De la difficulté de colorer : de Guthrie à Karp

Dimension: px
Commencer à balayer dès la page:

Download "De la difficulté de colorer : de Guthrie à Karp"

Transcription

1 De la difficulté de colorer : de Guthrie à Karp Introduction à l optimisation combinatoire : Modélisation et complexité Marc Demange ESSEC Business School Paris, Singapore demange@essec.edu

2 Plan de la séance Introduction : de la conjecture de Guthrie au théorème des 4 couleurs Le problème de coloration des graphes Modèles colorés Exemples bien résolus : intervalles et permutations Colorer, c est difficile : introduction à la théorie de la complexité Conclusion

3 Plan de la séance Introduction : de la conjecture de Guthrie au théorème des 4 couleurs Le problème de coloration des graphes Modèles colorés Exemples bien résolus : intervalles et permutations Colorer, c est difficile : introduction à la théorie de la complexité Conclusion

4 Plan de la séance Introduction : de la conjecture de Guthrie au théorème des 4 couleurs Le problème -de l invention coloration du des rouge graphes - l histoire d un problème - l histoire d un théorème Modèles colorés - l histoire continue Exemples bien résolus : intervalles et permutations Colorer, c est difficile : introduction à la théorie de la complexité Conclusion

5 L invention du rouge Un Taminou

6 Un Taminou

7 Un Taminou

8 Un Taminou

9 Un Taminou

10 Des Taminoux

11 Des Taminoux

12 coloriage.com Carte de Taminouland Pays imaginaire 1 Pays imaginaire 2

13 Histoire d un problème

14 1850 : F. Guthrie : «Si une figure est divisée de quelque manière que ce soit et si on colorie les morceaux de telle sorte que, chaque fois qu ils ont une ligne frontalière, leurs couleurs soient distinctes, il peut falloir quatre couleurs mais pas plus.» Homoglossum guthriei

15 A. De Morgan Cyrtanthus guthrieae R.W. Hamilton

16 1860 : première mention écrite A. De Morgan C.S. Pierce 1878 : exposé du problème dans un article Gladiolus guthriei A. Cayley

17 Histoire d un théorème A.B. Kempe 1879 : théorème des 4 couleurs Homoglossum guthriei P.J. Heawood

18 L. Carroll Matsumoto (1971) Appel et Haken 1976 P.G. Tait (1880) Petersen (1891) théorème des 4 couleurs Heesch (1969) 4 ans de travail 10 Roberson, 000 cas traités Sanders, à la Seymour, main Thomas 1478 configurations 1995 traitées par ordinateur nouvelle 1200 preuve heures par de ordinateur calcul avec 633 configurations G.D. Birkhoff (1913)

19 Parabole du Père Noël

20 Plan de la séance Introduction : de la conjecture de Guthrie au théorème des 4 couleurs Le problème de coloration des graphes Modèles colorés Exemples bien résolus : intervalles et permutations Colorer, c est difficile : introduction à la théorie de la complexité Conclusion

21 Formulation par la théorie des graphes Graphe : Points (sommets) Traits liant deux sommets (arêtes)

22 Carte plane Graphe planaire Pays Sommets Frontière commune Arête

23 Un Taminou Graphe du Taminou

24 Pétale 1 Pétale 2 Pétale 3 Pétale 4 Oeil Oreille 1 Oreille 2 Pétale 5 Coeur Pétale 6 Fond Tête Nez Pétale 7 Pétale 8 Corps Pétale 9 Queue Patte 1 Patte 2 Patte 3 Patte 4 Graphe du Taminou

25 Théorème des quatre couleurs Un graphe planaire peut être colorié avec au plus quatre couleurs de sorte que deux sommets adjacents sont de couleurs différentes Un graphe planaire est 4-coloriable Un graphe planaire a un nombre chromatique au plus 4

26 Minimiser le nombre de couleurs Problème de coloration minimum : étant donné un graphe, déterminer une coloration utilisant le moins de couleurs possible. nombre chromatique = 5

27 Plan de la séance Introduction : de la conjecture de Guthrie au théorème des 4 couleurs Le problème de coloration des graphes Modèles colorés Exemples bien résolus : intervalles et permutations Colorer, c est difficile : introduction à la théorie de la complexité Conclusion

28 Modèles colorés Premier exemple : emploi du temps Second exemple : le problème du carnet de commandes Troisième exemple : allocation de fréquences dans les réseaux mobiles Quatrième exemple : réservation dans les trains Cinquième exemple : la traversée du carrefour

29 Conception d un emploi du temps activité jour horaire activité jour horaire 1 Mecanica lundi 8-10 h 9 formation Internet lundi h 2 Structuri de date lundi 9-12 h 10 cours logistique lundi h 3 Fizica lundi 9-12 h 11 pot anniversaire Jan mardi 8-10 h 4 Project lundi h 12 cours finance mardi 9-10 h 30 5 groupe de travail BULL lundi h cours th. décision mardi h 6 Excel, Access lundi h réunion PIE mardi h 7 cours droit des affaires lundi h 15 soutenance de thèse mardi h 8 groupe de travail MS lundi h 16 débat Les RV de l'essec mardi h Objectif : Contraintes : minimiser le nombre de salles nécessaires incompatibilités d horaires graphe : sommets 7 activités arêtes 4 chevauchements horaires

30 Conception d un emploi du temps (2) Affecter à chaque sommet une salle couleur deux sommets de même couleur ne peuvent être adjacents Le problème revient à colorer les sommets du graphe avec le moins de couleurs problème de coloration des graphes

31 Problème du carnet de commandes travaux sur une journée exploitant certaines ressources n tâches à réaliser contraintes d incompatibilité par paires on ne peut réaliser simultanément deux tâches utilisant la même ressource comment traiter au plus vite le carnet? exemple 1 : entreprise de travaux publics

32 Problème du carnet de commandes prise de vue d une zone terrestre n tâches à réaliser contraintes d incompatibilité par paires deux zones se chevauchant ne peuvent être prises simultanément comment traiter au plus vite le carnet? exemple 2 : prises de vues par satellites

33 Problème du carnet de commandes cuisson n tâches à réaliser contraintes d incompatibilité par paires température, temps de cuisson, mode de cuisson, incompatibilités chimiques,... comment traiter au plus vite le carnet? exemple 3 : cuisson au four (pâtisserie, cuisine, chimie )

34 Graphe d incompatibilité tâches incompatibilités tâches réalisées simultanément sommets arêtes couleur minimiser la durée totale coloration minimum

35 Problème d allocation de fréquences Risque d interférences transmetteurs répartis sur le territoire. deux transmetteurs «proches» doivent opérer sur des fréquences éloignées

36 Gare de triage

37 Gare de triage

38 C est un problème de coloration

39 Système de réservations voyage des gares 1 à n réservation : de a à b,1 a b n contrainte : ne pas affecter un siège simultanément à deux passagers

40 3 places et 5 demandes Système de réservations 1 à 6 2 à 4 3 à 7 5 à 8 6 à 9?

