EXERCICES PRIMITIVES ET CALCUL INTÉGRAL Site MathsTICE de Adama Traoré Lycée Technique Bamako ; 16 )
|
|
|
- Théophile Simon Leduc
- il y a 9 ans
- Total affichages :
Transcription
1 EXERCCES PRMTVES ET CALCUL NTÉGRAL Sit MathsTCE d Adama Traoré Lycé Tchiqu Bamako EXERCCE : Trouvr u primitiv d chacu ds foctios f défiis par ) f () 6 ; ) f () ) f () 9 ; ) f () 7 ) f () ( )( ) ; 6 ) f () (6)( ) 7 ) f () ( ) 6 ; 8 ) f () ( ) 9 ) f () 7 ( ) ; ) f () ( ) ) f () ( ) 7 ; ) f () ( ) ) f () ( ) ; ) f () ( ) 6 ) 7 ) 9 ) ) f ( ) ; 6 ) ( ) ( ) f ; 8 ) ( ) f ; ) ( ) ( ) ( ) f ; ) ( ) f ( ) f ( ) ( ) Ercics Primitivs Pag sur 9 Adama Traoré Profssur Lycé Tchiqu ( 9) f ( ) f ( ) ) f ( ) ; ) f ( ) ) 7 ) 9 ) ( ) ( ) ( ) f ( ) ; 6 ) f ( ) ( 7 ) ( 7) cos f ( ) ; 8 ) f ( ) si cos si si f ( ) ; ) f ( ) cos si cos f ( ) si ; ) f ( ) si( ) f ( ) cos ; ) f ( ) cos(6 ) ) ) ) f ( ) cos 6si si cos ; ) f ( ) cos 6 ) f ( ) si cos si(6 ) ; 7 ) f ( ) si 6
2 EXERCCE : - Calculr ls itégrals suivats A ( ) d ; B ( )( 6 ) d ; K ( ) C d ; D d ) d 6 E d ; T ) ( ; ( F d ; ( ) cos G ( ) d ; J d si L si cos d ; ( ) d ; K N ; P d ; D 6 d ; L ( ) l d ta ( ) d ; H ( ) d ta( ) d l Q d ; R co( ) d V d ; d ; U ( ) d ; K ( ) d W ; X cos ( si ) d ; W ta( ) d cos( ) ( ) d ; J ( ) d ; 6 L d ; L d ; ( ) A d ; B ( ) d ; E cos d ; K si d ; M cos si d ; d N ; P d ; 6 S cos (cos ) d ; d T ; Q ( ) d ; ( ) P d ; K ( ) d D ( ) d ; T ( ) d ; ( ) 6 7 G d ; U si t cost dt ; Y ( ) d ; Z l d EXERCCE : E utilisat la formul d itégratio par partis calculr ls itégrals K si d ; J d ; M ( ) d ; d P ( ) d ; T l t dt ; S d P l d ; C d ; l H d ; ( ) F t l t dt ; cos d ; t H t dt ; ( ) J t t sit dt ; cos(l ) R d ; V si () d K cos() d ; J ( ) d ; l ; K si d Ercics Primitivs Pag sur 9 Adama Traoré Profssur Lycé Tchiqu
3 EXERCCE : Soit la foctio f défii par f ( ) ) Trouvr ls réls a ; b t c tls qu ( ) 7 f ( ) a b ) Trouvr la primitiv F d f prat la valur ) E déduir f ( ) d c ( ) EXERCCE : Soit Soit la foctio f défii par ) Trouvr ls réls a t b tls qu ) E déduir f ( ) d f ( ) f ( ) a 6 ( ) b ( ) EXERCCE 6: f ( ) ) Soit la foctio f défii par ( ) a a) Trouvr ls réls a t b tls qu pour tout -, f ( ) d ) b) E déduir l calcul d ( b ( ) ) Soit la foctio g défii par g ( ) ( ) a) Trouvr ls réls a, b t c tls qu pour tout, J d ) b) E déduir l calcul d ( g ( ) a b c ) Soit la foctio f défii par f ( ) a) Détrmir l smbl d défiitio d f b) Trouvr ls réls a t b tls qu, a b f ( ) K d c) E déduir l calcul d Ercics Primitivs Pag sur 9 Adama Traoré Profssur Lycé Tchiqu
4 EXERCCE 7: ) O pos ( )cos d t J ( )si d a) Calculr J puis J b) E déduir ls valurs d t d J ) Détrmir ls réls a ; b t c tls qu pour tout rél strictmt a b c positif o ait : ( ) ) Calculr d ; déduir utilisat l itégratio par parti l calcul ( ) l( ) d J d ( ) ) Soit a) Calculr d b) Pour tout tir aturl, utilisat u itégratio par partis, c) Calculr foctio d E déduir EXERCCE 8: Pour tout tir aturl > ; o pos : d t d ) a) Calculr b) Calculr ) Comparr décroissat à l aid d u itégratio par partis t ) a) E procédat par cadrmt, établir qu : b) Etudir la limit d la suit ( ) lorsqu E déduir qu la suit ( ) st ) a) Démotrr qu, pour tout ombr d [ ; ] o a : ( ) b) Déduisz du résultat précédt qu : ( ) ( ) c) Détrmir la limit d la suit ) ( Ercics Primitivs Pag sur 9 Adama Traoré Profssur Lycé Tchiqu
5 EXERCCE 9: Soit la foctio f défii par f ( ) l( ) O s propos d calculr : ) Qul st l sig (λ)? λ ( λ) f ( ) d, où λ R b ) Trouvr du ombrs réls a t b tls qu pour tout rél, a ) Calculr J ( λ) λ d ) f ' état la foctio dérivé d f, calculr ) Calculr (λ) EXERCCE : f f ' Soit f u foctio umériqu cotiu sur [ ;] t tll qu pour tout d [ ;] f ( t) dt Soit F u primitiv d f sur [ ;] ) Prouvr qu : ) f( ) d ) E déduir qu : ( ) d F ( F( ) d f ) E déduir qu : [ ) ] f ( d ( d ) Soit h défii par h ) Démotrr qu pour élémt d N, o a : h( ) ( ) EXERCCE : ) Soit la foctio f cotiu sur [ ;] tll qu, pour tout rél d [ ;] o a : Démotrr qu : l, f ( ) f ( ) d l ) Pour tout tir aturl o do si( ) d a) Calculr lim ( o rmarqura qu [,], si( ) ) b) Trouvr u rlatio d récurrc tr t c) E déduir ( ) lim Ercics Primitivs Pag sur 9 Adama Traoré Profssur Lycé Tchiqu
