 2007

Niveau d assurance de stérilité (NAS) Hôpital Neuchâtelois Sylvie Schneider Novembre 2007 Niveau d assurance de stérilité (NAS) Hôpital Neuchâtelois Sylvie Schneider Novembre 2007 Plan Objectif de la stérilisation Rappel théorique Niveau d Assurance Stérilité Conséquence Destruction des micro-organismes

Plus en détail

Nouveaux programmes de terminale Probabilités et statistiques

Nouveaux programmes de terminale Probabilités et statistiques Nouveaux programmes de terminale Probabilités et statistiques I. Un guide pour l'année II. La loi uniforme : une introduction III. La loi exponentielle IV. De la loi binomiale à la loi normale V. Échantillonnage

Plus en détail

ENQUETE SUR LES BESOINS INFORMATIQUES DES STRUCTURES DE L'ECONOMIE SOCIALE ET SOLIDAIRE

ENQUETE SUR LES BESOINS INFORMATIQUES DES STRUCTURES DE L'ECONOMIE SOCIALE ET SOLIDAIRE ENQUETE SUR LES BESOINS INFORMATIQUES DES STRUCTURES DE L'ECONOMIE SOCIALE ET SOLIDAIRE URL d origine du document : http://talcod.net/?q=node/59 Juillet 2011 - version 1.0 Licence Creative Commons BY-SA

Plus en détail