41 Système de réservations 1 à 6 2 à 4 3 à 7 5 à 8 6 à 9 2 à 4 6 à 9 3 à 7 5 à 8

42 Système de réservations 1 à 6 2 à 4 3 à 7 5 à 8 6 à 9 1 à 6 6 à 9 2 à 4 5 à 8 3 à 7

43 Système de réservations 1 à 6 2 à 4 3 à 7 5 à 8 6 à 9

44 A B C D E F Affectation de voies de garage ARRIVEE DEPART A 6 p.m 6 a.m B 7 p.m 1 a.m C 8 p.m 4 a.m D 9 p.m 5 a.m E 10 p.m 2 a.m DABC F 11 p.m 3 a.m? C

45 Affectation de voies de garage A B C D E D A C B E Time Overlap Graph

46 Cas particulier Condition de minuit Graphe de permutation

47 Cas particulier P = [ ]

48 Le problème du carrefour A B C E D En arrivant par. A B C D E on peut aller en C,E A,E,D A,D C,A C,D Traversées possibles

49 En arrivant par. A B C D E on peut aller en C,E A,E,D A,D C,A C,D AC AE ED BA EC BE DA DC CD CA BD

50 Plan de la séance Introduction : de la conjecture de Guthrie au théorème des 4 couleurs Le problème de coloration des graphes Modèles colorés Exemples bien résolus : intervalles et permutations Colorer, c est difficile : introduction à la théorie de la complexité Conclusion

51 Graphe d intervalles 1 à 6 2 à 4 3 à 7 5 à 8 6 à 9 nombre chromatique =

52 Graphe d intervalles Autre méthode : ordre croissant du bord gauche

53 Graphe d intervalles Ordre décroissant du bord gauche?

54 Permutations

55 Permutations

56 Graphe de permutation Utilisation d une orientation transitive

57 Plan de la séance Introduction : de la conjecture de Guthrie au théorème des 4 couleurs Le problème de coloration des graphes Modèles colorés Exemples bien résolus : intervalles et permutations Colorer, c est difficile : introduction à la théorie de la complexité Conclusion

58 Colorer : un problème difficile pas d algorithme «efficace»

59 2-coloration : un problème facile 3-coloration : un problème difficile La conjecture P NP signifie qu il n existe par d algorithme polynomial permettant de décider si un graphe est 3-colorable. Bien entendu, il existe un algorithme exponentiel pour cela.

60 P=NP? Les plus difficiles de NP NP-complet NP=P «Pas trop difficiles» P «Faciles»

61 Un peu plus formellement NP : problèmes de décision admettant un algorithme non-déterministe polynomial Phase non déterministe : écriture d un certificat Phase déterministe : vérification du certificat NP : classe des problèmes admettant un certificat vérifiable en temps polynomial Modèle d algorithme : machines de Turing

62 Exemple : 3-Col 3-Col : étant donné un graphe, est-il 3-colorable? 3-Col est dans NP Phase non déterministe : définir une partition des sommets en trois ensembles Phase déterministe : vérifier qu il s agit d une coloration réalisable

63 Un peu plus formellement (suite) Réduction polynomiale : P 1 P P 2 I1 instance de P1 I 2 instance de P2 I tel que 1 instance positive pour P1 I 2 instance positive pour P 2 P1 P P2 and P2 P P1 P

64 Un peu plus formellement (3) NP-complet : P 0 NP - complet P 0 NP P ' NP, P ' P P 0 P NP - complet P = NP - complet = NP Conjecture : P NP

65 Exemples Théorème (Cook,1971): SAT est NP - complet SAT P 3-SAT 3-SAT NP 3-SAT NP - complet P 0 NP P' NP - complet, P' P P0 P0 NP - complet Théorème:3- Col est NP - complet

66 Le problème de coloration minimum est méchant Si P NP il n existe pas d algorithme polynomial permettant de colorer tout graphe avec un nombre minimum de couleurs. Conséquence pratique : les algorithmes exacts deviennent très vite inopérants.

67 Courage mes amis, colorons! Algorithme exact : énumération implicite des solutions Approximation à garanties de performance Méthodes heuristiques : méthodes séquentielles (gloutonne) recherche successive de stables recherches locales : tabou algorithmes «évolutionnaires» : génétique Recherche de classes de graphes pour lesquelles le problème est facile

68 Généralisations Colorations pondérées Autres types de colorations Cadre online

69 MERCI! Un Taminou

70 Cas simple : 2-coloration 23:28 2-colorable CA'NTI 13 - Marc Demange

71 Cas simple : 2-coloration 23:28 2-colorable CA'NTI 13 - Marc Demange

72 Cas simple : 2-coloration Algorithme de reconnaissance de graphes 2-colorable : O(n+m) étapes. non 2-colorable

73 Cas des graphes parfaits Le nombre chromatique est égal à la taille d une plus grande clique pour le graphe et ses sous-graphes La coloration devient facile (polynomiale) Graphe de permutations : le nombre chromatique est la longueur d une plus grande chaîne non croissante. Graphe d intervalles : le nombre chromatique est le nombre maximum d intervalles se chevauchant 2 à 2

74 MERCI! Un Taminou

75

76

77

78 Planaire Formule d Euler 5-coloriable 2-coloriable 23:28 Non CA'NTI planaires 13 - Marc Demange

79 Formule d Euler S A + F = 2 Planaire Non planaires

Objectifs du cours d aujourd hui. Informatique II : Cours d introduction à l informatique et à la programmation objet. Complexité d un problème (2)

Objectifs du cours d aujourd hui. Informatique II : Cours d introduction à l informatique et à la programmation objet. Complexité d un problème (2) Objectifs du cours d aujourd hui Informatique II : Cours d introduction à l informatique et à la programmation objet Complexité des problèmes Introduire la notion de complexité d un problème Présenter

Plus en détail

La NP-complétude. Johanne Cohen. PRISM/CNRS, Versailles, France.