6 EXERCCE : Soit la foctio f défii sur R par Calculr f ( ) d, puis f ( ) d Qull st la valur moy d f sur l itrvall [; m] EXERCCE : Pour tout tir aturl o ul, o défiit : m f ( ) t m u rél supériur à ) (l d -/ a/ justifir l istc d ctt itégral b/ Calculr c/ Démotrr la rlatio : pour, (o pourra ffctur u itégratio par partis) -/ l tir aturl o ul état fié, o ot F u primitiv d la foctio a (l ) sur l itrvall ] ; [ a/ Démotrr qu la foctio ta F ) st dérivabl sur R t plicitr sa foctio dérivé b/ E déduir ls propriétés suivats : ( t t - Pour tout tir aturl o ul F ( ) F () t dt - Pour tout tir aturl o ul dicatio : pour la duièm propriété, cadrr d abord t t sur [ ; ] EXERCCE : Das l pla mui d u rpèr orthoormé, o cosidèr la foctio f défii sur R par f ( ) t ) diqur sas calcul '( ) t f () t dt f ; ) Etudir ls variatios d f ; ) Démotrr qu pour tout ombr rél : f ( ) l( ) l E déduir qu la droit d équatio : y l st u asymptot à la courb (C f ) d f ) Costruir das l pla la courb (C f ) d f Ercics Primitivs Pag 6 sur 9 Adama Traoré Profssur Lycé Tchiqu
7 EXERCCE : L but d l rcic st d motrr qu l ombr, bas ds logarithms épéris, st pas u ombr ratiol Parti A : Soit f la foctio défii sur R par : f() O désig par (C f ) la courb rpréstativ d f das u pla mui d u rpèr O ; i ; j d uité graphiqu cm orthoormé ( ) -/ Etudir ls variatios d f ; o précisra ls limits d f t -/ Costruir la courb (C f ) das l pla -/ Utilisr u itégratio par partis pour calculr : f ( ) d Qull st l itrprétatio géométriqu d Parti B : Pour tout tir aturl supériur ou égal à, o pos : -/ a/ Motrr qu, pour tout d [ ;] b/ Eprimr foctio d l tir : J c/ Déduir d a/ t d b/ qu l o a : d d pour -/ Utilisr u itégratio par partis pour motrr qu pour tout o a : ( ) -/ Pour tout tir o pos k! a/ Eprimr k à l aid d k b/ Calculr k (o pourra utilisr la èm qustio d la parti A) E déduir, procédat par récurrc sur, qu k st u ombr tir pour c/ Utilisr l b/ t l -/ c/ pour motrr qu, qulqu soit l tir, l ombr (! ) k st u tir -/ a/ Soit p t q du ombrs tirs strictmt positifs! p Motrr qu, pour q, l ombr st u ombr tir q b/ E déduir, à l aid du -/ b/ t -/ c/ qu st pas u ombr ratiol Ercics Primitivs Pag 7 sur 9 Adama Traoré Profssur Lycé Tchiqu
8 EXERCCE 6: Soit ( ) la suit défii par ) Calculr t si d (o idiqu qu si si si ) ) Sas calculr, démotrr qu la suit ( ) st décroissat ) A l aid d u itégratio par partis d démotrr qu N ) a) Calculr 9 ; t 7 b) E déduir qu : EXERCCE 7: Pour tout tir aturl o pos d ) A l aid d u itégratio par partis trouvr u rlatio tr t ) Calculr ) Calculr EXERCCE 8: Pour tout tir aturl o pos cos d ( ) ) Détrmir ls réls a t b tls qu acos( ) bcos( ) cos( ) si( ) si( ) E déduir l calcul d d cos( ) ) A l aid d u itégratio par parti démotrr qu ( ) Ercics Primitivs Pag 8 sur 9 Adama Traoré Profssur Lycé Tchiqu
9 EXERCCE 9: O s propos d trouvr sas ls calculr séparémt ls trois itégrals cos d ; J si d ; K si cos d ) Calculr J t J K ) Eprimr cos foctio d cos t si E déduir la valur d puis clls d ; J ; K J K EXERCCE : O pos cos d si ; si si d t ) Calculr ) Calculr ) E déduir EXERCCE : O cosidèr ls itégrals défiis cos d t J si d ) a) Motrr qu l itégral put s écrir : cos (cos cos si ) d b) A l aid d u itégratio par partis, motrr qu si d J c) Motrr aussi qu l itégral J put s écrir : J cos d ) a) Motrr qu b) Motrr qu J J c) E déduir ls valurs ds itégrals t J Ercics Primitivs Pag 9 sur 9 Adama Traoré Profssur Lycé Tchiqu
Exponentielle exercices corrigés
Trmial S Foctio potill Ercics corrigés Fsic 996, rcic Fsic 996, rcic 3 3 Fsic 996, rcic 4 4 Fsic, rcic 6 3 5 Fsic, rcic 4 3 6 Baqu 4 4 7 Epo + air, Amériqu du Nord 5 5 8 Basiqu, N Calédoi, ov 4 7 9 Basiqus
x +1 + ln. Donner la valeur exacte affichée par cet algorithme lorsque l utilisateur entre la valeur n =3.