La NP-complétude. Johanne Cohen. PRISM/CNRS, Versailles, France. La NP-complétude Johanne Cohen PRISM/CNRS, Versailles, France. Références 1. Algorithm Design, Jon Kleinberg, Eva Tardos, Addison-Wesley, 2006. 2. Computers and Intractability : A Guide to the Theory of

Plus en détail

Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé

Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé A. P. M. E. P. Exercice 1 5 points 1. Réponse d. : 1 e Le coefficient directeur de la tangente est négatif et n est manifestement pas 2e

Plus en détail

Exemples de problèmes et d applications. INF6953 Exemples de problèmes 1

Exemples de problèmes et d applications. INF6953 Exemples de problèmes 1 Exemples de problèmes et d applications INF6953 Exemples de problèmes Sommaire Quelques domaines d application Quelques problèmes réels Allocation de fréquences dans les réseaux radio-mobiles Affectation

Plus en détail

Introduction à la théorie des graphes. Solutions des exercices

Introduction à la théorie des graphes. Solutions des exercices CAHIERS DE LA CRM Introduction à la théorie des graphes Solutions des exercices Didier Müller CAHIER N O 6 COMMISSION ROMANDE DE MATHÉMATIQUE 1 Graphes non orientés Exercice 1 On obtient le graphe biparti

Plus en détail

Théorie des Graphes Cours 3: Forêts et Arbres II / Modélisation

Théorie des Graphes Cours 3: Forêts et Arbres II / Modélisation IFIPS S7 - informatique Université Paris-Sud 11 1er semestre 2009/2010 Théorie des Graphes Cours 3: Forêts et Arbres II / 1 Forêts et arbres II Théorème 1.1. Les assertions suivantes sont équivalentes

Plus en détail

PROBLEMES D'ORDONNANCEMENT AVEC RESSOURCES

PROBLEMES D'ORDONNANCEMENT AVEC RESSOURCES Leçon 11 PROBLEMES D'ORDONNANCEMENT AVEC RESSOURCES Dans cette leçon, nous retrouvons le problème d ordonnancement déjà vu mais en ajoutant la prise en compte de contraintes portant sur les ressources.

Plus en détail

Communications collectives et ordonnancement en régime permanent pour plates-formes hétérogènes

Communications collectives et ordonnancement en régime permanent pour plates-formes hétérogènes Loris MARCHAL Laboratoire de l Informatique du Parallélisme Équipe Graal Communications collectives et ordonnancement en régime permanent pour plates-formes hétérogènes Thèse réalisée sous la direction

Plus en détail

TSTI 2D CH X : Exemples de lois à densité 1

TSTI 2D CH X : Exemples de lois à densité 1 TSTI 2D CH X : Exemples de lois à densité I Loi uniforme sur ab ; ) Introduction Dans cette activité, on s intéresse à la modélisation du tirage au hasard d un nombre réel de l intervalle [0 ;], chacun

Plus en détail

Fonctions homographiques

Fonctions homographiques Seconde-Fonctions homographiques-cours Mai 0 Fonctions homographiques Introduction Voir le TP Géogébra. La fonction inverse. Définition Considérons la fonction f définie par f() =. Alors :. f est définie

Plus en détail

BACCALAUREAT GENERAL MATHÉMATIQUES

BACCALAUREAT GENERAL MATHÉMATIQUES BACCALAUREAT GENERAL FEVRIER 2014 MATHÉMATIQUES SERIE : ES Durée de l épreuve : 3 heures Coefficient : 5 (ES), 4 (L) 7(spe ES) Les calculatrices électroniques de poche sont autorisées, conformement à la

Plus en détail

Resolution limit in community detection

Resolution limit in community detection Introduction Plan 2006 Introduction Plan Introduction Introduction Plan Introduction Point de départ : un graphe et des sous-graphes. But : quantifier le fait que les sous-graphes choisis sont des modules.

Plus en détail

Annexe 6. Notions d ordonnancement.

Annexe 6. Notions d ordonnancement. Annexe 6. Notions d ordonnancement. APP3 Optimisation Combinatoire: problèmes sur-contraints et ordonnancement. Mines-Nantes, option GIPAD, 2011-2012. Sophie.Demassey@mines-nantes.fr Résumé Ce document

Plus en détail

Baccalauréat ES/L Métropole La Réunion 13 septembre 2013 Corrigé

Baccalauréat ES/L Métropole La Réunion 13 septembre 2013 Corrigé Baccalauréat S/L Métropole La Réunion 13 septembre 2013 Corrigé A. P. M.. P. XRCIC 1 Commun à tous les candidats Partie A 1. L arbre de probabilité correspondant aux données du problème est : 0,3 0,6 H

Plus en détail

Plan. 1. La planification d un d 2. Méthodes et techniques de planification 3. Conclusion. D. Leclet - 2006-2007

Plan. 1. La planification d un d 2. Méthodes et techniques de planification 3. Conclusion. D. Leclet - 2006-2007 Plan 1. La planification d un d projet 2. Méthodes et techniques de planification 3. Conclusion 1 1. La planification d un d projet 1.1 Découpage chronologique du projet 1.2 Ordonnancement des tâchest

Plus en détail

Chapitre 5 : Flot maximal dans un graphe

Chapitre 5 : Flot maximal dans un graphe Graphes et RO TELECOM Nancy A Chapitre 5 : Flot maximal dans un graphe J.-F. Scheid 1 Plan du chapitre I. Définitions 1 Graphe Graphe valué 3 Représentation d un graphe (matrice d incidence, matrice d

Plus en détail

Baccalauréat ES/L Amérique du Sud 21 novembre 2013

Baccalauréat ES/L Amérique du Sud 21 novembre 2013 Baccalauréat ES/L Amérique du Sud 21 novembre 2013 A. P. M. E. P. EXERCICE 1 Commun à tous les candidats 5 points Une entreprise informatique produit et vend des clés USB. La vente de ces clés est réalisée

Plus en détail

Cryptographie et fonctions à sens unique

Cryptographie et fonctions à sens unique Cryptographie et fonctions à sens unique Pierre Rouchon Centre Automatique et Systèmes Mines ParisTech pierre.rouchon@mines-paristech.fr Octobre 2012 P.Rouchon (Mines ParisTech) Cryptographie et fonctions

Plus en détail

Eléments de Théorie des Graphes et Programmation Linéaire

Eléments de Théorie des Graphes et Programmation Linéaire INSTITUT NATIONAL POLYTECHNIQUE DE LORRAINE Ecole Nationale Supérieure d Electricité et de Mécanique Eléments de Théorie des Graphes et Programmation Linéaire Didier Maquin Professeur à l INPL Version

Plus en détail

CONJUGUÉ D'UN POINT PAR RAPPORT À UN TRIANGLE

CONJUGUÉ D'UN POINT PAR RAPPORT À UN TRIANGLE CONJUGUÉ D'UN POINT PAR RAPPORT À UN TRIANGLE Jean Luc Bovet, Auvernier L'article de Monsieur Jean Piquerez (Bulletin de la SSPMP No 86), consacré aux symédianes me paraît appeler une généralisation. En

Plus en détail

Cours Optimisation Partie Optimisation Combinatoire. Année scolaire 2008-2009. Gérard Verfaillie ONERA/DCSD/CD, Toulouse Gerard.Verfaillie@onera.

Cours Optimisation Partie Optimisation Combinatoire. Année scolaire 2008-2009. Gérard Verfaillie ONERA/DCSD/CD, Toulouse Gerard.Verfaillie@onera. Cours Optimisation Partie Optimisation Combinatoire 3ième année ISAE Année scolaire 2008-2009 Gérard Verfaillie ONERA/DCSD/CD, Toulouse Gerard.Verfaillie@onera.fr Septembre 2008 Résumé Ce document couvre

Plus en détail

Nombres premiers. Comment reconnaître un nombre premier? Mais...

Nombres premiers. Comment reconnaître un nombre premier? Mais... Introduction Nombres premiers Nombres premiers Rutger Noot IRMA Université de Strasbourg et CNRS Le 19 janvier 2011 IREM Strasbourg Definition Un nombre premier est un entier naturel p > 1 ayant exactement

Plus en détail

Faculté des sciences Département de mathématiques. Théorie des graphes

Faculté des sciences Département de mathématiques. Théorie des graphes Faculté des sciences Département de mathématiques Théorie des graphes Deuxièmes bacheliers en sciences mathématiques Année académique 2009 2010 Michel Rigo Table des matières Introduction 1 Chapitre I.

Plus en détail

Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes.

Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes. 1 Définitions, notations Calcul matriciel Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes. On utilise aussi la notation m n pour le

Plus en détail

Cours de Master Recherche

Cours de Master Recherche Cours de Master Recherche Spécialité CODE : Résolution de problèmes combinatoires Christine Solnon LIRIS, UMR 5205 CNRS / Université Lyon 1 2007 Rappel du plan du cours 16 heures de cours 1 - Introduction

Plus en détail

Sites web éducatifs et ressources en mathématiques

Sites web éducatifs et ressources en mathématiques Sites web éducatifs et ressources en mathématiques Exercices en ligne pour le primaire Calcul mental élémentaire : http://www.csaffluents.qc.ca/wlamen/tables-sous.html Problèmes de soustraction/addition

Plus en détail

COURS SYRRES RÉSEAUX SOCIAUX INTRODUCTION. Jean-Loup Guillaume

COURS SYRRES RÉSEAUX SOCIAUX INTRODUCTION. Jean-Loup Guillaume COURS SYRRES RÉSEAUX SOCIAUX INTRODUCTION Jean-Loup Guillaume Le cours Enseignant : Jean-Loup Guillaume équipe Complex Network Page du cours : http://jlguillaume.free.fr/www/teaching-syrres.php Évaluation

Plus en détail

Ordonnancement. N: nains de jardin. X: peinture extérieure. E: électricité T: toit. M: murs. F: fondations CHAPTER 1

Ordonnancement. N: nains de jardin. X: peinture extérieure. E: électricité T: toit. M: murs. F: fondations CHAPTER 1 CHAPTER 1 Ordonnancement 1.1. Étude de cas Ordonnancement de tâches avec contraintes de précédences 1.1.1. Exemple : construction d'une maison. Exercice. On veut construire une maison, ce qui consiste

Plus en détail

315 et 495 sont dans la table de 5. 5 est un diviseur commun. Leur PGCD n est pas 1. Il ne sont pas premiers entre eux

315 et 495 sont dans la table de 5. 5 est un diviseur commun. Leur PGCD n est pas 1. Il ne sont pas premiers entre eux Exercice 1 : (3 points) Un sac contient 10 boules rouges, 6 boules noires et 4 boules jaunes. Chacune des boules a la même probabilité d'être tirée. On tire une boule au hasard. 1. Calculer la probabilité

Plus en détail

MABioVis. Bio-informatique et la

MABioVis. Bio-informatique et la MABioVis Modèles et Algorithmes pour la Bio-informatique et la Visualisation Visite ENS Cachan 5 janvier 2011 MABioVis G GUY MELANÇON (PR UFR Maths Info / EPI GRAVITE) (là, maintenant) - MABioVis DAVID

Plus en détail

Rapport de stage de première année de Master Optimisation de cache d instructions

Rapport de stage de première année de Master Optimisation de cache d instructions Rapport de stage de première année de Master Optimisation de cache d instructions Benoit Boissinot Benoit.Boissinot@ens-lyon.fr Université Lyon 1 sous la direction de Fabrice Rastello Fabrice.Rastello@ens-lyon.fr

Plus en détail

Big Data et Graphes : Quelques pistes de recherche

Big Data et Graphes : Quelques pistes de recherche Big Data et Graphes : Quelques pistes de recherche Hamamache Kheddouci http://liris.cnrs.fr/hamamache.kheddouci Laboratoire d'informatique en Image et Systèmes d'information LIRIS UMR 5205 CNRS/INSA de

Plus en détail

Correction : E = Soit E = -1,6. F = 12 Soit F = -6 3 + 45. y = 11. et G = -2z + 4y G = 2 6 = 3 G = G = -2 5 + 4 11

Correction : E = Soit E = -1,6. F = 12 Soit F = -6 3 + 45. y = 11. et G = -2z + 4y G = 2 6 = 3 G = G = -2 5 + 4 11 Correction : EXERCICE : Calculer en indiquant les étapes: (-6 +9) ( ) ( ) B = -4 (-) (-8) B = - 8 (+ 6) B = - 8 6 B = - 44 EXERCICE : La visite médicale Calcul de la part des élèves rencontrés lundi et

Plus en détail

Logique binaire. Aujourd'hui, l'algèbre de Boole trouve de nombreuses applications en informatique et dans la conception des circuits électroniques.