EXERCICE 3 (6 poits ) (Commu à tous les cadidats) Il est possible de traiter la partie C sas avoir traité la partie B Partie A O désige par f la foctio défiie sur l itervalle [, + [ par Détermier la limite
Exercice I ( non spé ) 1/ u 1 = 3 4. 2 3 u 2 4 + 3 9. 19 4 2/ Soit P la propriété : u n + 4. > 0 pour n 1. P est vraie au rang 1 car u 1
Bac blac TS Correctio Exercice I ( Spé ) / émotros par récurrece que 5x y = pour tout etier aturel 5x y = 5 8 = La propriété est doc vraie au rag = Supposos que la propriété est vraie jusqu au rag, o a
Etude de la fonction ζ de Riemann
Etude de la foctio ζ de Riema ) Défiitio Pour x réel doé, la série de terme gééral,, coverge si et seulemet si x >. x La foctio zeta de Riema est la foctio défiie sur ], [ par : ( x > ), = x. Remarque.
Séries numériques. Chap. 02 : cours complet.
Séris méris Cha : cors comlt Séris d réls t d comlxs Défiitio : séri d réls o d comlxs Défiitio : séri corgt o dirgt Rmar : iflc ds rmirs trms d séri sr la corgc Théorèm : coditio écssair d corgc Théorèm
Chapitre 3 : Fonctions d une variable réelle (1)
Uiversités Paris 6 et Paris 7 M1 MEEF Aalyse (UE 3) 2013-2014 Chapitre 3 : Foctios d ue variable réelle (1) 1 Lagage topologique das R Défiitio 1 Soit a u poit de R. U esemble V R est u voisiage de a s
Comportement d'une suite
Comportemet d'ue suite I) Approche de "ses de variatio et de ite d'ue suite" : 7 Soit la suite ( ) telle que = 5 ( + ) 2 Représetos graphiquemet la suite das u pla mui d' u repère. Il suffit de placer
1 Mesure et intégrale
1 Mesure et itégrale 1.1 Tribu boréliee et foctios mesurables Soit =[a, b] u itervalle (le cas où b = ou a = est pas exclu) et F ue famille de sous-esembles de. OditqueF est ue tribu sur si les coditios
CHAPITRE 2 SÉRIES ENTIÈRES
CHAPITRE 2 SÉRIES ENTIÈRES 2. Séries etières Défiitio 2.. O appelle série etière toute série de foctios ( ) f dot le terme gééral est de la forme f ()=a, où (a ) désige ue suite réelle ou complee et R.
Séries réelles ou complexes
6 Séries réelles ou complexes Comme pour le chapitre 3, les suites cosidérées sot a priori complexes et les résultats classiques sur les foctios cotiues ou dérivables d ue variable réelle sot supposés
f n (x) = x n e x. T k
EXERCICE 3 (7 points) Commun à tous ls candidats Pour tout ntir naturl n supériur ou égal à, on désign par f n la fonction défini sur R par : f n (x) = x n x. On not C n sa courb rprésntativ dans un rpèr
Séquence 5. La fonction logarithme népérien. Sommaire
Séquece 5 La foctio logarithme épérie Objectifs de la séquece Itroduire ue ouvelle foctio : la foctio logarithme épérie. Coaître les propriétés de cette foctio : sa dérivée, ses variatios, sa courbe, sa
Intégration et probabilités ENS Paris, 2012-2013. TD (20)13 Lois des grands nombres, théorème central limite. Corrigé :
Itégratio et probabilités EN Paris, 202-203 TD 203 Lois des grads ombres, théorème cetral limite. Corrigé Lois des grads ombres Exercice. Calculer e cet leços Détermier les limites suivates : x +... +
[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1. Exercice 6 [ 02475 ] [correction] Si n est un entier 2, le rationnel H n =
[http://mp.cpgedupuydelome.fr] édité le 1 juillet 14 Eocés 1 Nombres réels Ratioels et irratioels Exercice 1 [ 9 ] [correctio] Motrer que la somme d u ombre ratioel et d u ombre irratioel est u ombre irratioel.