Logique binaire. Aujourd'hui, l'algèbre de Boole trouve de nombreuses applications en informatique et dans la conception des circuits électroniques. Logique binaire I. L'algèbre de Boole L'algèbre de Boole est la partie des mathématiques, de la logique et de l'électronique qui s'intéresse aux opérations et aux fonctions sur les variables logiques.

Plus en détail

Big Data et Graphes : Quelques pistes de recherche

Big Data et Graphes : Quelques pistes de recherche Big Data et Graphes : Quelques pistes de recherche Hamamache Kheddouci Laboratoire d'informatique en Image et Systèmes d'information LIRIS UMR 5205 CNRS/INSA de Lyon/Université Claude Bernard Lyon 1/Université

Plus en détail

Introduction à la théorie des graphes

Introduction à la théorie des graphes CAHIERS DE LA CRM Introduction à la théorie des graphes Didier Müller CAHIER N O 6 COMMISSION ROMANDE DE MATHÉMATIQUE Table des matières Avant-propos But de ce fascicule................................

Plus en détail

Baccalauréat ES Antilles Guyane 12 septembre 2014 Corrigé

Baccalauréat ES Antilles Guyane 12 septembre 2014 Corrigé Baccalauréat ES Antilles Guyane 12 septembre 2014 Corrigé EXERCICE 1 5 points Commun à tous les candidats 1. Réponse c : ln(10)+2 ln ( 10e 2) = ln(10)+ln ( e 2) = ln(10)+2 2. Réponse b : n 13 0,7 n 0,01

Plus en détail

Baccalauréat L spécialité, Métropole et Réunion, 19 juin 2009 Corrigé.

Baccalauréat L spécialité, Métropole et Réunion, 19 juin 2009 Corrigé. Baccalauréat L spécialité, Métropole et Réunion, 19 juin 2009 Corrigé. L usage d une calculatrice est autorisé Durée : 3heures Deux annexes sont à rendre avec la copie. Exercice 1 5 points 1_ Soit f la

Plus en détail

Principes de mathématiques 12 SÉRIE DE PROBLÈMES. Septembre 2001. Student Assessment and Program Evaluation Branch

Principes de mathématiques 12 SÉRIE DE PROBLÈMES. Septembre 2001. Student Assessment and Program Evaluation Branch Principes de mathématiques 12 SÉRIE DE PROBLÈMES Septembre 2001 Student Assessment and Program Evaluation Branch REMERCIEMENTS Le Ministère de l Éducation tient à remercier chaleureusement les professionnels

Plus en détail

Chapitre 3. Quelques fonctions usuelles. 1 Fonctions logarithme et exponentielle. 1.1 La fonction logarithme

Chapitre 3. Quelques fonctions usuelles. 1 Fonctions logarithme et exponentielle. 1.1 La fonction logarithme Chapitre 3 Quelques fonctions usuelles 1 Fonctions logarithme et eponentielle 1.1 La fonction logarithme Définition 1.1 La fonction 7! 1/ est continue sur ]0, +1[. Elle admet donc des primitives sur cet

Plus en détail

3. SPÉCIFICATIONS DU LOGICIEL. de l'expression des besoins à la conception. Spécifications fonctionnelles Analyse fonctionnelle et méthodes

3. SPÉCIFICATIONS DU LOGICIEL. de l'expression des besoins à la conception. Spécifications fonctionnelles Analyse fonctionnelle et méthodes PLAN CYCLE DE VIE D'UN LOGICIEL EXPRESSION DES BESOINS SPÉCIFICATIONS DU LOGICIEL CONCEPTION DU LOGICIEL LA PROGRAMMATION TESTS ET MISE AU POINT DOCUMENTATION CONCLUSION C.Crochepeyre Génie Logiciel Diapason

Plus en détail

Problèmes d ordonnancement dans les systèmes de production. Journée Automatique et Optimisation Université de Paris 12 20 Mars 2003

Problèmes d ordonnancement dans les systèmes de production. Journée Automatique et Optimisation Université de Paris 12 20 Mars 2003 Problèmes d ordonnancement dans les systèmes de production Michel Gourgand Université Blaise Pascal Clermont Ferrand LIMOS CNRS UMR 6158 1 Le LIMOS Laboratoire d Informatique, de Modélisation et d Optimisation

Plus en détail

Lecture graphique. Table des matières

Lecture graphique. Table des matières Lecture graphique Table des matières 1 Lecture d une courbe 2 1.1 Définition d une fonction.......................... 2 1.2 Exemple d une courbe........................... 2 1.3 Coût, recette et bénéfice...........................

Plus en détail

Modélisation multi-agents - Agents réactifs

Modélisation multi-agents - Agents réactifs Modélisation multi-agents - Agents réactifs Syma cursus CSI / SCIA Julien Saunier - julien.saunier@ifsttar.fr Sources www-lih.univlehavre.fr/~olivier/enseignement/masterrecherche/cours/ support/algofourmis.pdf

Plus en détail

DÉRIVÉES. I Nombre dérivé - Tangente. Exercice 01 (voir réponses et correction) ( voir animation )

DÉRIVÉES. I Nombre dérivé - Tangente. Exercice 01 (voir réponses et correction) ( voir animation ) DÉRIVÉES I Nombre dérivé - Tangente Eercice 0 ( voir animation ) On considère la fonction f définie par f() = - 2 + 6 pour [-4 ; 4]. ) Tracer la représentation graphique (C) de f dans un repère d'unité

Plus en détail

OUTILS EN INFORMATIQUE

OUTILS EN INFORMATIQUE OUTILS EN INFORMATIQUE Brice Mayag brice.mayag@dauphine.fr LAMSADE, Université Paris-Dauphine R.O. Excel brice.mayag@dauphine.fr (LAMSADE) OUTILS EN INFORMATIQUE R.O. Excel 1 / 35 Plan Présentation générale

Plus en détail

Premier cours d informatique

Premier cours d informatique La lecture du règlement intérieur Définition de quelques mots informatiques Premier cours d informatique Salutation d usage et présentation des participants Et du projet -Informatique : Traitement automatique

Plus en détail

Francis BISSON (06 794 819) Kenny CÔTÉ (06 836 427) Pierre-Luc ROGER (06 801 883) IFT702 Planification en intelligence artificielle

Francis BISSON (06 794 819) Kenny CÔTÉ (06 836 427) Pierre-Luc ROGER (06 801 883) IFT702 Planification en intelligence artificielle Francis BISSON (06 794 819) Kenny CÔTÉ (06 836 427) Pierre-Luc ROGER (06 801 883) PLANIFICATION DE TÂCHES DANS MS PROJECT IFT702 Planification en intelligence artificielle Présenté à M. Froduald KABANZA

Plus en détail

La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1

La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1 La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1 La licence Mathématiques et Economie-MASS de l Université des Sciences Sociales de Toulouse propose sur les trois

Plus en détail

Soit la fonction affine qui, pour représentant le nombre de mois écoulés, renvoie la somme économisée.

Soit la fonction affine qui, pour représentant le nombre de mois écoulés, renvoie la somme économisée. ANALYSE 5 points Exercice 1 : Léonie souhaite acheter un lecteur MP3. Le prix affiché (49 ) dépasse largement la somme dont elle dispose. Elle décide donc d économiser régulièrement. Elle a relevé qu elle

Plus en détail

MATH0062-1 ELEMENTS DU CALCUL DES PROBABILITES

MATH0062-1 ELEMENTS DU CALCUL DES PROBABILITES MATH0062-1 ELEMENTS DU CALCUL DES PROBABILITES REPETITIONS et PROJETS : INTRODUCTION F. Van Lishout (Février 2015) Pourquoi ce cours? Sciences appliquées Modélisation parfaite vs monde réel Comment réussir

Plus en détail

Raisonnement par récurrence Suites numériques

Raisonnement par récurrence Suites numériques Chapitre 1 Raisonnement par récurrence Suites numériques Terminale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Raisonnement par récurrence. Limite finie ou infinie d une suite.

Plus en détail

INF 232: Langages et Automates. Travaux Dirigés. Université Joseph Fourier, Université Grenoble 1 Licence Sciences et Technologies

INF 232: Langages et Automates. Travaux Dirigés. Université Joseph Fourier, Université Grenoble 1 Licence Sciences et Technologies INF 232: Langages et Automates Travaux Dirigés Université Joseph Fourier, Université Grenoble 1 Licence Sciences et Technologies Année Académique 2013-2014 Année Académique 2013-2014 UNIVERSITÉ JOSEPH

Plus en détail

Correction du baccalauréat ES/L Métropole 20 juin 2014

Correction du baccalauréat ES/L Métropole 20 juin 2014 Correction du baccalauréat ES/L Métropole 0 juin 014 Exercice 1 1. c.. c. 3. c. 4. d. 5. a. P A (B)=1 P A (B)=1 0,3=0,7 D après la formule des probabilités totales : P(B)=P(A B)+P(A B)=0,6 0,3+(1 0,6)

Plus en détail

Cours des Méthodes de Résolution Exactes Heuristiques et Métaheuristiques

Cours des Méthodes de Résolution Exactes Heuristiques et Métaheuristiques Université Mohammed V, Faculté des Sciences de Rabat Laboratoire de Recherche Mathématiques, Informatique et Applications Cours des Méthodes de Résolution Exactes Heuristiques et Métaheuristiques MASTER

Plus en détail

1S Modèles de rédaction Enoncés

1S Modèles de rédaction Enoncés Par l équipe des professeurs de 1S du lycée Parc de Vilgénis 1S Modèles de rédaction Enoncés Produit scalaire & Corrigés Exercice 1 : définition du produit scalaire Soit ABC un triangle tel que AB, AC

Plus en détail

U.F.R. Sciences Fondamentales et Appliquées. pour obtenir. le grade de Docteur en Sciences. Spécialité : informatique

U.F.R. Sciences Fondamentales et Appliquées. pour obtenir. le grade de Docteur en Sciences. Spécialité : informatique NNT : 2011EVRY0012 École Doctorale Sciences & Ingénierie Université d Évry-Val d Essonne U.F.R. Sciences Fondamentales et Appliquées Thèse présentée par Romain Campigotto pour obtenir le grade de Docteur

Plus en détail

6. Les différents types de démonstrations

6. Les différents types de démonstrations LES DIFFÉRENTS TYPES DE DÉMONSTRATIONS 33 6. Les différents types de démonstrations 6.1. Un peu de logique En mathématiques, une démonstration est un raisonnement qui permet, à partir de certains axiomes,

Plus en détail

Chp. 4. Minimisation d une fonction d une variable

Chp. 4. Minimisation d une fonction d une variable Chp. 4. Minimisation d une fonction d une variable Avertissement! Dans tout ce chapître, I désigne un intervalle de IR. 4.1 Fonctions convexes d une variable Définition 9 Une fonction ϕ, partout définie

Plus en détail

Conception de réseaux de télécommunications : optimisation et expérimentations

Conception de réseaux de télécommunications : optimisation et expérimentations Conception de réseaux de télécommunications : optimisation et expérimentations Jean-François Lalande Directeurs de thèse: Jean-Claude Bermond - Michel Syska Université de Nice-Sophia Antipolis Mascotte,

Plus en détail

2.4 Représentation graphique, tableau de Karnaugh

2.4 Représentation graphique, tableau de Karnaugh 2 Fonctions binaires 45 2.4 Représentation graphique, tableau de Karnaugh On peut définir complètement une fonction binaire en dressant son tableau de Karnaugh, table de vérité à 2 n cases pour n variables

Plus en détail

Chapitre 6. Fonction réelle d une variable réelle

Chapitre 6. Fonction réelle d une variable réelle Chapitre 6 Fonction réelle d une variable réelle 6. Généralités et plan d étude Une application de I dans R est une correspondance entre les éléments de I et ceu de R telle que tout élément de I admette

Plus en détail

Les droites (d 1 ) et (d 2 ) sont sécantes en A Le point A est le point d intersection des 2 droites

Les droites (d 1 ) et (d 2 ) sont sécantes en A Le point A est le point d intersection des 2 droites I Droites perpendiculaires Lorsque deux droites se coupent, on dit qu elles sont sécantes Les droites (d 1 ) et (d 2 ) sont sécantes en A Le point A est le point d intersection des 2 droites Lorsque deux

Plus en détail

Master of Science en mathématiques 2013-2014

Master of Science en mathématiques 2013-2014 Remarques liminaires : 1 Ce master à (3 semestres) permet 2 orientations distinctes : 1) Un master général en mathématiques 2) Un master qui permet de choisir des mineurs en finance, statistique, informatique

Plus en détail

Cours d Analyse. Fonctions de plusieurs variables

Cours d Analyse. Fonctions de plusieurs variables Cours d Analyse Fonctions de plusieurs variables Licence 1ère année 2007/2008 Nicolas Prioux Université de Marne-la-Vallée Table des matières 1 Notions de géométrie dans l espace et fonctions à deux variables........