SÉRIES STATISTIQUES À DEUX VARIABLES
1 ) POSITION DU PROBLÈME - VOCABULAIRE A ) DÉFINITION SÉRIES STATISTIQUES À DEUX VARIABLES O cosidère deux variables statistiques umériques x et y observées sur ue même populatio de idividus. O ote x 1
Examen final pour Conseiller financier / conseillère financière avec brevet fédéral. Recueil de formules. Auteur: Iwan Brot
Exame fial pour Coseiller fiacier / coseillère fiacière avec brevet fédéral Recueil de formules Auteur: Iwa Brot Ce recueil de formules sera mis à dispositio des cadidats, si écessaire. Etat au 1er mars
* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable
Eo7 Séries etières Eercices de Jea-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-fracefr * très facile ** facile *** difficulté moyee **** difficile ***** très difficile I : Icotourable Eercice
Exo7. Déterminants. = 4(b + c)(c + a)(a + b). c + a c + b 2c Correction. b + a 2b b + c. Exercice 2 ** X a b c a X c b b c X a c b a X
Exo7 Détermiats Exercices de Jea-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-fracefr * très facile ** facile *** difficulté moyee **** difficile ***** très difficile I : Icotourable T : pour
Les Nombres Parfaits.
Les Nombres Parfaits. Agathe CAGE, Matthieu CABAUSSEL, David LABROUSSE (2 de Lycée MONTAIGNE BORDEAUX) et Alexadre DEVERT, Pierre Damie DESSARPS (TS Lycée SUD MEDOC LETAILLAN MEDOC) La première partie
Suites et séries de fonctions
[http://mp.cpgedupuydelome.fr] édité le 3 avril 5 Eocés Suites et séries de foctios Propriétés de la limite d ue suite de foctios Eercice [ 868 ] [correctio] Etablir que la limite simple d ue suite de
Solutions particulières d une équation différentielle...
Solutios particulières d ue équatio différetielle......du premier ordre à coefficiets costats O cherche ue solutio particulière de y + ay = f, où a est ue costate réelle et f ue foctio, appelée le secod
Corrigé du baccalauréat S Pondichéry 13 avril 2011
Corrigé du baccalauréat S Pondichéry avril EXERCICE Commun à tous ls candidats Parti I points. L ax ds ordonnés st asymptot à C au voisinag d ; la fonction étant décroissant sur ] ; + [, la limit quand
Processus et martingales en temps continu
Chapitre 3 Processus et martigales e temps cotiu 1 Quelques rappels sur les martigales e temps discret (voir [4]) O cosidère u espace filtré (Ω, F, (F ) 0, IP). O ote F = 0 F. Défiitio 1.1 Ue suite de
a g c d n d e s e s m b
PPrrooppoossiittiioo 22001111JJPP 22770055 000011 uu 0088 fféévvrriirr 22001111 VVlliiiittéé jjuussqquu uu 3300//0044//22001111 tim c ir tv é p g c h u i rè s G A Z iv lu s IC.G R é c lo y m ip s 9 r7
Commun à tous les candidats
EXERCICE 3 (9 points ) Commun à tous les candidats On s intéresse à des courbes servant de modèle à la distribution de la masse salariale d une entreprise. Les fonctions f associées définies sur l intervalle
* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable
Exo7 Topologie Exercices de Jea-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-fracefr * très facile ** facile *** difficulté moyee **** difficile ***** très difficile I : Icotourable Exercice **
EXERCICES : DÉNOMBREMENT
Chapitre 7 ECE 1 - Grad Nouméa - 015 EXERCICES : DÉNOMBREMENT LISTES / ARRANGEMENTS Exercice 1 : Le code ativol Pour so vélo, Toto possède u ativol a code. Le code est ue successio de trois chiffres compris
Processus géométrique généralisé et applications en fiabilité
Processus géométrique gééralisé et applicatios e fiabilité Lauret Bordes 1 & Sophie Mercier 2 1,2 Uiversité de Pau et des Pays de l Adour Laboratoire de Mathématiques et de leurs Applicatios - Pau UMR
Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures)
Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures) Eercice 1 (5 points) pour les candidats n ayant pas choisi la spécialité MATH Le tableau suivant donne l évolution du chiffre
Groupe orthogonal d'un espace vectoriel euclidien de dimension 2, de dimension 3
1 Groupe orthogoal d'u espace vectoriel euclidie de dimesio, de dimesio Voir le chapitre 19 pour l'étude des espaces euclidies et des isométries. État doé u espace euclidie E de dimesio 1, o rappelle que
FILTRAGE. ANALOGIQUE et NUMERIQUE. (Vol. 8)
Dpt GEII IUT Bordaux I FILTRAGE AALOGIQUE t UMERIQUE (Vol. 8) G. Couturir Tl : 5 56 84 57 58 mail : [email protected] Sommair I-Itroductio p. II-Filtrag aalogiqu p. 4 II-- Filtrs pass-bas d'ordr
Baccalauréat S Asie 19 juin 2014 Corrigé
Bcclurét S Asie 9 jui 24 Corrigé A. P. M. E. P. Exercice Commu à tous les cdidts 4 poits Questio - c. O peut élimier rpidemet les réposes. et d. cr les vecteurs directeurs des droites proposées e sot ps
Polynésie Septembre 2002 - Exercice On peut traiter la question 4 sans avoir traité les questions précédentes.
Polyésie Septembre 2 - Exercice O peut traiter la questio 4 sas avoir traité les questios précédetes Pour u achat immobilier, lorsqu ue persoe emprute ue somme de 50 000 euros, remboursable par mesualités
LES ÉCLIPSES. Éclipser signifie «cacher». Vus depuis la Terre, deux corps célestes peuvent être éclipsés : la Lune et le Soleil.
Qu appelle-t-o éclipse? Éclipser sigifie «cacher». Vus depuis la Terre, deu corps célestes peuvet être éclipsés : la Lue et le Soleil. LES ÉCLIPSES Pour qu il ait éclipse, les cetres de la Terre, de la
O, i, ) ln x. (ln x)2
EXERCICE 5 points Commun à tous les candidats Le plan complee est muni d un repère orthonormal O, i, j Étude d une fonction f On considère la fonction f définie sur l intervalle ]0; + [ par : f = ln On
UNIVERSITE MONTESQUIEU BORDEAUX IV. Année universitaire 2006-2007. Semestre 2. Prévisions Financières. Travaux Dirigés - Séances n 4
UNVERSTE MONTESQUEU BORDEAUX V Licece 3 ère aée Ecoomie - Gestio Aée uiversitaire 2006-2007 Semestre 2 Prévisios Fiacières Travaux Dirigés - Séaces 4 «Les Critères Complémetaires des Choix d vestissemet»
14 Chapitre 14. Théorème du point fixe
Chapitre 14 Chapitre 14. Théorème du poit fixe Si l o examie de plus près les méthodes de Lagrage et de Newto, étudiées au chapitre précédet, elles revieet das leur pricipe à remplacer la résolutio de
. (b) Si (u n ) est une suite géométrique de raison q, q 1, on obtient : N N, S N = 1 qn+1. n+1 1 S N = 1 1
Premières propriétés des ombres réels 2 Suites umériques 3 Suites mootoes : à faire 4 Séries umériques 4. Notio de série. Défiitio 4.. Soit (u ) ue suite de ombres réels ou complexes. Pour N N, o ote S
Studio 12 scan control scan control. professional light desk user s manual rel. 1.41
Studio ca cotrol ca cotrol profioal light dk ur maual rl Coig Gééral Lir atttivmt l coig d écurité trouvat da ctt otic, car ll fourit d importat iformatio cocrat la écurité d itallatio, d utiliatio t d
Limites des Suites numériques
Chapitre 2 Limites des Suites umériques Termiale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Limite fiie ou ifiie d ue suite. Limites et comparaiso. Opératios sur les ites. Comportemet
4 Approximation des fonctions
4 Approximatio des foctios Ue foctio f arbitraire défiie sur u itervalle I et à valeur das IR peut être représetée par so graphe, ou de maière équivalete par la doée de l esemble de ses valeurs f(t) pour
STATISTIQUE AVANCÉE : MÉTHODES
STATISTIQUE AVANCÉE : MÉTHODES NON-PAAMÉTIQUES Ecole Cetrale de Paris Arak S. DALALYAN Table des matières 1 Itroductio 5 2 Modèle de desité 7 2.1 Estimatio par istogrammes............................
Continuité et dérivabilité d une fonction
DERNIÈRE IMPRESSIN LE 7 novembre 014 à 10:3 Continuité et dérivabilité d une fonction Table des matières 1 Continuité d une fonction 1.1 Limite finie en un point.......................... 1. Continuité
II LES PROPRIETES DES ESTIMATEURS MCO 1. Rappel : M1 LA REGRESSION : HYPOTHESES ET TESTS Avril 2009
M LA REGRESSION : HYPOTHESES ET TESTS Avril 009 I LES HYPOTHESES DE LA MCO. Hypothèses sur la variable explicative a. est o stochastique. b. a des valeurs xes das les différets échatillos. c. Quad ted
Consolidation. C r é e r un nouveau classeur. Créer un groupe de travail. Saisir des données dans un groupe
Cosolidatio La société THEOS, qui commercialise des vis, exerce so activité das trois villes : Paris, Nacy et Nice. Le directeur de la société souhaite cosolider les résultats de ses vetes par ville das
Développements limités, équivalents et calculs de limites
Développements ités, équivalents et calculs de ites Eercice. Déterminer le développement ité en 0 à l ordre n des fonctions suivantes :. f() e (+) 3 n. g() sin() +ln(+) n 3 3. h() e sh() n 4. i() sin(
Intégrales généralisées
3 Iégrles géérlisées Pour ce chpire, les focios cosidérées so priori défiies sur u iervlle réel I o rédui à u poi, à vleurs réelles ou complees e coiues pr morceu. L défiiio e les propriéés de l iégrle
Développements limités. Notion de développement limité
MT12 - ch2 Page 1/8 Développements limités Dans tout ce chapitre, I désigne un intervalle de R non vide et non réduit à un point. I Notion de développement limité Dans tout ce paragraphe, a désigne un
Comparaison de fonctions Développements limités. Chapitre 10
PCSI - 4/5 www.ericreynaud.fr Chapitre Points importants 3 Questions de cours 6 Eercices corrigés Plan du cours 4 Eercices types 7 Devoir maison 5 Eercices Chap Et s il ne fallait retenir que si points?