Plus en détail

Programmation par contraintes. Laurent Beaudou

Programmation par contraintes. Laurent Beaudou Programmation par contraintes Laurent Beaudou On se trouve où? Un problème, une solution : la solution est-elle une solution du problème? simulation, vérification 2 On se trouve où? Un problème, une solution

Plus en détail

Probabilité. Table des matières. 1 Loi de probabilité 2 1.1 Conditions préalables... 2 1.2 Définitions... 2 1.3 Loi équirépartie...

Probabilité. Table des matières. 1 Loi de probabilité 2 1.1 Conditions préalables... 2 1.2 Définitions... 2 1.3 Loi équirépartie... 1 Probabilité Table des matières 1 Loi de probabilité 2 1.1 Conditions préalables........................... 2 1.2 Définitions................................. 2 1.3 Loi équirépartie..............................

Plus en détail

Développement décimal d un réel

Développement décimal d un réel 4 Développement décimal d un réel On rappelle que le corps R des nombres réels est archimédien, ce qui permet d y définir la fonction partie entière. En utilisant cette partie entière on verra dans ce

Plus en détail

Proposition de programmes de calculs en mise en train

Proposition de programmes de calculs en mise en train Proposition de programmes de calculs en mise en train Programme 1 : Je choisis un nombre, je lui ajoute 1, je calcule le carré du résultat, je retranche le carré du nombre de départ. Essai-conjecture-preuve.

Plus en détail

Exercices Alternatifs. Quelqu un aurait-il vu passer un polynôme?

Exercices Alternatifs. Quelqu un aurait-il vu passer un polynôme? Exercices Alternatifs Quelqu un aurait-il vu passer un polynôme? c 2004 Frédéric Le Roux, François Béguin (copyleft LDL : Licence pour Documents Libres). Sources et figures: polynome-lagrange/. Version

Plus en détail

Exercices Alternatifs. Quelqu un aurait-il vu passer un polynôme?

Exercices Alternatifs. Quelqu un aurait-il vu passer un polynôme? Exercices Alternatifs Quelqu un aurait-il vu passer un polynôme? c 2004 Frédéric Le Roux, François Béguin (copyleft LDL : Licence pour Documents Libres). Sources et figures: polynome-lagrange/. Version

Plus en détail

Architecture des ordinateurs TD1 - Portes logiques et premiers circuits

Architecture des ordinateurs TD1 - Portes logiques et premiers circuits Architecture des ordinateurs TD1 - Portes logiques et premiers circuits 1 Rappel : un peu de logique Exercice 1.1 Remplir la table de vérité suivante : a b a + b ab a + b ab a b 0 0 0 1 1 0 1 1 Exercice

Plus en détail

Peut-on imiter le hasard?

Peut-on imiter le hasard? 168 Nicole Vogel Depuis que statistiques et probabilités ont pris une large place dans les programmes de mathématiques, on nous propose souvent de petites expériences pour tester notre perception du hasard

Plus en détail

Fondements de l informatique Logique, modèles, et calculs

Fondements de l informatique Logique, modèles, et calculs Fondements de l informatique Logique, modèles, et calculs Cours INF423 de l Ecole Polytechnique Olivier Bournez Version du 20 septembre 2013 2 Table des matières 1 Introduction 9 1.1 Concepts mathématiques........................

Plus en détail

Le théorème de Thalès et sa réciproque

Le théorème de Thalès et sa réciproque Le théorème de Thalès et sa réciproque I) Agrandissement et Réduction d une figure 1) Définition : Lorsque toutes les longueurs d une figure F sont multipliées par un même nombre k on obtient une autre

Plus en détail

Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures)

Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures) Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures) Eercice 1 (5 points) pour les candidats n ayant pas choisi la spécialité MATH Le tableau suivant donne l évolution du chiffre

Plus en détail

Algorithmes récursifs

Algorithmes récursifs Licence 1 MASS - Algorithmique et Calcul Formel S. Verel, M.-E. Voge www.i3s.unice.fr/ verel 23 mars 2007 Objectifs de la séance 3 écrire des algorithmes récursifs avec un seul test rechercher un élément

Plus en détail

Limitations of the Playstation 3 for High Performance Cluster Computing

Limitations of the Playstation 3 for High Performance Cluster Computing Introduction Plan Limitations of the Playstation 3 for High Performance Cluster Computing July 2007 Introduction Plan Introduction Intérêts de la PS3 : rapide et puissante bon marché L utiliser pour faire

Plus en détail

Programmation Linéaire - Cours 1

Programmation Linéaire - Cours 1 Programmation Linéaire - Cours 1 P. Pesneau pierre.pesneau@math.u-bordeaux1.fr Université Bordeaux 1 Bât A33 - Bur 265 Ouvrages de référence V. Chvátal - Linear Programming, W.H.Freeman, New York, 1983.

Plus en détail

Problème à résoudre. min f(s) s.c. s S

Problème à résoudre. min f(s) s.c. s S Métaheuristiques Le mot métaheuristique est dérivé de la composition de deux mots grecs: - heuristique qui vient du verbe heuriskein (ευρισκειν) et qui signifie trouver - meta qui est un suffixe signifiant

Plus en détail

Info0804. Cours 6. Optimisation combinatoire : Applications et compléments

Info0804. Cours 6. Optimisation combinatoire : Applications et compléments Recherche Opérationnelle Optimisation combinatoire : Applications et compléments Pierre Delisle Université de Reims Champagne-Ardenne Département de Mathématiques et Informatique 17 février 2014 Plan de

Plus en détail

Logique. Plan du chapitre

Logique. Plan du chapitre Logique Ce chapitre est assez abstrait en première lecture, mais est (avec le chapitre suivant «Ensembles») probablement le plus important de l année car il est à la base de tous les raisonnements usuels

Plus en détail

Baccalauréat ES Pondichéry 7 avril 2014 Corrigé

Baccalauréat ES Pondichéry 7 avril 2014 Corrigé Baccalauréat ES Pondichéry 7 avril 204 Corrigé EXERCICE 4 points Commun à tous les candidats. Proposition fausse. La tangente T, passant par les points A et B d abscisses distinctes, a pour coefficient

Plus en détail

Problèmes de dénombrement.