Convergences 2/2 - le théorème du point fixe - Page 1 sur 9
Au sommaire : Suites extraites Le théorème de Bolzao-Weierstrass La preuve du théorème de Bolzao-Weierstrass3 Foctio K-cotractate4 Le théorème du poit fixe5 La preuve du théorème du poit fixe6 Utilisatios
RESOLUTION PAR LA METHODE DE NORTON, MILLMAN ET KENNELY
LO 4 : SOLUTO P L MTHO OTO, MLLM T KLY SOLUTO P L MTHO OTO, MLLM T KLY MTHO OTO. toductio Le théoème de oto va ous pemette de éduie u cicuit complexe e gééateu de couat éel. e gééateu possède ue souce
Deuxième partie : LES CONTRATS D ASSURANCE VIE CLASSIQUES
DEUXIEME PARTIE Deuième partie : LES CONTRATS D ASSURANCE VIE CLASSIQUES Chapitre. L assurace de capital différé Chapitre 2. Les opératios de retes Chapitre 3. Les assuraces décès Chapitre 4. Les assuraces
POLITIQUE ECONOMIQUE ET DEVELOPPEMENT
POLTQU ONOMQU T DVLOPPMNT TRUTUR DU MAR NATONAL DU AF-AAO T PR AU PRODUTUR MALAN Beïla Beoit osultat PD N 06/008 ellule d Aalyse de Politiques coomiques du R Aée de pulicatio : Avril 009 Résumé e papier
Module 3 : Inversion de matrices
Math Stat Module : Iversio de matrices M Module : Iversio de matrices Uité. Défiitio O e défiira l iverse d ue matrice que si est carrée. O appelle iverse de la matrice carrée toute matrice B telle que
Le marché du café peut être segmenté en fonction de deux modes de production principaux : la torréfaction et la fabrication de café soluble.
II LE MARCHE DU CAFE 1 L attractivité La segmetatio selo le mode de productio Le marché du café peut être segmeté e foctio de deux modes de productio pricipaux : la torréfactio et la fabricatio de café
Régulation analogique industrielle ESTF- G.Thermique
Chapitre 5 Stabilité, Rapidité, Précisio et Réglage Stabilité. Défiitio Coditio de stabilité. Critères de stabilité.. Critères algébriques.. Critère graphique ou de revers das le pla de Nyquist Rapidité
COMPTE-RENDU «MATHS EN JEANS» LYCEE OZENNE Groupe 1 : Comment faire une carte juste de la Terre?
Claire FORGACZ Marion GALLART Hasnia GOUDJILI COMPTERENDU «MATHS EN JEANS» LYCEE OZENNE Groupe 1 : Comment faire une carte juste de la Terre? Si l on se pose la question de savoir comment on peut faire
Baccalauréat ES Amérique du Nord 4 juin 2008
Baccalauréat ES Amérique du Nord 4 juin 2008 EXERCICE 1 Commun à tous les candidats f est une fonction définie sur ] 2 ; + [ par : 4 points f (x)=3+ 1 x+ 2. On note f sa fonction dérivée et (C ) la représentation
3.1 Différences entre ESX 3.5 et ESXi 3.5 au niveau du réseau. Solution Cette section récapitule les différences entre les deux versions.
3 Réseau Le réseau costitue u aspect essetiel d u eviroemet virtuel ESX. Il est doc importat de compredre la techologie, y compris ses différets composats et leur coopératio. Das ce chapitre, ous étudios
c. Calcul pour une évolution d une proportion entre deux années non consécutives
Calcul des itervalles de cofiace our les EPCV 996-004 - Cas d u ourcetage ou d ue évolutio e oit das la oulatio totale des méages - Cas d u ourcetage ou d ue évolutio das ue sous oulatio das les méages
Nombre dérivé et tangente
Nombre dérivé et tangente I) Interprétation graphique 1) Taux de variation d une fonction en un point. Soit une fonction définie sur un intervalle I contenant le nombre réel a, soit (C) sa courbe représentative
Chap 4. La fonction exponentielle Terminale S. Lemme : Si est une fonction dérivable sur R telle que : = et 0! = 1 alors ne s annule pas sur R.
Lemme : Si est une fonction dérivable sur R telle que : = et 0! = 1 alors ne s annule pas sur R. Démonstration : Soit la fonction %:& %&!= &!, elle est dérivable sur R et & R, %. &!= &! = &! = %&! [email protected]
e x dx = e x dx + e x dx + e x dx.
Chtr Foctos Gmm t foctos d Bssl Chtr Focto Gmm t foctos d Bssl Détrmto d l focto Gmm L focto Gmm st très sml à dédur à rtr d l tégrl d'eulr: Ctt tégrl st u focto d rmètr ; ll st rrésté r l symbol () t
DETERMINANTS. a b et a'
2003 - Gérard Lavau - http://perso.waadoo.fr/lavau/idex.htm Vous avez toute liberté pour télécharger, imprimer, photocopier ce cours et le diffuser gratuitemet. Toute diffusio à titre oéreux ou utilisatio
16.1 Convergence simple et convergence uniforme. une suite de fonctions de I dans R ou C.
16 Suites de foctios Suf précisio cotrire, I est u itervlle réel o réduit à u poit et les foctios cosidérées sot défiies sur I à vleurs réelles ou complexes. 16.1 Covergece simple et covergece uiforme
Renseignements et monitoring. Renseignements commerciaux et de solvabilité sur les entreprises et les particuliers.
Reseigemets et moitorig. Reseigemets commerciaux et de solvabilité sur les etreprises et les particuliers. ENSEMBLE CONTRE LES PERTES. Reseigemets Creditreform. Pour plus de trasparece. Etreteir des rapports
STRATÉGIE DE REMPLACEMENT DE LUTTE CONTRE LA PUNAISE TERNE DANS LES FRAISERAIES DE L ONTARIO
Des résultats du Programme de réductio des risques STRATÉGIE DE REMPLACEMENT DE LUTTE CONTRE LA PUNAISE TERNE DANS LES FRAISERAIES DE L ONTARIO 1. Cotexte La puaise tere Lygus lieolaris (figure 1) est
Chapitre 2 SONDAGE ALEATOIRE SIMPLE OU A PROBABILITES EGALES. 2.1 DEFINITIONS 2.2 SONDAGE ALEATOIRE SIMPLE SANS REMISE (PESR) 2.2.
Chapitre 2 SONDAGE ALEATOIRE SIMPLE OU A PROBABILITES EGALES PLAN DU CHAPITRE 2 2.1 DEFINITIONS 2.2 SONDAGE ALEATOIRE SIMPLE SANS REMISE (PESR) 2.2.1 Pla de sodage 2.2.2 Probabilités d iclusio 2.3 SONDAGE
TRANSFERT DE CHARGE DANS UN RÉSEAU DE PROCESSEURS TOTALEMENT CONNECTÉS (*) par Maryse BÉGUIN ( 1 )
RAIRO Operatios Research RAIRO Oper. Res. 34 (2000) 99-129 TRANSFERT DE CHARGE DANS UN RÉSEAU DE PROCESSEURS TOTALEMENT CONNECTÉS (*) par Maryse BÉGUIN ( 1 ) Commuiqué par Berard LEMAIRE Résumé. L étude
Neolane Message Center. Neolane v6.0
Neolae Message Ceter Neolae v6.0 Ce documet, aisi que le logiciel qu'il décrit, est fouri das le cadre d'u accord de licece et e peut être utilisé ou copié que das les coditios prévues par cet accord.
Chaînes de Markov. Arthur Charpentier
Chaîes de Markov Arthur Charpetier École Natioale de la Statistique et d Aalyse de l Iformatio - otes de cours à usage exclusif des étudiats de l ENSAI - - e pas diffuser, e pas citer - Quelques motivatios.
L ÉCLAIRAGE NATUREL À LED ÉCO CONÇU
L ÉCLAIRAGE NATUREL À LED ÉCO CONÇU ST290S-CTP 40 SD ST290S-STD 40 SD ST290S-NTR 40 SD ST290S-AND 40 SD C O L O R I S Quatre coloris de série, autres teintes réalisables sur demande. 1 m 2 m 3 m 4 m
Correction du Baccalauréat S Amérique du Nord mai 2007
Correction du Baccalauréat S Amérique du Nord mai 7 EXERCICE points. Le plan (P) a une pour équation cartésienne : x+y z+ =. Les coordonnées de H vérifient cette équation donc H appartient à (P) et A n
PROMENADE ALÉATOIRE : Chaînes de Markov et martingales
PROMENADE ALÉATOIRE : Chaîes de Markov et martigales Thierry Bodieau École Polytechique Paris Départemet de Mathématiques Appliquées [email protected] Novembre 2013 2 Table des matières
La France, à l écoute des entreprises innovantes, propose le meilleur crédit d impôt recherche d Europe
1/5 Trois objectifs poursuivis par le gouveremet : > améliorer la compétitivité fiscale de la Frace > péreiser les activités de R&D > faire de la Frace u territoire attractif pour l iovatio Les icitatios
Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer
Pour commencer Exercice 1 - Ensembles de définition - Première année - 1. Le logarithme est défini si x + y > 0. On trouve donc le demi-plan supérieur délimité par la droite d équation x + y = 0.. 1 xy
Une action! Un message!
Ue actio! U message! Cotact Master est u service exclusif de relaces automatiques de vos actes vers vos cliets, par SMS, messages vocaux, e-mails, courrier... Il se décleche lorsque vous réalisez ue actio
RECHERCHE DE CLIENTS simplifiée
RECHERCHE DE CLIENTS simplifiée Nous ous occupos d accroître votre clietèle avec le compte Avatage d etreprise Pour trouver des cliets potetiels grâce à u simple compte bacaire Vous cherchez des idées
FEUILLE D EXERCICES 17 - PROBABILITÉS SUR UN UNIVERS FINI
FEUILLE D EXERCICES 7 - PROBABILITÉS SUR UN UNIVERS FINI Exercice - Lacer de dés O lace deux dés à 6 faces équilibrés. Calculer la probabilité d obteir : u double ; ue somme des deux dés égale à 8 ; ue
Les outils de la transition énergétique ISO 50001
Les outils de la transition énergétique ISO 50001 26 mars 2013 Michel HIRAUX +32 496 58 12 04 Le Management énergétique dans son contexte Management et Système de Management Objectif d un EnMS Facteurs
20. Algorithmique & Mathématiques
L'éditeur L'éditeur permet à l'utilisateur de saisir les liges de codes d'u programme ou de défiir des foctios. Remarque : O peut saisir directemet des istructios das la cosole Scilab, mais il est plus
Dérivation : Résumé de cours et méthodes
Dérivation : Résumé de cours et métodes Nombre dérivé - Fonction dérivée : DÉFINITION (a + ) (a) Etant donné est une onction déinie sur un intervalle I contenant le réel a, est dérivable en a si tend vers
Chap. 6 : Les principaux crédits de trésorerie et leur comptabilisation
Chap. 6 : Les pricipaux crédits de trésorerie et leur comptabilisatio Les etreprises ot souvet besoi de moyes de fiacemet à court terme : elles ot alors recours aux crédits bacaires (découverts bacaires
capital en fin d'année 1 C 0 + T C 0 = C 0 (1 + T) = C 0 r en posant r = 1 + T 2 C 0 r + C 0 r T = C 0 r (1 + T) = C 0 r 2 3 C 0 r 3...