Problèmes de dénombrement. Problèmes de dénombrement. 1. On se déplace dans le tableau suivant, pour aller de la case D (départ) à la case (arrivée). Les déplacements utilisés sont exclusivement les suivants : ller d une case vers

Plus en détail

Jean-Philippe Préaux http://www.i2m.univ-amu.fr/~preaux

Jean-Philippe Préaux http://www.i2m.univ-amu.fr/~preaux Colonies de fourmis Comment procèdent les colonies de fourmi pour déterminer un chemin presque géodésique de la fourmilière à un stock de nourriture? Les premières fourmis se déplacent au hasard. Les fourmis

Plus en détail

Console de supervision en temps réel du réseau de capteurs sans fil Beanair

Console de supervision en temps réel du réseau de capteurs sans fil Beanair Console de supervision en temps réel du réseau de capteurs sans fil Beanair Véritable console de supervision temps réel, le BeanScape permet de modéliser, de visualiser et d administrer en temps réel le

Plus en détail

Module Planification

Module Planification 1 Module Planification Interface MS Project 2 a) Charge atelier OF selon délai ou début de fabrication Export charge atelier sous Excel Capacité machine pour la période prédéfinie Date de début et fin

Plus en détail

Objets Combinatoires élementaires

Objets Combinatoires élementaires Objets Combinatoires élementaires 0-0 Permutations Arrangements Permutations pour un multi-ensemble mots sous-ensemble à k éléments (Problème du choix) Compositions LE2I 04 1 Permutations Supposons que

Plus en détail

Mlle Yasmin A. RÍOS SOLÍS

Mlle Yasmin A. RÍOS SOLÍS Thèse de DOCTORAT de l UNIVERSITÉ PARIS VI - PIERRE ET MARIE CURIE Spécialité : INFORMATIQUE présentée par : Mlle Yasmin A. RÍOS SOLÍS pour obtenir le grade de DOCTEUR de l UNIVERSITÉ PARIS VI Sujet de

Plus en détail

Bases de données réparties: Fragmentation et allocation

Bases de données réparties: Fragmentation et allocation Pourquoi une base de données distribuée? Bibliographie Patrick Valduriez, S. Ceri, Guiseppe Delagatti Bases de données réparties: Fragmentation et allocation 1 - Introduction inventés à la fin des années

Plus en détail

Machines virtuelles Cours 1 : Introduction

Machines virtuelles Cours 1 : Introduction Machines virtuelles Cours 1 : Introduction Pierre Letouzey 1 pierre.letouzey@inria.fr PPS - Université Denis Diderot Paris 7 janvier 2012 1. Merci à Y. Régis-Gianas pour les transparents Qu est-ce qu une

Plus en détail

Baccalauréat ES Amérique du Nord 4 juin 2008

Baccalauréat ES Amérique du Nord 4 juin 2008 Baccalauréat ES Amérique du Nord 4 juin 2008 EXERCICE 1 Commun à tous les candidats f est une fonction définie sur ] 2 ; + [ par : 4 points f (x)=3+ 1 x+ 2. On note f sa fonction dérivée et (C ) la représentation

Plus en détail

3 ème 2 DÉVELOPPEMENT FACTORISATIONS ET IDENTITÉS REMARQUABLES 1/5 1 - Développements

3 ème 2 DÉVELOPPEMENT FACTORISATIONS ET IDENTITÉS REMARQUABLES 1/5 1 - Développements 3 ème 2 DÉVELOPPEMENT FACTORISATIONS ET IDENTITÉS REMARQUABLES 1/5 1 - Développements Développer une expression consiste à transformer un produit en une somme Qu est-ce qu une somme? Qu est-ce qu un produit?

Plus en détail

Choisir le mode d envoi souhaité. Option 1 : Envoyer un SMS à un nombre réduit de numéros (0 10 )

Choisir le mode d envoi souhaité. Option 1 : Envoyer un SMS à un nombre réduit de numéros (0 10 ) Ce service permet d effectuer des envois de SMS texte à partir d une source de numéros de GSM (Maroc Telecom, Meditel,INWI ou Etrangers) sous format texte ou sous format Excel. Il est nécessaire au préalable

Plus en détail

Activités numériques [13 Points]

Activités numériques [13 Points] N du candidat L emploi de la calculatrice est autorisé. Le soin, la qualité de la présentation entrent pour 2 points dans l appréciation des copies. Les résultats seront soulignés. La correction est disponible

Plus en détail

Programmation Par Contraintes

Programmation Par Contraintes Programmation Par Contraintes Cours 2 - Arc-Consistance et autres amusettes David Savourey CNRS, École Polytechnique Séance 2 inspiré des cours de Philippe Baptiste, Ruslan Sadykov et de la thèse d Hadrien

Plus en détail

Analyse empirique et modélisation de la dynamique de la topologie de l Internet

Analyse empirique et modélisation de la dynamique de la topologie de l Internet Analyse empirique et modélisation de la dynamique de la topologie de l Internet Sergey Kirgizov Directrice de thèse: Clémence Magnien Complex Networks, LIP6, (UPMC, CNRS) Paris, 12 décembre 2014 Plan 1

Plus en détail

Intelligence Artificielle et Robotique

Intelligence Artificielle et Robotique Intelligence Artificielle et Robotique Introduction à l intelligence artificielle David Janiszek david.janiszek@parisdescartes.fr http://www.math-info.univ-paris5.fr/~janiszek/ PRES Sorbonne Paris Cité

Plus en détail

COURS EULER: PROGRAMME DE LA PREMIÈRE ANNÉE

COURS EULER: PROGRAMME DE LA PREMIÈRE ANNÉE COURS EULER: PROGRAMME DE LA PREMIÈRE ANNÉE Le cours de la première année concerne les sujets de 9ème et 10ème années scolaires. Il y a bien sûr des différences puisque nous commençons par exemple par

Plus en détail

Problème d ordonnancement de véhicules en variables booléennes

Problème d ordonnancement de véhicules en variables booléennes Problème d ordonnancement de véhicules en variables booléennes Freddy Hetman 2 juillet 2013 Faculté des sciences Jean Perrin Freddy Hetman () 2 juillet 2013 1 / 22 Sommaire 1 Introduction 2 Le problème

Plus en détail