Applicatios des maths Algèbre fiacière 1. Itérêts composés O place u capital C 0 à u taux auel T a pedat aées. Quelle est la valeur fiale C de ce capital? aée capital e fi d'aée 1 C 0 + T C 0 = C 0 (1
Chapitre 3 : Transistor bipolaire à jonction
Chapitre 3 : Trasistor bipolaire à joctio ELEN075 : Electroique Aalogique ELEN075 : Electroique Aalogique / Trasistor bipolaire U aperçu du chapitre 1. Itroductio 2. Trasistor p e mode actif ormal 3. Courats
La maladie rénale chronique
La maladie réale chroique Qu est-ce que cela veut dire pour moi? Natioal Kidey Disease Educatio Program La maladie réale chroique: l essetiel Vous avez été iformé(e) que vous êtes atteit(e) de la maladie
STATISTIQUE : TESTS D HYPOTHESES
STATISTIQUE : TESTS D HYPOTHESES Préparatio à l Agrégatio Bordeaux Aée 203-204 Jea-Jacques Ruch Table des Matières Chapitre I. Gééralités sur les tests 5. Itroductio 5 2. Pricipe des tests 6 2.a. Méthodologie
Compression Compression par dictionnaires
Compression Compression par dictionnaires E. Jeandel Emmanuel.Jeandel at lif.univ-mrs.fr E. Jeandel, Lif CompressionCompression par dictionnaires 1/25 Compression par dictionnaire Principe : Avoir une
Statistique descriptive bidimensionnelle
1 Statistique descriptive bidimesioelle Statistique descriptive bidimesioelle Résumé Liaisos etre variables quatitatives (corrélatio et uages de poits), qualitatives (cotigece, mosaïque) et de types différets
Statistique Numérique et Analyse des Données
Statistique Numérique et Aalyse des Doées Arak DALALYAN Septembre 2011 Table des matières 1 Élémets de statistique descriptive 9 1.1 Répartitio d ue série umérique uidimesioelle.............. 9 1.2 Statistiques
Télé OPTIK. Plus spectaculaire que jamais.
Télé OPTIK Plus spectaculaire que jamais. Vivez toute la puissace de la télévisio sur IP grâce au réseau OPTIK 1 de TELUS et découvrez-e l extraordiaire potetiel. Télé OPTIK MC vous doe la parfaite maîtrise
LE PRINCIPE DU RAISONNEMENT PAR RÉCURRENCE
LE PRINCIPE DU RAISONNEMENT PAR RÉCURRENCE. Exemple troductf (Les élèves qu coasset déà be le prcpe peuvet sauter ce paragraphe) Cosdéros la sute (u ), défe pour tout, par : u u u 0 0 Cette sute est défe
S-PENSION. Constituez-vous un capital retraite complémentaire pour demain tout en bénéficiant d avantages fiscaux dès aujourd hui.
S-PENSION Costituez-vous u capital retraite complémetaire pour demai tout e bééficiat d avatages fiscaux dès aujourd hui. Sommaire 1. Il est temps de predre l iitiative 4 2. Profitez dès aujourd hui des
Chap. 6 : Les principaux crédits de trésorerie et leur comptabilisation
1 / 9 Chap. 6 : Les pricipaux crédits de trésorerie et leur comptabilisatio Le cycle d exploitatio des etreprises (achats stockage productio stockage vetes) peut etraîer des décalages de trésorerie plus
for a living planet WWF ZOOM: votre carte de crédit personnalisée
for a livig plaet WWF ZOOM: votre carte de crédit persoalisée Le meilleur pour vous. Le meilleur pour l eviroemet. Ue carte de crédit du WWF. Vous faites u geste e faveur de la ature. Sas frais supplémetaires.
8.1 Généralités sur les fonctions de plusieurs variables réelles. f : R 2 R (x, y) 1 x 2 y 2
Chapitre 8 Fonctions de plusieurs variables 8.1 Généralités sur les fonctions de plusieurs variables réelles Définition. Une fonction réelle de n variables réelles est une application d une partie de R
Chapitre 6. Fonction réelle d une variable réelle
Chapitre 6 Fonction réelle d une variable réelle 6. Généralités et plan d étude Une application de I dans R est une correspondance entre les éléments de I et ceu de R telle que tout élément de I admette
Terminale S. Terminale S 1 F. Laroche
Termiale S Exercices. Rappels et exercices de base 3.. QCM (P. Egel) 3.. QCM, Atilles 005 4. 3. QCM, Liba 009, 3 poits 4. 4. QCM, C. étragers 007. 5. QCM, Frace 007 5 6. 6. QCM, N. Calédoie 007 7. 7. QCM
Exercice 1 Trouver l équation du plan tangent pour chaque surface ci-dessous, au point (x 0,y 0,z 0 ) donné :
Enoncés : Stephan de Bièvre Corrections : Johannes Huebschmann Exo7 Plans tangents à un graphe, différentiabilité Exercice 1 Trouver l équation du plan tangent pour chaque surface ci-dessous, au point
Chafa Azzedine - Faculté de Physique U.S.T.H.B 1
Chafa Azzedine - Faculté de Physique U.S.T.H.B 1 Définition: La cinématique est une branche de la mécanique qui étudie les mouements des corps dans l espace en fonction du temps indépendamment des causes
